Automatic date update in version.in
[binutils-gdb.git] / gdb / stabsread.c
blob85fe4000f329c67df2d0653088ca948546e8286b
1 /* Support routines for decoding "stabs" debugging information format.
3 Copyright (C) 1986-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
27 #include "bfd.h"
28 #include "gdbsupport/gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h"
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym-legacy.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "target-float.h"
44 #include "c-lang.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include <ctype.h>
49 #include "stabsread.h"
51 /* See stabsread.h for these globals. */
52 unsigned int symnum;
53 const char *(*next_symbol_text_func) (struct objfile *);
54 unsigned char processing_gcc_compilation;
55 int within_function;
56 struct symbol *global_sym_chain[HASHSIZE];
57 struct pending_stabs *global_stabs;
58 int previous_stab_code;
59 int *this_object_header_files;
60 int n_this_object_header_files;
61 int n_allocated_this_object_header_files;
63 struct stabs_nextfield
65 struct stabs_nextfield *next;
67 struct field field;
70 struct next_fnfieldlist
72 struct next_fnfieldlist *next;
73 struct fn_fieldlist fn_fieldlist;
76 /* The routines that read and process a complete stabs for a C struct or
77 C++ class pass lists of data member fields and lists of member function
78 fields in an instance of a field_info structure, as defined below.
79 This is part of some reorganization of low level C++ support and is
80 expected to eventually go away... (FIXME) */
82 struct stab_field_info
84 struct stabs_nextfield *list = nullptr;
85 struct next_fnfieldlist *fnlist = nullptr;
87 auto_obstack obstack;
90 static void
91 read_one_struct_field (struct stab_field_info *, const char **, const char *,
92 struct type *, struct objfile *);
94 static struct type *dbx_alloc_type (int[2], struct objfile *);
96 static long read_huge_number (const char **, int, int *, int);
98 static struct type *error_type (const char **, struct objfile *);
100 static void
101 patch_block_stabs (struct pending *, struct pending_stabs *,
102 struct objfile *);
104 static int read_type_number (const char **, int *);
106 static struct type *read_type (const char **, struct objfile *);
108 static struct type *read_range_type (const char **, int[2],
109 int, struct objfile *);
111 static struct type *read_sun_builtin_type (const char **,
112 int[2], struct objfile *);
114 static struct type *read_sun_floating_type (const char **, int[2],
115 struct objfile *);
117 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
119 static struct type *rs6000_builtin_type (int, struct objfile *);
121 static int
122 read_member_functions (struct stab_field_info *, const char **, struct type *,
123 struct objfile *);
125 static int
126 read_struct_fields (struct stab_field_info *, const char **, struct type *,
127 struct objfile *);
129 static int
130 read_baseclasses (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
133 static int
134 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
137 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
139 static int attach_fields_to_type (struct stab_field_info *, struct type *,
140 struct objfile *);
142 static struct type *read_struct_type (const char **, struct type *,
143 enum type_code,
144 struct objfile *);
146 static struct type *read_array_type (const char **, struct type *,
147 struct objfile *);
149 static struct field *read_args (const char **, int, struct objfile *,
150 int *, int *);
152 static void add_undefined_type (struct type *, int[2]);
154 static int
155 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
156 struct objfile *);
158 static const char *find_name_end (const char *name);
160 static int process_reference (const char **string);
162 void stabsread_clear_cache (void);
164 static const char vptr_name[] = "_vptr$";
165 static const char vb_name[] = "_vb$";
167 static void
168 invalid_cpp_abbrev_complaint (const char *arg1)
170 complaint (_("invalid C++ abbreviation `%s'"), arg1);
173 static void
174 reg_value_complaint (int regnum, int num_regs, const char *sym)
176 complaint (_("bad register number %d (max %d) in symbol %s"),
177 regnum, num_regs - 1, sym);
180 static void
181 stabs_general_complaint (const char *arg1)
183 complaint ("%s", arg1);
186 /* Make a list of forward references which haven't been defined. */
188 static struct type **undef_types;
189 static int undef_types_allocated;
190 static int undef_types_length;
191 static struct symbol *current_symbol = NULL;
193 /* Make a list of nameless types that are undefined.
194 This happens when another type is referenced by its number
195 before this type is actually defined. For instance "t(0,1)=k(0,2)"
196 and type (0,2) is defined only later. */
198 struct nat
200 int typenums[2];
201 struct type *type;
203 static struct nat *noname_undefs;
204 static int noname_undefs_allocated;
205 static int noname_undefs_length;
207 /* Check for and handle cretinous stabs symbol name continuation! */
208 #define STABS_CONTINUE(pp,objfile) \
209 do { \
210 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
211 *(pp) = next_symbol_text (objfile); \
212 } while (0)
214 /* Vector of types defined so far, indexed by their type numbers.
215 (In newer sun systems, dbx uses a pair of numbers in parens,
216 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
217 Then these numbers must be translated through the type_translations
218 hash table to get the index into the type vector.) */
220 static struct type **type_vector;
222 /* Number of elements allocated for type_vector currently. */
224 static int type_vector_length;
226 /* Initial size of type vector. Is realloc'd larger if needed, and
227 realloc'd down to the size actually used, when completed. */
229 #define INITIAL_TYPE_VECTOR_LENGTH 160
232 /* Look up a dbx type-number pair. Return the address of the slot
233 where the type for that number-pair is stored.
234 The number-pair is in TYPENUMS.
236 This can be used for finding the type associated with that pair
237 or for associating a new type with the pair. */
239 static struct type **
240 dbx_lookup_type (int typenums[2], struct objfile *objfile)
242 int filenum = typenums[0];
243 int index = typenums[1];
244 unsigned old_len;
245 int real_filenum;
246 struct header_file *f;
247 int f_orig_length;
249 if (filenum == -1) /* -1,-1 is for temporary types. */
250 return 0;
252 if (filenum < 0 || filenum >= n_this_object_header_files)
254 complaint (_("Invalid symbol data: type number "
255 "(%d,%d) out of range at symtab pos %d."),
256 filenum, index, symnum);
257 goto error_return;
260 if (filenum == 0)
262 if (index < 0)
264 /* Caller wants address of address of type. We think
265 that negative (rs6k builtin) types will never appear as
266 "lvalues", (nor should they), so we stuff the real type
267 pointer into a temp, and return its address. If referenced,
268 this will do the right thing. */
269 static struct type *temp_type;
271 temp_type = rs6000_builtin_type (index, objfile);
272 return &temp_type;
275 /* Type is defined outside of header files.
276 Find it in this object file's type vector. */
277 if (index >= type_vector_length)
279 old_len = type_vector_length;
280 if (old_len == 0)
282 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
283 type_vector = XNEWVEC (struct type *, type_vector_length);
285 while (index >= type_vector_length)
287 type_vector_length *= 2;
289 type_vector = (struct type **)
290 xrealloc ((char *) type_vector,
291 (type_vector_length * sizeof (struct type *)));
292 memset (&type_vector[old_len], 0,
293 (type_vector_length - old_len) * sizeof (struct type *));
295 return (&type_vector[index]);
297 else
299 real_filenum = this_object_header_files[filenum];
301 if (real_filenum >= N_HEADER_FILES (objfile))
303 static struct type *temp_type;
305 warning (_("GDB internal error: bad real_filenum"));
307 error_return:
308 temp_type = builtin_type (objfile)->builtin_error;
309 return &temp_type;
312 f = HEADER_FILES (objfile) + real_filenum;
314 f_orig_length = f->length;
315 if (index >= f_orig_length)
317 while (index >= f->length)
319 f->length *= 2;
321 f->vector = (struct type **)
322 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
323 memset (&f->vector[f_orig_length], 0,
324 (f->length - f_orig_length) * sizeof (struct type *));
326 return (&f->vector[index]);
330 /* Make sure there is a type allocated for type numbers TYPENUMS
331 and return the type object.
332 This can create an empty (zeroed) type object.
333 TYPENUMS may be (-1, -1) to return a new type object that is not
334 put into the type vector, and so may not be referred to by number. */
336 static struct type *
337 dbx_alloc_type (int typenums[2], struct objfile *objfile)
339 struct type **type_addr;
341 if (typenums[0] == -1)
343 return type_allocator (objfile,
344 get_current_subfile ()->language).new_type ();
347 type_addr = dbx_lookup_type (typenums, objfile);
349 /* If we are referring to a type not known at all yet,
350 allocate an empty type for it.
351 We will fill it in later if we find out how. */
352 if (*type_addr == 0)
354 *type_addr = type_allocator (objfile,
355 get_current_subfile ()->language).new_type ();
358 return (*type_addr);
361 /* Allocate a floating-point type of size BITS. */
363 static struct type *
364 dbx_init_float_type (struct objfile *objfile, int bits)
366 struct gdbarch *gdbarch = objfile->arch ();
367 const struct floatformat **format;
368 struct type *type;
370 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
371 type_allocator alloc (objfile, get_current_subfile ()->language);
372 if (format)
373 type = init_float_type (alloc, bits, NULL, format);
374 else
375 type = alloc.new_type (TYPE_CODE_ERROR, bits, NULL);
377 return type;
380 /* for all the stabs in a given stab vector, build appropriate types
381 and fix their symbols in given symbol vector. */
383 static void
384 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
385 struct objfile *objfile)
387 int ii;
388 char *name;
389 const char *pp;
390 struct symbol *sym;
392 if (stabs)
394 /* for all the stab entries, find their corresponding symbols and
395 patch their types! */
397 for (ii = 0; ii < stabs->count; ++ii)
399 name = stabs->stab[ii];
400 pp = (char *) strchr (name, ':');
401 gdb_assert (pp); /* Must find a ':' or game's over. */
402 while (pp[1] == ':')
404 pp += 2;
405 pp = (char *) strchr (pp, ':');
407 sym = find_symbol_in_list (symbols, name, pp - name);
408 if (!sym)
410 /* FIXME-maybe: it would be nice if we noticed whether
411 the variable was defined *anywhere*, not just whether
412 it is defined in this compilation unit. But neither
413 xlc or GCC seem to need such a definition, and until
414 we do psymtabs (so that the minimal symbols from all
415 compilation units are available now), I'm not sure
416 how to get the information. */
418 /* On xcoff, if a global is defined and never referenced,
419 ld will remove it from the executable. There is then
420 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
421 sym = new (&objfile->objfile_obstack) symbol;
422 sym->set_domain (VAR_DOMAIN);
423 sym->set_aclass_index (LOC_OPTIMIZED_OUT);
424 sym->set_linkage_name
425 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
426 pp += 2;
427 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
429 /* I don't think the linker does this with functions,
430 so as far as I know this is never executed.
431 But it doesn't hurt to check. */
432 sym->set_type
433 (lookup_function_type (read_type (&pp, objfile)));
435 else
437 sym->set_type (read_type (&pp, objfile));
439 add_symbol_to_list (sym, get_global_symbols ());
441 else
443 pp += 2;
444 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
446 sym->set_type
447 (lookup_function_type (read_type (&pp, objfile)));
449 else
451 sym->set_type (read_type (&pp, objfile));
459 /* Read a number by which a type is referred to in dbx data,
460 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
461 Just a single number N is equivalent to (0,N).
462 Return the two numbers by storing them in the vector TYPENUMS.
463 TYPENUMS will then be used as an argument to dbx_lookup_type.
465 Returns 0 for success, -1 for error. */
467 static int
468 read_type_number (const char **pp, int *typenums)
470 int nbits;
472 if (**pp == '(')
474 (*pp)++;
475 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
476 if (nbits != 0)
477 return -1;
478 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
479 if (nbits != 0)
480 return -1;
482 else
484 typenums[0] = 0;
485 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
486 if (nbits != 0)
487 return -1;
489 return 0;
493 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
494 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
495 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
496 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
498 /* Structure for storing pointers to reference definitions for fast lookup
499 during "process_later". */
501 struct ref_map
503 const char *stabs;
504 CORE_ADDR value;
505 struct symbol *sym;
508 #define MAX_CHUNK_REFS 100
509 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
510 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
512 static struct ref_map *ref_map;
514 /* Ptr to free cell in chunk's linked list. */
515 static int ref_count = 0;
517 /* Number of chunks malloced. */
518 static int ref_chunk = 0;
520 /* This file maintains a cache of stabs aliases found in the symbol
521 table. If the symbol table changes, this cache must be cleared
522 or we are left holding onto data in invalid obstacks. */
523 void
524 stabsread_clear_cache (void)
526 ref_count = 0;
527 ref_chunk = 0;
530 /* Create array of pointers mapping refids to symbols and stab strings.
531 Add pointers to reference definition symbols and/or their values as we
532 find them, using their reference numbers as our index.
533 These will be used later when we resolve references. */
534 void
535 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
537 if (ref_count == 0)
538 ref_chunk = 0;
539 if (refnum >= ref_count)
540 ref_count = refnum + 1;
541 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
543 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
544 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
546 ref_map = (struct ref_map *)
547 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
548 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
549 new_chunks * REF_CHUNK_SIZE);
550 ref_chunk += new_chunks;
552 ref_map[refnum].stabs = stabs;
553 ref_map[refnum].sym = sym;
554 ref_map[refnum].value = value;
557 /* Return defined sym for the reference REFNUM. */
558 struct symbol *
559 ref_search (int refnum)
561 if (refnum < 0 || refnum > ref_count)
562 return 0;
563 return ref_map[refnum].sym;
566 /* Parse a reference id in STRING and return the resulting
567 reference number. Move STRING beyond the reference id. */
569 static int
570 process_reference (const char **string)
572 const char *p;
573 int refnum = 0;
575 if (**string != '#')
576 return 0;
578 /* Advance beyond the initial '#'. */
579 p = *string + 1;
581 /* Read number as reference id. */
582 while (*p && isdigit (*p))
584 refnum = refnum * 10 + *p - '0';
585 p++;
587 *string = p;
588 return refnum;
591 /* If STRING defines a reference, store away a pointer to the reference
592 definition for later use. Return the reference number. */
595 symbol_reference_defined (const char **string)
597 const char *p = *string;
598 int refnum = 0;
600 refnum = process_reference (&p);
602 /* Defining symbols end in '='. */
603 if (*p == '=')
605 /* Symbol is being defined here. */
606 *string = p + 1;
607 return refnum;
609 else
611 /* Must be a reference. Either the symbol has already been defined,
612 or this is a forward reference to it. */
613 *string = p;
614 return -1;
618 static int
619 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
621 int regno = gdbarch_stab_reg_to_regnum (gdbarch, sym->value_longest ());
623 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
625 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
626 sym->print_name ());
628 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
631 return regno;
634 static const struct symbol_register_ops stab_register_funcs = {
635 stab_reg_to_regnum
638 /* The "aclass" indices for computed symbols. */
640 static int stab_register_index;
641 static int stab_regparm_index;
643 struct symbol *
644 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
645 struct objfile *objfile)
647 struct gdbarch *gdbarch = objfile->arch ();
648 struct symbol *sym;
649 const char *p = find_name_end (string);
650 int deftype;
651 int synonym = 0;
652 int i;
654 /* We would like to eliminate nameless symbols, but keep their types.
655 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
656 to type 2, but, should not create a symbol to address that type. Since
657 the symbol will be nameless, there is no way any user can refer to it. */
659 int nameless;
661 /* Ignore syms with empty names. */
662 if (string[0] == 0)
663 return 0;
665 /* Ignore old-style symbols from cc -go. */
666 if (p == 0)
667 return 0;
669 while (p[1] == ':')
671 p += 2;
672 p = strchr (p, ':');
673 if (p == NULL)
675 complaint (
676 _("Bad stabs string '%s'"), string);
677 return NULL;
681 /* If a nameless stab entry, all we need is the type, not the symbol.
682 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
683 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
685 current_symbol = sym = new (&objfile->objfile_obstack) symbol;
687 if (processing_gcc_compilation)
689 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
690 number of bytes occupied by a type or object, which we ignore. */
691 sym->set_line (desc);
693 else
695 sym->set_line (0); /* unknown */
698 sym->set_language (get_current_subfile ()->language,
699 &objfile->objfile_obstack);
701 if (is_cplus_marker (string[0]))
703 /* Special GNU C++ names. */
704 switch (string[1])
706 case 't':
707 sym->set_linkage_name ("this");
708 break;
710 case 'v': /* $vtbl_ptr_type */
711 goto normal;
713 case 'e':
714 sym->set_linkage_name ("eh_throw");
715 break;
717 case '_':
718 /* This was an anonymous type that was never fixed up. */
719 goto normal;
721 default:
722 complaint (_("Unknown C++ symbol name `%s'"),
723 string);
724 goto normal; /* Do *something* with it. */
727 else
729 normal:
730 gdb::unique_xmalloc_ptr<char> new_name;
732 if (sym->language () == language_cplus)
734 std::string name (string, p - string);
735 new_name = cp_canonicalize_string (name.c_str ());
737 else if (sym->language () == language_c)
739 std::string name (string, p - string);
740 new_name = c_canonicalize_name (name.c_str ());
742 if (new_name != nullptr)
743 sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
744 else
745 sym->compute_and_set_names (std::string_view (string, p - string), true,
746 objfile->per_bfd);
748 if (sym->language () == language_cplus)
749 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
750 objfile);
753 p++;
755 /* Determine the type of name being defined. */
756 #if 0
757 /* Getting GDB to correctly skip the symbol on an undefined symbol
758 descriptor and not ever dump core is a very dodgy proposition if
759 we do things this way. I say the acorn RISC machine can just
760 fix their compiler. */
761 /* The Acorn RISC machine's compiler can put out locals that don't
762 start with "234=" or "(3,4)=", so assume anything other than the
763 deftypes we know how to handle is a local. */
764 if (!strchr ("cfFGpPrStTvVXCR", *p))
765 #else
766 if (isdigit (*p) || *p == '(' || *p == '-')
767 #endif
768 deftype = 'l';
769 else
770 deftype = *p++;
772 switch (deftype)
774 case 'c':
775 /* c is a special case, not followed by a type-number.
776 SYMBOL:c=iVALUE for an integer constant symbol.
777 SYMBOL:c=rVALUE for a floating constant symbol.
778 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
779 e.g. "b:c=e6,0" for "const b = blob1"
780 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
781 if (*p != '=')
783 sym->set_aclass_index (LOC_CONST);
784 sym->set_type (error_type (&p, objfile));
785 sym->set_domain (VAR_DOMAIN);
786 add_symbol_to_list (sym, get_file_symbols ());
787 return sym;
789 ++p;
790 switch (*p++)
792 case 'r':
794 gdb_byte *dbl_valu;
795 struct type *dbl_type;
797 dbl_type = builtin_type (objfile)->builtin_double;
798 dbl_valu
799 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
800 dbl_type->length ());
802 target_float_from_string (dbl_valu, dbl_type, std::string (p));
804 sym->set_type (dbl_type);
805 sym->set_value_bytes (dbl_valu);
806 sym->set_aclass_index (LOC_CONST_BYTES);
808 break;
809 case 'i':
811 /* Defining integer constants this way is kind of silly,
812 since 'e' constants allows the compiler to give not
813 only the value, but the type as well. C has at least
814 int, long, unsigned int, and long long as constant
815 types; other languages probably should have at least
816 unsigned as well as signed constants. */
818 sym->set_type (builtin_type (objfile)->builtin_long);
819 sym->set_value_longest (atoi (p));
820 sym->set_aclass_index (LOC_CONST);
822 break;
824 case 'c':
826 sym->set_type (builtin_type (objfile)->builtin_char);
827 sym->set_value_longest (atoi (p));
828 sym->set_aclass_index (LOC_CONST);
830 break;
832 case 's':
834 struct type *range_type;
835 int ind = 0;
836 char quote = *p++;
837 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
838 gdb_byte *string_value;
840 if (quote != '\'' && quote != '"')
842 sym->set_aclass_index (LOC_CONST);
843 sym->set_type (error_type (&p, objfile));
844 sym->set_domain (VAR_DOMAIN);
845 add_symbol_to_list (sym, get_file_symbols ());
846 return sym;
849 /* Find matching quote, rejecting escaped quotes. */
850 while (*p && *p != quote)
852 if (*p == '\\' && p[1] == quote)
854 string_local[ind] = (gdb_byte) quote;
855 ind++;
856 p += 2;
858 else if (*p)
860 string_local[ind] = (gdb_byte) (*p);
861 ind++;
862 p++;
865 if (*p != quote)
867 sym->set_aclass_index (LOC_CONST);
868 sym->set_type (error_type (&p, objfile));
869 sym->set_domain (VAR_DOMAIN);
870 add_symbol_to_list (sym, get_file_symbols ());
871 return sym;
874 /* NULL terminate the string. */
875 string_local[ind] = 0;
876 type_allocator alloc (objfile, get_current_subfile ()->language);
877 range_type
878 = create_static_range_type (alloc,
879 builtin_type (objfile)->builtin_int,
880 0, ind);
881 sym->set_type
882 (create_array_type (alloc, builtin_type (objfile)->builtin_char,
883 range_type));
884 string_value
885 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
886 memcpy (string_value, string_local, ind + 1);
887 p++;
889 sym->set_value_bytes (string_value);
890 sym->set_aclass_index (LOC_CONST_BYTES);
892 break;
894 case 'e':
895 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
896 can be represented as integral.
897 e.g. "b:c=e6,0" for "const b = blob1"
898 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
900 sym->set_aclass_index (LOC_CONST);
901 sym->set_type (read_type (&p, objfile));
903 if (*p != ',')
905 sym->set_type (error_type (&p, objfile));
906 break;
908 ++p;
910 /* If the value is too big to fit in an int (perhaps because
911 it is unsigned), or something like that, we silently get
912 a bogus value. The type and everything else about it is
913 correct. Ideally, we should be using whatever we have
914 available for parsing unsigned and long long values,
915 however. */
916 sym->set_value_longest (atoi (p));
918 break;
919 default:
921 sym->set_aclass_index (LOC_CONST);
922 sym->set_type (error_type (&p, objfile));
925 sym->set_domain (VAR_DOMAIN);
926 add_symbol_to_list (sym, get_file_symbols ());
927 return sym;
929 case 'C':
930 /* The name of a caught exception. */
931 sym->set_type (read_type (&p, objfile));
932 sym->set_aclass_index (LOC_LABEL);
933 sym->set_domain (VAR_DOMAIN);
934 sym->set_value_address (valu);
935 add_symbol_to_list (sym, get_local_symbols ());
936 break;
938 case 'f':
939 /* A static function definition. */
940 sym->set_type (read_type (&p, objfile));
941 sym->set_aclass_index (LOC_BLOCK);
942 sym->set_domain (FUNCTION_DOMAIN);
943 add_symbol_to_list (sym, get_file_symbols ());
944 /* fall into process_function_types. */
946 process_function_types:
947 /* Function result types are described as the result type in stabs.
948 We need to convert this to the function-returning-type-X type
949 in GDB. E.g. "int" is converted to "function returning int". */
950 if (sym->type ()->code () != TYPE_CODE_FUNC)
951 sym->set_type (lookup_function_type (sym->type ()));
953 /* All functions in C++ have prototypes. Stabs does not offer an
954 explicit way to identify prototyped or unprototyped functions,
955 but both GCC and Sun CC emit stabs for the "call-as" type rather
956 than the "declared-as" type for unprototyped functions, so
957 we treat all functions as if they were prototyped. This is used
958 primarily for promotion when calling the function from GDB. */
959 sym->type ()->set_is_prototyped (true);
961 /* fall into process_prototype_types. */
963 process_prototype_types:
964 /* Sun acc puts declared types of arguments here. */
965 if (*p == ';')
967 struct type *ftype = sym->type ();
968 int nsemi = 0;
969 int nparams = 0;
970 const char *p1 = p;
972 /* Obtain a worst case guess for the number of arguments
973 by counting the semicolons. */
974 while (*p1)
976 if (*p1++ == ';')
977 nsemi++;
980 /* Allocate parameter information fields and fill them in. */
981 ftype->alloc_fields (nsemi);
982 while (*p++ == ';')
984 struct type *ptype;
986 /* A type number of zero indicates the start of varargs.
987 FIXME: GDB currently ignores vararg functions. */
988 if (p[0] == '0' && p[1] == '\0')
989 break;
990 ptype = read_type (&p, objfile);
992 /* The Sun compilers mark integer arguments, which should
993 be promoted to the width of the calling conventions, with
994 a type which references itself. This type is turned into
995 a TYPE_CODE_VOID type by read_type, and we have to turn
996 it back into builtin_int here.
997 FIXME: Do we need a new builtin_promoted_int_arg ? */
998 if (ptype->code () == TYPE_CODE_VOID)
999 ptype = builtin_type (objfile)->builtin_int;
1000 ftype->field (nparams).set_type (ptype);
1001 ftype->field (nparams).set_is_artificial (false);
1002 nparams++;
1004 ftype->set_num_fields (nparams);
1005 ftype->set_is_prototyped (true);
1007 break;
1009 case 'F':
1010 /* A global function definition. */
1011 sym->set_type (read_type (&p, objfile));
1012 sym->set_aclass_index (LOC_BLOCK);
1013 sym->set_domain (FUNCTION_DOMAIN);
1014 add_symbol_to_list (sym, get_global_symbols ());
1015 goto process_function_types;
1017 case 'G':
1018 /* For a class G (global) symbol, it appears that the
1019 value is not correct. It is necessary to search for the
1020 corresponding linker definition to find the value.
1021 These definitions appear at the end of the namelist. */
1022 sym->set_type (read_type (&p, objfile));
1023 sym->set_aclass_index (LOC_STATIC);
1024 sym->set_domain (VAR_DOMAIN);
1025 /* Don't add symbol references to global_sym_chain.
1026 Symbol references don't have valid names and wont't match up with
1027 minimal symbols when the global_sym_chain is relocated.
1028 We'll fixup symbol references when we fixup the defining symbol. */
1029 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1031 i = hashname (sym->linkage_name ());
1032 sym->set_value_chain (global_sym_chain[i]);
1033 global_sym_chain[i] = sym;
1035 add_symbol_to_list (sym, get_global_symbols ());
1036 break;
1038 /* This case is faked by a conditional above,
1039 when there is no code letter in the dbx data.
1040 Dbx data never actually contains 'l'. */
1041 case 's':
1042 case 'l':
1043 sym->set_type (read_type (&p, objfile));
1044 sym->set_aclass_index (LOC_LOCAL);
1045 sym->set_value_longest (valu);
1046 sym->set_domain (VAR_DOMAIN);
1047 add_symbol_to_list (sym, get_local_symbols ());
1048 break;
1050 case 'p':
1051 if (*p == 'F')
1052 /* pF is a two-letter code that means a function parameter in Fortran.
1053 The type-number specifies the type of the return value.
1054 Translate it into a pointer-to-function type. */
1056 p++;
1057 sym->set_type
1058 (lookup_pointer_type
1059 (lookup_function_type (read_type (&p, objfile))));
1061 else
1062 sym->set_type (read_type (&p, objfile));
1064 sym->set_aclass_index (LOC_ARG);
1065 sym->set_value_longest (valu);
1066 sym->set_domain (VAR_DOMAIN);
1067 sym->set_is_argument (1);
1068 add_symbol_to_list (sym, get_local_symbols ());
1070 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1072 /* On little-endian machines, this crud is never necessary,
1073 and, if the extra bytes contain garbage, is harmful. */
1074 break;
1077 /* If it's gcc-compiled, if it says `short', believe it. */
1078 if (processing_gcc_compilation
1079 || gdbarch_believe_pcc_promotion (gdbarch))
1080 break;
1082 if (!gdbarch_believe_pcc_promotion (gdbarch))
1084 /* If PCC says a parameter is a short or a char, it is
1085 really an int. */
1086 if (sym->type ()->length ()
1087 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1088 && sym->type ()->code () == TYPE_CODE_INT)
1090 sym->set_type
1091 (sym->type ()->is_unsigned ()
1092 ? builtin_type (objfile)->builtin_unsigned_int
1093 : builtin_type (objfile)->builtin_int);
1095 break;
1097 [[fallthrough]];
1099 case 'P':
1100 /* acc seems to use P to declare the prototypes of functions that
1101 are referenced by this file. gdb is not prepared to deal
1102 with this extra information. FIXME, it ought to. */
1103 if (type == N_FUN)
1105 sym->set_type (read_type (&p, objfile));
1106 goto process_prototype_types;
1108 [[fallthrough]];
1110 case 'R':
1111 /* Parameter which is in a register. */
1112 sym->set_type (read_type (&p, objfile));
1113 sym->set_aclass_index (stab_register_index);
1114 sym->set_is_argument (1);
1115 sym->set_value_longest (valu);
1116 sym->set_domain (VAR_DOMAIN);
1117 add_symbol_to_list (sym, get_local_symbols ());
1118 break;
1120 case 'r':
1121 /* Register variable (either global or local). */
1122 sym->set_type (read_type (&p, objfile));
1123 sym->set_aclass_index (stab_register_index);
1124 sym->set_value_longest (valu);
1125 sym->set_domain (VAR_DOMAIN);
1126 if (within_function)
1128 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1129 the same name to represent an argument passed in a
1130 register. GCC uses 'P' for the same case. So if we find
1131 such a symbol pair we combine it into one 'P' symbol.
1132 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1133 the 'p' symbol even if it never saves the argument onto
1134 the stack.
1136 On most machines, we want to preserve both symbols, so
1137 that we can still get information about what is going on
1138 with the stack (VAX for computing args_printed, using
1139 stack slots instead of saved registers in backtraces,
1140 etc.).
1142 Note that this code illegally combines
1143 main(argc) struct foo argc; { register struct foo argc; }
1144 but this case is considered pathological and causes a warning
1145 from a decent compiler. */
1147 struct pending *local_symbols = *get_local_symbols ();
1148 if (local_symbols
1149 && local_symbols->nsyms > 0
1150 && gdbarch_stabs_argument_has_addr (gdbarch, sym->type ()))
1152 struct symbol *prev_sym;
1154 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1155 if ((prev_sym->aclass () == LOC_REF_ARG
1156 || prev_sym->aclass () == LOC_ARG)
1157 && strcmp (prev_sym->linkage_name (),
1158 sym->linkage_name ()) == 0)
1160 prev_sym->set_aclass_index (stab_register_index);
1161 /* Use the type from the LOC_REGISTER; that is the type
1162 that is actually in that register. */
1163 prev_sym->set_type (sym->type ());
1164 prev_sym->set_value_longest (sym->value_longest ());
1165 sym = prev_sym;
1166 break;
1169 add_symbol_to_list (sym, get_local_symbols ());
1171 else
1172 add_symbol_to_list (sym, get_file_symbols ());
1173 break;
1175 case 'S':
1176 /* Static symbol at top level of file. */
1177 sym->set_type (read_type (&p, objfile));
1178 sym->set_aclass_index (LOC_STATIC);
1179 sym->set_value_address (valu);
1180 sym->set_domain (VAR_DOMAIN);
1181 add_symbol_to_list (sym, get_file_symbols ());
1182 break;
1184 case 't':
1185 /* In Ada, there is no distinction between typedef and non-typedef;
1186 any type declaration implicitly has the equivalent of a typedef,
1187 and thus 't' is in fact equivalent to 'Tt'.
1189 Therefore, for Ada units, we check the character immediately
1190 before the 't', and if we do not find a 'T', then make sure to
1191 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1192 will be stored in the VAR_DOMAIN). If the symbol was indeed
1193 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1194 elsewhere, so we don't need to take care of that.
1196 This is important to do, because of forward references:
1197 The cleanup of undefined types stored in undef_types only uses
1198 STRUCT_DOMAIN symbols to perform the replacement. */
1199 synonym = (sym->language () == language_ada && p[-2] != 'T');
1201 /* Typedef */
1202 sym->set_type (read_type (&p, objfile));
1204 /* For a nameless type, we don't want a create a symbol, thus we
1205 did not use `sym'. Return without further processing. */
1206 if (nameless)
1207 return NULL;
1209 sym->set_aclass_index (LOC_TYPEDEF);
1210 sym->set_value_longest (valu);
1211 sym->set_domain (TYPE_DOMAIN);
1212 /* C++ vagaries: we may have a type which is derived from
1213 a base type which did not have its name defined when the
1214 derived class was output. We fill in the derived class's
1215 base part member's name here in that case. */
1216 if (sym->type ()->name () != NULL)
1217 if ((sym->type ()->code () == TYPE_CODE_STRUCT
1218 || sym->type ()->code () == TYPE_CODE_UNION)
1219 && TYPE_N_BASECLASSES (sym->type ()))
1221 int j;
1223 for (j = TYPE_N_BASECLASSES (sym->type ()) - 1; j >= 0; j--)
1224 if (TYPE_BASECLASS_NAME (sym->type (), j) == 0)
1225 sym->type ()->field (j).set_name
1226 (TYPE_BASECLASS (sym->type (), j)->name ());
1229 if (sym->type ()->name () == NULL)
1231 if ((sym->type ()->code () == TYPE_CODE_PTR
1232 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1233 || sym->type ()->code () == TYPE_CODE_FUNC)
1235 /* If we are giving a name to a type such as "pointer to
1236 foo" or "function returning foo", we better not set
1237 the TYPE_NAME. If the program contains "typedef char
1238 *caddr_t;", we don't want all variables of type char
1239 * to print as caddr_t. This is not just a
1240 consequence of GDB's type management; PCC and GCC (at
1241 least through version 2.4) both output variables of
1242 either type char * or caddr_t with the type number
1243 defined in the 't' symbol for caddr_t. If a future
1244 compiler cleans this up it GDB is not ready for it
1245 yet, but if it becomes ready we somehow need to
1246 disable this check (without breaking the PCC/GCC2.4
1247 case).
1249 Sigh.
1251 Fortunately, this check seems not to be necessary
1252 for anything except pointers or functions. */
1253 /* ezannoni: 2000-10-26. This seems to apply for
1254 versions of gcc older than 2.8. This was the original
1255 problem: with the following code gdb would tell that
1256 the type for name1 is caddr_t, and func is char().
1258 typedef char *caddr_t;
1259 char *name2;
1260 struct x
1262 char *name1;
1263 } xx;
1264 char *func()
1267 main () {}
1270 /* Pascal accepts names for pointer types. */
1271 if (get_current_subfile ()->language == language_pascal)
1272 sym->type ()->set_name (sym->linkage_name ());
1274 else
1275 sym->type ()->set_name (sym->linkage_name ());
1278 add_symbol_to_list (sym, get_file_symbols ());
1280 if (synonym)
1282 /* Create the STRUCT_DOMAIN clone. */
1283 struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
1285 *struct_sym = *sym;
1286 struct_sym->set_aclass_index (LOC_TYPEDEF);
1287 struct_sym->set_value_longest (valu);
1288 struct_sym->set_domain (STRUCT_DOMAIN);
1289 if (sym->type ()->name () == 0)
1290 sym->type ()->set_name
1291 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1292 (char *) NULL));
1293 add_symbol_to_list (struct_sym, get_file_symbols ());
1296 break;
1298 case 'T':
1299 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1300 by 't' which means we are typedef'ing it as well. */
1301 synonym = *p == 't';
1303 if (synonym)
1304 p++;
1306 sym->set_type (read_type (&p, objfile));
1308 /* For a nameless type, we don't want a create a symbol, thus we
1309 did not use `sym'. Return without further processing. */
1310 if (nameless)
1311 return NULL;
1313 sym->set_aclass_index (LOC_TYPEDEF);
1314 sym->set_value_longest (valu);
1315 sym->set_domain (STRUCT_DOMAIN);
1316 if (sym->type ()->name () == 0)
1317 sym->type ()->set_name
1318 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1319 (char *) NULL));
1320 add_symbol_to_list (sym, get_file_symbols ());
1322 if (synonym)
1324 /* Clone the sym and then modify it. */
1325 struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
1327 *typedef_sym = *sym;
1328 typedef_sym->set_aclass_index (LOC_TYPEDEF);
1329 typedef_sym->set_value_longest (valu);
1330 typedef_sym->set_domain (TYPE_DOMAIN);
1331 if (sym->type ()->name () == 0)
1332 sym->type ()->set_name
1333 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1334 (char *) NULL));
1335 add_symbol_to_list (typedef_sym, get_file_symbols ());
1337 break;
1339 case 'V':
1340 /* Static symbol of local scope. */
1341 sym->set_type (read_type (&p, objfile));
1342 sym->set_aclass_index (LOC_STATIC);
1343 sym->set_value_address (valu);
1344 sym->set_domain (VAR_DOMAIN);
1345 add_symbol_to_list (sym, get_local_symbols ());
1346 break;
1348 case 'v':
1349 /* Reference parameter */
1350 sym->set_type (read_type (&p, objfile));
1351 sym->set_aclass_index (LOC_REF_ARG);
1352 sym->set_is_argument (1);
1353 sym->set_value_longest (valu);
1354 sym->set_domain (VAR_DOMAIN);
1355 add_symbol_to_list (sym, get_local_symbols ());
1356 break;
1358 case 'a':
1359 /* Reference parameter which is in a register. */
1360 sym->set_type (read_type (&p, objfile));
1361 sym->set_aclass_index (stab_regparm_index);
1362 sym->set_is_argument (1);
1363 sym->set_value_longest (valu);
1364 sym->set_domain (VAR_DOMAIN);
1365 add_symbol_to_list (sym, get_local_symbols ());
1366 break;
1368 case 'X':
1369 /* This is used by Sun FORTRAN for "function result value".
1370 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1371 that Pascal uses it too, but when I tried it Pascal used
1372 "x:3" (local symbol) instead. */
1373 sym->set_type (read_type (&p, objfile));
1374 sym->set_aclass_index (LOC_LOCAL);
1375 sym->set_value_longest (valu);
1376 sym->set_domain (VAR_DOMAIN);
1377 add_symbol_to_list (sym, get_local_symbols ());
1378 break;
1380 default:
1381 sym->set_type (error_type (&p, objfile));
1382 sym->set_aclass_index (LOC_CONST);
1383 sym->set_value_longest (0);
1384 sym->set_domain (VAR_DOMAIN);
1385 add_symbol_to_list (sym, get_file_symbols ());
1386 break;
1389 /* Some systems pass variables of certain types by reference instead
1390 of by value, i.e. they will pass the address of a structure (in a
1391 register or on the stack) instead of the structure itself. */
1393 if (gdbarch_stabs_argument_has_addr (gdbarch, sym->type ())
1394 && sym->is_argument ())
1396 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1397 variables passed in a register). */
1398 if (sym->aclass () == LOC_REGISTER)
1399 sym->set_aclass_index (LOC_REGPARM_ADDR);
1400 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1401 and subsequent arguments on SPARC, for example). */
1402 else if (sym->aclass () == LOC_ARG)
1403 sym->set_aclass_index (LOC_REF_ARG);
1406 return sym;
1409 /* Skip rest of this symbol and return an error type.
1411 General notes on error recovery: error_type always skips to the
1412 end of the symbol (modulo cretinous dbx symbol name continuation).
1413 Thus code like this:
1415 if (*(*pp)++ != ';')
1416 return error_type (pp, objfile);
1418 is wrong because if *pp starts out pointing at '\0' (typically as the
1419 result of an earlier error), it will be incremented to point to the
1420 start of the next symbol, which might produce strange results, at least
1421 if you run off the end of the string table. Instead use
1423 if (**pp != ';')
1424 return error_type (pp, objfile);
1425 ++*pp;
1429 if (**pp != ';')
1430 foo = error_type (pp, objfile);
1431 else
1432 ++*pp;
1434 And in case it isn't obvious, the point of all this hair is so the compiler
1435 can define new types and new syntaxes, and old versions of the
1436 debugger will be able to read the new symbol tables. */
1438 static struct type *
1439 error_type (const char **pp, struct objfile *objfile)
1441 complaint (_("couldn't parse type; debugger out of date?"));
1442 while (1)
1444 /* Skip to end of symbol. */
1445 while (**pp != '\0')
1447 (*pp)++;
1450 /* Check for and handle cretinous dbx symbol name continuation! */
1451 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1453 *pp = next_symbol_text (objfile);
1455 else
1457 break;
1460 return builtin_type (objfile)->builtin_error;
1464 /* Allocate a stub method whose return type is TYPE. This apparently
1465 happens for speed of symbol reading, since parsing out the
1466 arguments to the method is cpu-intensive, the way we are doing it.
1467 So, we will fill in arguments later. This always returns a fresh
1468 type. */
1470 static struct type *
1471 allocate_stub_method (struct type *type)
1473 struct type *mtype;
1475 mtype = type_allocator (type).new_type ();
1476 mtype->set_code (TYPE_CODE_METHOD);
1477 mtype->set_length (1);
1478 mtype->set_is_stub (true);
1479 mtype->set_target_type (type);
1480 /* TYPE_SELF_TYPE (mtype) = unknown yet */
1481 return mtype;
1484 /* Read type information or a type definition; return the type. Even
1485 though this routine accepts either type information or a type
1486 definition, the distinction is relevant--some parts of stabsread.c
1487 assume that type information starts with a digit, '-', or '(' in
1488 deciding whether to call read_type. */
1490 static struct type *
1491 read_type (const char **pp, struct objfile *objfile)
1493 struct type *type = 0;
1494 struct type *type1;
1495 int typenums[2];
1496 char type_descriptor;
1498 /* Size in bits of type if specified by a type attribute, or -1 if
1499 there is no size attribute. */
1500 int type_size = -1;
1502 /* Used to distinguish string and bitstring from char-array and set. */
1503 int is_string = 0;
1505 /* Used to distinguish vector from array. */
1506 int is_vector = 0;
1508 /* Read type number if present. The type number may be omitted.
1509 for instance in a two-dimensional array declared with type
1510 "ar1;1;10;ar1;1;10;4". */
1511 if ((**pp >= '0' && **pp <= '9')
1512 || **pp == '('
1513 || **pp == '-')
1515 if (read_type_number (pp, typenums) != 0)
1516 return error_type (pp, objfile);
1518 if (**pp != '=')
1520 /* Type is not being defined here. Either it already
1521 exists, or this is a forward reference to it.
1522 dbx_alloc_type handles both cases. */
1523 type = dbx_alloc_type (typenums, objfile);
1525 /* If this is a forward reference, arrange to complain if it
1526 doesn't get patched up by the time we're done
1527 reading. */
1528 if (type->code () == TYPE_CODE_UNDEF)
1529 add_undefined_type (type, typenums);
1531 return type;
1534 /* Type is being defined here. */
1535 /* Skip the '='.
1536 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1537 (*pp) += 2;
1539 else
1541 /* 'typenums=' not present, type is anonymous. Read and return
1542 the definition, but don't put it in the type vector. */
1543 typenums[0] = typenums[1] = -1;
1544 (*pp)++;
1547 again:
1548 type_descriptor = (*pp)[-1];
1549 switch (type_descriptor)
1551 case 'x':
1553 enum type_code code;
1555 /* Used to index through file_symbols. */
1556 struct pending *ppt;
1557 int i;
1559 /* Name including "struct", etc. */
1560 char *type_name;
1563 const char *from, *p, *q1, *q2;
1565 /* Set the type code according to the following letter. */
1566 switch ((*pp)[0])
1568 case 's':
1569 code = TYPE_CODE_STRUCT;
1570 break;
1571 case 'u':
1572 code = TYPE_CODE_UNION;
1573 break;
1574 case 'e':
1575 code = TYPE_CODE_ENUM;
1576 break;
1577 default:
1579 /* Complain and keep going, so compilers can invent new
1580 cross-reference types. */
1581 complaint (_("Unrecognized cross-reference type `%c'"),
1582 (*pp)[0]);
1583 code = TYPE_CODE_STRUCT;
1584 break;
1588 q1 = strchr (*pp, '<');
1589 p = strchr (*pp, ':');
1590 if (p == NULL)
1591 return error_type (pp, objfile);
1592 if (q1 && p > q1 && p[1] == ':')
1594 int nesting_level = 0;
1596 for (q2 = q1; *q2; q2++)
1598 if (*q2 == '<')
1599 nesting_level++;
1600 else if (*q2 == '>')
1601 nesting_level--;
1602 else if (*q2 == ':' && nesting_level == 0)
1603 break;
1605 p = q2;
1606 if (*p != ':')
1607 return error_type (pp, objfile);
1609 type_name = NULL;
1610 if (get_current_subfile ()->language == language_cplus)
1612 std::string name (*pp, p - *pp);
1613 gdb::unique_xmalloc_ptr<char> new_name
1614 = cp_canonicalize_string (name.c_str ());
1615 if (new_name != nullptr)
1616 type_name = obstack_strdup (&objfile->objfile_obstack,
1617 new_name.get ());
1619 else if (get_current_subfile ()->language == language_c)
1621 std::string name (*pp, p - *pp);
1622 gdb::unique_xmalloc_ptr<char> new_name
1623 = c_canonicalize_name (name.c_str ());
1624 if (new_name != nullptr)
1625 type_name = obstack_strdup (&objfile->objfile_obstack,
1626 new_name.get ());
1628 if (type_name == NULL)
1630 char *to = type_name = (char *)
1631 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1633 /* Copy the name. */
1634 from = *pp + 1;
1635 while (from < p)
1636 *to++ = *from++;
1637 *to = '\0';
1640 /* Set the pointer ahead of the name which we just read, and
1641 the colon. */
1642 *pp = p + 1;
1645 /* If this type has already been declared, then reuse the same
1646 type, rather than allocating a new one. This saves some
1647 memory. */
1649 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1650 for (i = 0; i < ppt->nsyms; i++)
1652 struct symbol *sym = ppt->symbol[i];
1654 if (sym->aclass () == LOC_TYPEDEF
1655 && sym->domain () == STRUCT_DOMAIN
1656 && (sym->type ()->code () == code)
1657 && strcmp (sym->linkage_name (), type_name) == 0)
1659 obstack_free (&objfile->objfile_obstack, type_name);
1660 type = sym->type ();
1661 if (typenums[0] != -1)
1662 *dbx_lookup_type (typenums, objfile) = type;
1663 return type;
1667 /* Didn't find the type to which this refers, so we must
1668 be dealing with a forward reference. Allocate a type
1669 structure for it, and keep track of it so we can
1670 fill in the rest of the fields when we get the full
1671 type. */
1672 type = dbx_alloc_type (typenums, objfile);
1673 type->set_code (code);
1674 type->set_name (type_name);
1675 INIT_CPLUS_SPECIFIC (type);
1676 type->set_is_stub (true);
1678 add_undefined_type (type, typenums);
1679 return type;
1682 case '-': /* RS/6000 built-in type */
1683 case '0':
1684 case '1':
1685 case '2':
1686 case '3':
1687 case '4':
1688 case '5':
1689 case '6':
1690 case '7':
1691 case '8':
1692 case '9':
1693 case '(':
1694 (*pp)--;
1696 /* We deal with something like t(1,2)=(3,4)=... which
1697 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1699 /* Allocate and enter the typedef type first.
1700 This handles recursive types. */
1701 type = dbx_alloc_type (typenums, objfile);
1702 type->set_code (TYPE_CODE_TYPEDEF);
1704 struct type *xtype = read_type (pp, objfile);
1706 if (type == xtype)
1708 /* It's being defined as itself. That means it is "void". */
1709 type->set_code (TYPE_CODE_VOID);
1710 type->set_length (1);
1712 else if (type_size >= 0 || is_string)
1714 /* This is the absolute wrong way to construct types. Every
1715 other debug format has found a way around this problem and
1716 the related problems with unnecessarily stubbed types;
1717 someone motivated should attempt to clean up the issue
1718 here as well. Once a type pointed to has been created it
1719 should not be modified.
1721 Well, it's not *absolutely* wrong. Constructing recursive
1722 types (trees, linked lists) necessarily entails modifying
1723 types after creating them. Constructing any loop structure
1724 entails side effects. The Dwarf 2 reader does handle this
1725 more gracefully (it never constructs more than once
1726 instance of a type object, so it doesn't have to copy type
1727 objects wholesale), but it still mutates type objects after
1728 other folks have references to them.
1730 Keep in mind that this circularity/mutation issue shows up
1731 at the source language level, too: C's "incomplete types",
1732 for example. So the proper cleanup, I think, would be to
1733 limit GDB's type smashing to match exactly those required
1734 by the source language. So GDB could have a
1735 "complete_this_type" function, but never create unnecessary
1736 copies of a type otherwise. */
1737 replace_type (type, xtype);
1738 type->set_name (NULL);
1740 else
1742 type->set_target_is_stub (true);
1743 type->set_target_type (xtype);
1746 break;
1748 /* In the following types, we must be sure to overwrite any existing
1749 type that the typenums refer to, rather than allocating a new one
1750 and making the typenums point to the new one. This is because there
1751 may already be pointers to the existing type (if it had been
1752 forward-referenced), and we must change it to a pointer, function,
1753 reference, or whatever, *in-place*. */
1755 case '*': /* Pointer to another type */
1756 type1 = read_type (pp, objfile);
1757 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1758 break;
1760 case '&': /* Reference to another type */
1761 type1 = read_type (pp, objfile);
1762 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1763 TYPE_CODE_REF);
1764 break;
1766 case 'f': /* Function returning another type */
1767 type1 = read_type (pp, objfile);
1768 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1769 break;
1771 case 'g': /* Prototyped function. (Sun) */
1773 /* Unresolved questions:
1775 - According to Sun's ``STABS Interface Manual'', for 'f'
1776 and 'F' symbol descriptors, a `0' in the argument type list
1777 indicates a varargs function. But it doesn't say how 'g'
1778 type descriptors represent that info. Someone with access
1779 to Sun's toolchain should try it out.
1781 - According to the comment in define_symbol (search for
1782 `process_prototype_types:'), Sun emits integer arguments as
1783 types which ref themselves --- like `void' types. Do we
1784 have to deal with that here, too? Again, someone with
1785 access to Sun's toolchain should try it out and let us
1786 know. */
1788 const char *type_start = (*pp) - 1;
1789 struct type *return_type = read_type (pp, objfile);
1790 struct type *func_type
1791 = make_function_type (return_type,
1792 dbx_lookup_type (typenums, objfile));
1793 struct type_list {
1794 struct type *type;
1795 struct type_list *next;
1796 } *arg_types = 0;
1797 int num_args = 0;
1799 while (**pp && **pp != '#')
1801 struct type *arg_type = read_type (pp, objfile);
1802 struct type_list *newobj = XALLOCA (struct type_list);
1803 newobj->type = arg_type;
1804 newobj->next = arg_types;
1805 arg_types = newobj;
1806 num_args++;
1808 if (**pp == '#')
1809 ++*pp;
1810 else
1812 complaint (_("Prototyped function type didn't "
1813 "end arguments with `#':\n%s"),
1814 type_start);
1817 /* If there is just one argument whose type is `void', then
1818 that's just an empty argument list. */
1819 if (arg_types
1820 && ! arg_types->next
1821 && arg_types->type->code () == TYPE_CODE_VOID)
1822 num_args = 0;
1824 func_type->alloc_fields (num_args);
1826 int i;
1827 struct type_list *t;
1829 /* We stuck each argument type onto the front of the list
1830 when we read it, so the list is reversed. Build the
1831 fields array right-to-left. */
1832 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1833 func_type->field (i).set_type (t->type);
1835 func_type->set_num_fields (num_args);
1836 func_type->set_is_prototyped (true);
1838 type = func_type;
1839 break;
1842 case 'k': /* Const qualifier on some type (Sun) */
1843 type = read_type (pp, objfile);
1844 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1845 dbx_lookup_type (typenums, objfile));
1846 break;
1848 case 'B': /* Volatile qual on some type (Sun) */
1849 type = read_type (pp, objfile);
1850 type = make_cv_type (TYPE_CONST (type), 1, type,
1851 dbx_lookup_type (typenums, objfile));
1852 break;
1854 case '@':
1855 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1856 { /* Member (class & variable) type */
1857 /* FIXME -- we should be doing smash_to_XXX types here. */
1859 struct type *domain = read_type (pp, objfile);
1860 struct type *memtype;
1862 if (**pp != ',')
1863 /* Invalid member type data format. */
1864 return error_type (pp, objfile);
1865 ++*pp;
1867 memtype = read_type (pp, objfile);
1868 type = dbx_alloc_type (typenums, objfile);
1869 smash_to_memberptr_type (type, domain, memtype);
1871 else
1872 /* type attribute */
1874 const char *attr = *pp;
1876 /* Skip to the semicolon. */
1877 while (**pp != ';' && **pp != '\0')
1878 ++(*pp);
1879 if (**pp == '\0')
1880 return error_type (pp, objfile);
1881 else
1882 ++ * pp; /* Skip the semicolon. */
1884 switch (*attr)
1886 case 's': /* Size attribute */
1887 type_size = atoi (attr + 1);
1888 if (type_size <= 0)
1889 type_size = -1;
1890 break;
1892 case 'S': /* String attribute */
1893 /* FIXME: check to see if following type is array? */
1894 is_string = 1;
1895 break;
1897 case 'V': /* Vector attribute */
1898 /* FIXME: check to see if following type is array? */
1899 is_vector = 1;
1900 break;
1902 default:
1903 /* Ignore unrecognized type attributes, so future compilers
1904 can invent new ones. */
1905 break;
1907 ++*pp;
1908 goto again;
1910 break;
1912 case '#': /* Method (class & fn) type */
1913 if ((*pp)[0] == '#')
1915 /* We'll get the parameter types from the name. */
1916 struct type *return_type;
1918 (*pp)++;
1919 return_type = read_type (pp, objfile);
1920 if (*(*pp)++ != ';')
1921 complaint (_("invalid (minimal) member type "
1922 "data format at symtab pos %d."),
1923 symnum);
1924 type = allocate_stub_method (return_type);
1925 if (typenums[0] != -1)
1926 *dbx_lookup_type (typenums, objfile) = type;
1928 else
1930 struct type *domain = read_type (pp, objfile);
1931 struct type *return_type;
1932 struct field *args;
1933 int nargs, varargs;
1935 if (**pp != ',')
1936 /* Invalid member type data format. */
1937 return error_type (pp, objfile);
1938 else
1939 ++(*pp);
1941 return_type = read_type (pp, objfile);
1942 args = read_args (pp, ';', objfile, &nargs, &varargs);
1943 if (args == NULL)
1944 return error_type (pp, objfile);
1945 type = dbx_alloc_type (typenums, objfile);
1946 smash_to_method_type (type, domain, return_type, args,
1947 nargs, varargs);
1949 break;
1951 case 'r': /* Range type */
1952 type = read_range_type (pp, typenums, type_size, objfile);
1953 if (typenums[0] != -1)
1954 *dbx_lookup_type (typenums, objfile) = type;
1955 break;
1957 case 'b':
1959 /* Sun ACC builtin int type */
1960 type = read_sun_builtin_type (pp, typenums, objfile);
1961 if (typenums[0] != -1)
1962 *dbx_lookup_type (typenums, objfile) = type;
1964 break;
1966 case 'R': /* Sun ACC builtin float type */
1967 type = read_sun_floating_type (pp, typenums, objfile);
1968 if (typenums[0] != -1)
1969 *dbx_lookup_type (typenums, objfile) = type;
1970 break;
1972 case 'e': /* Enumeration type */
1973 type = dbx_alloc_type (typenums, objfile);
1974 type = read_enum_type (pp, type, objfile);
1975 if (typenums[0] != -1)
1976 *dbx_lookup_type (typenums, objfile) = type;
1977 break;
1979 case 's': /* Struct type */
1980 case 'u': /* Union type */
1982 enum type_code type_code = TYPE_CODE_UNDEF;
1983 type = dbx_alloc_type (typenums, objfile);
1984 switch (type_descriptor)
1986 case 's':
1987 type_code = TYPE_CODE_STRUCT;
1988 break;
1989 case 'u':
1990 type_code = TYPE_CODE_UNION;
1991 break;
1993 type = read_struct_type (pp, type, type_code, objfile);
1994 break;
1997 case 'a': /* Array type */
1998 if (**pp != 'r')
1999 return error_type (pp, objfile);
2000 ++*pp;
2002 type = dbx_alloc_type (typenums, objfile);
2003 type = read_array_type (pp, type, objfile);
2004 if (is_string)
2005 type->set_code (TYPE_CODE_STRING);
2006 if (is_vector)
2007 make_vector_type (type);
2008 break;
2010 case 'S': /* Set type */
2012 type1 = read_type (pp, objfile);
2013 type_allocator alloc (objfile, get_current_subfile ()->language);
2014 type = create_set_type (alloc, type1);
2015 if (typenums[0] != -1)
2016 *dbx_lookup_type (typenums, objfile) = type;
2018 break;
2020 default:
2021 --*pp; /* Go back to the symbol in error. */
2022 /* Particularly important if it was \0! */
2023 return error_type (pp, objfile);
2026 if (type == 0)
2028 warning (_("GDB internal error, type is NULL in stabsread.c."));
2029 return error_type (pp, objfile);
2032 /* Size specified in a type attribute overrides any other size. */
2033 if (type_size != -1)
2034 type->set_length ((type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT);
2036 return type;
2039 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2040 Return the proper type node for a given builtin type number. */
2042 static const registry<objfile>::key<struct type *,
2043 gdb::noop_deleter<struct type *>>
2044 rs6000_builtin_type_data;
2046 static struct type *
2047 rs6000_builtin_type (int typenum, struct objfile *objfile)
2049 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2051 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2052 #define NUMBER_RECOGNIZED 34
2053 struct type *rettype = NULL;
2055 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2057 complaint (_("Unknown builtin type %d"), typenum);
2058 return builtin_type (objfile)->builtin_error;
2061 if (!negative_types)
2063 /* This includes an empty slot for type number -0. */
2064 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2065 NUMBER_RECOGNIZED + 1, struct type *);
2066 rs6000_builtin_type_data.set (objfile, negative_types);
2069 if (negative_types[-typenum] != NULL)
2070 return negative_types[-typenum];
2072 #if TARGET_CHAR_BIT != 8
2073 #error This code wrong for TARGET_CHAR_BIT not 8
2074 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2075 that if that ever becomes not true, the correct fix will be to
2076 make the size in the struct type to be in bits, not in units of
2077 TARGET_CHAR_BIT. */
2078 #endif
2080 type_allocator alloc (objfile, get_current_subfile ()->language);
2081 switch (-typenum)
2083 case 1:
2084 /* The size of this and all the other types are fixed, defined
2085 by the debugging format. If there is a type called "int" which
2086 is other than 32 bits, then it should use a new negative type
2087 number (or avoid negative type numbers for that case).
2088 See stabs.texinfo. */
2089 rettype = init_integer_type (alloc, 32, 0, "int");
2090 break;
2091 case 2:
2092 rettype = init_integer_type (alloc, 8, 0, "char");
2093 rettype->set_has_no_signedness (true);
2094 break;
2095 case 3:
2096 rettype = init_integer_type (alloc, 16, 0, "short");
2097 break;
2098 case 4:
2099 rettype = init_integer_type (alloc, 32, 0, "long");
2100 break;
2101 case 5:
2102 rettype = init_integer_type (alloc, 8, 1, "unsigned char");
2103 break;
2104 case 6:
2105 rettype = init_integer_type (alloc, 8, 0, "signed char");
2106 break;
2107 case 7:
2108 rettype = init_integer_type (alloc, 16, 1, "unsigned short");
2109 break;
2110 case 8:
2111 rettype = init_integer_type (alloc, 32, 1, "unsigned int");
2112 break;
2113 case 9:
2114 rettype = init_integer_type (alloc, 32, 1, "unsigned");
2115 break;
2116 case 10:
2117 rettype = init_integer_type (alloc, 32, 1, "unsigned long");
2118 break;
2119 case 11:
2120 rettype = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2121 break;
2122 case 12:
2123 /* IEEE single precision (32 bit). */
2124 rettype = init_float_type (alloc, 32, "float",
2125 floatformats_ieee_single);
2126 break;
2127 case 13:
2128 /* IEEE double precision (64 bit). */
2129 rettype = init_float_type (alloc, 64, "double",
2130 floatformats_ieee_double);
2131 break;
2132 case 14:
2133 /* This is an IEEE double on the RS/6000, and different machines with
2134 different sizes for "long double" should use different negative
2135 type numbers. See stabs.texinfo. */
2136 rettype = init_float_type (alloc, 64, "long double",
2137 floatformats_ieee_double);
2138 break;
2139 case 15:
2140 rettype = init_integer_type (alloc, 32, 0, "integer");
2141 break;
2142 case 16:
2143 rettype = init_boolean_type (alloc, 32, 1, "boolean");
2144 break;
2145 case 17:
2146 rettype = init_float_type (alloc, 32, "short real",
2147 floatformats_ieee_single);
2148 break;
2149 case 18:
2150 rettype = init_float_type (alloc, 64, "real",
2151 floatformats_ieee_double);
2152 break;
2153 case 19:
2154 rettype = alloc.new_type (TYPE_CODE_ERROR, 0, "stringptr");
2155 break;
2156 case 20:
2157 rettype = init_character_type (alloc, 8, 1, "character");
2158 break;
2159 case 21:
2160 rettype = init_boolean_type (alloc, 8, 1, "logical*1");
2161 break;
2162 case 22:
2163 rettype = init_boolean_type (alloc, 16, 1, "logical*2");
2164 break;
2165 case 23:
2166 rettype = init_boolean_type (alloc, 32, 1, "logical*4");
2167 break;
2168 case 24:
2169 rettype = init_boolean_type (alloc, 32, 1, "logical");
2170 break;
2171 case 25:
2172 /* Complex type consisting of two IEEE single precision values. */
2173 rettype = init_complex_type ("complex",
2174 rs6000_builtin_type (12, objfile));
2175 break;
2176 case 26:
2177 /* Complex type consisting of two IEEE double precision values. */
2178 rettype = init_complex_type ("double complex",
2179 rs6000_builtin_type (13, objfile));
2180 break;
2181 case 27:
2182 rettype = init_integer_type (alloc, 8, 0, "integer*1");
2183 break;
2184 case 28:
2185 rettype = init_integer_type (alloc, 16, 0, "integer*2");
2186 break;
2187 case 29:
2188 rettype = init_integer_type (alloc, 32, 0, "integer*4");
2189 break;
2190 case 30:
2191 rettype = init_character_type (alloc, 16, 0, "wchar");
2192 break;
2193 case 31:
2194 rettype = init_integer_type (alloc, 64, 0, "long long");
2195 break;
2196 case 32:
2197 rettype = init_integer_type (alloc, 64, 1, "unsigned long long");
2198 break;
2199 case 33:
2200 rettype = init_integer_type (alloc, 64, 1, "logical*8");
2201 break;
2202 case 34:
2203 rettype = init_integer_type (alloc, 64, 0, "integer*8");
2204 break;
2206 negative_types[-typenum] = rettype;
2207 return rettype;
2210 /* This page contains subroutines of read_type. */
2212 /* Wrapper around method_name_from_physname to flag a complaint
2213 if there is an error. */
2215 static char *
2216 stabs_method_name_from_physname (const char *physname)
2218 char *method_name;
2220 method_name = method_name_from_physname (physname);
2222 if (method_name == NULL)
2224 complaint (_("Method has bad physname %s\n"), physname);
2225 return NULL;
2228 return method_name;
2231 /* Read member function stabs info for C++ classes. The form of each member
2232 function data is:
2234 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2236 An example with two member functions is:
2238 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2240 For the case of overloaded operators, the format is op$::*.funcs, where
2241 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2242 name (such as `+=') and `.' marks the end of the operator name.
2244 Returns 1 for success, 0 for failure. */
2246 static int
2247 read_member_functions (struct stab_field_info *fip, const char **pp,
2248 struct type *type, struct objfile *objfile)
2250 int nfn_fields = 0;
2251 int length = 0;
2252 int i;
2253 struct next_fnfield
2255 struct next_fnfield *next;
2256 struct fn_field fn_field;
2258 *sublist;
2259 struct type *look_ahead_type;
2260 struct next_fnfieldlist *new_fnlist;
2261 struct next_fnfield *new_sublist;
2262 char *main_fn_name;
2263 const char *p;
2265 /* Process each list until we find something that is not a member function
2266 or find the end of the functions. */
2268 while (**pp != ';')
2270 /* We should be positioned at the start of the function name.
2271 Scan forward to find the first ':' and if it is not the
2272 first of a "::" delimiter, then this is not a member function. */
2273 p = *pp;
2274 while (*p != ':')
2276 p++;
2278 if (p[1] != ':')
2280 break;
2283 sublist = NULL;
2284 look_ahead_type = NULL;
2285 length = 0;
2287 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2289 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2291 /* This is a completely wierd case. In order to stuff in the
2292 names that might contain colons (the usual name delimiter),
2293 Mike Tiemann defined a different name format which is
2294 signalled if the identifier is "op$". In that case, the
2295 format is "op$::XXXX." where XXXX is the name. This is
2296 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2297 /* This lets the user type "break operator+".
2298 We could just put in "+" as the name, but that wouldn't
2299 work for "*". */
2300 static char opname[32] = "op$";
2301 char *o = opname + 3;
2303 /* Skip past '::'. */
2304 *pp = p + 2;
2306 STABS_CONTINUE (pp, objfile);
2307 p = *pp;
2308 while (*p != '.')
2310 *o++ = *p++;
2312 main_fn_name = savestring (opname, o - opname);
2313 /* Skip past '.' */
2314 *pp = p + 1;
2316 else
2318 main_fn_name = savestring (*pp, p - *pp);
2319 /* Skip past '::'. */
2320 *pp = p + 2;
2322 new_fnlist->fn_fieldlist.name = main_fn_name;
2326 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2328 /* Check for and handle cretinous dbx symbol name continuation! */
2329 if (look_ahead_type == NULL)
2331 /* Normal case. */
2332 STABS_CONTINUE (pp, objfile);
2334 new_sublist->fn_field.type = read_type (pp, objfile);
2335 if (**pp != ':')
2337 /* Invalid symtab info for member function. */
2338 return 0;
2341 else
2343 /* g++ version 1 kludge */
2344 new_sublist->fn_field.type = look_ahead_type;
2345 look_ahead_type = NULL;
2348 (*pp)++;
2349 p = *pp;
2350 while (*p != ';')
2352 p++;
2355 /* These are methods, not functions. */
2356 if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
2357 new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
2359 /* If this is just a stub, then we don't have the real name here. */
2360 if (new_sublist->fn_field.type->is_stub ())
2362 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2363 set_type_self_type (new_sublist->fn_field.type, type);
2364 new_sublist->fn_field.is_stub = 1;
2367 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2368 *pp = p + 1;
2370 /* Set this member function's visibility fields. */
2371 switch (*(*pp)++)
2373 case VISIBILITY_PRIVATE:
2374 new_sublist->fn_field.accessibility = accessibility::PRIVATE;
2375 break;
2376 case VISIBILITY_PROTECTED:
2377 new_sublist->fn_field.accessibility = accessibility::PROTECTED;
2378 break;
2381 STABS_CONTINUE (pp, objfile);
2382 switch (**pp)
2384 case 'A': /* Normal functions. */
2385 new_sublist->fn_field.is_const = 0;
2386 new_sublist->fn_field.is_volatile = 0;
2387 (*pp)++;
2388 break;
2389 case 'B': /* `const' member functions. */
2390 new_sublist->fn_field.is_const = 1;
2391 new_sublist->fn_field.is_volatile = 0;
2392 (*pp)++;
2393 break;
2394 case 'C': /* `volatile' member function. */
2395 new_sublist->fn_field.is_const = 0;
2396 new_sublist->fn_field.is_volatile = 1;
2397 (*pp)++;
2398 break;
2399 case 'D': /* `const volatile' member function. */
2400 new_sublist->fn_field.is_const = 1;
2401 new_sublist->fn_field.is_volatile = 1;
2402 (*pp)++;
2403 break;
2404 case '*': /* File compiled with g++ version 1 --
2405 no info. */
2406 case '?':
2407 case '.':
2408 break;
2409 default:
2410 complaint (_("const/volatile indicator missing, got '%c'"),
2411 **pp);
2412 break;
2415 switch (*(*pp)++)
2417 case '*':
2419 int nbits;
2420 /* virtual member function, followed by index.
2421 The sign bit is set to distinguish pointers-to-methods
2422 from virtual function indicies. Since the array is
2423 in words, the quantity must be shifted left by 1
2424 on 16 bit machine, and by 2 on 32 bit machine, forcing
2425 the sign bit out, and usable as a valid index into
2426 the array. Remove the sign bit here. */
2427 new_sublist->fn_field.voffset =
2428 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2429 if (nbits != 0)
2430 return 0;
2432 STABS_CONTINUE (pp, objfile);
2433 if (**pp == ';' || **pp == '\0')
2435 /* Must be g++ version 1. */
2436 new_sublist->fn_field.fcontext = 0;
2438 else
2440 /* Figure out from whence this virtual function came.
2441 It may belong to virtual function table of
2442 one of its baseclasses. */
2443 look_ahead_type = read_type (pp, objfile);
2444 if (**pp == ':')
2446 /* g++ version 1 overloaded methods. */
2448 else
2450 new_sublist->fn_field.fcontext = look_ahead_type;
2451 if (**pp != ';')
2453 return 0;
2455 else
2457 ++*pp;
2459 look_ahead_type = NULL;
2462 break;
2464 case '?':
2465 /* static member function. */
2467 int slen = strlen (main_fn_name);
2469 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2471 /* For static member functions, we can't tell if they
2472 are stubbed, as they are put out as functions, and not as
2473 methods.
2474 GCC v2 emits the fully mangled name if
2475 dbxout.c:flag_minimal_debug is not set, so we have to
2476 detect a fully mangled physname here and set is_stub
2477 accordingly. Fully mangled physnames in v2 start with
2478 the member function name, followed by two underscores.
2479 GCC v3 currently always emits stubbed member functions,
2480 but with fully mangled physnames, which start with _Z. */
2481 if (!(strncmp (new_sublist->fn_field.physname,
2482 main_fn_name, slen) == 0
2483 && new_sublist->fn_field.physname[slen] == '_'
2484 && new_sublist->fn_field.physname[slen + 1] == '_'))
2486 new_sublist->fn_field.is_stub = 1;
2488 break;
2491 default:
2492 /* error */
2493 complaint (_("member function type missing, got '%c'"),
2494 (*pp)[-1]);
2495 /* Normal member function. */
2496 [[fallthrough]];
2498 case '.':
2499 /* normal member function. */
2500 new_sublist->fn_field.voffset = 0;
2501 new_sublist->fn_field.fcontext = 0;
2502 break;
2505 new_sublist->next = sublist;
2506 sublist = new_sublist;
2507 length++;
2508 STABS_CONTINUE (pp, objfile);
2510 while (**pp != ';' && **pp != '\0');
2512 (*pp)++;
2513 STABS_CONTINUE (pp, objfile);
2515 /* Skip GCC 3.X member functions which are duplicates of the callable
2516 constructor/destructor. */
2517 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2518 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2519 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2521 xfree (main_fn_name);
2523 else
2525 int has_destructor = 0, has_other = 0;
2526 int is_v3 = 0;
2527 struct next_fnfield *tmp_sublist;
2529 /* Various versions of GCC emit various mostly-useless
2530 strings in the name field for special member functions.
2532 For stub methods, we need to defer correcting the name
2533 until we are ready to unstub the method, because the current
2534 name string is used by gdb_mangle_name. The only stub methods
2535 of concern here are GNU v2 operators; other methods have their
2536 names correct (see caveat below).
2538 For non-stub methods, in GNU v3, we have a complete physname.
2539 Therefore we can safely correct the name now. This primarily
2540 affects constructors and destructors, whose name will be
2541 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2542 operators will also have incorrect names; for instance,
2543 "operator int" will be named "operator i" (i.e. the type is
2544 mangled).
2546 For non-stub methods in GNU v2, we have no easy way to
2547 know if we have a complete physname or not. For most
2548 methods the result depends on the platform (if CPLUS_MARKER
2549 can be `$' or `.', it will use minimal debug information, or
2550 otherwise the full physname will be included).
2552 Rather than dealing with this, we take a different approach.
2553 For v3 mangled names, we can use the full physname; for v2,
2554 we use cplus_demangle_opname (which is actually v2 specific),
2555 because the only interesting names are all operators - once again
2556 barring the caveat below. Skip this process if any method in the
2557 group is a stub, to prevent our fouling up the workings of
2558 gdb_mangle_name.
2560 The caveat: GCC 2.95.x (and earlier?) put constructors and
2561 destructors in the same method group. We need to split this
2562 into two groups, because they should have different names.
2563 So for each method group we check whether it contains both
2564 routines whose physname appears to be a destructor (the physnames
2565 for and destructors are always provided, due to quirks in v2
2566 mangling) and routines whose physname does not appear to be a
2567 destructor. If so then we break up the list into two halves.
2568 Even if the constructors and destructors aren't in the same group
2569 the destructor will still lack the leading tilde, so that also
2570 needs to be fixed.
2572 So, to summarize what we expect and handle here:
2574 Given Given Real Real Action
2575 method name physname physname method name
2577 __opi [none] __opi__3Foo operator int opname
2578 [now or later]
2579 Foo _._3Foo _._3Foo ~Foo separate and
2580 rename
2581 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2582 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2585 tmp_sublist = sublist;
2586 while (tmp_sublist != NULL)
2588 if (tmp_sublist->fn_field.physname[0] == '_'
2589 && tmp_sublist->fn_field.physname[1] == 'Z')
2590 is_v3 = 1;
2592 if (is_destructor_name (tmp_sublist->fn_field.physname))
2593 has_destructor++;
2594 else
2595 has_other++;
2597 tmp_sublist = tmp_sublist->next;
2600 if (has_destructor && has_other)
2602 struct next_fnfieldlist *destr_fnlist;
2603 struct next_fnfield *last_sublist;
2605 /* Create a new fn_fieldlist for the destructors. */
2607 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2608 struct next_fnfieldlist);
2610 destr_fnlist->fn_fieldlist.name
2611 = obconcat (&objfile->objfile_obstack, "~",
2612 new_fnlist->fn_fieldlist.name, (char *) NULL);
2614 destr_fnlist->fn_fieldlist.fn_fields =
2615 XOBNEWVEC (&objfile->objfile_obstack,
2616 struct fn_field, has_destructor);
2617 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2618 sizeof (struct fn_field) * has_destructor);
2619 tmp_sublist = sublist;
2620 last_sublist = NULL;
2621 i = 0;
2622 while (tmp_sublist != NULL)
2624 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2626 tmp_sublist = tmp_sublist->next;
2627 continue;
2630 destr_fnlist->fn_fieldlist.fn_fields[i++]
2631 = tmp_sublist->fn_field;
2632 if (last_sublist)
2633 last_sublist->next = tmp_sublist->next;
2634 else
2635 sublist = tmp_sublist->next;
2636 last_sublist = tmp_sublist;
2637 tmp_sublist = tmp_sublist->next;
2640 destr_fnlist->fn_fieldlist.length = has_destructor;
2641 destr_fnlist->next = fip->fnlist;
2642 fip->fnlist = destr_fnlist;
2643 nfn_fields++;
2644 length -= has_destructor;
2646 else if (is_v3)
2648 /* v3 mangling prevents the use of abbreviated physnames,
2649 so we can do this here. There are stubbed methods in v3
2650 only:
2651 - in -gstabs instead of -gstabs+
2652 - or for static methods, which are output as a function type
2653 instead of a method type. */
2654 char *new_method_name =
2655 stabs_method_name_from_physname (sublist->fn_field.physname);
2657 if (new_method_name != NULL
2658 && strcmp (new_method_name,
2659 new_fnlist->fn_fieldlist.name) != 0)
2661 new_fnlist->fn_fieldlist.name = new_method_name;
2662 xfree (main_fn_name);
2664 else
2665 xfree (new_method_name);
2667 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2669 new_fnlist->fn_fieldlist.name =
2670 obconcat (&objfile->objfile_obstack,
2671 "~", main_fn_name, (char *)NULL);
2672 xfree (main_fn_name);
2675 new_fnlist->fn_fieldlist.fn_fields
2676 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2677 for (i = length; (i--, sublist); sublist = sublist->next)
2679 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2682 new_fnlist->fn_fieldlist.length = length;
2683 new_fnlist->next = fip->fnlist;
2684 fip->fnlist = new_fnlist;
2685 nfn_fields++;
2689 if (nfn_fields)
2691 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2692 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2693 TYPE_ZALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2694 TYPE_NFN_FIELDS (type) = nfn_fields;
2697 return 1;
2700 /* Special GNU C++ name.
2702 Returns 1 for success, 0 for failure. "failure" means that we can't
2703 keep parsing and it's time for error_type(). */
2705 static int
2706 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2707 struct type *type, struct objfile *objfile)
2709 const char *p;
2710 const char *name;
2711 char cpp_abbrev;
2712 struct type *context;
2714 p = *pp;
2715 if (*++p == 'v')
2717 name = NULL;
2718 cpp_abbrev = *++p;
2720 *pp = p + 1;
2722 /* At this point, *pp points to something like "22:23=*22...",
2723 where the type number before the ':' is the "context" and
2724 everything after is a regular type definition. Lookup the
2725 type, find it's name, and construct the field name. */
2727 context = read_type (pp, objfile);
2729 switch (cpp_abbrev)
2731 case 'f': /* $vf -- a virtual function table pointer */
2732 name = context->name ();
2733 if (name == NULL)
2735 name = "";
2737 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2738 vptr_name, name, (char *) NULL));
2739 break;
2741 case 'b': /* $vb -- a virtual bsomethingorother */
2742 name = context->name ();
2743 if (name == NULL)
2745 complaint (_("C++ abbreviated type name "
2746 "unknown at symtab pos %d"),
2747 symnum);
2748 name = "FOO";
2750 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2751 vb_name, name, (char *) NULL));
2752 break;
2754 default:
2755 invalid_cpp_abbrev_complaint (*pp);
2756 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2757 "INVALID_CPLUSPLUS_ABBREV",
2758 (char *) NULL));
2759 break;
2762 /* At this point, *pp points to the ':'. Skip it and read the
2763 field type. */
2765 p = ++(*pp);
2766 if (p[-1] != ':')
2768 invalid_cpp_abbrev_complaint (*pp);
2769 return 0;
2771 fip->list->field.set_type (read_type (pp, objfile));
2772 if (**pp == ',')
2773 (*pp)++; /* Skip the comma. */
2774 else
2775 return 0;
2778 int nbits;
2780 fip->list->field.set_loc_bitpos (read_huge_number (pp, ';', &nbits, 0));
2781 if (nbits != 0)
2782 return 0;
2784 /* This field is unpacked. */
2785 fip->list->field.set_bitsize (0);
2786 fip->list->field.set_accessibility (accessibility::PRIVATE);
2788 else
2790 invalid_cpp_abbrev_complaint (*pp);
2791 /* We have no idea what syntax an unrecognized abbrev would have, so
2792 better return 0. If we returned 1, we would need to at least advance
2793 *pp to avoid an infinite loop. */
2794 return 0;
2796 return 1;
2799 static void
2800 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2801 const char *p, struct type *type,
2802 struct objfile *objfile)
2804 struct gdbarch *gdbarch = objfile->arch ();
2806 fip->list->field.set_name
2807 (obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp));
2808 *pp = p + 1;
2810 /* This means we have a visibility for a field coming. */
2811 int visibility;
2812 if (**pp == '/')
2814 (*pp)++;
2815 visibility = *(*pp)++;
2817 else
2819 /* normal dbx-style format, no explicit visibility */
2820 visibility = VISIBILITY_PUBLIC;
2823 switch (visibility)
2825 case VISIBILITY_PRIVATE:
2826 fip->list->field.set_accessibility (accessibility::PRIVATE);
2827 break;
2829 case VISIBILITY_PROTECTED:
2830 fip->list->field.set_accessibility (accessibility::PROTECTED);
2831 break;
2833 case VISIBILITY_IGNORE:
2834 fip->list->field.set_ignored ();
2835 break;
2837 case VISIBILITY_PUBLIC:
2838 break;
2840 default:
2841 /* Unknown visibility. Complain and treat it as public. */
2843 complaint (_("Unknown visibility `%c' for field"),
2844 visibility);
2846 break;
2849 fip->list->field.set_type (read_type (pp, objfile));
2850 if (**pp == ':')
2852 p = ++(*pp);
2853 #if 0
2854 /* Possible future hook for nested types. */
2855 if (**pp == '!')
2857 fip->list->field.bitpos = (long) -2; /* nested type */
2858 p = ++(*pp);
2860 else
2861 ...;
2862 #endif
2863 while (*p != ';')
2865 p++;
2867 /* Static class member. */
2868 fip->list->field.set_loc_physname (savestring (*pp, p - *pp));
2869 *pp = p + 1;
2870 return;
2872 else if (**pp != ',')
2874 /* Bad structure-type format. */
2875 stabs_general_complaint ("bad structure-type format");
2876 return;
2879 (*pp)++; /* Skip the comma. */
2882 int nbits;
2884 fip->list->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
2885 if (nbits != 0)
2887 stabs_general_complaint ("bad structure-type format");
2888 return;
2890 fip->list->field.set_bitsize (read_huge_number (pp, ';', &nbits, 0));
2891 if (nbits != 0)
2893 stabs_general_complaint ("bad structure-type format");
2894 return;
2898 if (fip->list->field.loc_bitpos () == 0
2899 && fip->list->field.bitsize () == 0)
2901 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2902 it is a field which has been optimized out. The correct stab for
2903 this case is to use VISIBILITY_IGNORE, but that is a recent
2904 invention. (2) It is a 0-size array. For example
2905 union { int num; char str[0]; } foo. Printing _("<no value>" for
2906 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2907 will continue to work, and a 0-size array as a whole doesn't
2908 have any contents to print.
2910 I suspect this probably could also happen with gcc -gstabs (not
2911 -gstabs+) for static fields, and perhaps other C++ extensions.
2912 Hopefully few people use -gstabs with gdb, since it is intended
2913 for dbx compatibility. */
2915 /* Ignore this field. */
2916 fip->list->field.set_ignored ();
2918 else
2920 /* Detect an unpacked field and mark it as such.
2921 dbx gives a bit size for all fields.
2922 Note that forward refs cannot be packed,
2923 and treat enums as if they had the width of ints. */
2925 struct type *field_type = check_typedef (fip->list->field.type ());
2927 if (field_type->code () != TYPE_CODE_INT
2928 && field_type->code () != TYPE_CODE_RANGE
2929 && field_type->code () != TYPE_CODE_BOOL
2930 && field_type->code () != TYPE_CODE_ENUM)
2932 fip->list->field.set_bitsize (0);
2934 if ((fip->list->field.bitsize ()
2935 == TARGET_CHAR_BIT * field_type->length ()
2936 || (field_type->code () == TYPE_CODE_ENUM
2937 && (fip->list->field.bitsize ()
2938 == gdbarch_int_bit (gdbarch)))
2941 fip->list->field.loc_bitpos () % 8 == 0)
2943 fip->list->field.set_bitsize (0);
2949 /* Read struct or class data fields. They have the form:
2951 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2953 At the end, we see a semicolon instead of a field.
2955 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2956 a static field.
2958 The optional VISIBILITY is one of:
2960 '/0' (VISIBILITY_PRIVATE)
2961 '/1' (VISIBILITY_PROTECTED)
2962 '/2' (VISIBILITY_PUBLIC)
2963 '/9' (VISIBILITY_IGNORE)
2965 or nothing, for C style fields with public visibility.
2967 Returns 1 for success, 0 for failure. */
2969 static int
2970 read_struct_fields (struct stab_field_info *fip, const char **pp,
2971 struct type *type, struct objfile *objfile)
2973 const char *p;
2974 struct stabs_nextfield *newobj;
2976 /* We better set p right now, in case there are no fields at all... */
2978 p = *pp;
2980 /* Read each data member type until we find the terminating ';' at the end of
2981 the data member list, or break for some other reason such as finding the
2982 start of the member function list. */
2983 /* Stab string for structure/union does not end with two ';' in
2984 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2986 while (**pp != ';' && **pp != '\0')
2988 STABS_CONTINUE (pp, objfile);
2989 /* Get space to record the next field's data. */
2990 newobj = OBSTACK_ZALLOC (&fip->obstack, struct stabs_nextfield);
2992 newobj->next = fip->list;
2993 fip->list = newobj;
2995 /* Get the field name. */
2996 p = *pp;
2998 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2999 unless the CPLUS_MARKER is followed by an underscore, in
3000 which case it is just the name of an anonymous type, which we
3001 should handle like any other type name. */
3003 if (is_cplus_marker (p[0]) && p[1] != '_')
3005 if (!read_cpp_abbrev (fip, pp, type, objfile))
3006 return 0;
3007 continue;
3010 /* Look for the ':' that separates the field name from the field
3011 values. Data members are delimited by a single ':', while member
3012 functions are delimited by a pair of ':'s. When we hit the member
3013 functions (if any), terminate scan loop and return. */
3015 while (*p != ':' && *p != '\0')
3017 p++;
3019 if (*p == '\0')
3020 return 0;
3022 /* Check to see if we have hit the member functions yet. */
3023 if (p[1] == ':')
3025 break;
3027 read_one_struct_field (fip, pp, p, type, objfile);
3029 if (p[0] == ':' && p[1] == ':')
3031 /* (the deleted) chill the list of fields: the last entry (at
3032 the head) is a partially constructed entry which we now
3033 scrub. */
3034 fip->list = fip->list->next;
3036 return 1;
3038 /* The stabs for C++ derived classes contain baseclass information which
3039 is marked by a '!' character after the total size. This function is
3040 called when we encounter the baseclass marker, and slurps up all the
3041 baseclass information.
3043 Immediately following the '!' marker is the number of base classes that
3044 the class is derived from, followed by information for each base class.
3045 For each base class, there are two visibility specifiers, a bit offset
3046 to the base class information within the derived class, a reference to
3047 the type for the base class, and a terminating semicolon.
3049 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3050 ^^ ^ ^ ^ ^ ^ ^
3051 Baseclass information marker __________________|| | | | | | |
3052 Number of baseclasses __________________________| | | | | | |
3053 Visibility specifiers (2) ________________________| | | | | |
3054 Offset in bits from start of class _________________| | | | |
3055 Type number for base class ___________________________| | | |
3056 Visibility specifiers (2) _______________________________| | |
3057 Offset in bits from start of class ________________________| |
3058 Type number of base class ____________________________________|
3060 Return 1 for success, 0 for (error-type-inducing) failure. */
3064 static int
3065 read_baseclasses (struct stab_field_info *fip, const char **pp,
3066 struct type *type, struct objfile *objfile)
3068 int i;
3069 struct stabs_nextfield *newobj;
3071 if (**pp != '!')
3073 return 1;
3075 else
3077 /* Skip the '!' baseclass information marker. */
3078 (*pp)++;
3081 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3083 int nbits;
3085 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3086 if (nbits != 0)
3087 return 0;
3090 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3092 newobj = OBSTACK_ZALLOC (&fip->obstack, struct stabs_nextfield);
3094 newobj->next = fip->list;
3095 fip->list = newobj;
3096 newobj->field.set_bitsize (0); /* This should be an unpacked
3097 field! */
3099 STABS_CONTINUE (pp, objfile);
3100 switch (**pp)
3102 case '0':
3103 /* Nothing to do. */
3104 break;
3105 case '1':
3106 newobj->field.set_virtual ();
3107 break;
3108 default:
3109 /* Unknown character. Complain and treat it as non-virtual. */
3111 complaint (_("Unknown virtual character `%c' for baseclass"),
3112 **pp);
3115 ++(*pp);
3117 int visibility = *(*pp)++;
3118 switch (visibility)
3120 case VISIBILITY_PRIVATE:
3121 newobj->field.set_accessibility (accessibility::PRIVATE);
3122 break;
3123 case VISIBILITY_PROTECTED:
3124 newobj->field.set_accessibility (accessibility::PROTECTED);
3125 break;
3126 case VISIBILITY_PUBLIC:
3127 break;
3128 default:
3129 /* Bad visibility format. Complain and treat it as
3130 public. */
3132 complaint (_("Unknown visibility `%c' for baseclass"),
3133 visibility);
3138 int nbits;
3140 /* The remaining value is the bit offset of the portion of the object
3141 corresponding to this baseclass. Always zero in the absence of
3142 multiple inheritance. */
3144 newobj->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
3145 if (nbits != 0)
3146 return 0;
3149 /* The last piece of baseclass information is the type of the
3150 base class. Read it, and remember it's type name as this
3151 field's name. */
3153 newobj->field.set_type (read_type (pp, objfile));
3154 newobj->field.set_name (newobj->field.type ()->name ());
3156 /* Skip trailing ';' and bump count of number of fields seen. */
3157 if (**pp == ';')
3158 (*pp)++;
3159 else
3160 return 0;
3162 return 1;
3165 /* The tail end of stabs for C++ classes that contain a virtual function
3166 pointer contains a tilde, a %, and a type number.
3167 The type number refers to the base class (possibly this class itself) which
3168 contains the vtable pointer for the current class.
3170 This function is called when we have parsed all the method declarations,
3171 so we can look for the vptr base class info. */
3173 static int
3174 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3175 struct type *type, struct objfile *objfile)
3177 const char *p;
3179 STABS_CONTINUE (pp, objfile);
3181 /* If we are positioned at a ';', then skip it. */
3182 if (**pp == ';')
3184 (*pp)++;
3187 if (**pp == '~')
3189 (*pp)++;
3191 if (**pp == '=' || **pp == '+' || **pp == '-')
3193 /* Obsolete flags that used to indicate the presence
3194 of constructors and/or destructors. */
3195 (*pp)++;
3198 /* Read either a '%' or the final ';'. */
3199 if (*(*pp)++ == '%')
3201 /* The next number is the type number of the base class
3202 (possibly our own class) which supplies the vtable for
3203 this class. Parse it out, and search that class to find
3204 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3205 and TYPE_VPTR_FIELDNO. */
3207 struct type *t;
3208 int i;
3210 t = read_type (pp, objfile);
3211 p = (*pp)++;
3212 while (*p != '\0' && *p != ';')
3214 p++;
3216 if (*p == '\0')
3218 /* Premature end of symbol. */
3219 return 0;
3222 set_type_vptr_basetype (type, t);
3223 if (type == t) /* Our own class provides vtbl ptr. */
3225 for (i = t->num_fields () - 1;
3226 i >= TYPE_N_BASECLASSES (t);
3227 --i)
3229 const char *name = t->field (i).name ();
3231 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3232 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3234 set_type_vptr_fieldno (type, i);
3235 goto gotit;
3238 /* Virtual function table field not found. */
3239 complaint (_("virtual function table pointer "
3240 "not found when defining class `%s'"),
3241 type->name ());
3242 return 0;
3244 else
3246 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3249 gotit:
3250 *pp = p + 1;
3253 return 1;
3256 static int
3257 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3259 int n;
3261 for (n = TYPE_NFN_FIELDS (type);
3262 fip->fnlist != NULL;
3263 fip->fnlist = fip->fnlist->next)
3265 --n; /* Circumvent Sun3 compiler bug. */
3266 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3268 return 1;
3271 /* Create the vector of fields, and record how big it is.
3272 We need this info to record proper virtual function table information
3273 for this class's virtual functions. */
3275 static int
3276 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3277 struct objfile *objfile)
3279 int nfields = 0;
3280 struct stabs_nextfield *scan;
3282 /* Count up the number of fields that we have. */
3284 for (scan = fip->list; scan != NULL; scan = scan->next)
3285 nfields++;
3287 /* Now we know how many fields there are, and whether or not there are any
3288 non-public fields. Record the field count, allocate space for the
3289 array of fields. */
3291 type->alloc_fields (nfields);
3293 /* Copy the saved-up fields into the field vector. Start from the
3294 head of the list, adding to the tail of the field array, so that
3295 they end up in the same order in the array in which they were
3296 added to the list. */
3298 while (nfields-- > 0)
3300 type->field (nfields) = fip->list->field;
3301 fip->list = fip->list->next;
3303 return 1;
3307 /* Complain that the compiler has emitted more than one definition for the
3308 structure type TYPE. */
3309 static void
3310 complain_about_struct_wipeout (struct type *type)
3312 const char *name = "";
3313 const char *kind = "";
3315 if (type->name ())
3317 name = type->name ();
3318 switch (type->code ())
3320 case TYPE_CODE_STRUCT: kind = "struct "; break;
3321 case TYPE_CODE_UNION: kind = "union "; break;
3322 case TYPE_CODE_ENUM: kind = "enum "; break;
3323 default: kind = "";
3326 else
3328 name = "<unknown>";
3329 kind = "";
3332 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3335 /* Set the length for all variants of a same main_type, which are
3336 connected in the closed chain.
3338 This is something that needs to be done when a type is defined *after*
3339 some cross references to this type have already been read. Consider
3340 for instance the following scenario where we have the following two
3341 stabs entries:
3343 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3344 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3346 A stubbed version of type dummy is created while processing the first
3347 stabs entry. The length of that type is initially set to zero, since
3348 it is unknown at this point. Also, a "constant" variation of type
3349 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3350 the stabs line).
3352 The second stabs entry allows us to replace the stubbed definition
3353 with the real definition. However, we still need to adjust the length
3354 of the "constant" variation of that type, as its length was left
3355 untouched during the main type replacement... */
3357 static void
3358 set_length_in_type_chain (struct type *type)
3360 struct type *ntype = TYPE_CHAIN (type);
3362 while (ntype != type)
3364 if (ntype->length () == 0)
3365 ntype->set_length (type->length ());
3366 else
3367 complain_about_struct_wipeout (ntype);
3368 ntype = TYPE_CHAIN (ntype);
3372 /* Read the description of a structure (or union type) and return an object
3373 describing the type.
3375 PP points to a character pointer that points to the next unconsumed token
3376 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3377 *PP will point to "4a:1,0,32;;".
3379 TYPE points to an incomplete type that needs to be filled in.
3381 OBJFILE points to the current objfile from which the stabs information is
3382 being read. (Note that it is redundant in that TYPE also contains a pointer
3383 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3386 static struct type *
3387 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3388 struct objfile *objfile)
3390 struct stab_field_info fi;
3392 /* When describing struct/union/class types in stabs, G++ always drops
3393 all qualifications from the name. So if you've got:
3394 struct A { ... struct B { ... }; ... };
3395 then G++ will emit stabs for `struct A::B' that call it simply
3396 `struct B'. Obviously, if you've got a real top-level definition for
3397 `struct B', or other nested definitions, this is going to cause
3398 problems.
3400 Obviously, GDB can't fix this by itself, but it can at least avoid
3401 scribbling on existing structure type objects when new definitions
3402 appear. */
3403 if (! (type->code () == TYPE_CODE_UNDEF
3404 || type->is_stub ()))
3406 complain_about_struct_wipeout (type);
3408 /* It's probably best to return the type unchanged. */
3409 return type;
3412 INIT_CPLUS_SPECIFIC (type);
3413 type->set_code (type_code);
3414 type->set_is_stub (false);
3416 /* First comes the total size in bytes. */
3419 int nbits;
3421 type->set_length (read_huge_number (pp, 0, &nbits, 0));
3422 if (nbits != 0)
3423 return error_type (pp, objfile);
3424 set_length_in_type_chain (type);
3427 /* Now read the baseclasses, if any, read the regular C struct or C++
3428 class member fields, attach the fields to the type, read the C++
3429 member functions, attach them to the type, and then read any tilde
3430 field (baseclass specifier for the class holding the main vtable). */
3432 if (!read_baseclasses (&fi, pp, type, objfile)
3433 || !read_struct_fields (&fi, pp, type, objfile)
3434 || !attach_fields_to_type (&fi, type, objfile)
3435 || !read_member_functions (&fi, pp, type, objfile)
3436 || !attach_fn_fields_to_type (&fi, type)
3437 || !read_tilde_fields (&fi, pp, type, objfile))
3439 type = error_type (pp, objfile);
3442 return (type);
3445 /* Read a definition of an array type,
3446 and create and return a suitable type object.
3447 Also creates a range type which represents the bounds of that
3448 array. */
3450 static struct type *
3451 read_array_type (const char **pp, struct type *type,
3452 struct objfile *objfile)
3454 struct type *index_type, *element_type, *range_type;
3455 int lower, upper;
3456 int adjustable = 0;
3457 int nbits;
3459 /* Format of an array type:
3460 "ar<index type>;lower;upper;<array_contents_type>".
3461 OS9000: "arlower,upper;<array_contents_type>".
3463 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3464 for these, produce a type like float[][]. */
3467 index_type = read_type (pp, objfile);
3468 if (**pp != ';')
3469 /* Improper format of array type decl. */
3470 return error_type (pp, objfile);
3471 ++*pp;
3474 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3476 (*pp)++;
3477 adjustable = 1;
3479 lower = read_huge_number (pp, ';', &nbits, 0);
3481 if (nbits != 0)
3482 return error_type (pp, objfile);
3484 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3486 (*pp)++;
3487 adjustable = 1;
3489 upper = read_huge_number (pp, ';', &nbits, 0);
3490 if (nbits != 0)
3491 return error_type (pp, objfile);
3493 element_type = read_type (pp, objfile);
3495 if (adjustable)
3497 lower = 0;
3498 upper = -1;
3501 type_allocator alloc (objfile, get_current_subfile ()->language);
3502 range_type =
3503 create_static_range_type (alloc, index_type, lower, upper);
3504 type_allocator smash_alloc (type, type_allocator::SMASH);
3505 type = create_array_type (smash_alloc, element_type, range_type);
3507 return type;
3511 /* Read a definition of an enumeration type,
3512 and create and return a suitable type object.
3513 Also defines the symbols that represent the values of the type. */
3515 static struct type *
3516 read_enum_type (const char **pp, struct type *type,
3517 struct objfile *objfile)
3519 struct gdbarch *gdbarch = objfile->arch ();
3520 const char *p;
3521 char *name;
3522 long n;
3523 struct symbol *sym;
3524 int nsyms = 0;
3525 struct pending **symlist;
3526 struct pending *osyms, *syms;
3527 int o_nsyms;
3528 int nbits;
3529 int unsigned_enum = 1;
3531 #if 0
3532 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3533 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3534 to do? For now, force all enum values to file scope. */
3535 if (within_function)
3536 symlist = get_local_symbols ();
3537 else
3538 #endif
3539 symlist = get_file_symbols ();
3540 osyms = *symlist;
3541 o_nsyms = osyms ? osyms->nsyms : 0;
3543 /* The aix4 compiler emits an extra field before the enum members;
3544 my guess is it's a type of some sort. Just ignore it. */
3545 if (**pp == '-')
3547 /* Skip over the type. */
3548 while (**pp != ':')
3549 (*pp)++;
3551 /* Skip over the colon. */
3552 (*pp)++;
3555 /* Read the value-names and their values.
3556 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3557 A semicolon or comma instead of a NAME means the end. */
3558 while (**pp && **pp != ';' && **pp != ',')
3560 STABS_CONTINUE (pp, objfile);
3561 p = *pp;
3562 while (*p != ':')
3563 p++;
3564 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3565 *pp = p + 1;
3566 n = read_huge_number (pp, ',', &nbits, 0);
3567 if (nbits != 0)
3568 return error_type (pp, objfile);
3570 sym = new (&objfile->objfile_obstack) symbol;
3571 sym->set_linkage_name (name);
3572 sym->set_language (get_current_subfile ()->language,
3573 &objfile->objfile_obstack);
3574 sym->set_aclass_index (LOC_CONST);
3575 sym->set_domain (VAR_DOMAIN);
3576 sym->set_value_longest (n);
3577 if (n < 0)
3578 unsigned_enum = 0;
3579 add_symbol_to_list (sym, symlist);
3580 nsyms++;
3583 if (**pp == ';')
3584 (*pp)++; /* Skip the semicolon. */
3586 /* Now fill in the fields of the type-structure. */
3588 type->set_length (gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT);
3589 set_length_in_type_chain (type);
3590 type->set_code (TYPE_CODE_ENUM);
3591 type->set_is_stub (false);
3592 if (unsigned_enum)
3593 type->set_is_unsigned (true);
3594 type->alloc_fields (nsyms);
3596 /* Find the symbols for the values and put them into the type.
3597 The symbols can be found in the symlist that we put them on
3598 to cause them to be defined. osyms contains the old value
3599 of that symlist; everything up to there was defined by us. */
3600 /* Note that we preserve the order of the enum constants, so
3601 that in something like "enum {FOO, LAST_THING=FOO}" we print
3602 FOO, not LAST_THING. */
3604 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3606 int last = syms == osyms ? o_nsyms : 0;
3607 int j = syms->nsyms;
3609 for (; --j >= last; --n)
3611 struct symbol *xsym = syms->symbol[j];
3613 xsym->set_type (type);
3614 type->field (n).set_name (xsym->linkage_name ());
3615 type->field (n).set_loc_enumval (xsym->value_longest ());
3616 type->field (n).set_bitsize (0);
3618 if (syms == osyms)
3619 break;
3622 return type;
3625 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3626 typedefs in every file (for int, long, etc):
3628 type = b <signed> <width> <format type>; <offset>; <nbits>
3629 signed = u or s.
3630 optional format type = c or b for char or boolean.
3631 offset = offset from high order bit to start bit of type.
3632 width is # bytes in object of this type, nbits is # bits in type.
3634 The width/offset stuff appears to be for small objects stored in
3635 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3636 FIXME. */
3638 static struct type *
3639 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3641 int type_bits;
3642 int nbits;
3643 int unsigned_type;
3644 int boolean_type = 0;
3646 switch (**pp)
3648 case 's':
3649 unsigned_type = 0;
3650 break;
3651 case 'u':
3652 unsigned_type = 1;
3653 break;
3654 default:
3655 return error_type (pp, objfile);
3657 (*pp)++;
3659 /* For some odd reason, all forms of char put a c here. This is strange
3660 because no other type has this honor. We can safely ignore this because
3661 we actually determine 'char'acterness by the number of bits specified in
3662 the descriptor.
3663 Boolean forms, e.g Fortran logical*X, put a b here. */
3665 if (**pp == 'c')
3666 (*pp)++;
3667 else if (**pp == 'b')
3669 boolean_type = 1;
3670 (*pp)++;
3673 /* The first number appears to be the number of bytes occupied
3674 by this type, except that unsigned short is 4 instead of 2.
3675 Since this information is redundant with the third number,
3676 we will ignore it. */
3677 read_huge_number (pp, ';', &nbits, 0);
3678 if (nbits != 0)
3679 return error_type (pp, objfile);
3681 /* The second number is always 0, so ignore it too. */
3682 read_huge_number (pp, ';', &nbits, 0);
3683 if (nbits != 0)
3684 return error_type (pp, objfile);
3686 /* The third number is the number of bits for this type. */
3687 type_bits = read_huge_number (pp, 0, &nbits, 0);
3688 if (nbits != 0)
3689 return error_type (pp, objfile);
3690 /* The type *should* end with a semicolon. If it are embedded
3691 in a larger type the semicolon may be the only way to know where
3692 the type ends. If this type is at the end of the stabstring we
3693 can deal with the omitted semicolon (but we don't have to like
3694 it). Don't bother to complain(), Sun's compiler omits the semicolon
3695 for "void". */
3696 if (**pp == ';')
3697 ++(*pp);
3699 type_allocator alloc (objfile, get_current_subfile ()->language);
3700 if (type_bits == 0)
3702 struct type *type = alloc.new_type (TYPE_CODE_VOID,
3703 TARGET_CHAR_BIT, nullptr);
3704 if (unsigned_type)
3705 type->set_is_unsigned (true);
3707 return type;
3710 if (boolean_type)
3711 return init_boolean_type (alloc, type_bits, unsigned_type, NULL);
3712 else
3713 return init_integer_type (alloc, type_bits, unsigned_type, NULL);
3716 static struct type *
3717 read_sun_floating_type (const char **pp, int typenums[2],
3718 struct objfile *objfile)
3720 int nbits;
3721 int details;
3722 int nbytes;
3723 struct type *rettype;
3725 /* The first number has more details about the type, for example
3726 FN_COMPLEX. */
3727 details = read_huge_number (pp, ';', &nbits, 0);
3728 if (nbits != 0)
3729 return error_type (pp, objfile);
3731 /* The second number is the number of bytes occupied by this type. */
3732 nbytes = read_huge_number (pp, ';', &nbits, 0);
3733 if (nbits != 0)
3734 return error_type (pp, objfile);
3736 nbits = nbytes * TARGET_CHAR_BIT;
3738 if (details == NF_COMPLEX || details == NF_COMPLEX16
3739 || details == NF_COMPLEX32)
3741 rettype = dbx_init_float_type (objfile, nbits / 2);
3742 return init_complex_type (NULL, rettype);
3745 return dbx_init_float_type (objfile, nbits);
3748 /* Read a number from the string pointed to by *PP.
3749 The value of *PP is advanced over the number.
3750 If END is nonzero, the character that ends the
3751 number must match END, or an error happens;
3752 and that character is skipped if it does match.
3753 If END is zero, *PP is left pointing to that character.
3755 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3756 the number is represented in an octal representation, assume that
3757 it is represented in a 2's complement representation with a size of
3758 TWOS_COMPLEMENT_BITS.
3760 If the number fits in a long, set *BITS to 0 and return the value.
3761 If not, set *BITS to be the number of bits in the number and return 0.
3763 If encounter garbage, set *BITS to -1 and return 0. */
3765 static long
3766 read_huge_number (const char **pp, int end, int *bits,
3767 int twos_complement_bits)
3769 const char *p = *pp;
3770 int sign = 1;
3771 int sign_bit = 0;
3772 long n = 0;
3773 int radix = 10;
3774 char overflow = 0;
3775 int nbits = 0;
3776 int c;
3777 long upper_limit;
3778 int twos_complement_representation = 0;
3780 if (*p == '-')
3782 sign = -1;
3783 p++;
3786 /* Leading zero means octal. GCC uses this to output values larger
3787 than an int (because that would be hard in decimal). */
3788 if (*p == '0')
3790 radix = 8;
3791 p++;
3794 /* Skip extra zeros. */
3795 while (*p == '0')
3796 p++;
3798 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3800 /* Octal, possibly signed. Check if we have enough chars for a
3801 negative number. */
3803 size_t len;
3804 const char *p1 = p;
3806 while ((c = *p1) >= '0' && c < '8')
3807 p1++;
3809 len = p1 - p;
3810 if (len > twos_complement_bits / 3
3811 || (twos_complement_bits % 3 == 0
3812 && len == twos_complement_bits / 3))
3814 /* Ok, we have enough characters for a signed value, check
3815 for signedness by testing if the sign bit is set. */
3816 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3817 c = *p - '0';
3818 if (c & (1 << sign_bit))
3820 /* Definitely signed. */
3821 twos_complement_representation = 1;
3822 sign = -1;
3827 upper_limit = LONG_MAX / radix;
3829 while ((c = *p++) >= '0' && c < ('0' + radix))
3831 if (n <= upper_limit)
3833 if (twos_complement_representation)
3835 /* Octal, signed, twos complement representation. In
3836 this case, n is the corresponding absolute value. */
3837 if (n == 0)
3839 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3841 n = -sn;
3843 else
3845 n *= radix;
3846 n -= c - '0';
3849 else
3851 /* unsigned representation */
3852 n *= radix;
3853 n += c - '0'; /* FIXME this overflows anyway. */
3856 else
3857 overflow = 1;
3859 /* This depends on large values being output in octal, which is
3860 what GCC does. */
3861 if (radix == 8)
3863 if (nbits == 0)
3865 if (c == '0')
3866 /* Ignore leading zeroes. */
3868 else if (c == '1')
3869 nbits = 1;
3870 else if (c == '2' || c == '3')
3871 nbits = 2;
3872 else
3873 nbits = 3;
3875 else
3876 nbits += 3;
3879 if (end)
3881 if (c && c != end)
3883 if (bits != NULL)
3884 *bits = -1;
3885 return 0;
3888 else
3889 --p;
3891 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3893 /* We were supposed to parse a number with maximum
3894 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3895 if (bits != NULL)
3896 *bits = -1;
3897 return 0;
3900 *pp = p;
3901 if (overflow)
3903 if (nbits == 0)
3905 /* Large decimal constants are an error (because it is hard to
3906 count how many bits are in them). */
3907 if (bits != NULL)
3908 *bits = -1;
3909 return 0;
3912 /* -0x7f is the same as 0x80. So deal with it by adding one to
3913 the number of bits. Two's complement represention octals
3914 can't have a '-' in front. */
3915 if (sign == -1 && !twos_complement_representation)
3916 ++nbits;
3917 if (bits)
3918 *bits = nbits;
3920 else
3922 if (bits)
3923 *bits = 0;
3924 return n * sign;
3926 /* It's *BITS which has the interesting information. */
3927 return 0;
3930 static struct type *
3931 read_range_type (const char **pp, int typenums[2], int type_size,
3932 struct objfile *objfile)
3934 struct gdbarch *gdbarch = objfile->arch ();
3935 const char *orig_pp = *pp;
3936 int rangenums[2];
3937 long n2, n3;
3938 int n2bits, n3bits;
3939 int self_subrange;
3940 struct type *result_type;
3941 struct type *index_type = NULL;
3943 /* First comes a type we are a subrange of.
3944 In C it is usually 0, 1 or the type being defined. */
3945 if (read_type_number (pp, rangenums) != 0)
3946 return error_type (pp, objfile);
3947 self_subrange = (rangenums[0] == typenums[0] &&
3948 rangenums[1] == typenums[1]);
3950 if (**pp == '=')
3952 *pp = orig_pp;
3953 index_type = read_type (pp, objfile);
3956 /* A semicolon should now follow; skip it. */
3957 if (**pp == ';')
3958 (*pp)++;
3960 /* The remaining two operands are usually lower and upper bounds
3961 of the range. But in some special cases they mean something else. */
3962 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3963 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3965 if (n2bits == -1 || n3bits == -1)
3966 return error_type (pp, objfile);
3968 type_allocator alloc (objfile, get_current_subfile ()->language);
3970 if (index_type)
3971 goto handle_true_range;
3973 /* If limits are huge, must be large integral type. */
3974 if (n2bits != 0 || n3bits != 0)
3976 char got_signed = 0;
3977 char got_unsigned = 0;
3978 /* Number of bits in the type. */
3979 int nbits = 0;
3981 /* If a type size attribute has been specified, the bounds of
3982 the range should fit in this size. If the lower bounds needs
3983 more bits than the upper bound, then the type is signed. */
3984 if (n2bits <= type_size && n3bits <= type_size)
3986 if (n2bits == type_size && n2bits > n3bits)
3987 got_signed = 1;
3988 else
3989 got_unsigned = 1;
3990 nbits = type_size;
3992 /* Range from 0 to <large number> is an unsigned large integral type. */
3993 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3995 got_unsigned = 1;
3996 nbits = n3bits;
3998 /* Range from <large number> to <large number>-1 is a large signed
3999 integral type. Take care of the case where <large number> doesn't
4000 fit in a long but <large number>-1 does. */
4001 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4002 || (n2bits != 0 && n3bits == 0
4003 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4004 && n3 == LONG_MAX))
4006 got_signed = 1;
4007 nbits = n2bits;
4010 if (got_signed || got_unsigned)
4011 return init_integer_type (alloc, nbits, got_unsigned, NULL);
4012 else
4013 return error_type (pp, objfile);
4016 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4017 if (self_subrange && n2 == 0 && n3 == 0)
4018 return alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, nullptr);
4020 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4021 is the width in bytes.
4023 Fortran programs appear to use this for complex types also. To
4024 distinguish between floats and complex, g77 (and others?) seem
4025 to use self-subranges for the complexes, and subranges of int for
4026 the floats.
4028 Also note that for complexes, g77 sets n2 to the size of one of
4029 the member floats, not the whole complex beast. My guess is that
4030 this was to work well with pre-COMPLEX versions of gdb. */
4032 if (n3 == 0 && n2 > 0)
4034 struct type *float_type
4035 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4037 if (self_subrange)
4038 return init_complex_type (NULL, float_type);
4039 else
4040 return float_type;
4043 /* If the upper bound is -1, it must really be an unsigned integral. */
4045 else if (n2 == 0 && n3 == -1)
4047 int bits = type_size;
4049 if (bits <= 0)
4051 /* We don't know its size. It is unsigned int or unsigned
4052 long. GCC 2.3.3 uses this for long long too, but that is
4053 just a GDB 3.5 compatibility hack. */
4054 bits = gdbarch_int_bit (gdbarch);
4057 return init_integer_type (alloc, bits, 1, NULL);
4060 /* Special case: char is defined (Who knows why) as a subrange of
4061 itself with range 0-127. */
4062 else if (self_subrange && n2 == 0 && n3 == 127)
4064 struct type *type = init_integer_type (alloc, TARGET_CHAR_BIT,
4065 0, NULL);
4066 type->set_has_no_signedness (true);
4067 return type;
4069 /* We used to do this only for subrange of self or subrange of int. */
4070 else if (n2 == 0)
4072 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4073 "unsigned long", and we already checked for that,
4074 so don't need to test for it here. */
4076 if (n3 < 0)
4077 /* n3 actually gives the size. */
4078 return init_integer_type (alloc, -n3 * TARGET_CHAR_BIT, 1, NULL);
4080 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4081 unsigned n-byte integer. But do require n to be a power of
4082 two; we don't want 3- and 5-byte integers flying around. */
4084 int bytes;
4085 unsigned long bits;
4087 bits = n3;
4088 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4089 bits >>= 8;
4090 if (bits == 0
4091 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4092 return init_integer_type (alloc, bytes * TARGET_CHAR_BIT, 1, NULL);
4095 /* I think this is for Convex "long long". Since I don't know whether
4096 Convex sets self_subrange, I also accept that particular size regardless
4097 of self_subrange. */
4098 else if (n3 == 0 && n2 < 0
4099 && (self_subrange
4100 || n2 == -gdbarch_long_long_bit
4101 (gdbarch) / TARGET_CHAR_BIT))
4102 return init_integer_type (alloc, -n2 * TARGET_CHAR_BIT, 0, NULL);
4103 else if (n2 == -n3 - 1)
4105 if (n3 == 0x7f)
4106 return init_integer_type (alloc, 8, 0, NULL);
4107 if (n3 == 0x7fff)
4108 return init_integer_type (alloc, 16, 0, NULL);
4109 if (n3 == 0x7fffffff)
4110 return init_integer_type (alloc, 32, 0, NULL);
4113 /* We have a real range type on our hands. Allocate space and
4114 return a real pointer. */
4115 handle_true_range:
4117 if (self_subrange)
4118 index_type = builtin_type (objfile)->builtin_int;
4119 else
4120 index_type = *dbx_lookup_type (rangenums, objfile);
4121 if (index_type == NULL)
4123 /* Does this actually ever happen? Is that why we are worrying
4124 about dealing with it rather than just calling error_type? */
4126 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4128 index_type = builtin_type (objfile)->builtin_int;
4131 result_type
4132 = create_static_range_type (alloc, index_type, n2, n3);
4133 return (result_type);
4136 /* Read in an argument list. This is a list of types, separated by commas
4137 and terminated with END. Return the list of types read in, or NULL
4138 if there is an error. */
4140 static struct field *
4141 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4142 int *varargsp)
4144 /* FIXME! Remove this arbitrary limit! */
4145 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4146 int n = 0, i;
4147 struct field *rval;
4149 while (**pp != end)
4151 if (**pp != ',')
4152 /* Invalid argument list: no ','. */
4153 return NULL;
4154 (*pp)++;
4155 STABS_CONTINUE (pp, objfile);
4156 types[n++] = read_type (pp, objfile);
4158 (*pp)++; /* get past `end' (the ':' character). */
4160 if (n == 0)
4162 /* We should read at least the THIS parameter here. Some broken stabs
4163 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4164 have been present ";-16,(0,43)" reference instead. This way the
4165 excessive ";" marker prematurely stops the parameters parsing. */
4167 complaint (_("Invalid (empty) method arguments"));
4168 *varargsp = 0;
4170 else if (types[n - 1]->code () != TYPE_CODE_VOID)
4171 *varargsp = 1;
4172 else
4174 n--;
4175 *varargsp = 0;
4178 rval = XCNEWVEC (struct field, n);
4179 for (i = 0; i < n; i++)
4180 rval[i].set_type (types[i]);
4181 *nargsp = n;
4182 return rval;
4185 /* Common block handling. */
4187 /* List of symbols declared since the last BCOMM. This list is a tail
4188 of local_symbols. When ECOMM is seen, the symbols on the list
4189 are noted so their proper addresses can be filled in later,
4190 using the common block base address gotten from the assembler
4191 stabs. */
4193 static struct pending *common_block;
4194 static int common_block_i;
4196 /* Name of the current common block. We get it from the BCOMM instead of the
4197 ECOMM to match IBM documentation (even though IBM puts the name both places
4198 like everyone else). */
4199 static char *common_block_name;
4201 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4202 to remain after this function returns. */
4204 void
4205 common_block_start (const char *name, struct objfile *objfile)
4207 if (common_block_name != NULL)
4209 complaint (_("Invalid symbol data: common block within common block"));
4211 common_block = *get_local_symbols ();
4212 common_block_i = common_block ? common_block->nsyms : 0;
4213 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4216 /* Process a N_ECOMM symbol. */
4218 void
4219 common_block_end (struct objfile *objfile)
4221 /* Symbols declared since the BCOMM are to have the common block
4222 start address added in when we know it. common_block and
4223 common_block_i point to the first symbol after the BCOMM in
4224 the local_symbols list; copy the list and hang it off the
4225 symbol for the common block name for later fixup. */
4226 int i;
4227 struct symbol *sym;
4228 struct pending *newobj = 0;
4229 struct pending *next;
4230 int j;
4232 if (common_block_name == NULL)
4234 complaint (_("ECOMM symbol unmatched by BCOMM"));
4235 return;
4238 sym = new (&objfile->objfile_obstack) symbol;
4239 /* Note: common_block_name already saved on objfile_obstack. */
4240 sym->set_linkage_name (common_block_name);
4241 sym->set_aclass_index (LOC_BLOCK);
4243 /* Now we copy all the symbols which have been defined since the BCOMM. */
4245 /* Copy all the struct pendings before common_block. */
4246 for (next = *get_local_symbols ();
4247 next != NULL && next != common_block;
4248 next = next->next)
4250 for (j = 0; j < next->nsyms; j++)
4251 add_symbol_to_list (next->symbol[j], &newobj);
4254 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4255 NULL, it means copy all the local symbols (which we already did
4256 above). */
4258 if (common_block != NULL)
4259 for (j = common_block_i; j < common_block->nsyms; j++)
4260 add_symbol_to_list (common_block->symbol[j], &newobj);
4262 sym->set_type ((struct type *) newobj);
4264 /* Should we be putting local_symbols back to what it was?
4265 Does it matter? */
4267 i = hashname (sym->linkage_name ());
4268 sym->set_value_chain (global_sym_chain[i]);
4269 global_sym_chain[i] = sym;
4270 common_block_name = NULL;
4273 /* Add a common block's start address to the offset of each symbol
4274 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4275 the common block name). */
4277 static void
4278 fix_common_block (struct symbol *sym, CORE_ADDR valu, int section_index)
4280 struct pending *next = (struct pending *) sym->type ();
4282 for (; next; next = next->next)
4284 int j;
4286 for (j = next->nsyms - 1; j >= 0; j--)
4288 next->symbol[j]->set_value_address
4289 (next->symbol[j]->value_address () + valu);
4290 next->symbol[j]->set_section_index (section_index);
4297 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4298 See add_undefined_type for more details. */
4300 static void
4301 add_undefined_type_noname (struct type *type, int typenums[2])
4303 struct nat nat;
4305 nat.typenums[0] = typenums [0];
4306 nat.typenums[1] = typenums [1];
4307 nat.type = type;
4309 if (noname_undefs_length == noname_undefs_allocated)
4311 noname_undefs_allocated *= 2;
4312 noname_undefs = (struct nat *)
4313 xrealloc ((char *) noname_undefs,
4314 noname_undefs_allocated * sizeof (struct nat));
4316 noname_undefs[noname_undefs_length++] = nat;
4319 /* Add TYPE to the UNDEF_TYPES vector.
4320 See add_undefined_type for more details. */
4322 static void
4323 add_undefined_type_1 (struct type *type)
4325 if (undef_types_length == undef_types_allocated)
4327 undef_types_allocated *= 2;
4328 undef_types = (struct type **)
4329 xrealloc ((char *) undef_types,
4330 undef_types_allocated * sizeof (struct type *));
4332 undef_types[undef_types_length++] = type;
4335 /* What about types defined as forward references inside of a small lexical
4336 scope? */
4337 /* Add a type to the list of undefined types to be checked through
4338 once this file has been read in.
4340 In practice, we actually maintain two such lists: The first list
4341 (UNDEF_TYPES) is used for types whose name has been provided, and
4342 concerns forward references (eg 'xs' or 'xu' forward references);
4343 the second list (NONAME_UNDEFS) is used for types whose name is
4344 unknown at creation time, because they were referenced through
4345 their type number before the actual type was declared.
4346 This function actually adds the given type to the proper list. */
4348 static void
4349 add_undefined_type (struct type *type, int typenums[2])
4351 if (type->name () == NULL)
4352 add_undefined_type_noname (type, typenums);
4353 else
4354 add_undefined_type_1 (type);
4357 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4359 static void
4360 cleanup_undefined_types_noname (struct objfile *objfile)
4362 int i;
4364 for (i = 0; i < noname_undefs_length; i++)
4366 struct nat nat = noname_undefs[i];
4367 struct type **type;
4369 type = dbx_lookup_type (nat.typenums, objfile);
4370 if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
4372 /* The instance flags of the undefined type are still unset,
4373 and needs to be copied over from the reference type.
4374 Since replace_type expects them to be identical, we need
4375 to set these flags manually before hand. */
4376 nat.type->set_instance_flags ((*type)->instance_flags ());
4377 replace_type (nat.type, *type);
4381 noname_undefs_length = 0;
4384 /* Go through each undefined type, see if it's still undefined, and fix it
4385 up if possible. We have two kinds of undefined types:
4387 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4388 Fix: update array length using the element bounds
4389 and the target type's length.
4390 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4391 yet defined at the time a pointer to it was made.
4392 Fix: Do a full lookup on the struct/union tag. */
4394 static void
4395 cleanup_undefined_types_1 (void)
4397 struct type **type;
4399 /* Iterate over every undefined type, and look for a symbol whose type
4400 matches our undefined type. The symbol matches if:
4401 1. It is a typedef in the STRUCT domain;
4402 2. It has the same name, and same type code;
4403 3. The instance flags are identical.
4405 It is important to check the instance flags, because we have seen
4406 examples where the debug info contained definitions such as:
4408 "foo_t:t30=B31=xefoo_t:"
4410 In this case, we have created an undefined type named "foo_t" whose
4411 instance flags is null (when processing "xefoo_t"), and then created
4412 another type with the same name, but with different instance flags
4413 ('B' means volatile). I think that the definition above is wrong,
4414 since the same type cannot be volatile and non-volatile at the same
4415 time, but we need to be able to cope with it when it happens. The
4416 approach taken here is to treat these two types as different. */
4418 for (type = undef_types; type < undef_types + undef_types_length; type++)
4420 switch ((*type)->code ())
4423 case TYPE_CODE_STRUCT:
4424 case TYPE_CODE_UNION:
4425 case TYPE_CODE_ENUM:
4427 /* Check if it has been defined since. Need to do this here
4428 as well as in check_typedef to deal with the (legitimate in
4429 C though not C++) case of several types with the same name
4430 in different source files. */
4431 if ((*type)->is_stub ())
4433 struct pending *ppt;
4434 int i;
4435 /* Name of the type, without "struct" or "union". */
4436 const char *type_name = (*type)->name ();
4438 if (type_name == NULL)
4440 complaint (_("need a type name"));
4441 break;
4443 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4445 for (i = 0; i < ppt->nsyms; i++)
4447 struct symbol *sym = ppt->symbol[i];
4449 if (sym->aclass () == LOC_TYPEDEF
4450 && sym->domain () == STRUCT_DOMAIN
4451 && (sym->type ()->code () == (*type)->code ())
4452 && ((*type)->instance_flags ()
4453 == sym->type ()->instance_flags ())
4454 && strcmp (sym->linkage_name (), type_name) == 0)
4455 replace_type (*type, sym->type ());
4460 break;
4462 default:
4464 complaint (_("forward-referenced types left unresolved, "
4465 "type code %d."),
4466 (*type)->code ());
4468 break;
4472 undef_types_length = 0;
4475 /* Try to fix all the undefined types we encountered while processing
4476 this unit. */
4478 void
4479 cleanup_undefined_stabs_types (struct objfile *objfile)
4481 cleanup_undefined_types_1 ();
4482 cleanup_undefined_types_noname (objfile);
4485 /* See stabsread.h. */
4487 void
4488 scan_file_globals (struct objfile *objfile)
4490 int hash;
4491 struct symbol *sym, *prev;
4492 struct objfile *resolve_objfile;
4494 /* SVR4 based linkers copy referenced global symbols from shared
4495 libraries to the main executable.
4496 If we are scanning the symbols for a shared library, try to resolve
4497 them from the minimal symbols of the main executable first. */
4499 if (current_program_space->symfile_object_file
4500 && objfile != current_program_space->symfile_object_file)
4501 resolve_objfile = current_program_space->symfile_object_file;
4502 else
4503 resolve_objfile = objfile;
4505 while (1)
4507 /* Avoid expensive loop through all minimal symbols if there are
4508 no unresolved symbols. */
4509 for (hash = 0; hash < HASHSIZE; hash++)
4511 if (global_sym_chain[hash])
4512 break;
4514 if (hash >= HASHSIZE)
4515 return;
4517 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4519 QUIT;
4521 /* Skip static symbols. */
4522 switch (msymbol->type ())
4524 case mst_file_text:
4525 case mst_file_data:
4526 case mst_file_bss:
4527 continue;
4528 default:
4529 break;
4532 prev = NULL;
4534 /* Get the hash index and check all the symbols
4535 under that hash index. */
4537 hash = hashname (msymbol->linkage_name ());
4539 for (sym = global_sym_chain[hash]; sym;)
4541 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4543 /* Splice this symbol out of the hash chain and
4544 assign the value we have to it. */
4545 if (prev)
4547 prev->set_value_chain (sym->value_chain ());
4549 else
4551 global_sym_chain[hash] = sym->value_chain ();
4554 /* Check to see whether we need to fix up a common block. */
4555 /* Note: this code might be executed several times for
4556 the same symbol if there are multiple references. */
4557 if (sym)
4559 if (sym->aclass () == LOC_BLOCK)
4560 fix_common_block
4561 (sym, msymbol->value_address (resolve_objfile),
4562 msymbol->section_index ());
4563 else
4564 sym->set_value_address
4565 (msymbol->value_address (resolve_objfile));
4566 sym->set_section_index (msymbol->section_index ());
4569 if (prev)
4571 sym = prev->value_chain ();
4573 else
4575 sym = global_sym_chain[hash];
4578 else
4580 prev = sym;
4581 sym = sym->value_chain ();
4585 if (resolve_objfile == objfile)
4586 break;
4587 resolve_objfile = objfile;
4590 /* Change the storage class of any remaining unresolved globals to
4591 LOC_UNRESOLVED and remove them from the chain. */
4592 for (hash = 0; hash < HASHSIZE; hash++)
4594 sym = global_sym_chain[hash];
4595 while (sym)
4597 prev = sym;
4598 sym = sym->value_chain ();
4600 /* Change the symbol address from the misleading chain value
4601 to address zero. */
4602 prev->set_value_address (0);
4604 /* Complain about unresolved common block symbols. */
4605 if (prev->aclass () == LOC_STATIC)
4606 prev->set_aclass_index (LOC_UNRESOLVED);
4607 else
4608 complaint (_("%s: common block `%s' from "
4609 "global_sym_chain unresolved"),
4610 objfile_name (objfile), prev->print_name ());
4613 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4616 /* Initialize anything that needs initializing when starting to read
4617 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4618 to a psymtab. */
4620 void
4621 stabsread_init (void)
4625 /* Initialize anything that needs initializing when a completely new
4626 symbol file is specified (not just adding some symbols from another
4627 file, e.g. a shared library). */
4629 void
4630 stabsread_new_init (void)
4632 /* Empty the hash table of global syms looking for values. */
4633 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4636 /* Initialize anything that needs initializing at the same time as
4637 start_compunit_symtab() is called. */
4639 void
4640 start_stabs (void)
4642 global_stabs = NULL; /* AIX COFF */
4643 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4644 n_this_object_header_files = 1;
4645 type_vector_length = 0;
4646 type_vector = (struct type **) 0;
4647 within_function = 0;
4649 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4650 common_block_name = NULL;
4653 /* Call after end_compunit_symtab(). */
4655 void
4656 end_stabs (void)
4658 if (type_vector)
4660 xfree (type_vector);
4662 type_vector = 0;
4663 type_vector_length = 0;
4664 previous_stab_code = 0;
4667 void
4668 finish_global_stabs (struct objfile *objfile)
4670 if (global_stabs)
4672 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4673 xfree (global_stabs);
4674 global_stabs = NULL;
4678 /* Find the end of the name, delimited by a ':', but don't match
4679 ObjC symbols which look like -[Foo bar::]:bla. */
4680 static const char *
4681 find_name_end (const char *name)
4683 const char *s = name;
4685 if (s[0] == '-' || *s == '+')
4687 /* Must be an ObjC method symbol. */
4688 if (s[1] != '[')
4690 error (_("invalid symbol name \"%s\""), name);
4692 s = strchr (s, ']');
4693 if (s == NULL)
4695 error (_("invalid symbol name \"%s\""), name);
4697 return strchr (s, ':');
4699 else
4701 return strchr (s, ':');
4705 /* See stabsread.h. */
4708 hashname (const char *name)
4710 return fast_hash (name, strlen (name)) % HASHSIZE;
4713 /* Initializer for this module. */
4715 void _initialize_stabsread ();
4716 void
4717 _initialize_stabsread ()
4719 undef_types_allocated = 20;
4720 undef_types_length = 0;
4721 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4723 noname_undefs_allocated = 20;
4724 noname_undefs_length = 0;
4725 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4727 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4728 &stab_register_funcs);
4729 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4730 &stab_register_funcs);