Automatic date update in version.in
[binutils-gdb.git] / gdb / rs6000-tdep.c
blobb7ba0042bb73b92e9f248e0094f79e6269512283
1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "frame.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "gdbcmd.h"
27 #include "objfiles.h"
28 #include "arch-utils.h"
29 #include "regcache.h"
30 #include "regset.h"
31 #include "target-float.h"
32 #include "value.h"
33 #include "parser-defs.h"
34 #include "osabi.h"
35 #include "infcall.h"
36 #include "sim-regno.h"
37 #include "sim/sim-ppc.h"
38 #include "reggroups.h"
39 #include "dwarf2/frame.h"
40 #include "target-descriptions.h"
41 #include "user-regs.h"
42 #include "record-full.h"
43 #include "auxv.h"
45 #include "coff/internal.h"
46 #include "libcoff.h"
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
50 #include "elf-bfd.h"
51 #include "elf/ppc.h"
52 #include "elf/ppc64.h"
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56 #include "ppc-ravenscar-thread.h"
58 #include "dis-asm.h"
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
64 #include "ax.h"
65 #include "ax-gdb.h"
66 #include <algorithm>
68 #include "features/rs6000/powerpc-32.c"
69 #include "features/rs6000/powerpc-altivec32.c"
70 #include "features/rs6000/powerpc-vsx32.c"
71 #include "features/rs6000/powerpc-403.c"
72 #include "features/rs6000/powerpc-403gc.c"
73 #include "features/rs6000/powerpc-405.c"
74 #include "features/rs6000/powerpc-505.c"
75 #include "features/rs6000/powerpc-601.c"
76 #include "features/rs6000/powerpc-602.c"
77 #include "features/rs6000/powerpc-603.c"
78 #include "features/rs6000/powerpc-604.c"
79 #include "features/rs6000/powerpc-64.c"
80 #include "features/rs6000/powerpc-altivec64.c"
81 #include "features/rs6000/powerpc-vsx64.c"
82 #include "features/rs6000/powerpc-7400.c"
83 #include "features/rs6000/powerpc-750.c"
84 #include "features/rs6000/powerpc-860.c"
85 #include "features/rs6000/powerpc-e500.c"
86 #include "features/rs6000/rs6000.c"
88 /* Determine if regnum is an SPE pseudo-register. */
89 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
90 && (regnum) >= (tdep)->ppc_ev0_regnum \
91 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93 /* Determine if regnum is a decimal float pseudo-register. */
94 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
95 && (regnum) >= (tdep)->ppc_dl0_regnum \
96 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98 /* Determine if regnum is a "vX" alias for the raw "vrX" vector
99 registers. */
100 #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
101 (tdep)->ppc_v0_alias_regnum >= 0 \
102 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
103 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105 /* Determine if regnum is a POWER7 VSX register. */
106 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
107 && (regnum) >= (tdep)->ppc_vsr0_regnum \
108 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110 /* Determine if regnum is a POWER7 Extended FP register. */
111 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
112 && (regnum) >= (tdep)->ppc_efpr0_regnum \
113 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
115 /* Determine if regnum is a checkpointed decimal float
116 pseudo-register. */
117 #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
118 && (regnum) >= (tdep)->ppc_cdl0_regnum \
119 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121 /* Determine if regnum is a Checkpointed POWER7 VSX register. */
122 #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
123 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
124 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126 /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
127 #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
128 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
129 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131 /* Holds the current set of options to be passed to the disassembler. */
132 static std::string powerpc_disassembler_options;
134 /* The list of available "set powerpc ..." and "show powerpc ..."
135 commands. */
136 static struct cmd_list_element *setpowerpccmdlist = NULL;
137 static struct cmd_list_element *showpowerpccmdlist = NULL;
139 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
142 static const char *const powerpc_vector_strings[] =
144 "auto",
145 "generic",
146 "altivec",
147 "spe",
148 NULL
151 /* A variable that can be configured by the user. */
152 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
153 static const char *powerpc_vector_abi_string = "auto";
155 /* PowerPC-related per-inferior data. */
157 static const registry<inferior>::key<ppc_inferior_data> ppc_inferior_data_key;
159 /* Get the per-inferior PowerPC data for INF. */
161 ppc_inferior_data *
162 get_ppc_per_inferior (inferior *inf)
164 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
166 if (per_inf == nullptr)
167 per_inf = ppc_inferior_data_key.emplace (inf);
169 return per_inf;
172 /* To be used by skip_prologue. */
174 struct rs6000_framedata
176 int offset; /* total size of frame --- the distance
177 by which we decrement sp to allocate
178 the frame */
179 int saved_gpr; /* smallest # of saved gpr */
180 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
181 int saved_fpr; /* smallest # of saved fpr */
182 int saved_vr; /* smallest # of saved vr */
183 int saved_ev; /* smallest # of saved ev */
184 int alloca_reg; /* alloca register number (frame ptr) */
185 char frameless; /* true if frameless functions. */
186 char nosavedpc; /* true if pc not saved. */
187 char used_bl; /* true if link register clobbered */
188 int gpr_offset; /* offset of saved gprs from prev sp */
189 int fpr_offset; /* offset of saved fprs from prev sp */
190 int vr_offset; /* offset of saved vrs from prev sp */
191 int ev_offset; /* offset of saved evs from prev sp */
192 int lr_offset; /* offset of saved lr */
193 int lr_register; /* register of saved lr, if trustworthy */
194 int cr_offset; /* offset of saved cr */
195 int vrsave_offset; /* offset of saved vrsave register */
199 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
201 vsx_register_p (struct gdbarch *gdbarch, int regno)
203 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
204 if (tdep->ppc_vsr0_regnum < 0)
205 return 0;
206 else
207 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
208 <= tdep->ppc_vsr0_upper_regnum + 31);
211 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
213 altivec_register_p (struct gdbarch *gdbarch, int regno)
215 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
216 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
217 return 0;
218 else
219 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
223 /* Return true if REGNO is an SPE register, false otherwise. */
225 spe_register_p (struct gdbarch *gdbarch, int regno)
227 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
229 /* Is it a reference to EV0 -- EV31, and do we have those? */
230 if (IS_SPE_PSEUDOREG (tdep, regno))
231 return 1;
233 /* Is it a reference to one of the raw upper GPR halves? */
234 if (tdep->ppc_ev0_upper_regnum >= 0
235 && tdep->ppc_ev0_upper_regnum <= regno
236 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
237 return 1;
239 /* Is it a reference to the 64-bit accumulator, and do we have that? */
240 if (tdep->ppc_acc_regnum >= 0
241 && tdep->ppc_acc_regnum == regno)
242 return 1;
244 /* Is it a reference to the SPE floating-point status and control register,
245 and do we have that? */
246 if (tdep->ppc_spefscr_regnum >= 0
247 && tdep->ppc_spefscr_regnum == regno)
248 return 1;
250 return 0;
254 /* Return non-zero if the architecture described by GDBARCH has
255 floating-point registers (f0 --- f31 and fpscr). */
257 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
259 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
261 return (tdep->ppc_fp0_regnum >= 0
262 && tdep->ppc_fpscr_regnum >= 0);
265 /* Return non-zero if the architecture described by GDBARCH has
266 Altivec registers (vr0 --- vr31, vrsave and vscr). */
268 ppc_altivec_support_p (struct gdbarch *gdbarch)
270 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
272 return (tdep->ppc_vr0_regnum >= 0
273 && tdep->ppc_vrsave_regnum >= 0);
276 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
277 set it to SIM_REGNO.
279 This is a helper function for init_sim_regno_table, constructing
280 the table mapping GDB register numbers to sim register numbers; we
281 initialize every element in that table to -1 before we start
282 filling it in. */
283 static void
284 set_sim_regno (int *table, int gdb_regno, int sim_regno)
286 /* Make sure we don't try to assign any given GDB register a sim
287 register number more than once. */
288 gdb_assert (table[gdb_regno] == -1);
289 table[gdb_regno] = sim_regno;
293 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
294 numbers to simulator register numbers, based on the values placed
295 in the ARCH->tdep->ppc_foo_regnum members. */
296 static void
297 init_sim_regno_table (struct gdbarch *arch)
299 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (arch);
300 int total_regs = gdbarch_num_regs (arch);
301 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
302 int i;
303 static const char *const segment_regs[] = {
304 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
305 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
308 /* Presume that all registers not explicitly mentioned below are
309 unavailable from the sim. */
310 for (i = 0; i < total_regs; i++)
311 sim_regno[i] = -1;
313 /* General-purpose registers. */
314 for (i = 0; i < ppc_num_gprs; i++)
315 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
317 /* Floating-point registers. */
318 if (tdep->ppc_fp0_regnum >= 0)
319 for (i = 0; i < ppc_num_fprs; i++)
320 set_sim_regno (sim_regno,
321 tdep->ppc_fp0_regnum + i,
322 sim_ppc_f0_regnum + i);
323 if (tdep->ppc_fpscr_regnum >= 0)
324 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
326 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
327 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
328 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
330 /* Segment registers. */
331 for (i = 0; i < ppc_num_srs; i++)
333 int gdb_regno;
335 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
336 if (gdb_regno >= 0)
337 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
340 /* Altivec registers. */
341 if (tdep->ppc_vr0_regnum >= 0)
343 for (i = 0; i < ppc_num_vrs; i++)
344 set_sim_regno (sim_regno,
345 tdep->ppc_vr0_regnum + i,
346 sim_ppc_vr0_regnum + i);
348 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
349 we can treat this more like the other cases. */
350 set_sim_regno (sim_regno,
351 tdep->ppc_vr0_regnum + ppc_num_vrs,
352 sim_ppc_vscr_regnum);
354 /* vsave is a special-purpose register, so the code below handles it. */
356 /* SPE APU (E500) registers. */
357 if (tdep->ppc_ev0_upper_regnum >= 0)
358 for (i = 0; i < ppc_num_gprs; i++)
359 set_sim_regno (sim_regno,
360 tdep->ppc_ev0_upper_regnum + i,
361 sim_ppc_rh0_regnum + i);
362 if (tdep->ppc_acc_regnum >= 0)
363 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
364 /* spefscr is a special-purpose register, so the code below handles it. */
366 #ifdef WITH_PPC_SIM
367 /* Now handle all special-purpose registers. Verify that they
368 haven't mistakenly been assigned numbers by any of the above
369 code. */
370 for (i = 0; i < sim_ppc_num_sprs; i++)
372 const char *spr_name = sim_spr_register_name (i);
373 int gdb_regno = -1;
375 if (spr_name != NULL)
376 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
378 if (gdb_regno != -1)
379 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
381 #endif
383 /* Drop the initialized array into place. */
384 tdep->sim_regno = sim_regno;
388 /* Given a GDB register number REG, return the corresponding SIM
389 register number. */
390 static int
391 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
393 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
394 int sim_regno;
396 if (tdep->sim_regno == NULL)
397 init_sim_regno_table (gdbarch);
399 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
400 sim_regno = tdep->sim_regno[reg];
402 if (sim_regno >= 0)
403 return sim_regno;
404 else
405 return LEGACY_SIM_REGNO_IGNORE;
410 /* Register set support functions. */
412 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
413 Write the register to REGCACHE. */
415 void
416 ppc_supply_reg (struct regcache *regcache, int regnum,
417 const gdb_byte *regs, size_t offset, int regsize)
419 if (regnum != -1 && offset != -1)
421 if (regsize > 4)
423 struct gdbarch *gdbarch = regcache->arch ();
424 int gdb_regsize = register_size (gdbarch, regnum);
425 if (gdb_regsize < regsize
426 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
427 offset += regsize - gdb_regsize;
429 regcache->raw_supply (regnum, regs + offset);
433 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
434 in a field REGSIZE wide. Zero pad as necessary. */
436 void
437 ppc_collect_reg (const struct regcache *regcache, int regnum,
438 gdb_byte *regs, size_t offset, int regsize)
440 if (regnum != -1 && offset != -1)
442 if (regsize > 4)
444 struct gdbarch *gdbarch = regcache->arch ();
445 int gdb_regsize = register_size (gdbarch, regnum);
446 if (gdb_regsize < regsize)
448 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
450 memset (regs + offset, 0, regsize - gdb_regsize);
451 offset += regsize - gdb_regsize;
453 else
454 memset (regs + offset + regsize - gdb_regsize, 0,
455 regsize - gdb_regsize);
458 regcache->raw_collect (regnum, regs + offset);
462 static int
463 ppc_greg_offset (struct gdbarch *gdbarch,
464 ppc_gdbarch_tdep *tdep,
465 const struct ppc_reg_offsets *offsets,
466 int regnum,
467 int *regsize)
469 *regsize = offsets->gpr_size;
470 if (regnum >= tdep->ppc_gp0_regnum
471 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
472 return (offsets->r0_offset
473 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
475 if (regnum == gdbarch_pc_regnum (gdbarch))
476 return offsets->pc_offset;
478 if (regnum == tdep->ppc_ps_regnum)
479 return offsets->ps_offset;
481 if (regnum == tdep->ppc_lr_regnum)
482 return offsets->lr_offset;
484 if (regnum == tdep->ppc_ctr_regnum)
485 return offsets->ctr_offset;
487 *regsize = offsets->xr_size;
488 if (regnum == tdep->ppc_cr_regnum)
489 return offsets->cr_offset;
491 if (regnum == tdep->ppc_xer_regnum)
492 return offsets->xer_offset;
494 if (regnum == tdep->ppc_mq_regnum)
495 return offsets->mq_offset;
497 return -1;
500 static int
501 ppc_fpreg_offset (ppc_gdbarch_tdep *tdep,
502 const struct ppc_reg_offsets *offsets,
503 int regnum)
505 if (regnum >= tdep->ppc_fp0_regnum
506 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
507 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
509 if (regnum == tdep->ppc_fpscr_regnum)
510 return offsets->fpscr_offset;
512 return -1;
515 /* Supply register REGNUM in the general-purpose register set REGSET
516 from the buffer specified by GREGS and LEN to register cache
517 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
519 void
520 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
521 int regnum, const void *gregs, size_t len)
523 struct gdbarch *gdbarch = regcache->arch ();
524 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
525 const struct ppc_reg_offsets *offsets
526 = (const struct ppc_reg_offsets *) regset->regmap;
527 size_t offset;
528 int regsize;
530 if (regnum == -1)
532 int i;
533 int gpr_size = offsets->gpr_size;
535 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
536 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
537 i++, offset += gpr_size)
538 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
539 gpr_size);
541 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
542 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
543 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
544 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
545 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
546 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
547 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
548 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
549 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
550 (const gdb_byte *) gregs, offsets->cr_offset,
551 offsets->xr_size);
552 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
553 (const gdb_byte *) gregs, offsets->xer_offset,
554 offsets->xr_size);
555 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
556 (const gdb_byte *) gregs, offsets->mq_offset,
557 offsets->xr_size);
558 return;
561 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
562 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
565 /* Supply register REGNUM in the floating-point register set REGSET
566 from the buffer specified by FPREGS and LEN to register cache
567 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
569 void
570 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
571 int regnum, const void *fpregs, size_t len)
573 struct gdbarch *gdbarch = regcache->arch ();
574 const struct ppc_reg_offsets *offsets;
575 size_t offset;
577 if (!ppc_floating_point_unit_p (gdbarch))
578 return;
580 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
581 offsets = (const struct ppc_reg_offsets *) regset->regmap;
582 if (regnum == -1)
584 int i;
586 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
587 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
588 i++, offset += 8)
589 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
591 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
592 (const gdb_byte *) fpregs, offsets->fpscr_offset,
593 offsets->fpscr_size);
594 return;
597 offset = ppc_fpreg_offset (tdep, offsets, regnum);
598 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
599 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
602 /* Collect register REGNUM in the general-purpose register set
603 REGSET from register cache REGCACHE into the buffer specified by
604 GREGS and LEN. If REGNUM is -1, do this for all registers in
605 REGSET. */
607 void
608 ppc_collect_gregset (const struct regset *regset,
609 const struct regcache *regcache,
610 int regnum, void *gregs, size_t len)
612 struct gdbarch *gdbarch = regcache->arch ();
613 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
614 const struct ppc_reg_offsets *offsets
615 = (const struct ppc_reg_offsets *) regset->regmap;
616 size_t offset;
617 int regsize;
619 if (regnum == -1)
621 int i;
622 int gpr_size = offsets->gpr_size;
624 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
625 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
626 i++, offset += gpr_size)
627 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
629 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
630 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
631 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
632 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
633 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
634 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
635 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
636 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
637 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
638 (gdb_byte *) gregs, offsets->cr_offset,
639 offsets->xr_size);
640 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
641 (gdb_byte *) gregs, offsets->xer_offset,
642 offsets->xr_size);
643 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
644 (gdb_byte *) gregs, offsets->mq_offset,
645 offsets->xr_size);
646 return;
649 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
650 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
653 /* Collect register REGNUM in the floating-point register set
654 REGSET from register cache REGCACHE into the buffer specified by
655 FPREGS and LEN. If REGNUM is -1, do this for all registers in
656 REGSET. */
658 void
659 ppc_collect_fpregset (const struct regset *regset,
660 const struct regcache *regcache,
661 int regnum, void *fpregs, size_t len)
663 struct gdbarch *gdbarch = regcache->arch ();
664 const struct ppc_reg_offsets *offsets;
665 size_t offset;
667 if (!ppc_floating_point_unit_p (gdbarch))
668 return;
670 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
671 offsets = (const struct ppc_reg_offsets *) regset->regmap;
672 if (regnum == -1)
674 int i;
676 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
677 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
678 i++, offset += 8)
679 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
681 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
682 (gdb_byte *) fpregs, offsets->fpscr_offset,
683 offsets->fpscr_size);
684 return;
687 offset = ppc_fpreg_offset (tdep, offsets, regnum);
688 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
689 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
692 static int
693 insn_changes_sp_or_jumps (unsigned long insn)
695 int opcode = (insn >> 26) & 0x03f;
696 int sd = (insn >> 21) & 0x01f;
697 int a = (insn >> 16) & 0x01f;
698 int subcode = (insn >> 1) & 0x3ff;
700 /* Changes the stack pointer. */
702 /* NOTE: There are many ways to change the value of a given register.
703 The ways below are those used when the register is R1, the SP,
704 in a funtion's epilogue. */
706 if (opcode == 31 && subcode == 444 && a == 1)
707 return 1; /* mr R1,Rn */
708 if (opcode == 14 && sd == 1)
709 return 1; /* addi R1,Rn,simm */
710 if (opcode == 58 && sd == 1)
711 return 1; /* ld R1,ds(Rn) */
713 /* Transfers control. */
715 if (opcode == 18)
716 return 1; /* b */
717 if (opcode == 16)
718 return 1; /* bc */
719 if (opcode == 19 && subcode == 16)
720 return 1; /* bclr */
721 if (opcode == 19 && subcode == 528)
722 return 1; /* bcctr */
724 return 0;
727 /* Return true if we are in the function's epilogue, i.e. after the
728 instruction that destroyed the function's stack frame.
730 1) scan forward from the point of execution:
731 a) If you find an instruction that modifies the stack pointer
732 or transfers control (except a return), execution is not in
733 an epilogue, return.
734 b) Stop scanning if you find a return instruction or reach the
735 end of the function or reach the hard limit for the size of
736 an epilogue.
737 2) scan backward from the point of execution:
738 a) If you find an instruction that modifies the stack pointer,
739 execution *is* in an epilogue, return.
740 b) Stop scanning if you reach an instruction that transfers
741 control or the beginning of the function or reach the hard
742 limit for the size of an epilogue. */
744 static int
745 rs6000_in_function_epilogue_frame_p (const frame_info_ptr &curfrm,
746 struct gdbarch *gdbarch, CORE_ADDR pc)
748 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
749 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
750 bfd_byte insn_buf[PPC_INSN_SIZE];
751 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
752 unsigned long insn;
754 /* Find the search limits based on function boundaries and hard limit. */
756 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
757 return 0;
759 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
760 if (epilogue_start < func_start) epilogue_start = func_start;
762 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
763 if (epilogue_end > func_end) epilogue_end = func_end;
765 /* Scan forward until next 'blr'. */
767 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
769 if (!safe_frame_unwind_memory (curfrm, scan_pc,
770 {insn_buf, PPC_INSN_SIZE}))
771 return 0;
772 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
773 if (insn == 0x4e800020)
774 break;
775 /* Assume a bctr is a tail call unless it points strictly within
776 this function. */
777 if (insn == 0x4e800420)
779 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
780 tdep->ppc_ctr_regnum);
781 if (ctr > func_start && ctr < func_end)
782 return 0;
783 else
784 break;
786 if (insn_changes_sp_or_jumps (insn))
787 return 0;
790 /* Scan backward until adjustment to stack pointer (R1). */
792 for (scan_pc = pc - PPC_INSN_SIZE;
793 scan_pc >= epilogue_start;
794 scan_pc -= PPC_INSN_SIZE)
796 if (!safe_frame_unwind_memory (curfrm, scan_pc,
797 {insn_buf, PPC_INSN_SIZE}))
798 return 0;
799 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
800 if (insn_changes_sp_or_jumps (insn))
801 return 1;
804 return 0;
807 /* Implement the stack_frame_destroyed_p gdbarch method. */
809 static int
810 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
812 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
813 gdbarch, pc);
816 /* Get the ith function argument for the current function. */
817 static CORE_ADDR
818 rs6000_fetch_pointer_argument (const frame_info_ptr &frame, int argi,
819 struct type *type)
821 return get_frame_register_unsigned (frame, 3 + argi);
824 /* Sequence of bytes for breakpoint instruction. */
826 constexpr gdb_byte big_breakpoint[] = { 0x7f, 0xe0, 0x00, 0x08 };
827 constexpr gdb_byte little_breakpoint[] = { 0x08, 0x00, 0xe0, 0x7f };
829 typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
830 rs6000_breakpoint;
832 /* Instruction masks for displaced stepping. */
833 #define OP_MASK 0xfc000000
834 #define BP_MASK 0xFC0007FE
835 #define B_INSN 0x48000000
836 #define BC_INSN 0x40000000
837 #define BXL_INSN 0x4c000000
838 #define BP_INSN 0x7C000008
840 /* Instruction masks used during single-stepping of atomic
841 sequences. */
842 #define LOAD_AND_RESERVE_MASK 0xfc0007fe
843 #define LWARX_INSTRUCTION 0x7c000028
844 #define LDARX_INSTRUCTION 0x7c0000A8
845 #define LBARX_INSTRUCTION 0x7c000068
846 #define LHARX_INSTRUCTION 0x7c0000e8
847 #define LQARX_INSTRUCTION 0x7c000228
848 #define STORE_CONDITIONAL_MASK 0xfc0007ff
849 #define STWCX_INSTRUCTION 0x7c00012d
850 #define STDCX_INSTRUCTION 0x7c0001ad
851 #define STBCX_INSTRUCTION 0x7c00056d
852 #define STHCX_INSTRUCTION 0x7c0005ad
853 #define STQCX_INSTRUCTION 0x7c00016d
855 /* Instruction masks for single-stepping of addpcis/lnia. */
856 #define ADDPCIS_INSN 0x4c000004
857 #define ADDPCIS_INSN_MASK 0xfc00003e
858 #define ADDPCIS_TARGET_REGISTER 0x03F00000
859 #define ADDPCIS_INSN_REGSHIFT 21
861 #define PNOP_MASK 0xfff3ffff
862 #define PNOP_INSN 0x07000000
863 #define R_MASK 0x00100000
864 #define R_ZERO 0x00000000
866 /* Check if insn is one of the Load And Reserve instructions used for atomic
867 sequences. */
868 #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
869 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
870 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
871 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
872 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
873 /* Check if insn is one of the Store Conditional instructions used for atomic
874 sequences. */
875 #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
876 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
877 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
878 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
879 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
881 typedef buf_displaced_step_copy_insn_closure
882 ppc_displaced_step_copy_insn_closure;
884 /* We can't displaced step atomic sequences. */
886 static displaced_step_copy_insn_closure_up
887 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
888 CORE_ADDR from, CORE_ADDR to,
889 struct regcache *regs)
891 size_t len = gdbarch_displaced_step_buffer_length (gdbarch);
892 gdb_assert (len > PPC_INSN_SIZE);
893 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
894 (new ppc_displaced_step_copy_insn_closure (len));
895 gdb_byte *buf = closure->buf.data ();
896 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
897 int insn;
899 len = target_read (current_inferior()->top_target(), TARGET_OBJECT_MEMORY, NULL,
900 buf, from, len);
901 if ((ssize_t) len < PPC_INSN_SIZE)
902 memory_error (TARGET_XFER_E_IO, from);
904 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
906 /* Check for PNOP and for prefixed instructions with R=0. Those
907 instructions are safe to displace. Prefixed instructions with R=1
908 will read/write data to/from locations relative to the current PC.
909 We would not be able to fixup after an instruction has written data
910 into a displaced location, so decline to displace those instructions. */
911 if ((insn & OP_MASK) == 1 << 26)
913 if (((insn & PNOP_MASK) != PNOP_INSN)
914 && ((insn & R_MASK) != R_ZERO))
916 displaced_debug_printf ("Not displacing prefixed instruction %08x at %s",
917 insn, paddress (gdbarch, from));
918 return NULL;
921 else
922 /* Non-prefixed instructions.. */
924 /* Set the instruction length to 4 to match the actual instruction
925 length. */
926 len = 4;
929 /* Assume all atomic sequences start with a Load and Reserve instruction. */
930 if (IS_LOAD_AND_RESERVE_INSN (insn))
932 displaced_debug_printf ("can't displaced step atomic sequence at %s",
933 paddress (gdbarch, from));
935 return NULL;
938 write_memory (to, buf, len);
940 displaced_debug_printf ("copy %s->%s: %s",
941 paddress (gdbarch, from), paddress (gdbarch, to),
942 bytes_to_string (buf, len).c_str ());
944 /* This is a work around for a problem with g++ 4.8. */
945 return displaced_step_copy_insn_closure_up (closure.release ());
948 /* Fix up the state of registers and memory after having single-stepped
949 a displaced instruction. */
950 static void
951 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
952 struct displaced_step_copy_insn_closure *closure_,
953 CORE_ADDR from, CORE_ADDR to,
954 struct regcache *regs, bool completed_p)
956 /* If the displaced instruction didn't complete successfully then all we
957 need to do is restore the program counter. */
958 if (!completed_p)
960 CORE_ADDR pc = regcache_read_pc (regs);
961 pc = from + (pc - to);
962 regcache_write_pc (regs, pc);
963 return;
966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
967 /* Our closure is a copy of the instruction. */
968 ppc_displaced_step_copy_insn_closure *closure
969 = (ppc_displaced_step_copy_insn_closure *) closure_;
970 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
971 PPC_INSN_SIZE, byte_order);
972 ULONGEST opcode;
973 /* Offset for non PC-relative instructions. */
974 LONGEST offset;
976 opcode = insn & OP_MASK;
978 /* Set offset to 8 if this is an 8-byte (prefixed) instruction. */
979 if ((opcode) == 1 << 26)
980 offset = 2 * PPC_INSN_SIZE;
981 else
982 offset = PPC_INSN_SIZE;
984 displaced_debug_printf ("(ppc) fixup (%s, %s)",
985 paddress (gdbarch, from), paddress (gdbarch, to));
987 /* Handle the addpcis/lnia instruction. */
988 if ((insn & ADDPCIS_INSN_MASK) == ADDPCIS_INSN)
990 LONGEST displaced_offset;
991 ULONGEST current_val;
992 /* Measure the displacement. */
993 displaced_offset = from - to;
994 /* Identify the target register that was updated by the instruction. */
995 int regnum = (insn & ADDPCIS_TARGET_REGISTER) >> ADDPCIS_INSN_REGSHIFT;
996 /* Read and update the target value. */
997 regcache_cooked_read_unsigned (regs, regnum , &current_val);
998 displaced_debug_printf ("addpcis target regnum %d was %s now %s",
999 regnum, paddress (gdbarch, current_val),
1000 paddress (gdbarch, current_val
1001 + displaced_offset));
1002 regcache_cooked_write_unsigned (regs, regnum,
1003 current_val + displaced_offset);
1004 /* point the PC back at the non-displaced instruction. */
1005 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1006 from + offset);
1008 /* Handle PC-relative branch instructions. */
1009 else if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1011 ULONGEST current_pc;
1013 /* Read the current PC value after the instruction has been executed
1014 in a displaced location. Calculate the offset to be applied to the
1015 original PC value before the displaced stepping. */
1016 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1017 &current_pc);
1018 offset = current_pc - to;
1020 if (opcode != BXL_INSN)
1022 /* Check for AA bit indicating whether this is an absolute
1023 addressing or PC-relative (1: absolute, 0: relative). */
1024 if (!(insn & 0x2))
1026 /* PC-relative addressing is being used in the branch. */
1027 displaced_debug_printf ("(ppc) branch instruction: %s",
1028 paddress (gdbarch, insn));
1029 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
1030 paddress (gdbarch, current_pc),
1031 paddress (gdbarch, from + offset));
1033 regcache_cooked_write_unsigned (regs,
1034 gdbarch_pc_regnum (gdbarch),
1035 from + offset);
1038 else
1040 /* If we're here, it means we have a branch to LR or CTR. If the
1041 branch was taken, the offset is probably greater than 4 (the next
1042 instruction), so it's safe to assume that an offset of 4 means we
1043 did not take the branch. */
1044 if (offset == PPC_INSN_SIZE)
1045 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1046 from + PPC_INSN_SIZE);
1049 /* Check for LK bit indicating whether we should set the link
1050 register to point to the next instruction
1051 (1: Set, 0: Don't set). */
1052 if (insn & 0x1)
1054 /* Link register needs to be set to the next instruction's PC. */
1055 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1056 regcache_cooked_write_unsigned (regs,
1057 tdep->ppc_lr_regnum,
1058 from + PPC_INSN_SIZE);
1059 displaced_debug_printf ("(ppc) adjusted LR to %s",
1060 paddress (gdbarch, from + PPC_INSN_SIZE));
1064 /* Check for breakpoints in the inferior. If we've found one, place the PC
1065 right at the breakpoint instruction. */
1066 else if ((insn & BP_MASK) == BP_INSN)
1067 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1068 else
1070 /* Handle any other instructions that do not fit in the categories
1071 above. */
1072 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1073 from + offset);
1077 /* Implementation of gdbarch_displaced_step_prepare. */
1079 static displaced_step_prepare_status
1080 ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1081 CORE_ADDR &displaced_pc)
1083 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1085 if (!per_inferior->disp_step_buf.has_value ())
1087 /* Figure out where the displaced step buffer is. */
1088 CORE_ADDR disp_step_buf_addr
1089 = displaced_step_at_entry_point (thread->inf->arch ());
1091 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1094 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1097 /* Implementation of gdbarch_displaced_step_finish. */
1099 static displaced_step_finish_status
1100 ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1101 const target_waitstatus &status)
1103 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1105 gdb_assert (per_inferior->disp_step_buf.has_value ());
1107 return per_inferior->disp_step_buf->finish (arch, thread, status);
1110 /* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1112 static void
1113 ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1115 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1117 if (per_inferior == nullptr
1118 || !per_inferior->disp_step_buf.has_value ())
1119 return;
1121 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1124 /* Always use hardware single-stepping to execute the
1125 displaced instruction. */
1126 static bool
1127 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
1129 return true;
1132 /* Checks for an atomic sequence of instructions beginning with a
1133 Load And Reserve instruction and ending with a Store Conditional
1134 instruction. If such a sequence is found, attempt to step through it.
1135 A breakpoint is placed at the end of the sequence. */
1136 std::vector<CORE_ADDR>
1137 ppc_deal_with_atomic_sequence (struct regcache *regcache)
1139 struct gdbarch *gdbarch = regcache->arch ();
1140 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1141 CORE_ADDR pc = regcache_read_pc (regcache);
1142 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
1143 CORE_ADDR loc = pc;
1144 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1145 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1146 int insn_count;
1147 int index;
1148 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1149 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1150 int bc_insn_count = 0; /* Conditional branch instruction count. */
1152 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1153 if (!IS_LOAD_AND_RESERVE_INSN (insn))
1154 return {};
1156 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1157 instructions. */
1158 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1160 if ((insn & OP_MASK) == 1 << 26)
1161 loc += 2 * PPC_INSN_SIZE;
1162 else
1163 loc += PPC_INSN_SIZE;
1164 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1166 /* Assume that there is at most one conditional branch in the atomic
1167 sequence. If a conditional branch is found, put a breakpoint in
1168 its destination address. */
1169 if ((insn & OP_MASK) == BC_INSN)
1171 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1172 int absolute = insn & 2;
1174 if (bc_insn_count >= 1)
1175 return {}; /* More than one conditional branch found, fallback
1176 to the standard single-step code. */
1178 if (absolute)
1179 breaks[1] = immediate;
1180 else
1181 breaks[1] = loc + immediate;
1183 bc_insn_count++;
1184 last_breakpoint++;
1187 if (IS_STORE_CONDITIONAL_INSN (insn))
1188 break;
1191 /* Assume that the atomic sequence ends with a Store Conditional
1192 instruction. */
1193 if (!IS_STORE_CONDITIONAL_INSN (insn))
1194 return {};
1196 closing_insn = loc;
1197 loc += PPC_INSN_SIZE;
1199 /* Insert a breakpoint right after the end of the atomic sequence. */
1200 breaks[0] = loc;
1202 /* Check for duplicated breakpoints. Check also for a breakpoint
1203 placed (branch instruction's destination) anywhere in sequence. */
1204 if (last_breakpoint
1205 && (breaks[1] == breaks[0]
1206 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1207 last_breakpoint = 0;
1209 std::vector<CORE_ADDR> next_pcs;
1211 for (index = 0; index <= last_breakpoint; index++)
1212 next_pcs.push_back (breaks[index]);
1214 return next_pcs;
1218 #define SIGNED_SHORT(x) \
1219 ((sizeof (short) == 2) \
1220 ? ((int)(short)(x)) \
1221 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1223 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1225 /* Limit the number of skipped non-prologue instructions, as the examining
1226 of the prologue is expensive. */
1227 static int max_skip_non_prologue_insns = 10;
1229 /* Return nonzero if the given instruction OP can be part of the prologue
1230 of a function and saves a parameter on the stack. FRAMEP should be
1231 set if one of the previous instructions in the function has set the
1232 Frame Pointer. */
1234 static int
1235 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1237 /* Move parameters from argument registers to temporary register. */
1238 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1240 /* Rx must be scratch register r0. */
1241 const int rx_regno = (op >> 16) & 31;
1242 /* Ry: Only r3 - r10 are used for parameter passing. */
1243 const int ry_regno = GET_SRC_REG (op);
1245 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1247 *r0_contains_arg = 1;
1248 return 1;
1250 else
1251 return 0;
1254 /* Save a General Purpose Register on stack. */
1256 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1257 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1259 /* Rx: Only r3 - r10 are used for parameter passing. */
1260 const int rx_regno = GET_SRC_REG (op);
1262 return (rx_regno >= 3 && rx_regno <= 10);
1265 /* Save a General Purpose Register on stack via the Frame Pointer. */
1267 if (framep &&
1268 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1269 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1270 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1272 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1273 However, the compiler sometimes uses r0 to hold an argument. */
1274 const int rx_regno = GET_SRC_REG (op);
1276 return ((rx_regno >= 3 && rx_regno <= 10)
1277 || (rx_regno == 0 && *r0_contains_arg));
1280 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1282 /* Only f2 - f8 are used for parameter passing. */
1283 const int src_regno = GET_SRC_REG (op);
1285 return (src_regno >= 2 && src_regno <= 8);
1288 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1290 /* Only f2 - f8 are used for parameter passing. */
1291 const int src_regno = GET_SRC_REG (op);
1293 return (src_regno >= 2 && src_regno <= 8);
1296 /* Not an insn that saves a parameter on stack. */
1297 return 0;
1300 /* Assuming that INSN is a "bl" instruction located at PC, return
1301 nonzero if the destination of the branch is a "blrl" instruction.
1303 This sequence is sometimes found in certain function prologues.
1304 It allows the function to load the LR register with a value that
1305 they can use to access PIC data using PC-relative offsets. */
1307 static int
1308 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1310 CORE_ADDR dest;
1311 int immediate;
1312 int absolute;
1313 int dest_insn;
1315 absolute = (int) ((insn >> 1) & 1);
1316 immediate = ((insn & ~3) << 6) >> 6;
1317 if (absolute)
1318 dest = immediate;
1319 else
1320 dest = pc + immediate;
1322 dest_insn = read_memory_integer (dest, 4, byte_order);
1323 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1324 return 1;
1326 return 0;
1329 /* Return true if OP is a stw or std instruction with
1330 register operands RS and RA and any immediate offset.
1332 If WITH_UPDATE is true, also return true if OP is
1333 a stwu or stdu instruction with the same operands.
1335 Return false otherwise.
1337 static bool
1338 store_insn_p (unsigned long op, unsigned long rs,
1339 unsigned long ra, bool with_update)
1341 rs = rs << 21;
1342 ra = ra << 16;
1344 if (/* std RS, SIMM(RA) */
1345 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1346 /* stw RS, SIMM(RA) */
1347 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1348 return true;
1350 if (with_update)
1352 if (/* stdu RS, SIMM(RA) */
1353 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1354 /* stwu RS, SIMM(RA) */
1355 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1356 return true;
1359 return false;
1362 /* Masks for decoding a branch-and-link (bl) instruction.
1364 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1365 The former is anded with the opcode in question; if the result of
1366 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1367 question is a ``bl'' instruction.
1369 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
1370 the branch displacement. */
1372 #define BL_MASK 0xfc000001
1373 #define BL_INSTRUCTION 0x48000001
1374 #define BL_DISPLACEMENT_MASK 0x03fffffc
1376 static unsigned long
1377 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1379 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1380 gdb_byte buf[4];
1381 unsigned long op;
1383 /* Fetch the instruction and convert it to an integer. */
1384 if (target_read_memory (pc, buf, 4))
1385 return 0;
1386 op = extract_unsigned_integer (buf, 4, byte_order);
1388 return op;
1391 /* GCC generates several well-known sequences of instructions at the begining
1392 of each function prologue when compiling with -fstack-check. If one of
1393 such sequences starts at START_PC, then return the address of the
1394 instruction immediately past this sequence. Otherwise, return START_PC. */
1396 static CORE_ADDR
1397 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1399 CORE_ADDR pc = start_pc;
1400 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1402 /* First possible sequence: A small number of probes.
1403 stw 0, -<some immediate>(1)
1404 [repeat this instruction any (small) number of times]. */
1406 if ((op & 0xffff0000) == 0x90010000)
1408 while ((op & 0xffff0000) == 0x90010000)
1410 pc = pc + 4;
1411 op = rs6000_fetch_instruction (gdbarch, pc);
1413 return pc;
1416 /* Second sequence: A probing loop.
1417 addi 12,1,-<some immediate>
1418 lis 0,-<some immediate>
1419 [possibly ori 0,0,<some immediate>]
1420 add 0,12,0
1421 cmpw 0,12,0
1422 beq 0,<disp>
1423 addi 12,12,-<some immediate>
1424 stw 0,0(12)
1425 b <disp>
1426 [possibly one last probe: stw 0,<some immediate>(12)]. */
1428 while (1)
1430 /* addi 12,1,-<some immediate> */
1431 if ((op & 0xffff0000) != 0x39810000)
1432 break;
1434 /* lis 0,-<some immediate> */
1435 pc = pc + 4;
1436 op = rs6000_fetch_instruction (gdbarch, pc);
1437 if ((op & 0xffff0000) != 0x3c000000)
1438 break;
1440 pc = pc + 4;
1441 op = rs6000_fetch_instruction (gdbarch, pc);
1442 /* [possibly ori 0,0,<some immediate>] */
1443 if ((op & 0xffff0000) == 0x60000000)
1445 pc = pc + 4;
1446 op = rs6000_fetch_instruction (gdbarch, pc);
1448 /* add 0,12,0 */
1449 if (op != 0x7c0c0214)
1450 break;
1452 /* cmpw 0,12,0 */
1453 pc = pc + 4;
1454 op = rs6000_fetch_instruction (gdbarch, pc);
1455 if (op != 0x7c0c0000)
1456 break;
1458 /* beq 0,<disp> */
1459 pc = pc + 4;
1460 op = rs6000_fetch_instruction (gdbarch, pc);
1461 if ((op & 0xff9f0001) != 0x41820000)
1462 break;
1464 /* addi 12,12,-<some immediate> */
1465 pc = pc + 4;
1466 op = rs6000_fetch_instruction (gdbarch, pc);
1467 if ((op & 0xffff0000) != 0x398c0000)
1468 break;
1470 /* stw 0,0(12) */
1471 pc = pc + 4;
1472 op = rs6000_fetch_instruction (gdbarch, pc);
1473 if (op != 0x900c0000)
1474 break;
1476 /* b <disp> */
1477 pc = pc + 4;
1478 op = rs6000_fetch_instruction (gdbarch, pc);
1479 if ((op & 0xfc000001) != 0x48000000)
1480 break;
1482 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1483 pc = pc + 4;
1484 op = rs6000_fetch_instruction (gdbarch, pc);
1485 if ((op & 0xffff0000) == 0x900c0000)
1487 pc = pc + 4;
1488 op = rs6000_fetch_instruction (gdbarch, pc);
1491 /* We found a valid stack-check sequence, return the new PC. */
1492 return pc;
1495 /* Third sequence: No probe; instead, a comparison between the stack size
1496 limit (saved in a run-time global variable) and the current stack
1497 pointer:
1499 addi 0,1,-<some immediate>
1500 lis 12,__gnat_stack_limit@ha
1501 lwz 12,__gnat_stack_limit@l(12)
1502 twllt 0,12
1504 or, with a small variant in the case of a bigger stack frame:
1505 addis 0,1,<some immediate>
1506 addic 0,0,-<some immediate>
1507 lis 12,__gnat_stack_limit@ha
1508 lwz 12,__gnat_stack_limit@l(12)
1509 twllt 0,12
1511 while (1)
1513 /* addi 0,1,-<some immediate> */
1514 if ((op & 0xffff0000) != 0x38010000)
1516 /* small stack frame variant not recognized; try the
1517 big stack frame variant: */
1519 /* addis 0,1,<some immediate> */
1520 if ((op & 0xffff0000) != 0x3c010000)
1521 break;
1523 /* addic 0,0,-<some immediate> */
1524 pc = pc + 4;
1525 op = rs6000_fetch_instruction (gdbarch, pc);
1526 if ((op & 0xffff0000) != 0x30000000)
1527 break;
1530 /* lis 12,<some immediate> */
1531 pc = pc + 4;
1532 op = rs6000_fetch_instruction (gdbarch, pc);
1533 if ((op & 0xffff0000) != 0x3d800000)
1534 break;
1536 /* lwz 12,<some immediate>(12) */
1537 pc = pc + 4;
1538 op = rs6000_fetch_instruction (gdbarch, pc);
1539 if ((op & 0xffff0000) != 0x818c0000)
1540 break;
1542 /* twllt 0,12 */
1543 pc = pc + 4;
1544 op = rs6000_fetch_instruction (gdbarch, pc);
1545 if ((op & 0xfffffffe) != 0x7c406008)
1546 break;
1548 /* We found a valid stack-check sequence, return the new PC. */
1549 return pc;
1552 /* No stack check code in our prologue, return the start_pc. */
1553 return start_pc;
1556 /* return pc value after skipping a function prologue and also return
1557 information about a function frame.
1559 in struct rs6000_framedata fdata:
1560 - frameless is TRUE, if function does not have a frame.
1561 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1562 - offset is the initial size of this stack frame --- the amount by
1563 which we decrement the sp to allocate the frame.
1564 - saved_gpr is the number of the first saved gpr.
1565 - saved_fpr is the number of the first saved fpr.
1566 - saved_vr is the number of the first saved vr.
1567 - saved_ev is the number of the first saved ev.
1568 - alloca_reg is the number of the register used for alloca() handling.
1569 Otherwise -1.
1570 - gpr_offset is the offset of the first saved gpr from the previous frame.
1571 - fpr_offset is the offset of the first saved fpr from the previous frame.
1572 - vr_offset is the offset of the first saved vr from the previous frame.
1573 - ev_offset is the offset of the first saved ev from the previous frame.
1574 - lr_offset is the offset of the saved lr
1575 - cr_offset is the offset of the saved cr
1576 - vrsave_offset is the offset of the saved vrsave register. */
1578 static CORE_ADDR
1579 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1580 struct rs6000_framedata *fdata)
1582 CORE_ADDR orig_pc = pc;
1583 CORE_ADDR last_prologue_pc = pc;
1584 CORE_ADDR li_found_pc = 0;
1585 gdb_byte buf[4];
1586 unsigned long op;
1587 long offset = 0;
1588 long alloca_reg_offset = 0;
1589 long vr_saved_offset = 0;
1590 int lr_reg = -1;
1591 int cr_reg = -1;
1592 int vr_reg = -1;
1593 int ev_reg = -1;
1594 long ev_offset = 0;
1595 int vrsave_reg = -1;
1596 int reg;
1597 int framep = 0;
1598 int minimal_toc_loaded = 0;
1599 int prev_insn_was_prologue_insn = 1;
1600 int num_skip_non_prologue_insns = 0;
1601 int r0_contains_arg = 0;
1602 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1603 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1604 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1606 memset (fdata, 0, sizeof (struct rs6000_framedata));
1607 fdata->saved_gpr = -1;
1608 fdata->saved_fpr = -1;
1609 fdata->saved_vr = -1;
1610 fdata->saved_ev = -1;
1611 fdata->alloca_reg = -1;
1612 fdata->frameless = 1;
1613 fdata->nosavedpc = 1;
1614 fdata->lr_register = -1;
1616 pc = rs6000_skip_stack_check (gdbarch, pc);
1617 if (pc >= lim_pc)
1618 pc = lim_pc;
1620 for (;; pc += 4)
1622 /* Sometimes it isn't clear if an instruction is a prologue
1623 instruction or not. When we encounter one of these ambiguous
1624 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1625 Otherwise, we'll assume that it really is a prologue instruction. */
1626 if (prev_insn_was_prologue_insn)
1627 last_prologue_pc = pc;
1629 /* Stop scanning if we've hit the limit. */
1630 if (pc >= lim_pc)
1631 break;
1633 prev_insn_was_prologue_insn = 1;
1635 /* Fetch the instruction and convert it to an integer. */
1636 if (target_read_memory (pc, buf, 4))
1637 break;
1638 op = extract_unsigned_integer (buf, 4, byte_order);
1640 if ((op & 0xfc1fffff) == 0x7c0802a6)
1641 { /* mflr Rx */
1642 /* Since shared library / PIC code, which needs to get its
1643 address at runtime, can appear to save more than one link
1644 register vis:
1646 stwu r1,-304(r1)
1647 mflr r3
1648 bl 0xff570d0 (blrl)
1649 stw r30,296(r1)
1650 mflr r30
1651 stw r31,300(r1)
1652 stw r3,308(r1);
1655 remember just the first one, but skip over additional
1656 ones. */
1657 if (lr_reg == -1)
1658 lr_reg = (op & 0x03e00000) >> 21;
1659 if (lr_reg == 0)
1660 r0_contains_arg = 0;
1661 continue;
1663 else if ((op & 0xfc1fffff) == 0x7c000026)
1664 { /* mfcr Rx */
1665 cr_reg = (op & 0x03e00000) >> 21;
1666 if (cr_reg == 0)
1667 r0_contains_arg = 0;
1668 continue;
1671 else if ((op & 0xfc1f0000) == 0xd8010000)
1672 { /* stfd Rx,NUM(r1) */
1673 reg = GET_SRC_REG (op);
1674 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1676 fdata->saved_fpr = reg;
1677 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1679 continue;
1682 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1683 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1684 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1685 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1688 reg = GET_SRC_REG (op);
1689 if ((op & 0xfc1f0000) == 0xbc010000)
1690 fdata->gpr_mask |= ~((1U << reg) - 1);
1691 else
1692 fdata->gpr_mask |= 1U << reg;
1693 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1695 fdata->saved_gpr = reg;
1696 if ((op & 0xfc1f0003) == 0xf8010000)
1697 op &= ~3UL;
1698 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1700 continue;
1703 else if ((op & 0xffff0000) == 0x3c4c0000
1704 || (op & 0xffff0000) == 0x3c400000
1705 || (op & 0xffff0000) == 0x38420000)
1707 /* . 0: addis 2,12,.TOC.-0b@ha
1708 . addi 2,2,.TOC.-0b@l
1710 . lis 2,.TOC.@ha
1711 . addi 2,2,.TOC.@l
1712 used by ELFv2 global entry points to set up r2. */
1713 continue;
1715 else if (op == 0x60000000)
1717 /* nop */
1718 /* Allow nops in the prologue, but do not consider them to
1719 be part of the prologue unless followed by other prologue
1720 instructions. */
1721 prev_insn_was_prologue_insn = 0;
1722 continue;
1725 else if ((op & 0xffff0000) == 0x3c000000)
1726 { /* addis 0,0,NUM, used for >= 32k frames */
1727 fdata->offset = (op & 0x0000ffff) << 16;
1728 fdata->frameless = 0;
1729 r0_contains_arg = 0;
1730 continue;
1733 else if ((op & 0xffff0000) == 0x60000000)
1734 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1735 fdata->offset |= (op & 0x0000ffff);
1736 fdata->frameless = 0;
1737 r0_contains_arg = 0;
1738 continue;
1741 else if (lr_reg >= 0 &&
1742 ((store_insn_p (op, lr_reg, 1, true)) ||
1743 (framep &&
1744 (store_insn_p (op, lr_reg,
1745 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1746 false)))))
1748 if (store_insn_p (op, lr_reg, 1, true))
1749 fdata->lr_offset = offset;
1750 else /* LR save through frame pointer. */
1751 fdata->lr_offset = alloca_reg_offset;
1753 fdata->nosavedpc = 0;
1754 /* Invalidate lr_reg, but don't set it to -1.
1755 That would mean that it had never been set. */
1756 lr_reg = -2;
1757 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1758 (op & 0xfc000000) == 0x90000000) /* stw */
1760 /* Does not update r1, so add displacement to lr_offset. */
1761 fdata->lr_offset += SIGNED_SHORT (op);
1763 continue;
1766 else if (cr_reg >= 0 &&
1767 (store_insn_p (op, cr_reg, 1, true)))
1769 fdata->cr_offset = offset;
1770 /* Invalidate cr_reg, but don't set it to -1.
1771 That would mean that it had never been set. */
1772 cr_reg = -2;
1773 if ((op & 0xfc000003) == 0xf8000000 ||
1774 (op & 0xfc000000) == 0x90000000)
1776 /* Does not update r1, so add displacement to cr_offset. */
1777 fdata->cr_offset += SIGNED_SHORT (op);
1779 continue;
1782 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1784 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1785 prediction bits. If the LR has already been saved, we can
1786 skip it. */
1787 continue;
1789 else if (op == 0x48000005)
1790 { /* bl .+4 used in
1791 -mrelocatable */
1792 fdata->used_bl = 1;
1793 continue;
1796 else if (op == 0x48000004)
1797 { /* b .+4 (xlc) */
1798 break;
1801 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1802 in V.4 -mminimal-toc */
1803 (op & 0xffff0000) == 0x3bde0000)
1804 { /* addi 30,30,foo@l */
1805 continue;
1808 else if ((op & 0xfc000001) == 0x48000001)
1809 { /* bl foo,
1810 to save fprs??? */
1812 fdata->frameless = 0;
1814 /* If the return address has already been saved, we can skip
1815 calls to blrl (for PIC). */
1816 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1818 fdata->used_bl = 1;
1819 continue;
1822 /* Don't skip over the subroutine call if it is not within
1823 the first three instructions of the prologue and either
1824 we have no line table information or the line info tells
1825 us that the subroutine call is not part of the line
1826 associated with the prologue. */
1827 if ((pc - orig_pc) > 8)
1829 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1830 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1832 if ((prologue_sal.line == 0)
1833 || (prologue_sal.line != this_sal.line))
1834 break;
1837 op = read_memory_integer (pc + 4, 4, byte_order);
1839 /* At this point, make sure this is not a trampoline
1840 function (a function that simply calls another functions,
1841 and nothing else). If the next is not a nop, this branch
1842 was part of the function prologue. */
1844 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1845 break; /* Don't skip over
1846 this branch. */
1848 fdata->used_bl = 1;
1849 continue;
1851 /* update stack pointer */
1852 else if ((op & 0xfc1f0000) == 0x94010000)
1853 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1854 fdata->frameless = 0;
1855 fdata->offset = SIGNED_SHORT (op);
1856 offset = fdata->offset;
1857 continue;
1859 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1860 { /* stwux rX,r1,rY || stdux rX,r1,rY */
1861 /* No way to figure out what r1 is going to be. */
1862 fdata->frameless = 0;
1863 offset = fdata->offset;
1864 continue;
1866 else if ((op & 0xfc1f0003) == 0xf8010001)
1867 { /* stdu rX,NUM(r1) */
1868 fdata->frameless = 0;
1869 fdata->offset = SIGNED_SHORT (op & ~3UL);
1870 offset = fdata->offset;
1871 continue;
1873 else if ((op & 0xffff0000) == 0x38210000)
1874 { /* addi r1,r1,SIMM */
1875 fdata->frameless = 0;
1876 fdata->offset += SIGNED_SHORT (op);
1877 offset = fdata->offset;
1878 continue;
1880 /* Load up minimal toc pointer. Do not treat an epilogue restore
1881 of r31 as a minimal TOC load. */
1882 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1883 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1884 && !framep
1885 && !minimal_toc_loaded)
1887 minimal_toc_loaded = 1;
1888 continue;
1890 /* move parameters from argument registers to local variable
1891 registers */
1893 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1894 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1895 (((op >> 21) & 31) <= 10) &&
1896 ((long) ((op >> 16) & 31)
1897 >= fdata->saved_gpr)) /* Rx: local var reg */
1899 continue;
1901 /* store parameters in stack */
1903 /* Move parameters from argument registers to temporary register. */
1904 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1906 continue;
1908 /* Set up frame pointer */
1910 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1912 fdata->frameless = 0;
1913 framep = 1;
1914 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1915 alloca_reg_offset = offset;
1916 continue;
1918 /* Another way to set up the frame pointer. */
1920 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1921 || op == 0x7c3f0b78)
1922 { /* mr r31, r1 */
1923 fdata->frameless = 0;
1924 framep = 1;
1925 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1926 alloca_reg_offset = offset;
1927 continue;
1929 /* Another way to set up the frame pointer. */
1931 else if ((op & 0xfc1fffff) == 0x38010000)
1932 { /* addi rX, r1, 0x0 */
1933 fdata->frameless = 0;
1934 framep = 1;
1935 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1936 + ((op & ~0x38010000) >> 21));
1937 alloca_reg_offset = offset;
1938 continue;
1940 /* AltiVec related instructions. */
1941 /* Store the vrsave register (spr 256) in another register for
1942 later manipulation, or load a register into the vrsave
1943 register. 2 instructions are used: mfvrsave and
1944 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1945 and mtspr SPR256, Rn. */
1946 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1947 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1948 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1950 vrsave_reg = GET_SRC_REG (op);
1951 continue;
1953 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1955 continue;
1957 /* Store the register where vrsave was saved to onto the stack:
1958 rS is the register where vrsave was stored in a previous
1959 instruction. */
1960 /* 100100 sssss 00001 dddddddd dddddddd */
1961 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1963 if (vrsave_reg == GET_SRC_REG (op))
1965 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1966 vrsave_reg = -1;
1968 continue;
1970 /* Compute the new value of vrsave, by modifying the register
1971 where vrsave was saved to. */
1972 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1973 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1975 continue;
1977 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1978 in a pair of insns to save the vector registers on the
1979 stack. */
1980 /* 001110 00000 00000 iiii iiii iiii iiii */
1981 /* 001110 01110 00000 iiii iiii iiii iiii */
1982 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1983 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1985 if ((op & 0xffff0000) == 0x38000000)
1986 r0_contains_arg = 0;
1987 li_found_pc = pc;
1988 vr_saved_offset = SIGNED_SHORT (op);
1990 /* This insn by itself is not part of the prologue, unless
1991 if part of the pair of insns mentioned above. So do not
1992 record this insn as part of the prologue yet. */
1993 prev_insn_was_prologue_insn = 0;
1995 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1996 /* 011111 sssss 11111 00000 00111001110 */
1997 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1999 if (pc == (li_found_pc + 4))
2001 vr_reg = GET_SRC_REG (op);
2002 /* If this is the first vector reg to be saved, or if
2003 it has a lower number than others previously seen,
2004 reupdate the frame info. */
2005 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
2007 fdata->saved_vr = vr_reg;
2008 fdata->vr_offset = vr_saved_offset + offset;
2010 vr_saved_offset = -1;
2011 vr_reg = -1;
2012 li_found_pc = 0;
2015 /* End AltiVec related instructions. */
2017 /* Start BookE related instructions. */
2018 /* Store gen register S at (r31+uimm).
2019 Any register less than r13 is volatile, so we don't care. */
2020 /* 000100 sssss 11111 iiiii 01100100001 */
2021 else if (arch_info->mach == bfd_mach_ppc_e500
2022 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2024 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2026 unsigned int imm;
2027 ev_reg = GET_SRC_REG (op);
2028 imm = (op >> 11) & 0x1f;
2029 ev_offset = imm * 8;
2030 /* If this is the first vector reg to be saved, or if
2031 it has a lower number than others previously seen,
2032 reupdate the frame info. */
2033 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2035 fdata->saved_ev = ev_reg;
2036 fdata->ev_offset = ev_offset + offset;
2039 continue;
2041 /* Store gen register rS at (r1+rB). */
2042 /* 000100 sssss 00001 bbbbb 01100100000 */
2043 else if (arch_info->mach == bfd_mach_ppc_e500
2044 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2046 if (pc == (li_found_pc + 4))
2048 ev_reg = GET_SRC_REG (op);
2049 /* If this is the first vector reg to be saved, or if
2050 it has a lower number than others previously seen,
2051 reupdate the frame info. */
2052 /* We know the contents of rB from the previous instruction. */
2053 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2055 fdata->saved_ev = ev_reg;
2056 fdata->ev_offset = vr_saved_offset + offset;
2058 vr_saved_offset = -1;
2059 ev_reg = -1;
2060 li_found_pc = 0;
2062 continue;
2064 /* Store gen register r31 at (rA+uimm). */
2065 /* 000100 11111 aaaaa iiiii 01100100001 */
2066 else if (arch_info->mach == bfd_mach_ppc_e500
2067 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2069 /* Wwe know that the source register is 31 already, but
2070 it can't hurt to compute it. */
2071 ev_reg = GET_SRC_REG (op);
2072 ev_offset = ((op >> 11) & 0x1f) * 8;
2073 /* If this is the first vector reg to be saved, or if
2074 it has a lower number than others previously seen,
2075 reupdate the frame info. */
2076 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2078 fdata->saved_ev = ev_reg;
2079 fdata->ev_offset = ev_offset + offset;
2082 continue;
2084 /* Store gen register S at (r31+r0).
2085 Store param on stack when offset from SP bigger than 4 bytes. */
2086 /* 000100 sssss 11111 00000 01100100000 */
2087 else if (arch_info->mach == bfd_mach_ppc_e500
2088 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2090 if (pc == (li_found_pc + 4))
2092 if ((op & 0x03e00000) >= 0x01a00000)
2094 ev_reg = GET_SRC_REG (op);
2095 /* If this is the first vector reg to be saved, or if
2096 it has a lower number than others previously seen,
2097 reupdate the frame info. */
2098 /* We know the contents of r0 from the previous
2099 instruction. */
2100 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2102 fdata->saved_ev = ev_reg;
2103 fdata->ev_offset = vr_saved_offset + offset;
2105 ev_reg = -1;
2107 vr_saved_offset = -1;
2108 li_found_pc = 0;
2109 continue;
2112 /* End BookE related instructions. */
2114 else
2116 /* Not a recognized prologue instruction.
2117 Handle optimizer code motions into the prologue by continuing
2118 the search if we have no valid frame yet or if the return
2119 address is not yet saved in the frame. Also skip instructions
2120 if some of the GPRs expected to be saved are not yet saved. */
2121 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2122 && fdata->saved_gpr != -1)
2124 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2126 if ((fdata->gpr_mask & all_mask) == all_mask)
2127 break;
2130 if (op == 0x4e800020 /* blr */
2131 || op == 0x4e800420) /* bctr */
2132 /* Do not scan past epilogue in frameless functions or
2133 trampolines. */
2134 break;
2135 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2136 /* Never skip branches. */
2137 break;
2139 /* Test based on opcode and mask values of
2140 powerpc_opcodes[svc..svcla] in opcodes/ppc-opc.c. */
2141 if ((op & 0xffff0000) == 0x44000000)
2142 /* Never skip system calls. */
2143 break;
2145 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2146 /* Do not scan too many insns, scanning insns is expensive with
2147 remote targets. */
2148 break;
2150 /* Continue scanning. */
2151 prev_insn_was_prologue_insn = 0;
2152 continue;
2156 #if 0
2157 /* I have problems with skipping over __main() that I need to address
2158 * sometime. Previously, I used to use misc_function_vector which
2159 * didn't work as well as I wanted to be. -MGO */
2161 /* If the first thing after skipping a prolog is a branch to a function,
2162 this might be a call to an initializer in main(), introduced by gcc2.
2163 We'd like to skip over it as well. Fortunately, xlc does some extra
2164 work before calling a function right after a prologue, thus we can
2165 single out such gcc2 behaviour. */
2168 if ((op & 0xfc000001) == 0x48000001)
2169 { /* bl foo, an initializer function? */
2170 op = read_memory_integer (pc + 4, 4, byte_order);
2172 if (op == 0x4def7b82)
2173 { /* cror 0xf, 0xf, 0xf (nop) */
2175 /* Check and see if we are in main. If so, skip over this
2176 initializer function as well. */
2178 tmp = find_pc_misc_function (pc);
2179 if (tmp >= 0
2180 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2181 return pc + 8;
2184 #endif /* 0 */
2186 if (pc == lim_pc && lr_reg >= 0)
2187 fdata->lr_register = lr_reg;
2189 fdata->offset = -fdata->offset;
2190 return last_prologue_pc;
2193 static CORE_ADDR
2194 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2196 struct rs6000_framedata frame;
2197 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2199 /* See if we can determine the end of the prologue via the symbol table.
2200 If so, then return either PC, or the PC after the prologue, whichever
2201 is greater. */
2202 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2204 CORE_ADDR post_prologue_pc
2205 = skip_prologue_using_sal (gdbarch, func_addr);
2206 if (post_prologue_pc != 0)
2207 return std::max (pc, post_prologue_pc);
2210 /* Can't determine prologue from the symbol table, need to examine
2211 instructions. */
2213 /* Find an upper limit on the function prologue using the debug
2214 information. If the debug information could not be used to provide
2215 that bound, then use an arbitrary large number as the upper bound. */
2216 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2217 if (limit_pc == 0)
2218 limit_pc = pc + 100; /* Magic. */
2220 /* Do not allow limit_pc to be past the function end, if we know
2221 where that end is... */
2222 if (func_end_addr && limit_pc > func_end_addr)
2223 limit_pc = func_end_addr;
2225 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2226 return pc;
2229 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2230 in the prologue of main().
2232 The function below examines the code pointed at by PC and checks to
2233 see if it corresponds to a call to __eabi. If so, it returns the
2234 address of the instruction following that call. Otherwise, it simply
2235 returns PC. */
2237 static CORE_ADDR
2238 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2240 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2241 gdb_byte buf[4];
2242 unsigned long op;
2244 if (target_read_memory (pc, buf, 4))
2245 return pc;
2246 op = extract_unsigned_integer (buf, 4, byte_order);
2248 if ((op & BL_MASK) == BL_INSTRUCTION)
2250 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2251 CORE_ADDR call_dest = pc + 4 + displ;
2252 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2254 /* We check for ___eabi (three leading underscores) in addition
2255 to __eabi in case the GCC option "-fleading-underscore" was
2256 used to compile the program. */
2257 if (s.minsym != NULL
2258 && s.minsym->linkage_name () != NULL
2259 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2260 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
2261 pc += 4;
2263 return pc;
2266 /* All the ABI's require 16 byte alignment. */
2267 static CORE_ADDR
2268 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2270 return (addr & -16);
2273 /* Return whether handle_inferior_event() should proceed through code
2274 starting at PC in function NAME when stepping.
2276 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2277 handle memory references that are too distant to fit in instructions
2278 generated by the compiler. For example, if 'foo' in the following
2279 instruction:
2281 lwz r9,foo(r2)
2283 is greater than 32767, the linker might replace the lwz with a branch to
2284 somewhere in @FIX1 that does the load in 2 instructions and then branches
2285 back to where execution should continue.
2287 GDB should silently step over @FIX code, just like AIX dbx does.
2288 Unfortunately, the linker uses the "b" instruction for the
2289 branches, meaning that the link register doesn't get set.
2290 Therefore, GDB's usual step_over_function () mechanism won't work.
2292 Instead, use the gdbarch_skip_trampoline_code and
2293 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2294 @FIX code. */
2296 static int
2297 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2298 CORE_ADDR pc, const char *name)
2300 return name && startswith (name, "@FIX");
2303 /* Skip code that the user doesn't want to see when stepping:
2305 1. Indirect function calls use a piece of trampoline code to do context
2306 switching, i.e. to set the new TOC table. Skip such code if we are on
2307 its first instruction (as when we have single-stepped to here).
2309 2. Skip shared library trampoline code (which is different from
2310 indirect function call trampolines).
2312 3. Skip bigtoc fixup code.
2314 Result is desired PC to step until, or NULL if we are not in
2315 code that should be skipped. */
2317 static CORE_ADDR
2318 rs6000_skip_trampoline_code (const frame_info_ptr &frame, CORE_ADDR pc)
2320 struct gdbarch *gdbarch = get_frame_arch (frame);
2321 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2323 unsigned int ii, op;
2324 int rel;
2325 CORE_ADDR solib_target_pc;
2326 struct bound_minimal_symbol msymbol;
2328 static unsigned trampoline_code[] =
2330 0x800b0000, /* l r0,0x0(r11) */
2331 0x90410014, /* st r2,0x14(r1) */
2332 0x7c0903a6, /* mtctr r0 */
2333 0x804b0004, /* l r2,0x4(r11) */
2334 0x816b0008, /* l r11,0x8(r11) */
2335 0x4e800420, /* bctr */
2336 0x4e800020, /* br */
2340 /* Check for bigtoc fixup code. */
2341 msymbol = lookup_minimal_symbol_by_pc (pc);
2342 if (msymbol.minsym
2343 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2344 msymbol.minsym->linkage_name ()))
2346 /* Double-check that the third instruction from PC is relative "b". */
2347 op = read_memory_integer (pc + 8, 4, byte_order);
2348 if ((op & 0xfc000003) == 0x48000000)
2350 /* Extract bits 6-29 as a signed 24-bit relative word address and
2351 add it to the containing PC. */
2352 rel = ((int)(op << 6) >> 6);
2353 return pc + 8 + rel;
2357 /* If pc is in a shared library trampoline, return its target. */
2358 solib_target_pc = find_solib_trampoline_target (frame, pc);
2359 if (solib_target_pc)
2360 return solib_target_pc;
2362 for (ii = 0; trampoline_code[ii]; ++ii)
2364 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2365 if (op != trampoline_code[ii])
2366 return 0;
2368 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2369 addr. */
2370 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2371 return pc;
2374 /* ISA-specific vector types. */
2376 static struct type *
2377 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2379 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2381 if (!tdep->ppc_builtin_type_vec64)
2383 const struct builtin_type *bt = builtin_type (gdbarch);
2385 /* The type we're building is this: */
2386 #if 0
2387 union __gdb_builtin_type_vec64
2389 int64_t uint64;
2390 float v2_float[2];
2391 int32_t v2_int32[2];
2392 int16_t v4_int16[4];
2393 int8_t v8_int8[8];
2395 #endif
2397 struct type *t;
2399 t = arch_composite_type (gdbarch,
2400 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2401 append_composite_type_field (t, "uint64", bt->builtin_int64);
2402 append_composite_type_field (t, "v2_float",
2403 init_vector_type (bt->builtin_float, 2));
2404 append_composite_type_field (t, "v2_int32",
2405 init_vector_type (bt->builtin_int32, 2));
2406 append_composite_type_field (t, "v4_int16",
2407 init_vector_type (bt->builtin_int16, 4));
2408 append_composite_type_field (t, "v8_int8",
2409 init_vector_type (bt->builtin_int8, 8));
2411 t->set_is_vector (true);
2412 t->set_name ("ppc_builtin_type_vec64");
2413 tdep->ppc_builtin_type_vec64 = t;
2416 return tdep->ppc_builtin_type_vec64;
2419 /* Vector 128 type. */
2421 static struct type *
2422 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2424 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2426 if (!tdep->ppc_builtin_type_vec128)
2428 const struct builtin_type *bt = builtin_type (gdbarch);
2430 /* The type we're building is this
2432 type = union __ppc_builtin_type_vec128 {
2433 float128_t float128;
2434 uint128_t uint128;
2435 double v2_double[2];
2436 float v4_float[4];
2437 int32_t v4_int32[4];
2438 int16_t v8_int16[8];
2439 int8_t v16_int8[16];
2443 /* PPC specific type for IEEE 128-bit float field */
2444 type_allocator alloc (gdbarch);
2445 struct type *t_float128
2446 = init_float_type (alloc, 128, "float128_t", floatformats_ieee_quad);
2448 struct type *t;
2450 t = arch_composite_type (gdbarch,
2451 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2452 append_composite_type_field (t, "float128", t_float128);
2453 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2454 append_composite_type_field (t, "v2_double",
2455 init_vector_type (bt->builtin_double, 2));
2456 append_composite_type_field (t, "v4_float",
2457 init_vector_type (bt->builtin_float, 4));
2458 append_composite_type_field (t, "v4_int32",
2459 init_vector_type (bt->builtin_int32, 4));
2460 append_composite_type_field (t, "v8_int16",
2461 init_vector_type (bt->builtin_int16, 8));
2462 append_composite_type_field (t, "v16_int8",
2463 init_vector_type (bt->builtin_int8, 16));
2465 t->set_is_vector (true);
2466 t->set_name ("ppc_builtin_type_vec128");
2467 tdep->ppc_builtin_type_vec128 = t;
2470 return tdep->ppc_builtin_type_vec128;
2473 /* Return the name of register number REGNO, or the empty string if it
2474 is an anonymous register. */
2476 static const char *
2477 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2479 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2481 /* The upper half "registers" have names in the XML description,
2482 but we present only the low GPRs and the full 64-bit registers
2483 to the user. */
2484 if (tdep->ppc_ev0_upper_regnum >= 0
2485 && tdep->ppc_ev0_upper_regnum <= regno
2486 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2487 return "";
2489 /* Hide the upper halves of the vs0~vs31 registers. */
2490 if (tdep->ppc_vsr0_regnum >= 0
2491 && tdep->ppc_vsr0_upper_regnum <= regno
2492 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2493 return "";
2495 /* Hide the upper halves of the cvs0~cvs31 registers. */
2496 if (PPC_CVSR0_UPPER_REGNUM <= regno
2497 && regno < (to_underlying (PPC_CVSR0_UPPER_REGNUM)
2498 + to_underlying (ppc_num_gprs)))
2499 return "";
2501 /* Check if the SPE pseudo registers are available. */
2502 if (IS_SPE_PSEUDOREG (tdep, regno))
2504 static const char *const spe_regnames[] = {
2505 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2506 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2507 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2508 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2510 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2513 /* Check if the decimal128 pseudo-registers are available. */
2514 if (IS_DFP_PSEUDOREG (tdep, regno))
2516 static const char *const dfp128_regnames[] = {
2517 "dl0", "dl1", "dl2", "dl3",
2518 "dl4", "dl5", "dl6", "dl7",
2519 "dl8", "dl9", "dl10", "dl11",
2520 "dl12", "dl13", "dl14", "dl15"
2522 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2525 /* Check if this is a vX alias for a raw vrX vector register. */
2526 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2528 static const char *const vector_alias_regnames[] = {
2529 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2530 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2531 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2532 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2534 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2537 /* Check if this is a VSX pseudo-register. */
2538 if (IS_VSX_PSEUDOREG (tdep, regno))
2540 static const char *const vsx_regnames[] = {
2541 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2542 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2543 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2544 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2545 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2546 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2547 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2548 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2549 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2551 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2554 /* Check if the this is a Extended FP pseudo-register. */
2555 if (IS_EFP_PSEUDOREG (tdep, regno))
2557 static const char *const efpr_regnames[] = {
2558 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2559 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2560 "f46", "f47", "f48", "f49", "f50", "f51",
2561 "f52", "f53", "f54", "f55", "f56", "f57",
2562 "f58", "f59", "f60", "f61", "f62", "f63"
2564 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2567 /* Check if this is a Checkpointed DFP pseudo-register. */
2568 if (IS_CDFP_PSEUDOREG (tdep, regno))
2570 static const char *const cdfp128_regnames[] = {
2571 "cdl0", "cdl1", "cdl2", "cdl3",
2572 "cdl4", "cdl5", "cdl6", "cdl7",
2573 "cdl8", "cdl9", "cdl10", "cdl11",
2574 "cdl12", "cdl13", "cdl14", "cdl15"
2576 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2579 /* Check if this is a Checkpointed VSX pseudo-register. */
2580 if (IS_CVSX_PSEUDOREG (tdep, regno))
2582 static const char *const cvsx_regnames[] = {
2583 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2584 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2585 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2586 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2587 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2588 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2589 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2590 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2591 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2593 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2596 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2597 if (IS_CEFP_PSEUDOREG (tdep, regno))
2599 static const char *const cefpr_regnames[] = {
2600 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2601 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2602 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2603 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2604 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2606 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2609 return tdesc_register_name (gdbarch, regno);
2612 /* Return the GDB type object for the "standard" data type of data in
2613 register N. */
2615 static struct type *
2616 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2618 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2620 /* These are the e500 pseudo-registers. */
2621 if (IS_SPE_PSEUDOREG (tdep, regnum))
2622 return rs6000_builtin_type_vec64 (gdbarch);
2623 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2624 || IS_CDFP_PSEUDOREG (tdep, regnum))
2625 /* PPC decimal128 pseudo-registers. */
2626 return builtin_type (gdbarch)->builtin_declong;
2627 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2628 return gdbarch_register_type (gdbarch,
2629 tdep->ppc_vr0_regnum
2630 + (regnum
2631 - tdep->ppc_v0_alias_regnum));
2632 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2633 || IS_CVSX_PSEUDOREG (tdep, regnum))
2634 /* POWER7 VSX pseudo-registers. */
2635 return rs6000_builtin_type_vec128 (gdbarch);
2636 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2637 || IS_CEFP_PSEUDOREG (tdep, regnum))
2638 /* POWER7 Extended FP pseudo-registers. */
2639 return builtin_type (gdbarch)->builtin_double;
2640 else
2641 internal_error (_("rs6000_pseudo_register_type: "
2642 "called on unexpected register '%s' (%d)"),
2643 gdbarch_register_name (gdbarch, regnum), regnum);
2646 /* Check if REGNUM is a member of REGGROUP. We only need to handle
2647 the vX aliases for the vector registers by always returning false
2648 to avoid duplicated information in "info register vector/all",
2649 since the raw vrX registers will already show in these cases. For
2650 other pseudo-registers we use the default membership function. */
2652 static int
2653 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2654 const struct reggroup *group)
2656 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2658 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2659 return 0;
2660 else
2661 return default_register_reggroup_p (gdbarch, regnum, group);
2664 /* The register format for RS/6000 floating point registers is always
2665 double, we need a conversion if the memory format is float. */
2667 static int
2668 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2669 struct type *type)
2671 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2673 return (tdep->ppc_fp0_regnum >= 0
2674 && regnum >= tdep->ppc_fp0_regnum
2675 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2676 && type->code () == TYPE_CODE_FLT
2677 && (type->length ()
2678 == builtin_type (gdbarch)->builtin_float->length ()));
2681 static int
2682 ieee_128_float_regnum_adjust (struct gdbarch *gdbarch, struct type *type,
2683 int regnum)
2685 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2687 /* If we have the an IEEE 128-bit floating point value, need to map the
2688 register number to the corresponding VSR. */
2689 if (tdep->ppc_vsr0_regnum != -1
2690 && regnum >= tdep->ppc_fp0_regnum
2691 && regnum < (tdep->ppc_fp0_regnum + ppc_num_fprs)
2692 && (gdbarch_long_double_format (gdbarch) == floatformats_ieee_quad)
2693 && (type->length() == 16))
2694 regnum = regnum - tdep->ppc_fp0_regnum + tdep->ppc_vsr0_regnum;
2696 return regnum;
2699 static int
2700 rs6000_register_to_value (const frame_info_ptr &frame,
2701 int regnum,
2702 struct type *type,
2703 gdb_byte *to,
2704 int *optimizedp, int *unavailablep)
2706 struct gdbarch *gdbarch = get_frame_arch (frame);
2707 gdb_byte from[PPC_MAX_REGISTER_SIZE];
2709 gdb_assert (type->code () == TYPE_CODE_FLT);
2711 /* We have an IEEE 128-bit float -- need to change regnum mapping from
2712 fpr to vsr. */
2713 regnum = ieee_128_float_regnum_adjust (gdbarch, type, regnum);
2715 auto from_view
2716 = gdb::make_array_view (from, register_size (gdbarch, regnum));
2717 frame_info_ptr next_frame = get_next_frame_sentinel_okay (frame);
2718 if (!get_frame_register_bytes (next_frame, regnum, 0, from_view, optimizedp,
2719 unavailablep))
2720 return 0;
2722 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2723 to, type);
2724 *optimizedp = *unavailablep = 0;
2725 return 1;
2728 static void
2729 rs6000_value_to_register (const frame_info_ptr &frame,
2730 int regnum,
2731 struct type *type,
2732 const gdb_byte *from)
2734 struct gdbarch *gdbarch = get_frame_arch (frame);
2735 gdb_byte to[PPC_MAX_REGISTER_SIZE];
2737 gdb_assert (type->code () == TYPE_CODE_FLT);
2739 /* We have an IEEE 128-bit float -- need to change regnum mapping from
2740 fpr to vsr. */
2741 regnum = ieee_128_float_regnum_adjust (gdbarch, type, regnum);
2743 struct type *to_type = builtin_type (gdbarch)->builtin_double;
2744 target_float_convert (from, type, to, to_type);
2745 auto to_view = gdb::make_array_view (to, to_type->length ());
2746 put_frame_register (get_next_frame_sentinel_okay (frame), regnum, to_view);
2749 static value *
2750 rs6000_value_from_register (gdbarch *gdbarch, type *type, int regnum,
2751 const frame_info_ptr &this_frame)
2753 /* We have an IEEE 128-bit float -- need to change regnum mapping from
2754 fpr to vsr. */
2755 regnum = ieee_128_float_regnum_adjust (gdbarch, type, regnum);
2757 value *value
2758 = value::allocate_register (get_next_frame_sentinel_okay (this_frame),
2759 regnum, type);
2761 /* Any structure stored in more than one register will always be
2762 an integral number of registers. Otherwise, you need to do
2763 some fiddling with the last register copied here for little
2764 endian machines. */
2765 if (type_byte_order (type) == BFD_ENDIAN_BIG
2766 && type->length () < register_size (gdbarch, regnum))
2767 /* Big-endian, and we want less than full size. */
2768 value->set_offset (register_size (gdbarch, regnum) - type->length ());
2769 else
2770 value->set_offset (0);
2772 return value;
2775 /* The type of a function that moves the value of REG between CACHE
2776 or BUF --- in either direction. */
2777 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2778 int, void *);
2780 /* Move SPE vector register values between a 64-bit buffer and the two
2781 32-bit raw register halves in a regcache. This function handles
2782 both splitting a 64-bit value into two 32-bit halves, and joining
2783 two halves into a whole 64-bit value, depending on the function
2784 passed as the MOVE argument.
2786 EV_REG must be the number of an SPE evN vector register --- a
2787 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2788 64-bit buffer.
2790 Call MOVE once for each 32-bit half of that register, passing
2791 REGCACHE, the number of the raw register corresponding to that
2792 half, and the address of the appropriate half of BUFFER.
2794 For example, passing 'regcache_raw_read' as the MOVE function will
2795 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2796 'regcache_raw_supply' will supply the contents of BUFFER to the
2797 appropriate pair of raw registers in REGCACHE.
2799 You may need to cast away some 'const' qualifiers when passing
2800 MOVE, since this function can't tell at compile-time which of
2801 REGCACHE or BUFFER is acting as the source of the data. If C had
2802 co-variant type qualifiers, ... */
2804 static enum register_status
2805 e500_move_ev_register (move_ev_register_func move,
2806 struct regcache *regcache, int ev_reg, void *buffer)
2808 struct gdbarch *arch = regcache->arch ();
2809 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (arch);
2810 int reg_index;
2811 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2812 enum register_status status;
2814 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2816 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2818 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2820 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2821 byte_buffer);
2822 if (status == REG_VALID)
2823 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2824 byte_buffer + 4);
2826 else
2828 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2829 if (status == REG_VALID)
2830 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2831 byte_buffer + 4);
2834 return status;
2837 static enum register_status
2838 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2840 regcache->raw_write (regnum, (const gdb_byte *) buffer);
2842 return REG_VALID;
2845 static enum register_status
2846 e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2847 int ev_reg, gdb_byte *buffer)
2849 struct gdbarch *arch = regcache->arch ();
2850 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2851 int reg_index;
2852 enum register_status status;
2854 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2856 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2858 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2860 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2861 buffer);
2862 if (status == REG_VALID)
2863 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2864 buffer + 4);
2866 else
2868 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2869 if (status == REG_VALID)
2870 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2871 buffer + 4);
2874 return status;
2878 static void
2879 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2880 int reg_nr, const gdb_byte *buffer)
2882 e500_move_ev_register (do_regcache_raw_write, regcache,
2883 reg_nr, (void *) buffer);
2886 /* Read method for DFP pseudo-registers. */
2887 static enum register_status
2888 dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2889 int reg_nr, gdb_byte *buffer)
2891 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2892 int reg_index, fp0;
2893 enum register_status status;
2895 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2897 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2898 fp0 = PPC_F0_REGNUM;
2900 else
2902 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2904 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2905 fp0 = PPC_CF0_REGNUM;
2908 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2910 /* Read two FP registers to form a whole dl register. */
2911 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
2912 if (status == REG_VALID)
2913 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2914 buffer + 8);
2916 else
2918 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
2919 if (status == REG_VALID)
2920 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
2923 return status;
2926 /* Write method for DFP pseudo-registers. */
2927 static void
2928 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2929 int reg_nr, const gdb_byte *buffer)
2931 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2932 int reg_index, fp0;
2934 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2936 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2937 fp0 = PPC_F0_REGNUM;
2939 else
2941 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2943 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2944 fp0 = PPC_CF0_REGNUM;
2947 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2949 /* Write each half of the dl register into a separate
2950 FP register. */
2951 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2952 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
2954 else
2956 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2957 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
2961 /* Read method for the vX aliases for the raw vrX registers. */
2963 static enum register_status
2964 v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2965 readable_regcache *regcache, int reg_nr,
2966 gdb_byte *buffer)
2968 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2969 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2971 return regcache->raw_read (tdep->ppc_vr0_regnum
2972 + (reg_nr - tdep->ppc_v0_alias_regnum),
2973 buffer);
2976 /* Write method for the vX aliases for the raw vrX registers. */
2978 static void
2979 v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2980 struct regcache *regcache,
2981 int reg_nr, const gdb_byte *buffer)
2983 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2984 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2986 regcache->raw_write (tdep->ppc_vr0_regnum
2987 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2990 /* Read method for POWER7 VSX pseudo-registers. */
2991 static enum register_status
2992 vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2993 int reg_nr, gdb_byte *buffer)
2995 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
2996 int reg_index, vr0, fp0, vsr0_upper;
2997 enum register_status status;
2999 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3001 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3002 vr0 = PPC_VR0_REGNUM;
3003 fp0 = PPC_F0_REGNUM;
3004 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3006 else
3008 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3010 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3011 vr0 = PPC_CVR0_REGNUM;
3012 fp0 = PPC_CF0_REGNUM;
3013 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3016 /* Read the portion that overlaps the VMX registers. */
3017 if (reg_index > 31)
3018 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
3019 else
3020 /* Read the portion that overlaps the FPR registers. */
3021 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3023 status = regcache->raw_read (fp0 + reg_index, buffer);
3024 if (status == REG_VALID)
3025 status = regcache->raw_read (vsr0_upper + reg_index,
3026 buffer + 8);
3028 else
3030 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
3031 if (status == REG_VALID)
3032 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
3035 return status;
3038 /* Write method for POWER7 VSX pseudo-registers. */
3039 static void
3040 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3041 int reg_nr, const gdb_byte *buffer)
3043 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3044 int reg_index, vr0, fp0, vsr0_upper;
3046 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3048 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3049 vr0 = PPC_VR0_REGNUM;
3050 fp0 = PPC_F0_REGNUM;
3051 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3053 else
3055 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3057 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3058 vr0 = PPC_CVR0_REGNUM;
3059 fp0 = PPC_CF0_REGNUM;
3060 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3063 /* Write the portion that overlaps the VMX registers. */
3064 if (reg_index > 31)
3065 regcache->raw_write (vr0 + reg_index - 32, buffer);
3066 else
3067 /* Write the portion that overlaps the FPR registers. */
3068 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3070 regcache->raw_write (fp0 + reg_index, buffer);
3071 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
3073 else
3075 regcache->raw_write (fp0 + reg_index, buffer + 8);
3076 regcache->raw_write (vsr0_upper + reg_index, buffer);
3080 /* Read method for POWER7 Extended FP pseudo-registers. */
3081 static enum register_status
3082 efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
3083 int reg_nr, gdb_byte *buffer)
3085 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3086 int reg_index, vr0;
3088 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3090 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3091 vr0 = PPC_VR0_REGNUM;
3093 else
3095 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3097 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3098 vr0 = PPC_CVR0_REGNUM;
3101 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
3103 /* Read the portion that overlaps the VMX register. */
3104 return regcache->raw_read_part (vr0 + reg_index, offset,
3105 register_size (gdbarch, reg_nr),
3106 buffer);
3109 /* Write method for POWER7 Extended FP pseudo-registers. */
3110 static void
3111 efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3112 int reg_nr, const gdb_byte *buffer)
3114 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3115 int reg_index, vr0;
3116 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
3118 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3120 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3121 vr0 = PPC_VR0_REGNUM;
3123 else
3125 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3127 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3128 vr0 = PPC_CVR0_REGNUM;
3130 /* The call to raw_write_part fails silently if the initial read
3131 of the read-update-write sequence returns an invalid status,
3132 so we check this manually and throw an error if needed. */
3133 regcache->raw_update (vr0 + reg_index);
3134 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
3135 error (_("Cannot write to the checkpointed EFP register, "
3136 "the corresponding vector register is unavailable."));
3139 /* Write the portion that overlaps the VMX register. */
3140 regcache->raw_write_part (vr0 + reg_index, offset,
3141 register_size (gdbarch, reg_nr), buffer);
3144 static enum register_status
3145 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
3146 readable_regcache *regcache,
3147 int reg_nr, gdb_byte *buffer)
3149 struct gdbarch *regcache_arch = regcache->arch ();
3150 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3152 gdb_assert (regcache_arch == gdbarch);
3154 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3155 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3156 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3157 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3158 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3159 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3160 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3161 buffer);
3162 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3163 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3164 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3165 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3166 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3167 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
3168 else
3169 internal_error (_("rs6000_pseudo_register_read: "
3170 "called on unexpected register '%s' (%d)"),
3171 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3174 static void
3175 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3176 struct regcache *regcache,
3177 int reg_nr, const gdb_byte *buffer)
3179 struct gdbarch *regcache_arch = regcache->arch ();
3180 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3182 gdb_assert (regcache_arch == gdbarch);
3184 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3185 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3186 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3187 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3188 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3189 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3190 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3191 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3192 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3193 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3194 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3195 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3196 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
3197 else
3198 internal_error (_("rs6000_pseudo_register_write: "
3199 "called on unexpected register '%s' (%d)"),
3200 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3203 /* Set the register mask in AX with the registers that form the DFP or
3204 checkpointed DFP pseudo-register REG_NR. */
3206 static void
3207 dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3208 struct agent_expr *ax, int reg_nr)
3210 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3211 int reg_index, fp0;
3213 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3215 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3216 fp0 = PPC_F0_REGNUM;
3218 else
3220 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3222 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3223 fp0 = PPC_CF0_REGNUM;
3226 ax_reg_mask (ax, fp0 + 2 * reg_index);
3227 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3230 /* Set the register mask in AX with the raw vector register that
3231 corresponds to its REG_NR alias. */
3233 static void
3234 v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3235 struct agent_expr *ax, int reg_nr)
3237 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3238 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3240 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3241 + (reg_nr - tdep->ppc_v0_alias_regnum));
3244 /* Set the register mask in AX with the registers that form the VSX or
3245 checkpointed VSX pseudo-register REG_NR. */
3247 static void
3248 vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3249 struct agent_expr *ax, int reg_nr)
3251 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3252 int reg_index, vr0, fp0, vsr0_upper;
3254 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3256 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3257 vr0 = PPC_VR0_REGNUM;
3258 fp0 = PPC_F0_REGNUM;
3259 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3261 else
3263 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3265 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3266 vr0 = PPC_CVR0_REGNUM;
3267 fp0 = PPC_CF0_REGNUM;
3268 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3271 if (reg_index > 31)
3273 ax_reg_mask (ax, vr0 + reg_index - 32);
3275 else
3277 ax_reg_mask (ax, fp0 + reg_index);
3278 ax_reg_mask (ax, vsr0_upper + reg_index);
3282 /* Set the register mask in AX with the register that corresponds to
3283 the EFP or checkpointed EFP pseudo-register REG_NR. */
3285 static void
3286 efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3287 struct agent_expr *ax, int reg_nr)
3289 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3290 int reg_index, vr0;
3292 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3294 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3295 vr0 = PPC_VR0_REGNUM;
3297 else
3299 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3301 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3302 vr0 = PPC_CVR0_REGNUM;
3305 ax_reg_mask (ax, vr0 + reg_index);
3308 static int
3309 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3310 struct agent_expr *ax, int reg_nr)
3312 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3313 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3315 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3316 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3317 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3319 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3320 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
3322 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3324 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3326 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3328 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3329 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
3331 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3333 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3334 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3336 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
3338 else
3339 internal_error (_("rs6000_pseudo_register_collect: "
3340 "called on unexpected register '%s' (%d)"),
3341 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3342 return 0;
3346 static void
3347 rs6000_gen_return_address (struct gdbarch *gdbarch,
3348 struct agent_expr *ax, struct axs_value *value,
3349 CORE_ADDR scope)
3351 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3352 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3353 value->kind = axs_lvalue_register;
3354 value->u.reg = tdep->ppc_lr_regnum;
3358 /* Convert a DBX STABS register number to a GDB register number. */
3359 static int
3360 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
3362 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3364 if (0 <= num && num <= 31)
3365 return tdep->ppc_gp0_regnum + num;
3366 else if (32 <= num && num <= 63)
3367 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3368 specifies registers the architecture doesn't have? Our
3369 callers don't check the value we return. */
3370 return tdep->ppc_fp0_regnum + (num - 32);
3371 else if (77 <= num && num <= 108)
3372 return tdep->ppc_vr0_regnum + (num - 77);
3373 else if (1200 <= num && num < 1200 + 32)
3374 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3375 else
3376 switch (num)
3378 case 64:
3379 return tdep->ppc_mq_regnum;
3380 case 65:
3381 return tdep->ppc_lr_regnum;
3382 case 66:
3383 return tdep->ppc_ctr_regnum;
3384 case 76:
3385 return tdep->ppc_xer_regnum;
3386 case 109:
3387 return tdep->ppc_vrsave_regnum;
3388 case 110:
3389 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3390 case 111:
3391 return tdep->ppc_acc_regnum;
3392 case 112:
3393 return tdep->ppc_spefscr_regnum;
3394 default:
3395 return num;
3400 /* Convert a Dwarf 2 register number to a GDB register number. */
3401 static int
3402 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3404 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3406 if (0 <= num && num <= 31)
3407 return tdep->ppc_gp0_regnum + num;
3408 else if (32 <= num && num <= 63)
3409 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3410 specifies registers the architecture doesn't have? Our
3411 callers don't check the value we return. */
3412 return tdep->ppc_fp0_regnum + (num - 32);
3413 else if (1124 <= num && num < 1124 + 32)
3414 return tdep->ppc_vr0_regnum + (num - 1124);
3415 else if (1200 <= num && num < 1200 + 32)
3416 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3417 else
3418 switch (num)
3420 case 64:
3421 return tdep->ppc_cr_regnum;
3422 case 67:
3423 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3424 case 99:
3425 return tdep->ppc_acc_regnum;
3426 case 100:
3427 return tdep->ppc_mq_regnum;
3428 case 101:
3429 return tdep->ppc_xer_regnum;
3430 case 108:
3431 return tdep->ppc_lr_regnum;
3432 case 109:
3433 return tdep->ppc_ctr_regnum;
3434 case 356:
3435 return tdep->ppc_vrsave_regnum;
3436 case 612:
3437 return tdep->ppc_spefscr_regnum;
3440 /* Unknown DWARF register number. */
3441 return -1;
3444 /* Translate a .eh_frame register to DWARF register, or adjust a
3445 .debug_frame register. */
3447 static int
3448 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3450 /* GCC releases before 3.4 use GCC internal register numbering in
3451 .debug_frame (and .debug_info, et cetera). The numbering is
3452 different from the standard SysV numbering for everything except
3453 for GPRs and FPRs. We can not detect this problem in most cases
3454 - to get accurate debug info for variables living in lr, ctr, v0,
3455 et cetera, use a newer version of GCC. But we must detect
3456 one important case - lr is in column 65 in .debug_frame output,
3457 instead of 108.
3459 GCC 3.4, and the "hammer" branch, have a related problem. They
3460 record lr register saves in .debug_frame as 108, but still record
3461 the return column as 65. We fix that up too.
3463 We can do this because 65 is assigned to fpsr, and GCC never
3464 generates debug info referring to it. To add support for
3465 handwritten debug info that restores fpsr, we would need to add a
3466 producer version check to this. */
3467 if (!eh_frame_p)
3469 if (num == 65)
3470 return 108;
3471 else
3472 return num;
3475 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3476 internal register numbering; translate that to the standard DWARF2
3477 register numbering. */
3478 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3479 return num;
3480 else if (68 <= num && num <= 75) /* cr0-cr8 */
3481 return num - 68 + 86;
3482 else if (77 <= num && num <= 108) /* vr0-vr31 */
3483 return num - 77 + 1124;
3484 else
3485 switch (num)
3487 case 64: /* mq */
3488 return 100;
3489 case 65: /* lr */
3490 return 108;
3491 case 66: /* ctr */
3492 return 109;
3493 case 76: /* xer */
3494 return 101;
3495 case 109: /* vrsave */
3496 return 356;
3497 case 110: /* vscr */
3498 return 67;
3499 case 111: /* spe_acc */
3500 return 99;
3501 case 112: /* spefscr */
3502 return 612;
3503 default:
3504 return num;
3509 /* Handling the various POWER/PowerPC variants. */
3511 /* Information about a particular processor variant. */
3513 struct ppc_variant
3515 /* Name of this variant. */
3516 const char *name;
3518 /* English description of the variant. */
3519 const char *description;
3521 /* bfd_arch_info.arch corresponding to variant. */
3522 enum bfd_architecture arch;
3524 /* bfd_arch_info.mach corresponding to variant. */
3525 unsigned long mach;
3527 /* Target description for this variant. */
3528 const struct target_desc **tdesc;
3531 static struct ppc_variant variants[] =
3533 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3534 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3535 {"power", "POWER user-level", bfd_arch_rs6000,
3536 bfd_mach_rs6k, &tdesc_rs6000},
3537 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3538 bfd_mach_ppc_403, &tdesc_powerpc_403},
3539 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3540 bfd_mach_ppc_405, &tdesc_powerpc_405},
3541 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3542 bfd_mach_ppc_601, &tdesc_powerpc_601},
3543 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3544 bfd_mach_ppc_602, &tdesc_powerpc_602},
3545 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3546 bfd_mach_ppc_603, &tdesc_powerpc_603},
3547 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3548 604, &tdesc_powerpc_604},
3549 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3550 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3551 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3552 bfd_mach_ppc_505, &tdesc_powerpc_505},
3553 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3554 bfd_mach_ppc_860, &tdesc_powerpc_860},
3555 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3556 bfd_mach_ppc_750, &tdesc_powerpc_750},
3557 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3558 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3559 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3560 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3562 /* 64-bit */
3563 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3564 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3565 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3566 bfd_mach_ppc_620, &tdesc_powerpc_64},
3567 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3568 bfd_mach_ppc_630, &tdesc_powerpc_64},
3569 {"a35", "PowerPC A35", bfd_arch_powerpc,
3570 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3571 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3572 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3573 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3574 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3576 /* FIXME: I haven't checked the register sets of the following. */
3577 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3578 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3579 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3580 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3581 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3582 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3584 {0, 0, (enum bfd_architecture) 0, 0, 0}
3587 /* Return the variant corresponding to architecture ARCH and machine number
3588 MACH. If no such variant exists, return null. */
3590 static const struct ppc_variant *
3591 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3593 const struct ppc_variant *v;
3595 for (v = variants; v->name; v++)
3596 if (arch == v->arch && mach == v->mach)
3597 return v;
3599 return NULL;
3604 struct rs6000_frame_cache
3606 CORE_ADDR base;
3607 CORE_ADDR initial_sp;
3608 trad_frame_saved_reg *saved_regs;
3610 /* Set BASE_P to true if this frame cache is properly initialized.
3611 Otherwise set to false because some registers or memory cannot
3612 collected. */
3613 int base_p;
3614 /* Cache PC for building unavailable frame. */
3615 CORE_ADDR pc;
3618 static struct rs6000_frame_cache *
3619 rs6000_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
3621 struct rs6000_frame_cache *cache;
3622 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3623 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3624 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3625 struct rs6000_framedata fdata;
3626 int wordsize = tdep->wordsize;
3627 CORE_ADDR func = 0, pc = 0;
3629 if ((*this_cache) != NULL)
3630 return (struct rs6000_frame_cache *) (*this_cache);
3631 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3632 (*this_cache) = cache;
3633 cache->pc = 0;
3634 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3638 func = get_frame_func (this_frame);
3639 cache->pc = func;
3640 pc = get_frame_pc (this_frame);
3641 skip_prologue (gdbarch, func, pc, &fdata);
3643 /* Figure out the parent's stack pointer. */
3645 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3646 address of the current frame. Things might be easier if the
3647 ->frame pointed to the outer-most address of the frame. In
3648 the mean time, the address of the prev frame is used as the
3649 base address of this frame. */
3650 cache->base = get_frame_register_unsigned
3651 (this_frame, gdbarch_sp_regnum (gdbarch));
3653 catch (const gdb_exception_error &ex)
3655 if (ex.error != NOT_AVAILABLE_ERROR)
3656 throw;
3657 return (struct rs6000_frame_cache *) (*this_cache);
3660 /* If the function appears to be frameless, check a couple of likely
3661 indicators that we have simply failed to find the frame setup.
3662 Two common cases of this are missing symbols (i.e.
3663 get_frame_func returns the wrong address or 0), and assembly
3664 stubs which have a fast exit path but set up a frame on the slow
3665 path.
3667 If the LR appears to return to this function, then presume that
3668 we have an ABI compliant frame that we failed to find. */
3669 if (fdata.frameless && fdata.lr_offset == 0)
3671 CORE_ADDR saved_lr;
3672 int make_frame = 0;
3674 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3675 if (func == 0 && saved_lr == pc)
3676 make_frame = 1;
3677 else if (func != 0)
3679 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3680 if (func == saved_func)
3681 make_frame = 1;
3684 if (make_frame)
3686 fdata.frameless = 0;
3687 fdata.lr_offset = tdep->lr_frame_offset;
3691 if (!fdata.frameless)
3693 /* Frameless really means stackless. */
3694 ULONGEST backchain;
3696 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3697 byte_order, &backchain))
3698 cache->base = (CORE_ADDR) backchain;
3701 cache->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->base);
3703 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3704 All fpr's from saved_fpr to fp31 are saved. */
3706 if (fdata.saved_fpr >= 0)
3708 int i;
3709 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3711 /* If skip_prologue says floating-point registers were saved,
3712 but the current architecture has no floating-point registers,
3713 then that's strange. But we have no indices to even record
3714 the addresses under, so we just ignore it. */
3715 if (ppc_floating_point_unit_p (gdbarch))
3716 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3718 cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
3719 fpr_addr += 8;
3723 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3724 All gpr's from saved_gpr to gpr31 are saved (except during the
3725 prologue). */
3727 if (fdata.saved_gpr >= 0)
3729 int i;
3730 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3731 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3733 if (fdata.gpr_mask & (1U << i))
3734 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
3735 gpr_addr += wordsize;
3739 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3740 All vr's from saved_vr to vr31 are saved. */
3741 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3743 if (fdata.saved_vr >= 0)
3745 int i;
3746 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3747 for (i = fdata.saved_vr; i < 32; i++)
3749 cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
3750 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3755 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3756 All vr's from saved_ev to ev31 are saved. ????? */
3757 if (tdep->ppc_ev0_regnum != -1)
3759 if (fdata.saved_ev >= 0)
3761 int i;
3762 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3763 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3765 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3767 cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3768 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3769 + off);
3770 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3775 /* If != 0, fdata.cr_offset is the offset from the frame that
3776 holds the CR. */
3777 if (fdata.cr_offset != 0)
3778 cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3779 + fdata.cr_offset);
3781 /* If != 0, fdata.lr_offset is the offset from the frame that
3782 holds the LR. */
3783 if (fdata.lr_offset != 0)
3784 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3785 + fdata.lr_offset);
3786 else if (fdata.lr_register != -1)
3787 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
3788 /* The PC is found in the link register. */
3789 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3790 cache->saved_regs[tdep->ppc_lr_regnum];
3792 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3793 holds the VRSAVE. */
3794 if (fdata.vrsave_offset != 0)
3795 cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3796 + fdata.vrsave_offset);
3798 if (fdata.alloca_reg < 0)
3799 /* If no alloca register used, then fi->frame is the value of the
3800 %sp for this frame, and it is good enough. */
3801 cache->initial_sp
3802 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3803 else
3804 cache->initial_sp
3805 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3807 cache->base_p = 1;
3808 return cache;
3811 static void
3812 rs6000_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
3813 struct frame_id *this_id)
3815 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3816 this_cache);
3818 if (!info->base_p)
3820 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3821 return;
3824 /* This marks the outermost frame. */
3825 if (info->base == 0)
3826 return;
3828 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3831 static struct value *
3832 rs6000_frame_prev_register (const frame_info_ptr &this_frame,
3833 void **this_cache, int regnum)
3835 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3836 this_cache);
3837 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3840 static const struct frame_unwind rs6000_frame_unwind =
3842 "rs6000 prologue",
3843 NORMAL_FRAME,
3844 default_frame_unwind_stop_reason,
3845 rs6000_frame_this_id,
3846 rs6000_frame_prev_register,
3847 NULL,
3848 default_frame_sniffer
3851 /* Allocate and initialize a frame cache for an epilogue frame.
3852 SP is restored and prev-PC is stored in LR. */
3854 static struct rs6000_frame_cache *
3855 rs6000_epilogue_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
3857 struct rs6000_frame_cache *cache;
3858 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3859 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
3860 struct rs6000_framedata fdata;
3861 int wordsize = tdep->wordsize;
3863 if (*this_cache)
3864 return (struct rs6000_frame_cache *) *this_cache;
3866 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3867 (*this_cache) = cache;
3868 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3872 /* At this point the stack looks as if we just entered the function.
3873 The SP (r1) has been restored but the LR and r31 may not have been
3874 restored yet. Need to update the register unrolling information in
3875 the cache for the LR and the saved gprs. */
3876 CORE_ADDR sp;
3877 CORE_ADDR func = 0, pc = 0;
3879 func = get_frame_func (this_frame);
3880 cache->pc = func;
3881 pc = get_frame_pc (this_frame);
3882 skip_prologue (gdbarch, func, pc, &fdata);
3884 /* SP is in r1 and it has been restored. Get the current value. */
3885 sp = get_frame_register_unsigned (this_frame,
3886 gdbarch_sp_regnum (gdbarch));
3888 cache->base = sp;
3889 cache->initial_sp = sp;
3891 /* Store the unwinding rules for the gpr registers that have not been
3892 restored yet, specifically r31.
3894 if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3895 All gpr's from saved_gpr to gpr31 are saved (except during the
3896 prologue). */
3898 if (fdata.saved_gpr >= 0)
3900 int i;
3901 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3903 for(i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3905 if (fdata.gpr_mask & (1U << i))
3906 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
3907 gpr_addr += wordsize;
3911 /* Store the lr unwinding rules. */
3912 if (fdata.lr_offset != 0)
3913 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3914 + fdata.lr_offset);
3916 else if (fdata.lr_register != -1)
3917 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
3919 /* The PC is found in the link register. */
3920 cache->saved_regs[gdbarch_pc_regnum (gdbarch)]
3921 = cache->saved_regs[tdep->ppc_lr_regnum];
3923 catch (const gdb_exception_error &ex)
3925 if (ex.error != NOT_AVAILABLE_ERROR)
3926 throw;
3929 return cache;
3932 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3933 Return the frame ID of an epilogue frame. */
3935 static void
3936 rs6000_epilogue_frame_this_id (const frame_info_ptr &this_frame,
3937 void **this_cache, struct frame_id *this_id)
3939 CORE_ADDR pc;
3940 struct rs6000_frame_cache *info =
3941 rs6000_epilogue_frame_cache (this_frame, this_cache);
3943 pc = get_frame_func (this_frame);
3944 if (info->base == 0)
3945 (*this_id) = frame_id_build_unavailable_stack (pc);
3946 else
3947 (*this_id) = frame_id_build (info->base, pc);
3950 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3951 Return the register value of REGNUM in previous frame. */
3953 static struct value *
3954 rs6000_epilogue_frame_prev_register (const frame_info_ptr &this_frame,
3955 void **this_cache, int regnum)
3957 struct rs6000_frame_cache *info =
3958 rs6000_epilogue_frame_cache (this_frame, this_cache);
3959 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3962 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3963 Check whether this an epilogue frame. */
3965 static int
3966 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3967 const frame_info_ptr &this_frame,
3968 void **this_prologue_cache)
3970 if (frame_relative_level (this_frame) == 0)
3971 return rs6000_in_function_epilogue_frame_p (this_frame,
3972 get_frame_arch (this_frame),
3973 get_frame_pc (this_frame));
3974 else
3975 return 0;
3978 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3979 a function without debug information. */
3981 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3983 "rs6000 epilogue",
3984 NORMAL_FRAME,
3985 default_frame_unwind_stop_reason,
3986 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3987 NULL,
3988 rs6000_epilogue_frame_sniffer
3992 static CORE_ADDR
3993 rs6000_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
3995 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3996 this_cache);
3997 return info->initial_sp;
4000 static const struct frame_base rs6000_frame_base = {
4001 &rs6000_frame_unwind,
4002 rs6000_frame_base_address,
4003 rs6000_frame_base_address,
4004 rs6000_frame_base_address
4007 static const struct frame_base *
4008 rs6000_frame_base_sniffer (const frame_info_ptr &this_frame)
4010 return &rs6000_frame_base;
4013 /* DWARF-2 frame support. Used to handle the detection of
4014 clobbered registers during function calls. */
4016 static void
4017 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
4018 struct dwarf2_frame_state_reg *reg,
4019 const frame_info_ptr &this_frame)
4021 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4023 /* PPC32 and PPC64 ABI's are the same regarding volatile and
4024 non-volatile registers. We will use the same code for both. */
4026 /* Call-saved GP registers. */
4027 if ((regnum >= tdep->ppc_gp0_regnum + 14
4028 && regnum <= tdep->ppc_gp0_regnum + 31)
4029 || (regnum == tdep->ppc_gp0_regnum + 1))
4030 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
4032 /* Call-clobbered GP registers. */
4033 if ((regnum >= tdep->ppc_gp0_regnum + 3
4034 && regnum <= tdep->ppc_gp0_regnum + 12)
4035 || (regnum == tdep->ppc_gp0_regnum))
4036 reg->how = DWARF2_FRAME_REG_UNDEFINED;
4038 /* Deal with FP registers, if supported. */
4039 if (tdep->ppc_fp0_regnum >= 0)
4041 /* Call-saved FP registers. */
4042 if ((regnum >= tdep->ppc_fp0_regnum + 14
4043 && regnum <= tdep->ppc_fp0_regnum + 31))
4044 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
4046 /* Call-clobbered FP registers. */
4047 if ((regnum >= tdep->ppc_fp0_regnum
4048 && regnum <= tdep->ppc_fp0_regnum + 13))
4049 reg->how = DWARF2_FRAME_REG_UNDEFINED;
4052 /* Deal with ALTIVEC registers, if supported. */
4053 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
4055 /* Call-saved Altivec registers. */
4056 if ((regnum >= tdep->ppc_vr0_regnum + 20
4057 && regnum <= tdep->ppc_vr0_regnum + 31)
4058 || regnum == tdep->ppc_vrsave_regnum)
4059 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
4061 /* Call-clobbered Altivec registers. */
4062 if ((regnum >= tdep->ppc_vr0_regnum
4063 && regnum <= tdep->ppc_vr0_regnum + 19))
4064 reg->how = DWARF2_FRAME_REG_UNDEFINED;
4067 /* Handle PC register and Stack Pointer correctly. */
4068 if (regnum == gdbarch_pc_regnum (gdbarch))
4069 reg->how = DWARF2_FRAME_REG_RA;
4070 else if (regnum == gdbarch_sp_regnum (gdbarch))
4071 reg->how = DWARF2_FRAME_REG_CFA;
4075 /* Return true if a .gnu_attributes section exists in BFD and it
4076 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
4077 section exists in BFD and it indicates that SPE extensions are in
4078 use. Check the .gnu.attributes section first, as the binary might be
4079 compiled for SPE, but not actually using SPE instructions. */
4081 static int
4082 bfd_uses_spe_extensions (bfd *abfd)
4084 asection *sect;
4085 gdb_byte *contents = NULL;
4086 bfd_size_type size;
4087 gdb_byte *ptr;
4088 int success = 0;
4090 if (!abfd)
4091 return 0;
4093 #ifdef HAVE_ELF
4094 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
4095 could be using the SPE vector abi without actually using any spe
4096 bits whatsoever. But it's close enough for now. */
4097 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
4098 Tag_GNU_Power_ABI_Vector);
4099 if (vector_abi == 3)
4100 return 1;
4101 #endif
4103 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
4104 if (!sect)
4105 return 0;
4107 size = bfd_section_size (sect);
4108 contents = (gdb_byte *) xmalloc (size);
4109 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
4111 xfree (contents);
4112 return 0;
4115 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
4117 struct {
4118 uint32 name_len;
4119 uint32 data_len;
4120 uint32 type;
4121 char name[name_len rounded up to 4-byte alignment];
4122 char data[data_len];
4125 Technically, there's only supposed to be one such structure in a
4126 given apuinfo section, but the linker is not always vigilant about
4127 merging apuinfo sections from input files. Just go ahead and parse
4128 them all, exiting early when we discover the binary uses SPE
4129 insns.
4131 It's not specified in what endianness the information in this
4132 section is stored. Assume that it's the endianness of the BFD. */
4133 ptr = contents;
4134 while (1)
4136 unsigned int name_len;
4137 unsigned int data_len;
4138 unsigned int type;
4140 /* If we can't read the first three fields, we're done. */
4141 if (size < 12)
4142 break;
4144 name_len = bfd_get_32 (abfd, ptr);
4145 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
4146 data_len = bfd_get_32 (abfd, ptr + 4);
4147 type = bfd_get_32 (abfd, ptr + 8);
4148 ptr += 12;
4150 /* The name must be "APUinfo\0". */
4151 if (name_len != 8
4152 && strcmp ((const char *) ptr, "APUinfo") != 0)
4153 break;
4154 ptr += name_len;
4156 /* The type must be 2. */
4157 if (type != 2)
4158 break;
4160 /* The data is stored as a series of uint32. The upper half of
4161 each uint32 indicates the particular APU used and the lower
4162 half indicates the revision of that APU. We just care about
4163 the upper half. */
4165 /* Not 4-byte quantities. */
4166 if (data_len & 3U)
4167 break;
4169 while (data_len)
4171 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
4172 unsigned int apu = apuinfo >> 16;
4173 ptr += 4;
4174 data_len -= 4;
4176 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
4177 either. */
4178 if (apu == 0x100 || apu == 0x101)
4180 success = 1;
4181 data_len = 0;
4185 if (success)
4186 break;
4189 xfree (contents);
4190 return success;
4193 /* These are macros for parsing instruction fields (I.1.6.28) */
4195 #define PPC_FIELD(value, from, len) \
4196 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4197 #define PPC_SEXT(v, bs) \
4198 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4199 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4200 - ((CORE_ADDR) 1 << ((bs) - 1)))
4201 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4202 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4203 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4204 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4205 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4206 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4207 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4208 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4209 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4210 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4211 | (PPC_FIELD (insn, 16, 5) << 5))
4212 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4213 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4214 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4215 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
4216 #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
4217 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4218 #define PPC_OE(insn) PPC_BIT (insn, 21)
4219 #define PPC_RC(insn) PPC_BIT (insn, 31)
4220 #define PPC_Rc(insn) PPC_BIT (insn, 21)
4221 #define PPC_LK(insn) PPC_BIT (insn, 31)
4222 #define PPC_TX(insn) PPC_BIT (insn, 31)
4223 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4225 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4226 #define PPC_XTp(insn) ((PPC_BIT (insn, 10) << 5) \
4227 | PPC_FIELD (insn, 6, 4) << 1)
4228 #define PPC_XSp(insn) ((PPC_BIT (insn, 10) << 5) \
4229 | PPC_FIELD (insn, 6, 4) << 1)
4230 #define PPC_XER_NB(xer) (xer & 0x7f)
4232 /* The following macros are for the prefixed instructions. */
4233 #define P_PPC_D(insn_prefix, insn_suffix) \
4234 PPC_SEXT (PPC_FIELD (insn_prefix, 14, 18) << 16 \
4235 | PPC_FIELD (insn_suffix, 16, 16), 34)
4236 #define P_PPC_TX5(insn_sufix) PPC_BIT (insn_suffix, 5)
4237 #define P_PPC_TX15(insn_suffix) PPC_BIT (insn_suffix, 15)
4238 #define P_PPC_XT(insn_suffix) ((PPC_TX (insn_suffix) << 5) \
4239 | PPC_T (insn_suffix))
4240 #define P_PPC_XT5(insn_suffix) ((P_PPC_TX5 (insn_suffix) << 5) \
4241 | PPC_T (insn_suffix))
4242 #define P_PPC_XT15(insn_suffix) \
4243 ((P_PPC_TX15 (insn_suffix) << 5) | PPC_T (insn_suffix))
4245 /* Record Vector-Scalar Registers.
4246 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4247 Otherwise, it's just a VR register. Record them accordingly. */
4249 static int
4250 ppc_record_vsr (struct regcache *regcache, ppc_gdbarch_tdep *tdep, int vsr)
4252 if (vsr < 0 || vsr >= 64)
4253 return -1;
4255 if (vsr >= 32)
4257 if (tdep->ppc_vr0_regnum >= 0)
4258 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4260 else
4262 if (tdep->ppc_fp0_regnum >= 0)
4263 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4264 if (tdep->ppc_vsr0_upper_regnum >= 0)
4265 record_full_arch_list_add_reg (regcache,
4266 tdep->ppc_vsr0_upper_regnum + vsr);
4269 return 0;
4272 /* The ppc_record_ACC_fpscr() records the changes to the VSR registers
4273 modified by a floating point instruction. The ENTRY argument selects which
4274 of the eight AT entries needs to be recorded. The boolean SAVE_FPSCR
4275 argument is set to TRUE to indicate the FPSCR also needs to be recorded.
4276 The function returns 0 on success. */
4278 static int
4279 ppc_record_ACC_fpscr (struct regcache *regcache, ppc_gdbarch_tdep *tdep,
4280 int entry, bool save_fpscr)
4282 int i;
4283 if (entry < 0 || entry >= 8)
4284 return -1;
4286 /* The ACC register file consists of 8 register entries, each register
4287 entry consist of four 128-bit rows.
4289 The ACC rows map to specific VSR registers.
4290 ACC[0][0] -> VSR[0]
4291 ACC[0][1] -> VSR[1]
4292 ACC[0][2] -> VSR[2]
4293 ACC[0][3] -> VSR[3]
4295 ACC[7][0] -> VSR[28]
4296 ACC[7][1] -> VSR[29]
4297 ACC[7][2] -> VSR[30]
4298 ACC[7][3] -> VSR[31]
4300 NOTE:
4301 In ISA 3.1 the ACC is mapped on top of VSR[0] thru VSR[31].
4303 In the future, the ACC may be implemented as an independent register file
4304 rather than mapping on top of the VSRs. This will then require the ACC to
4305 be assigned its own register number and the ptrace interface to be able
4306 access the ACC. Note the ptrace interface for the ACC will also need to
4307 be implemented. */
4309 /* ACC maps over the same VSR space as the fp registers. */
4310 for (i = 0; i < 4; i++)
4312 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum
4313 + entry * 4 + i);
4314 record_full_arch_list_add_reg (regcache,
4315 tdep->ppc_vsr0_upper_regnum
4316 + entry * 4 + i);
4319 if (save_fpscr)
4320 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4322 return 0;
4325 /* Parse and record instructions primary opcode-4 at ADDR.
4326 Return 0 if successful. */
4328 static int
4329 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
4330 CORE_ADDR addr, uint32_t insn)
4332 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4333 int ext = PPC_FIELD (insn, 21, 11);
4334 int vra = PPC_FIELD (insn, 11, 5);
4336 switch (ext & 0x3f)
4338 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4339 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4340 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4341 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4342 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4343 [[fallthrough]];
4344 case 20: /* Move To VSR Byte Mask Immediate opcode, b2 = 0,
4345 ignore bit 31 */
4346 case 21: /* Move To VSR Byte Mask Immediate opcode, b2 = 1,
4347 ignore bit 31 */
4348 case 23: /* Vector Multiply-Sum & write Carry-out Unsigned
4349 Doubleword */
4350 case 24: /* Vector Extract Double Unsigned Byte to VSR
4351 using GPR-specified Left-Index */
4352 case 25: /* Vector Extract Double Unsigned Byte to VSR
4353 using GPR-specified Right-Index */
4354 case 26: /* Vector Extract Double Unsigned Halfword to VSR
4355 using GPR-specified Left-Index */
4356 case 27: /* Vector Extract Double Unsigned Halfword to VSR
4357 using GPR-specified Right-Index */
4358 case 28: /* Vector Extract Double Unsigned Word to VSR
4359 using GPR-specified Left-Index */
4360 case 29: /* Vector Extract Double Unsigned Word to VSR
4361 using GPR-specified Right-Index */
4362 case 30: /* Vector Extract Double Unsigned Doubleword to VSR
4363 using GPR-specified Left-Index */
4364 case 31: /* Vector Extract Double Unsigned Doubleword to VSR
4365 using GPR-specified Right-Index */
4366 case 42: /* Vector Select */
4367 case 43: /* Vector Permute */
4368 case 59: /* Vector Permute Right-indexed */
4369 case 22: /* Vector Shift
4370 Left Double by Bit Immediate if insn[21] = 0
4371 Right Double by Bit Immediate if insn[21] = 1 */
4372 case 44: /* Vector Shift Left Double by Octet Immediate */
4373 case 45: /* Vector Permute and Exclusive-OR */
4374 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4375 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4376 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4377 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4378 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
4379 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
4380 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4381 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4382 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4383 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4384 case 46: /* Vector Multiply-Add Single-Precision */
4385 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4386 record_full_arch_list_add_reg (regcache,
4387 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4388 return 0;
4390 case 48: /* Multiply-Add High Doubleword */
4391 case 49: /* Multiply-Add High Doubleword Unsigned */
4392 case 51: /* Multiply-Add Low Doubleword */
4393 record_full_arch_list_add_reg (regcache,
4394 tdep->ppc_gp0_regnum + PPC_RT (insn));
4395 return 0;
4398 switch ((ext & 0x1ff))
4400 case 385:
4401 if (vra != 0 /* Decimal Convert To Signed Quadword */
4402 && vra != 2 /* Decimal Convert From Signed Quadword */
4403 && vra != 4 /* Decimal Convert To Zoned */
4404 && vra != 5 /* Decimal Convert To National */
4405 && vra != 6 /* Decimal Convert From Zoned */
4406 && vra != 7 /* Decimal Convert From National */
4407 && vra != 31) /* Decimal Set Sign */
4408 break;
4409 [[fallthrough]];
4410 /* 5.16 Decimal Integer Arithmetic Instructions */
4411 case 1: /* Decimal Add Modulo */
4412 case 65: /* Decimal Subtract Modulo */
4414 case 193: /* Decimal Shift */
4415 case 129: /* Decimal Unsigned Shift */
4416 case 449: /* Decimal Shift and Round */
4418 case 257: /* Decimal Truncate */
4419 case 321: /* Decimal Unsigned Truncate */
4421 /* Bit-21 should be set. */
4422 if (!PPC_BIT (insn, 21))
4423 break;
4425 record_full_arch_list_add_reg (regcache,
4426 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4427 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4428 return 0;
4431 /* Bit-21 is used for RC */
4432 switch (ext & 0x3ff)
4434 case 5: /* Vector Rotate Left Quadword */
4435 case 69: /* Vector Rotate Left Quadword then Mask Insert */
4436 case 325: /* Vector Rotate Left Quadword then AND with Mask */
4437 case 6: /* Vector Compare Equal To Unsigned Byte */
4438 case 70: /* Vector Compare Equal To Unsigned Halfword */
4439 case 134: /* Vector Compare Equal To Unsigned Word */
4440 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4441 case 774: /* Vector Compare Greater Than Signed Byte */
4442 case 838: /* Vector Compare Greater Than Signed Halfword */
4443 case 902: /* Vector Compare Greater Than Signed Word */
4444 case 967: /* Vector Compare Greater Than Signed Doubleword */
4445 case 903: /* Vector Compare Greater Than Signed Quadword */
4446 case 518: /* Vector Compare Greater Than Unsigned Byte */
4447 case 646: /* Vector Compare Greater Than Unsigned Word */
4448 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4449 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4450 case 647: /* Vector Compare Greater Than Unsigned Quadword */
4451 case 966: /* Vector Compare Bounds Single-Precision */
4452 case 198: /* Vector Compare Equal To Single-Precision */
4453 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4454 case 455: /* Vector Compare Equal Quadword */
4455 case 710: /* Vector Compare Greater Than Single-Precision */
4456 case 7: /* Vector Compare Not Equal Byte */
4457 case 71: /* Vector Compare Not Equal Halfword */
4458 case 135: /* Vector Compare Not Equal Word */
4459 case 263: /* Vector Compare Not Equal or Zero Byte */
4460 case 327: /* Vector Compare Not Equal or Zero Halfword */
4461 case 391: /* Vector Compare Not Equal or Zero Word */
4462 if (PPC_Rc (insn))
4463 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4464 record_full_arch_list_add_reg (regcache,
4465 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4466 return 0;
4468 case 13:
4469 switch (vra) /* Bit-21 is used for RC */
4471 case 0: /* Vector String Isolate Byte Left-justified */
4472 case 1: /* Vector String Isolate Byte Right-justified */
4473 case 2: /* Vector String Isolate Halfword Left-justified */
4474 case 3: /* Vector String Isolate Halfword Right-justified */
4475 if (PPC_Rc (insn))
4476 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4477 record_full_arch_list_add_reg (regcache,
4478 tdep->ppc_vr0_regnum
4479 + PPC_VRT (insn));
4480 return 0;
4484 if (ext == 1538)
4486 switch (vra)
4488 case 0: /* Vector Count Leading Zero Least-Significant Bits
4489 Byte */
4490 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4491 Byte */
4492 record_full_arch_list_add_reg (regcache,
4493 tdep->ppc_gp0_regnum + PPC_RT (insn));
4494 return 0;
4496 case 6: /* Vector Negate Word */
4497 case 7: /* Vector Negate Doubleword */
4498 case 8: /* Vector Parity Byte Word */
4499 case 9: /* Vector Parity Byte Doubleword */
4500 case 10: /* Vector Parity Byte Quadword */
4501 case 16: /* Vector Extend Sign Byte To Word */
4502 case 17: /* Vector Extend Sign Halfword To Word */
4503 case 24: /* Vector Extend Sign Byte To Doubleword */
4504 case 25: /* Vector Extend Sign Halfword To Doubleword */
4505 case 26: /* Vector Extend Sign Word To Doubleword */
4506 case 27: /* Vector Extend Sign Doubleword To Quadword */
4507 case 28: /* Vector Count Trailing Zeros Byte */
4508 case 29: /* Vector Count Trailing Zeros Halfword */
4509 case 30: /* Vector Count Trailing Zeros Word */
4510 case 31: /* Vector Count Trailing Zeros Doubleword */
4511 record_full_arch_list_add_reg (regcache,
4512 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4513 return 0;
4517 if (ext == 1602)
4519 switch (vra)
4521 case 0: /* Vector Expand Byte Mask */
4522 case 1: /* Vector Expand Halfword Mask */
4523 case 2: /* Vector Expand Word Mask */
4524 case 3: /* Vector Expand Doubleword Mask */
4525 case 4: /* Vector Expand Quadword Mask */
4526 case 16: /* Move to VSR Byte Mask */
4527 case 17: /* Move to VSR Halfword Mask */
4528 case 18: /* Move to VSR Word Mask */
4529 case 19: /* Move to VSR Doubleword Mask */
4530 case 20: /* Move to VSR Quadword Mask */
4531 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
4532 return 0;
4534 case 8: /* Vector Extract Byte Mask */
4535 case 9: /* Vector Extract Halfword Mask */
4536 case 10: /* Vector Extract Word Mask */
4537 case 11: /* Vector Extract Doubleword Mask */
4538 case 12: /* Vector Extract Quadword Mask */
4540 /* Ignore the MP bit in the LSB position of the vra value. */
4541 case 24: /* Vector Count Mask Bits Byte, MP = 0 */
4542 case 25: /* Vector Count Mask Bits Byte, MP = 1 */
4543 case 26: /* Vector Count Mask Bits Halfword, MP = 0 */
4544 case 27: /* Vector Count Mask Bits Halfword, MP = 1 */
4545 case 28: /* Vector Count Mask Bits Word, MP = 0 */
4546 case 29: /* Vector Count Mask Bits Word, MP = 1 */
4547 case 30: /* Vector Count Mask Bits Doubleword, MP = 0 */
4548 case 31: /* Vector Count Mask Bits Doubleword, MP = 1 */
4549 record_full_arch_list_add_reg (regcache,
4550 tdep->ppc_gp0_regnum + PPC_RT (insn));
4551 record_full_arch_list_add_reg (regcache,
4552 tdep->ppc_gp0_regnum + PPC_RT (insn));
4553 return 0;
4557 switch (ext)
4560 case 257: /* Vector Compare Unsigned Quadword */
4561 case 321: /* Vector Compare Signed Quadword */
4562 /* Comparison tests that always set CR field BF */
4563 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4564 record_full_arch_list_add_reg (regcache,
4565 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4566 return 0;
4568 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4569 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4570 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4571 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4572 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4573 case 462: /* Vector Pack Signed Word Signed Saturate */
4574 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4575 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4576 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4577 case 512: /* Vector Add Unsigned Byte Saturate */
4578 case 576: /* Vector Add Unsigned Halfword Saturate */
4579 case 640: /* Vector Add Unsigned Word Saturate */
4580 case 768: /* Vector Add Signed Byte Saturate */
4581 case 832: /* Vector Add Signed Halfword Saturate */
4582 case 896: /* Vector Add Signed Word Saturate */
4583 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4584 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4585 case 1664: /* Vector Subtract Unsigned Word Saturate */
4586 case 1792: /* Vector Subtract Signed Byte Saturate */
4587 case 1856: /* Vector Subtract Signed Halfword Saturate */
4588 case 1920: /* Vector Subtract Signed Word Saturate */
4590 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4591 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4592 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4593 case 1672: /* Vector Sum across Half Signed Word Saturate */
4594 case 1928: /* Vector Sum across Signed Word Saturate */
4595 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4596 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4597 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4598 [[fallthrough]];
4599 case 12: /* Vector Merge High Byte */
4600 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4601 case 76: /* Vector Merge High Halfword */
4602 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4603 case 140: /* Vector Merge High Word */
4604 case 268: /* Vector Merge Low Byte */
4605 case 332: /* Vector Merge Low Halfword */
4606 case 396: /* Vector Merge Low Word */
4607 case 397: /* Vector Clear Leftmost Bytes */
4608 case 461: /* Vector Clear Rightmost Bytes */
4609 case 526: /* Vector Unpack High Signed Byte */
4610 case 590: /* Vector Unpack High Signed Halfword */
4611 case 654: /* Vector Unpack Low Signed Byte */
4612 case 718: /* Vector Unpack Low Signed Halfword */
4613 case 782: /* Vector Pack Pixel */
4614 case 846: /* Vector Unpack High Pixel */
4615 case 974: /* Vector Unpack Low Pixel */
4616 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4617 case 1614: /* Vector Unpack High Signed Word */
4618 case 1676: /* Vector Merge Odd Word */
4619 case 1742: /* Vector Unpack Low Signed Word */
4620 case 1932: /* Vector Merge Even Word */
4621 case 524: /* Vector Splat Byte */
4622 case 588: /* Vector Splat Halfword */
4623 case 652: /* Vector Splat Word */
4624 case 780: /* Vector Splat Immediate Signed Byte */
4625 case 844: /* Vector Splat Immediate Signed Halfword */
4626 case 908: /* Vector Splat Immediate Signed Word */
4627 case 261: /* Vector Shift Left Quadword */
4628 case 452: /* Vector Shift Left */
4629 case 517: /* Vector Shift Right Quadword */
4630 case 708: /* Vector Shift Right */
4631 case 773: /* Vector Shift Right Algebraic Quadword */
4632 case 1036: /* Vector Shift Left by Octet */
4633 case 1100: /* Vector Shift Right by Octet */
4634 case 0: /* Vector Add Unsigned Byte Modulo */
4635 case 64: /* Vector Add Unsigned Halfword Modulo */
4636 case 128: /* Vector Add Unsigned Word Modulo */
4637 case 192: /* Vector Add Unsigned Doubleword Modulo */
4638 case 256: /* Vector Add Unsigned Quadword Modulo */
4639 case 320: /* Vector Add & write Carry Unsigned Quadword */
4640 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4641 case 8: /* Vector Multiply Odd Unsigned Byte */
4642 case 72: /* Vector Multiply Odd Unsigned Halfword */
4643 case 136: /* Vector Multiply Odd Unsigned Word */
4644 case 200: /* Vector Multiply Odd Unsigned Doubleword */
4645 case 264: /* Vector Multiply Odd Signed Byte */
4646 case 328: /* Vector Multiply Odd Signed Halfword */
4647 case 392: /* Vector Multiply Odd Signed Word */
4648 case 456: /* Vector Multiply Odd Signed Doubleword */
4649 case 520: /* Vector Multiply Even Unsigned Byte */
4650 case 584: /* Vector Multiply Even Unsigned Halfword */
4651 case 648: /* Vector Multiply Even Unsigned Word */
4652 case 712: /* Vector Multiply Even Unsigned Doubleword */
4653 case 776: /* Vector Multiply Even Signed Byte */
4654 case 840: /* Vector Multiply Even Signed Halfword */
4655 case 904: /* Vector Multiply Even Signed Word */
4656 case 968: /* Vector Multiply Even Signed Doubleword */
4657 case 457: /* Vector Multiply Low Doubleword */
4658 case 649: /* Vector Multiply High Unsigned Word */
4659 case 713: /* Vector Multiply High Unsigned Doubleword */
4660 case 905: /* Vector Multiply High Signed Word */
4661 case 969: /* Vector Multiply High Signed Doubleword */
4662 case 11: /* Vector Divide Unsigned Quadword */
4663 case 203: /* Vector Divide Unsigned Doubleword */
4664 case 139: /* Vector Divide Unsigned Word */
4665 case 267: /* Vector Divide Signed Quadword */
4666 case 459: /* Vector Divide Signed Doubleword */
4667 case 395: /* Vector Divide Signed Word */
4668 case 523: /* Vector Divide Extended Unsigned Quadword */
4669 case 715: /* Vector Divide Extended Unsigned Doubleword */
4670 case 651: /* Vector Divide Extended Unsigned Word */
4671 case 779: /* Vector Divide Extended Signed Quadword */
4672 case 971: /* Vector Divide Extended Signed Doubleword */
4673 case 907: /* Vector Divide Extended Unsigned Word */
4674 case 1547: /* Vector Modulo Unsigned Quadword */
4675 case 1675: /* Vector Modulo Unsigned Word */
4676 case 1739: /* Vector Modulo Unsigned Doubleword */
4677 case 1803: /* Vector Modulo Signed Quadword */
4678 case 1931: /* Vector Modulo Signed Word */
4679 case 1995: /* Vector Modulo Signed Doubleword */
4681 case 137: /* Vector Multiply Unsigned Word Modulo */
4682 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4683 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4684 case 1152: /* Vector Subtract Unsigned Word Modulo */
4685 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4686 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4687 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4688 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4689 case 1282: /* Vector Average Signed Byte */
4690 case 1346: /* Vector Average Signed Halfword */
4691 case 1410: /* Vector Average Signed Word */
4692 case 1026: /* Vector Average Unsigned Byte */
4693 case 1090: /* Vector Average Unsigned Halfword */
4694 case 1154: /* Vector Average Unsigned Word */
4695 case 258: /* Vector Maximum Signed Byte */
4696 case 322: /* Vector Maximum Signed Halfword */
4697 case 386: /* Vector Maximum Signed Word */
4698 case 450: /* Vector Maximum Signed Doubleword */
4699 case 2: /* Vector Maximum Unsigned Byte */
4700 case 66: /* Vector Maximum Unsigned Halfword */
4701 case 130: /* Vector Maximum Unsigned Word */
4702 case 194: /* Vector Maximum Unsigned Doubleword */
4703 case 770: /* Vector Minimum Signed Byte */
4704 case 834: /* Vector Minimum Signed Halfword */
4705 case 898: /* Vector Minimum Signed Word */
4706 case 962: /* Vector Minimum Signed Doubleword */
4707 case 514: /* Vector Minimum Unsigned Byte */
4708 case 578: /* Vector Minimum Unsigned Halfword */
4709 case 642: /* Vector Minimum Unsigned Word */
4710 case 706: /* Vector Minimum Unsigned Doubleword */
4711 case 1028: /* Vector Logical AND */
4712 case 1668: /* Vector Logical Equivalent */
4713 case 1092: /* Vector Logical AND with Complement */
4714 case 1412: /* Vector Logical NAND */
4715 case 1348: /* Vector Logical OR with Complement */
4716 case 1156: /* Vector Logical OR */
4717 case 1284: /* Vector Logical NOR */
4718 case 1220: /* Vector Logical XOR */
4719 case 4: /* Vector Rotate Left Byte */
4720 case 132: /* Vector Rotate Left Word VX-form */
4721 case 68: /* Vector Rotate Left Halfword */
4722 case 196: /* Vector Rotate Left Doubleword */
4723 case 260: /* Vector Shift Left Byte */
4724 case 388: /* Vector Shift Left Word */
4725 case 324: /* Vector Shift Left Halfword */
4726 case 1476: /* Vector Shift Left Doubleword */
4727 case 516: /* Vector Shift Right Byte */
4728 case 644: /* Vector Shift Right Word */
4729 case 580: /* Vector Shift Right Halfword */
4730 case 1732: /* Vector Shift Right Doubleword */
4731 case 772: /* Vector Shift Right Algebraic Byte */
4732 case 900: /* Vector Shift Right Algebraic Word */
4733 case 836: /* Vector Shift Right Algebraic Halfword */
4734 case 964: /* Vector Shift Right Algebraic Doubleword */
4735 case 10: /* Vector Add Single-Precision */
4736 case 74: /* Vector Subtract Single-Precision */
4737 case 1034: /* Vector Maximum Single-Precision */
4738 case 1098: /* Vector Minimum Single-Precision */
4739 case 842: /* Vector Convert From Signed Fixed-Point Word */
4740 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4741 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4742 case 522: /* Vector Round to Single-Precision Integer Nearest */
4743 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4744 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4745 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4746 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4747 case 266: /* Vector Reciprocal Estimate Single-Precision */
4748 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4749 case 1288: /* Vector AES Cipher */
4750 case 1289: /* Vector AES Cipher Last */
4751 case 1352: /* Vector AES Inverse Cipher */
4752 case 1353: /* Vector AES Inverse Cipher Last */
4753 case 1480: /* Vector AES SubBytes */
4754 case 1730: /* Vector SHA-512 Sigma Doubleword */
4755 case 1666: /* Vector SHA-256 Sigma Word */
4756 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4757 case 1160: /* Vector Polynomial Multiply-Sum Word */
4758 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4759 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4760 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4761 case 1794: /* Vector Count Leading Zeros Byte */
4762 case 1858: /* Vector Count Leading Zeros Halfword */
4763 case 1922: /* Vector Count Leading Zeros Word */
4764 case 1924: /* Vector Count Leading Zeros Doubleword under
4765 bit Mask*/
4766 case 1986: /* Vector Count Leading Zeros Doubleword */
4767 case 1988: /* Vector Count Trailing Zeros Doubleword under bit
4768 Mask */
4769 case 1795: /* Vector Population Count Byte */
4770 case 1859: /* Vector Population Count Halfword */
4771 case 1923: /* Vector Population Count Word */
4772 case 1987: /* Vector Population Count Doubleword */
4773 case 1356: /* Vector Bit Permute Quadword */
4774 case 1484: /* Vector Bit Permute Doubleword */
4775 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4776 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4777 Quadword */
4778 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4779 case 65: /* Vector Multiply-by-10 Extended & write Carry
4780 Unsigned Quadword */
4781 case 1027: /* Vector Absolute Difference Unsigned Byte */
4782 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4783 case 1155: /* Vector Absolute Difference Unsigned Word */
4784 case 1796: /* Vector Shift Right Variable */
4785 case 1860: /* Vector Shift Left Variable */
4786 case 133: /* Vector Rotate Left Word then Mask Insert */
4787 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4788 case 389: /* Vector Rotate Left Word then AND with Mask */
4789 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4790 case 525: /* Vector Extract Unsigned Byte */
4791 case 589: /* Vector Extract Unsigned Halfword */
4792 case 653: /* Vector Extract Unsigned Word */
4793 case 717: /* Vector Extract Doubleword */
4794 case 15: /* Vector Insert Byte from VSR using GPR-specified
4795 Left-Index */
4796 case 79: /* Vector Insert Halfword from VSR using GPR-specified
4797 Left-Index */
4798 case 143: /* Vector Insert Word from VSR using GPR-specified
4799 Left-Index */
4800 case 207: /* Vector Insert Word from GPR using
4801 immediate-specified index */
4802 case 463: /* Vector Insert Doubleword from GPR using
4803 immediate-specified index */
4804 case 271: /* Vector Insert Byte from VSR using GPR-specified
4805 Right-Index */
4806 case 335: /* Vector Insert Halfword from VSR using GPR-specified
4807 Right-Index */
4808 case 399: /* Vector Insert Word from VSR using GPR-specified
4809 Right-Index */
4810 case 527: /* Vector Insert Byte from GPR using GPR-specified
4811 Left-Index */
4812 case 591: /* Vector Insert Halfword from GPR using GPR-specified
4813 Left-Index */
4814 case 655: /* Vector Insert Word from GPR using GPR-specified
4815 Left-Index */
4816 case 719: /* Vector Insert Doubleword from GPR using
4817 GPR-specified Left-Index */
4818 case 783: /* Vector Insert Byte from GPR using GPR-specified
4819 Right-Index */
4820 case 847: /* Vector Insert Halfword from GPR using GPR-specified
4821 Left-Index */
4822 case 911: /* Vector Insert Word from GPR using GPR-specified
4823 Left-Index */
4824 case 975: /* Vector Insert Doubleword from GPR using
4825 GPR-specified Right-Index */
4826 case 781: /* Vector Insert Byte */
4827 case 845: /* Vector Insert Halfword */
4828 case 909: /* Vector Insert Word */
4829 case 973: /* Vector Insert Doubleword */
4830 case 1357: /* Vector Centrifuge Doubleword */
4831 case 1421: /* Vector Parallel Bits Extract Doubleword */
4832 case 1485: /* Vector Parallel Bits Deposit Doubleword */
4833 record_full_arch_list_add_reg (regcache,
4834 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4835 return 0;
4837 case 1228: /* Vector Gather every Nth Bit */
4838 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4839 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4840 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4841 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4842 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4843 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4844 record_full_arch_list_add_reg (regcache,
4845 tdep->ppc_gp0_regnum + PPC_RT (insn));
4846 return 0;
4848 case 1604: /* Move To Vector Status and Control Register */
4849 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4850 return 0;
4851 case 1540: /* Move From Vector Status and Control Register */
4852 record_full_arch_list_add_reg (regcache,
4853 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4854 return 0;
4855 case 833: /* Decimal Copy Sign */
4856 record_full_arch_list_add_reg (regcache,
4857 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4858 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4859 return 0;
4862 gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
4863 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4864 return -1;
4867 /* Parse and record instructions of primary opcode 6 at ADDR.
4868 Return 0 if successful. */
4870 static int
4871 ppc_process_record_op6 (struct gdbarch *gdbarch, struct regcache *regcache,
4872 CORE_ADDR addr, uint32_t insn)
4874 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4875 int subtype = PPC_FIELD (insn, 28, 4);
4876 CORE_ADDR ea = 0;
4878 switch (subtype)
4880 case 0: /* Load VSX Vector Paired */
4881 ppc_record_vsr (regcache, tdep, PPC_XTp (insn));
4882 ppc_record_vsr (regcache, tdep, PPC_XTp (insn) + 1);
4883 return 0;
4884 case 1: /* Store VSX Vector Paired */
4885 if (PPC_RA (insn) != 0)
4886 regcache_raw_read_unsigned (regcache,
4887 tdep->ppc_gp0_regnum + PPC_RA (insn), &ea);
4888 ea += PPC_DQ (insn) << 4;
4889 record_full_arch_list_add_mem (ea, 32);
4890 return 0;
4892 return -1;
4895 /* Parse and record instructions of primary opcode-19 at ADDR.
4896 Return 0 if successful. */
4898 static int
4899 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4900 CORE_ADDR addr, uint32_t insn)
4902 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4903 int ext = PPC_EXTOP (insn);
4905 switch (ext & 0x01f)
4907 case 2: /* Add PC Immediate Shifted */
4908 record_full_arch_list_add_reg (regcache,
4909 tdep->ppc_gp0_regnum + PPC_RT (insn));
4910 return 0;
4913 switch (ext)
4915 case 0: /* Move Condition Register Field */
4916 case 33: /* Condition Register NOR */
4917 case 129: /* Condition Register AND with Complement */
4918 case 193: /* Condition Register XOR */
4919 case 225: /* Condition Register NAND */
4920 case 257: /* Condition Register AND */
4921 case 289: /* Condition Register Equivalent */
4922 case 417: /* Condition Register OR with Complement */
4923 case 449: /* Condition Register OR */
4924 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4925 return 0;
4927 case 16: /* Branch Conditional */
4928 case 560: /* Branch Conditional to Branch Target Address Register */
4929 if ((PPC_BO (insn) & 0x4) == 0)
4930 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4931 [[fallthrough]];
4932 case 528: /* Branch Conditional to Count Register */
4933 if (PPC_LK (insn))
4934 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4935 return 0;
4937 case 150: /* Instruction Synchronize */
4938 /* Do nothing. */
4939 return 0;
4942 gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
4943 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4944 return -1;
4947 /* Parse and record instructions of primary opcode-31 with the extended opcode
4948 177. The argument is the word instruction (insn). Return 0 if successful.
4951 static int
4952 ppc_process_record_op31_177 (struct gdbarch *gdbarch,
4953 struct regcache *regcache,
4954 uint32_t insn)
4956 int RA_opcode = PPC_RA(insn);
4957 int as = PPC_FIELD (insn, 6, 3);
4958 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4960 switch (RA_opcode)
4962 case 0: /* VSX Move From Accumulator, xxmfacc */
4963 case 1: /* VSX Move To Accumulator, xxmtacc */
4964 case 3: /* VSX Set Accumulator to Zero, xxsetaccz */
4965 ppc_record_ACC_fpscr (regcache, tdep, as, false);
4966 return 0;
4968 return -1;
4971 /* Parse and record instructions of primary opcode-31 at ADDR.
4972 Return 0 if successful. */
4974 static int
4975 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4976 CORE_ADDR addr, uint32_t insn)
4978 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
4979 int ext = PPC_EXTOP (insn);
4980 int tmp, nr, nb = 0, i;
4981 CORE_ADDR at_dcsz, ea = 0;
4982 ULONGEST rb, ra, xer;
4983 int size = 0;
4985 /* These instructions have OE bit. */
4986 switch (ext & 0x1ff)
4988 /* These write RT and XER. Update CR if RC is set. */
4989 case 8: /* Subtract from carrying */
4990 case 10: /* Add carrying */
4991 case 136: /* Subtract from extended */
4992 case 138: /* Add extended */
4993 case 200: /* Subtract from zero extended */
4994 case 202: /* Add to zero extended */
4995 case 232: /* Subtract from minus one extended */
4996 case 234: /* Add to minus one extended */
4997 /* CA is always altered, but SO/OV are only altered when OE=1.
4998 In any case, XER is always altered. */
4999 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5000 if (PPC_RC (insn))
5001 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5002 record_full_arch_list_add_reg (regcache,
5003 tdep->ppc_gp0_regnum + PPC_RT (insn));
5004 return 0;
5006 /* These write RT. Update CR if RC is set and update XER if OE is set. */
5007 case 40: /* Subtract from */
5008 case 104: /* Negate */
5009 case 233: /* Multiply low doubleword */
5010 case 235: /* Multiply low word */
5011 case 266: /* Add */
5012 case 393: /* Divide Doubleword Extended Unsigned */
5013 case 395: /* Divide Word Extended Unsigned */
5014 case 425: /* Divide Doubleword Extended */
5015 case 427: /* Divide Word Extended */
5016 case 457: /* Divide Doubleword Unsigned */
5017 case 459: /* Divide Word Unsigned */
5018 case 489: /* Divide Doubleword */
5019 case 491: /* Divide Word */
5020 if (PPC_OE (insn))
5021 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5022 [[fallthrough]];
5023 case 9: /* Multiply High Doubleword Unsigned */
5024 case 11: /* Multiply High Word Unsigned */
5025 case 73: /* Multiply High Doubleword */
5026 case 75: /* Multiply High Word */
5027 if (PPC_RC (insn))
5028 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5029 record_full_arch_list_add_reg (regcache,
5030 tdep->ppc_gp0_regnum + PPC_RT (insn));
5031 return 0;
5034 if ((ext & 0x1f) == 15)
5036 /* Integer Select. bit[16:20] is used for BC. */
5037 record_full_arch_list_add_reg (regcache,
5038 tdep->ppc_gp0_regnum + PPC_RT (insn));
5039 return 0;
5042 if ((ext & 0xff) == 170)
5044 /* Add Extended using alternate carry bits */
5045 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5046 record_full_arch_list_add_reg (regcache,
5047 tdep->ppc_gp0_regnum + PPC_RT (insn));
5048 return 0;
5051 switch (ext)
5053 case 78: /* Determine Leftmost Zero Byte */
5054 if (PPC_RC (insn))
5055 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5056 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5057 record_full_arch_list_add_reg (regcache,
5058 tdep->ppc_gp0_regnum + PPC_RT (insn));
5059 return 0;
5061 /* These only write RT. */
5062 case 19: /* Move from condition register */
5063 /* Move From One Condition Register Field */
5064 case 74: /* Add and Generate Sixes */
5065 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
5066 case 302: /* Move From Branch History Rolling Buffer */
5067 case 339: /* Move From Special Purpose Register */
5068 case 371: /* Move From Time Base [Phased-Out] */
5069 case 309: /* Load Doubleword Monitored Indexed */
5070 case 128: /* Set Boolean */
5071 case 384: /* Set Boolean Condition */
5072 case 416: /* Set Boolean Condition Reverse */
5073 case 448: /* Set Negative Boolean Condition */
5074 case 480: /* Set Negative Boolean Condition Reverse */
5075 case 755: /* Deliver A Random Number */
5076 record_full_arch_list_add_reg (regcache,
5077 tdep->ppc_gp0_regnum + PPC_RT (insn));
5078 return 0;
5080 /* These only write to RA. */
5081 case 51: /* Move From VSR Doubleword */
5082 case 59: /* Count Leading Zeros Doubleword under bit Mask */
5083 case 115: /* Move From VSR Word and Zero */
5084 case 122: /* Population count bytes */
5085 case 155: /* Byte-Reverse Word */
5086 case 156: /* Parallel Bits Deposit Doubleword */
5087 case 187: /* Byte-Reverse Doubleword */
5088 case 188: /* Parallel Bits Extract Doubleword */
5089 case 219: /* Byte-Reverse Halfword */
5090 case 220: /* Centrifuge Doubleword */
5091 case 378: /* Population count words */
5092 case 506: /* Population count doublewords */
5093 case 154: /* Parity Word */
5094 case 186: /* Parity Doubleword */
5095 case 252: /* Bit Permute Doubleword */
5096 case 282: /* Convert Declets To Binary Coded Decimal */
5097 case 314: /* Convert Binary Coded Decimal To Declets */
5098 case 508: /* Compare bytes */
5099 case 307: /* Move From VSR Lower Doubleword */
5100 case 571: /* Count Trailing Zeros Doubleword under bit Mask */
5101 record_full_arch_list_add_reg (regcache,
5102 tdep->ppc_gp0_regnum + PPC_RA (insn));
5103 return 0;
5105 /* These write CR and optional RA. */
5106 case 792: /* Shift Right Algebraic Word */
5107 case 794: /* Shift Right Algebraic Doubleword */
5108 case 824: /* Shift Right Algebraic Word Immediate */
5109 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
5110 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
5111 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5112 record_full_arch_list_add_reg (regcache,
5113 tdep->ppc_gp0_regnum + PPC_RA (insn));
5114 [[fallthrough]];
5115 case 0: /* Compare */
5116 case 32: /* Compare logical */
5117 case 144: /* Move To Condition Register Fields */
5118 /* Move To One Condition Register Field */
5119 case 192: /* Compare Ranged Byte */
5120 case 224: /* Compare Equal Byte */
5121 case 576: /* Move XER to CR Extended */
5122 case 902: /* Paste (should always fail due to single-stepping and
5123 the memory location might not be accessible, so
5124 record only CR) */
5125 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5126 return 0;
5128 /* These write to RT. Update RA if 'update indexed.' */
5129 case 53: /* Load Doubleword with Update Indexed */
5130 case 119: /* Load Byte and Zero with Update Indexed */
5131 case 311: /* Load Halfword and Zero with Update Indexed */
5132 case 55: /* Load Word and Zero with Update Indexed */
5133 case 375: /* Load Halfword Algebraic with Update Indexed */
5134 case 373: /* Load Word Algebraic with Update Indexed */
5135 record_full_arch_list_add_reg (regcache,
5136 tdep->ppc_gp0_regnum + PPC_RA (insn));
5137 [[fallthrough]];
5138 case 21: /* Load Doubleword Indexed */
5139 case 52: /* Load Byte And Reserve Indexed */
5140 case 116: /* Load Halfword And Reserve Indexed */
5141 case 20: /* Load Word And Reserve Indexed */
5142 case 84: /* Load Doubleword And Reserve Indexed */
5143 case 87: /* Load Byte and Zero Indexed */
5144 case 279: /* Load Halfword and Zero Indexed */
5145 case 23: /* Load Word and Zero Indexed */
5146 case 343: /* Load Halfword Algebraic Indexed */
5147 case 341: /* Load Word Algebraic Indexed */
5148 case 790: /* Load Halfword Byte-Reverse Indexed */
5149 case 534: /* Load Word Byte-Reverse Indexed */
5150 case 532: /* Load Doubleword Byte-Reverse Indexed */
5151 case 582: /* Load Word Atomic */
5152 case 614: /* Load Doubleword Atomic */
5153 case 265: /* Modulo Unsigned Doubleword */
5154 case 777: /* Modulo Signed Doubleword */
5155 case 267: /* Modulo Unsigned Word */
5156 case 779: /* Modulo Signed Word */
5157 record_full_arch_list_add_reg (regcache,
5158 tdep->ppc_gp0_regnum + PPC_RT (insn));
5159 return 0;
5161 case 597: /* Load String Word Immediate */
5162 case 533: /* Load String Word Indexed */
5163 if (ext == 597)
5165 nr = PPC_NB (insn);
5166 if (nr == 0)
5167 nr = 32;
5169 else
5171 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
5172 nr = PPC_XER_NB (xer);
5175 nr = (nr + 3) >> 2;
5177 /* If n=0, the contents of register RT are undefined. */
5178 if (nr == 0)
5179 nr = 1;
5181 for (i = 0; i < nr; i++)
5182 record_full_arch_list_add_reg (regcache,
5183 tdep->ppc_gp0_regnum
5184 + ((PPC_RT (insn) + i) & 0x1f));
5185 return 0;
5187 case 276: /* Load Quadword And Reserve Indexed */
5188 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5189 record_full_arch_list_add_reg (regcache, tmp);
5190 record_full_arch_list_add_reg (regcache, tmp + 1);
5191 return 0;
5193 /* These write VRT. */
5194 case 6: /* Load Vector for Shift Left Indexed */
5195 case 38: /* Load Vector for Shift Right Indexed */
5196 case 7: /* Load Vector Element Byte Indexed */
5197 case 39: /* Load Vector Element Halfword Indexed */
5198 case 71: /* Load Vector Element Word Indexed */
5199 case 103: /* Load Vector Indexed */
5200 case 359: /* Load Vector Indexed LRU */
5201 record_full_arch_list_add_reg (regcache,
5202 tdep->ppc_vr0_regnum + PPC_VRT (insn));
5203 return 0;
5205 /* These write FRT. Update RA if 'update indexed.' */
5206 case 567: /* Load Floating-Point Single with Update Indexed */
5207 case 631: /* Load Floating-Point Double with Update Indexed */
5208 record_full_arch_list_add_reg (regcache,
5209 tdep->ppc_gp0_regnum + PPC_RA (insn));
5210 [[fallthrough]];
5211 case 535: /* Load Floating-Point Single Indexed */
5212 case 599: /* Load Floating-Point Double Indexed */
5213 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
5214 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
5215 record_full_arch_list_add_reg (regcache,
5216 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5217 return 0;
5219 case 791: /* Load Floating-Point Double Pair Indexed */
5220 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5221 record_full_arch_list_add_reg (regcache, tmp);
5222 record_full_arch_list_add_reg (regcache, tmp + 1);
5223 return 0;
5225 /* These write to destination register PPC_XT. */
5226 case 179: /* Move To VSR Doubleword */
5227 case 211: /* Move To VSR Word Algebraic */
5228 case 243: /* Move To VSR Word and Zero */
5229 case 588: /* Load VSX Scalar Doubleword Indexed */
5230 case 524: /* Load VSX Scalar Single-Precision Indexed */
5231 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
5232 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
5233 case 13: /* Load VSX Vector Rightmost Byte Indexed */
5234 case 45: /* Load VSX Vector Rightmost Halfword Indexed */
5235 case 77: /* Load VSX Vector Rightmost Word Indexed */
5236 case 109: /* Load VSX Vector Rightmost Doubleword Indexed */
5237 case 844: /* Load VSX Vector Doubleword*2 Indexed */
5238 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
5239 case 780: /* Load VSX Vector Word*4 Indexed */
5240 case 268: /* Load VSX Vector Indexed */
5241 case 364: /* Load VSX Vector Word & Splat Indexed */
5242 case 812: /* Load VSX Vector Halfword*8 Indexed */
5243 case 876: /* Load VSX Vector Byte*16 Indexed */
5244 case 269: /* Load VSX Vector with Length */
5245 case 301: /* Load VSX Vector Left-justified with Length */
5246 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
5247 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
5248 case 403: /* Move To VSR Word & Splat */
5249 case 435: /* Move To VSR Double Doubleword */
5250 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5251 return 0;
5253 case 333: /* Load VSX Vector Paired Indexed */
5254 ppc_record_vsr (regcache, tdep, PPC_XTp (insn));
5255 ppc_record_vsr (regcache, tdep, PPC_XTp (insn) + 1);
5256 return 0;
5258 /* These write RA. Update CR if RC is set. */
5259 case 24: /* Shift Left Word */
5260 case 26: /* Count Leading Zeros Word */
5261 case 27: /* Shift Left Doubleword */
5262 case 28: /* AND */
5263 case 58: /* Count Leading Zeros Doubleword */
5264 case 60: /* AND with Complement */
5265 case 124: /* NOR */
5266 case 284: /* Equivalent */
5267 case 316: /* XOR */
5268 case 476: /* NAND */
5269 case 412: /* OR with Complement */
5270 case 444: /* OR */
5271 case 536: /* Shift Right Word */
5272 case 539: /* Shift Right Doubleword */
5273 case 922: /* Extend Sign Halfword */
5274 case 954: /* Extend Sign Byte */
5275 case 986: /* Extend Sign Word */
5276 case 538: /* Count Trailing Zeros Word */
5277 case 570: /* Count Trailing Zeros Doubleword */
5278 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
5279 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
5281 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
5282 && (PPC_RS (insn) == PPC_RA (insn))
5283 && (PPC_RA (insn) == PPC_RB (insn))
5284 && !PPC_RC (insn))
5286 /* or Rx,Rx,Rx alters PRI in PPR. */
5287 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5288 return 0;
5291 if (PPC_RC (insn))
5292 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5293 record_full_arch_list_add_reg (regcache,
5294 tdep->ppc_gp0_regnum + PPC_RA (insn));
5295 return 0;
5297 /* Store memory. */
5298 case 181: /* Store Doubleword with Update Indexed */
5299 case 183: /* Store Word with Update Indexed */
5300 case 247: /* Store Byte with Update Indexed */
5301 case 439: /* Store Half Word with Update Indexed */
5302 case 695: /* Store Floating-Point Single with Update Indexed */
5303 case 759: /* Store Floating-Point Double with Update Indexed */
5304 record_full_arch_list_add_reg (regcache,
5305 tdep->ppc_gp0_regnum + PPC_RA (insn));
5306 [[fallthrough]];
5307 case 135: /* Store Vector Element Byte Indexed */
5308 case 167: /* Store Vector Element Halfword Indexed */
5309 case 199: /* Store Vector Element Word Indexed */
5310 case 231: /* Store Vector Indexed */
5311 case 487: /* Store Vector Indexed LRU */
5312 case 716: /* Store VSX Scalar Doubleword Indexed */
5313 case 140: /* Store VSX Scalar as Integer Word Indexed */
5314 case 652: /* Store VSX Scalar Single-Precision Indexed */
5315 case 972: /* Store VSX Vector Doubleword*2 Indexed */
5316 case 908: /* Store VSX Vector Word*4 Indexed */
5317 case 149: /* Store Doubleword Indexed */
5318 case 151: /* Store Word Indexed */
5319 case 215: /* Store Byte Indexed */
5320 case 407: /* Store Half Word Indexed */
5321 case 694: /* Store Byte Conditional Indexed */
5322 case 726: /* Store Halfword Conditional Indexed */
5323 case 150: /* Store Word Conditional Indexed */
5324 case 214: /* Store Doubleword Conditional Indexed */
5325 case 182: /* Store Quadword Conditional Indexed */
5326 case 662: /* Store Word Byte-Reverse Indexed */
5327 case 918: /* Store Halfword Byte-Reverse Indexed */
5328 case 660: /* Store Doubleword Byte-Reverse Indexed */
5329 case 663: /* Store Floating-Point Single Indexed */
5330 case 727: /* Store Floating-Point Double Indexed */
5331 case 919: /* Store Floating-Point Double Pair Indexed */
5332 case 983: /* Store Floating-Point as Integer Word Indexed */
5333 case 396: /* Store VSX Vector Indexed */
5334 case 940: /* Store VSX Vector Halfword*8 Indexed */
5335 case 1004: /* Store VSX Vector Byte*16 Indexed */
5336 case 909: /* Store VSX Scalar as Integer Byte Indexed */
5337 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
5338 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
5339 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5341 ra = 0;
5342 if (PPC_RA (insn) != 0)
5343 regcache_raw_read_unsigned (regcache,
5344 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5345 regcache_raw_read_unsigned (regcache,
5346 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5347 ea = ra + rb;
5349 switch (ext)
5351 case 183: /* Store Word with Update Indexed */
5352 case 199: /* Store Vector Element Word Indexed */
5353 case 140: /* Store VSX Scalar as Integer Word Indexed */
5354 case 652: /* Store VSX Scalar Single-Precision Indexed */
5355 case 151: /* Store Word Indexed */
5356 case 150: /* Store Word Conditional Indexed */
5357 case 662: /* Store Word Byte-Reverse Indexed */
5358 case 663: /* Store Floating-Point Single Indexed */
5359 case 695: /* Store Floating-Point Single with Update Indexed */
5360 case 983: /* Store Floating-Point as Integer Word Indexed */
5361 size = 4;
5362 break;
5363 case 247: /* Store Byte with Update Indexed */
5364 case 135: /* Store Vector Element Byte Indexed */
5365 case 215: /* Store Byte Indexed */
5366 case 694: /* Store Byte Conditional Indexed */
5367 case 909: /* Store VSX Scalar as Integer Byte Indexed */
5368 size = 1;
5369 break;
5370 case 439: /* Store Halfword with Update Indexed */
5371 case 167: /* Store Vector Element Halfword Indexed */
5372 case 407: /* Store Halfword Indexed */
5373 case 726: /* Store Halfword Conditional Indexed */
5374 case 918: /* Store Halfword Byte-Reverse Indexed */
5375 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
5376 size = 2;
5377 break;
5378 case 181: /* Store Doubleword with Update Indexed */
5379 case 716: /* Store VSX Scalar Doubleword Indexed */
5380 case 149: /* Store Doubleword Indexed */
5381 case 214: /* Store Doubleword Conditional Indexed */
5382 case 660: /* Store Doubleword Byte-Reverse Indexed */
5383 case 727: /* Store Floating-Point Double Indexed */
5384 case 759: /* Store Floating-Point Double with Update Indexed */
5385 size = 8;
5386 break;
5387 case 972: /* Store VSX Vector Doubleword*2 Indexed */
5388 case 908: /* Store VSX Vector Word*4 Indexed */
5389 case 182: /* Store Quadword Conditional Indexed */
5390 case 231: /* Store Vector Indexed */
5391 case 487: /* Store Vector Indexed LRU */
5392 case 919: /* Store Floating-Point Double Pair Indexed */
5393 case 396: /* Store VSX Vector Indexed */
5394 case 940: /* Store VSX Vector Halfword*8 Indexed */
5395 case 1004: /* Store VSX Vector Byte*16 Indexed */
5396 size = 16;
5397 break;
5398 default:
5399 gdb_assert (0);
5402 /* Align address for Store Vector instructions. */
5403 switch (ext)
5405 case 167: /* Store Vector Element Halfword Indexed */
5406 ea = ea & ~0x1ULL;
5407 break;
5409 case 199: /* Store Vector Element Word Indexed */
5410 ea = ea & ~0x3ULL;
5411 break;
5413 case 231: /* Store Vector Indexed */
5414 case 487: /* Store Vector Indexed LRU */
5415 ea = ea & ~0xfULL;
5416 break;
5419 record_full_arch_list_add_mem (ea, size);
5420 return 0;
5422 case 141: /* Store VSX Vector Rightmost Byte Indexed */
5423 case 173: /* Store VSX Vector Rightmost Halfword Indexed */
5424 case 205: /* Store VSX Vector Rightmost Word Indexed */
5425 case 237: /* Store VSX Vector Rightmost Doubleword Indexed */
5426 switch(ext)
5428 case 141: nb = 1;
5429 break;
5430 case 173: nb = 2;
5431 break;
5432 case 205: nb = 4;
5433 break;
5434 case 237: nb = 8;
5435 break;
5437 ra = 0;
5438 if (PPC_RA (insn) != 0)
5439 regcache_raw_read_unsigned (regcache,
5440 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5441 regcache_raw_read_unsigned (regcache,
5442 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5443 ea = ra + rb;
5444 record_full_arch_list_add_mem (ea, nb);
5445 return 0;
5447 case 397: /* Store VSX Vector with Length */
5448 case 429: /* Store VSX Vector Left-justified with Length */
5449 ra = 0;
5450 if (PPC_RA (insn) != 0)
5451 regcache_raw_read_unsigned (regcache,
5452 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5453 ea = ra;
5454 regcache_raw_read_unsigned (regcache,
5455 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5456 /* Store up to 16 bytes. */
5457 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
5458 if (nb > 0)
5459 record_full_arch_list_add_mem (ea, nb);
5460 return 0;
5462 case 461: /* Store VSX Vector Paired Indexed */
5464 if (PPC_RA (insn) != 0)
5465 regcache_raw_read_unsigned (regcache,
5466 tdep->ppc_gp0_regnum
5467 + PPC_RA (insn), &ea);
5468 regcache_raw_read_unsigned (regcache,
5469 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5470 ea += rb;
5471 record_full_arch_list_add_mem (ea, 32);
5472 return 0;
5475 case 710: /* Store Word Atomic */
5476 case 742: /* Store Doubleword Atomic */
5477 ra = 0;
5478 if (PPC_RA (insn) != 0)
5479 regcache_raw_read_unsigned (regcache,
5480 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5481 ea = ra;
5482 switch (ext)
5484 case 710: /* Store Word Atomic */
5485 size = 8;
5486 break;
5487 case 742: /* Store Doubleword Atomic */
5488 size = 16;
5489 break;
5490 default:
5491 gdb_assert (0);
5493 record_full_arch_list_add_mem (ea, size);
5494 return 0;
5496 case 725: /* Store String Word Immediate */
5497 ra = 0;
5498 if (PPC_RA (insn) != 0)
5499 regcache_raw_read_unsigned (regcache,
5500 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5501 ea += ra;
5503 nb = PPC_NB (insn);
5504 if (nb == 0)
5505 nb = 32;
5507 record_full_arch_list_add_mem (ea, nb);
5509 return 0;
5511 case 661: /* Store String Word Indexed */
5512 ra = 0;
5513 if (PPC_RA (insn) != 0)
5514 regcache_raw_read_unsigned (regcache,
5515 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5516 ea += ra;
5518 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
5519 nb = PPC_XER_NB (xer);
5521 if (nb != 0)
5523 regcache_raw_read_unsigned (regcache,
5524 tdep->ppc_gp0_regnum + PPC_RB (insn),
5525 &rb);
5526 ea += rb;
5527 record_full_arch_list_add_mem (ea, nb);
5530 return 0;
5532 case 467: /* Move To Special Purpose Register */
5533 switch (PPC_SPR (insn))
5535 case 1: /* XER */
5536 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5537 return 0;
5538 case 3: /* DSCR */
5539 if (tdep->ppc_dscr_regnum >= 0)
5540 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5541 return 0;
5542 case 8: /* LR */
5543 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5544 return 0;
5545 case 9: /* CTR */
5546 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5547 return 0;
5548 case 256: /* VRSAVE */
5549 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5550 return 0;
5551 case 815: /* TAR */
5552 if (tdep->ppc_tar_regnum >= 0)
5553 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5554 return 0;
5555 case 896:
5556 case 898: /* PPR */
5557 if (tdep->ppc_ppr_regnum >= 0)
5558 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5559 return 0;
5562 goto UNKNOWN_OP;
5564 case 147: /* Move To Split Little Endian */
5565 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5566 return 0;
5568 case 512: /* Move to Condition Register from XER */
5569 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5570 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5571 return 0;
5573 case 4: /* Trap Word */
5574 case 68: /* Trap Doubleword */
5575 case 430: /* Clear BHRB */
5576 case 598: /* Synchronize */
5577 case 62: /* Wait for Interrupt */
5578 case 30: /* Wait */
5579 case 22: /* Instruction Cache Block Touch */
5580 case 854: /* Enforce In-order Execution of I/O */
5581 case 246: /* Data Cache Block Touch for Store */
5582 case 54: /* Data Cache Block Store */
5583 case 86: /* Data Cache Block Flush */
5584 case 278: /* Data Cache Block Touch */
5585 case 758: /* Data Cache Block Allocate */
5586 case 982: /* Instruction Cache Block Invalidate */
5587 case 774: /* Copy */
5588 case 838: /* CP_Abort */
5589 return 0;
5591 case 654: /* Transaction Begin */
5592 case 686: /* Transaction End */
5593 case 750: /* Transaction Suspend or Resume */
5594 case 782: /* Transaction Abort Word Conditional */
5595 case 814: /* Transaction Abort Doubleword Conditional */
5596 case 846: /* Transaction Abort Word Conditional Immediate */
5597 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5598 case 910: /* Transaction Abort */
5599 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5600 [[fallthrough]];
5601 case 718: /* Transaction Check */
5602 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5603 return 0;
5605 case 1014: /* Data Cache Block set to Zero */
5606 if (target_auxv_search (AT_DCACHEBSIZE, &at_dcsz) <= 0
5607 || at_dcsz == 0)
5608 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5610 ra = 0;
5611 if (PPC_RA (insn) != 0)
5612 regcache_raw_read_unsigned (regcache,
5613 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5614 regcache_raw_read_unsigned (regcache,
5615 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5616 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5617 record_full_arch_list_add_mem (ea, at_dcsz);
5618 return 0;
5620 case 177:
5621 if (ppc_process_record_op31_177 (gdbarch, regcache, insn) == 0)
5622 return 0;
5625 UNKNOWN_OP:
5626 gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
5627 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
5628 return -1;
5631 /* Parse and record instructions of primary opcode-59 at ADDR.
5632 Return 0 if successful. */
5634 static int
5635 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5636 CORE_ADDR addr, uint32_t insn)
5638 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
5639 int ext = PPC_EXTOP (insn);
5640 int at = PPC_FIELD (insn, 6, 3);
5642 /* Note the mnemonics for the pmxvf64ger* instructions were officially
5643 changed to pmdmxvf64ger*. The old mnemonics are still supported as
5644 extended mnemonics. */
5646 switch (ext & 0x1f)
5648 case 18: /* Floating Divide */
5649 case 20: /* Floating Subtract */
5650 case 21: /* Floating Add */
5651 case 22: /* Floating Square Root */
5652 case 24: /* Floating Reciprocal Estimate */
5653 case 25: /* Floating Multiply */
5654 case 26: /* Floating Reciprocal Square Root Estimate */
5655 case 28: /* Floating Multiply-Subtract */
5656 case 29: /* Floating Multiply-Add */
5657 case 30: /* Floating Negative Multiply-Subtract */
5658 case 31: /* Floating Negative Multiply-Add */
5659 record_full_arch_list_add_reg (regcache,
5660 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5661 if (PPC_RC (insn))
5662 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5663 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5665 return 0;
5668 /* MMA instructions, keep looking. */
5669 switch (ext >> 2) /* Additional opcode field is upper 8-bits of ext */
5671 case 3: /* VSX Vector 8-bit Signed/Unsigned Integer GER, xvi8ger4 */
5672 case 2: /* VSX Vector 8-bit Signed/Unsigned Integer GER Positive
5673 multiply, Positive accumulate, xvi8ger4pp */
5675 case 99: /* VSX Vector 8-bit Signed/Unsigned Integer GER with
5676 Saturate Positive multiply, Positive accumulate,
5677 xvi8ger4spp */
5679 case 35: /* VSX Vector 4-bit Signed Integer GER, xvi4ger8 */
5680 case 34: /* VSX Vector 4-bit Signed Integer GER Positive multiply,
5681 Positive accumulate, xvi4ger8pp */
5683 case 75: /* VSX Vector 16-bit Signed Integer GER, xvi16ger2 */
5684 case 107: /* VSX Vector 16-bit Signed Integer GER Positive multiply,
5685 Positive accumulate, xvi16ger2pp */
5687 case 43: /* VSX Vector 16-bit Signed Integer GER with Saturation,
5688 xvi16ger2s */
5689 case 42: /* VSX Vector 16-bit Signed Integer GER with Saturation
5690 Positive multiply, Positive accumulate, xvi16ger2spp */
5691 ppc_record_ACC_fpscr (regcache, tdep, at, false);
5692 return 0;
5694 case 19: /* VSX Vector 16-bit Floating-Point GER, xvf16ger2 */
5695 case 18: /* VSX Vector 16-bit Floating-Point GER Positive multiply,
5696 Positive accumulate, xvf16ger2pp */
5697 case 146: /* VSX Vector 16-bit Floating-Point GER Positive multiply,
5698 Negative accumulate, xvf16ger2pn */
5699 case 82: /* VSX Vector 16-bit Floating-Point GER Negative multiply,
5700 Positive accumulate, xvf16ger2np */
5701 case 210: /* VSX Vector 16-bit Floating-Point GER Negative multiply,
5702 Negative accumulate, xvf16ger2nn */
5704 case 27: /* VSX Vector 32-bit Floating-Point GER, xvf32ger */
5705 case 26: /* VSX Vector 32-bit Floating-Point GER Positive multiply,
5706 Positive accumulate, xvf32gerpp */
5707 case 154: /* VSX Vector 32-bit Floating-Point GER Positive multiply,
5708 Negative accumulate, xvf32gerpn */
5709 case 90: /* VSX Vector 32-bit Floating-Point GER Negative multiply,
5710 Positive accumulate, xvf32gernp */
5711 case 218: /* VSX Vector 32-bit Floating-Point GER Negative multiply,
5712 Negative accumulate, xvf32gernn */
5714 case 59: /* VSX Vector 64-bit Floating-Point GER, pmdmxvf64ger
5715 (pmxvf64ger) */
5716 case 58: /* VSX Vector 64-bit Floating-Point GER Positive multiply,
5717 Positive accumulate, xvf64gerpp */
5718 case 186: /* VSX Vector 64-bit Floating-Point GER Positive multiply,
5719 Negative accumulate, xvf64gerpn */
5720 case 122: /* VSX Vector 64-bit Floating-Point GER Negative multiply,
5721 Positive accumulate, xvf64gernp */
5722 case 250: /* VSX Vector 64-bit Floating-Point GER Negative multiply,
5723 Negative accumulate, pmdmxvf64gernn (pmxvf64gernn) */
5725 case 51: /* VSX Vector bfloat16 GER, xvbf16ger2 */
5726 case 50: /* VSX Vector bfloat16 GER Positive multiply,
5727 Positive accumulate, xvbf16ger2pp */
5728 case 178: /* VSX Vector bfloat16 GER Positive multiply,
5729 Negative accumulate, xvbf16ger2pn */
5730 case 114: /* VSX Vector bfloat16 GER Negative multiply,
5731 Positive accumulate, xvbf16ger2np */
5732 case 242: /* VSX Vector bfloat16 GER Negative multiply,
5733 Negative accumulate, xvbf16ger2nn */
5734 ppc_record_ACC_fpscr (regcache, tdep, at, true);
5735 return 0;
5738 switch (ext)
5740 case 2: /* DFP Add */
5741 case 3: /* DFP Quantize */
5742 case 34: /* DFP Multiply */
5743 case 35: /* DFP Reround */
5744 case 67: /* DFP Quantize Immediate */
5745 case 99: /* DFP Round To FP Integer With Inexact */
5746 case 227: /* DFP Round To FP Integer Without Inexact */
5747 case 258: /* DFP Convert To DFP Long! */
5748 case 290: /* DFP Convert To Fixed */
5749 case 514: /* DFP Subtract */
5750 case 546: /* DFP Divide */
5751 case 770: /* DFP Round To DFP Short! */
5752 case 802: /* DFP Convert From Fixed */
5753 case 834: /* DFP Encode BCD To DPD */
5754 if (PPC_RC (insn))
5755 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5756 record_full_arch_list_add_reg (regcache,
5757 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5758 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5759 return 0;
5761 case 130: /* DFP Compare Ordered */
5762 case 162: /* DFP Test Exponent */
5763 case 194: /* DFP Test Data Class */
5764 case 226: /* DFP Test Data Group */
5765 case 642: /* DFP Compare Unordered */
5766 case 674: /* DFP Test Significance */
5767 case 675: /* DFP Test Significance Immediate */
5768 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5769 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5770 return 0;
5772 case 66: /* DFP Shift Significand Left Immediate */
5773 case 98: /* DFP Shift Significand Right Immediate */
5774 case 322: /* DFP Decode DPD To BCD */
5775 case 354: /* DFP Extract Biased Exponent */
5776 case 866: /* DFP Insert Biased Exponent */
5777 record_full_arch_list_add_reg (regcache,
5778 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5779 if (PPC_RC (insn))
5780 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5781 return 0;
5783 case 846: /* Floating Convert From Integer Doubleword Single */
5784 case 974: /* Floating Convert From Integer Doubleword Unsigned
5785 Single */
5786 record_full_arch_list_add_reg (regcache,
5787 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5788 if (PPC_RC (insn))
5789 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5790 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5792 return 0;
5795 gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
5796 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5797 return -1;
5800 /* Parse and record an XX2-Form instruction with opcode 60 at ADDR. The
5801 word instruction is an argument insn. Return 0 if successful. */
5803 static int
5804 ppc_process_record_op60_XX2 (struct gdbarch *gdbarch,
5805 struct regcache *regcache,
5806 CORE_ADDR addr, uint32_t insn)
5808 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
5809 int RA_opcode = PPC_RA(insn);
5811 switch (RA_opcode)
5813 case 2: /* VSX Vector Test Least-Significant Bit by Byte */
5814 case 25: /* VSX Vector round and Convert Single-Precision format
5815 to Half-Precision format. Only changes the CR
5816 field. */
5817 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5818 return 0;
5819 case 17: /* VSX Vector Convert with round Single-Precision
5820 to bfloat16 format */
5821 case 24: /* VSX Vector Convert Half-Precision format to
5822 Single-Precision format */
5823 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5824 [[fallthrough]];
5825 case 0: /* VSX Vector Extract Exponent Double-Precision */
5826 case 1: /* VSX Vector Extract Significand Double-Precision */
5827 case 7: /* VSX Vector Byte-Reverse Halfword */
5828 case 8: /* VSX Vector Extract Exponent Single-Precision */
5829 case 9: /* VSX Vector Extract Significand Single-Precision */
5830 case 15: /* VSX Vector Byte-Reverse Word */
5831 case 16: /* VSX Vector Convert bfloat16 to Single-Precision
5832 format Non-signaling */
5833 case 23: /* VSX Vector Byte-Reverse Doubleword */
5834 case 31: /* VSX Vector Byte-Reverse Quadword */
5835 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5836 return 0;
5839 return -1;
5842 /* Parse and record instructions of primary opcode-60 at ADDR.
5843 Return 0 if successful. */
5845 static int
5846 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5847 CORE_ADDR addr, uint32_t insn)
5849 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
5850 int ext = PPC_EXTOP (insn);
5852 switch (ext >> 2)
5854 case 0: /* VSX Scalar Add Single-Precision */
5855 case 32: /* VSX Scalar Add Double-Precision */
5856 case 24: /* VSX Scalar Divide Single-Precision */
5857 case 56: /* VSX Scalar Divide Double-Precision */
5858 case 176: /* VSX Scalar Copy Sign Double-Precision */
5859 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5860 case 41: /* ditto */
5861 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5862 case 9: /* ditto */
5863 case 160: /* VSX Scalar Maximum Double-Precision */
5864 case 168: /* VSX Scalar Minimum Double-Precision */
5865 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5866 case 57: /* ditto */
5867 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5868 case 25: /* ditto */
5869 case 48: /* VSX Scalar Multiply Double-Precision */
5870 case 16: /* VSX Scalar Multiply Single-Precision */
5871 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5872 case 169: /* ditto */
5873 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5874 case 137: /* ditto */
5875 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5876 case 185: /* ditto */
5877 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5878 case 153: /* ditto */
5879 case 40: /* VSX Scalar Subtract Double-Precision */
5880 case 8: /* VSX Scalar Subtract Single-Precision */
5881 case 96: /* VSX Vector Add Double-Precision */
5882 case 64: /* VSX Vector Add Single-Precision */
5883 case 120: /* VSX Vector Divide Double-Precision */
5884 case 88: /* VSX Vector Divide Single-Precision */
5885 case 97: /* VSX Vector Multiply-Add Double-Precision */
5886 case 105: /* ditto */
5887 case 65: /* VSX Vector Multiply-Add Single-Precision */
5888 case 73: /* ditto */
5889 case 224: /* VSX Vector Maximum Double-Precision */
5890 case 192: /* VSX Vector Maximum Single-Precision */
5891 case 232: /* VSX Vector Minimum Double-Precision */
5892 case 200: /* VSX Vector Minimum Single-Precision */
5893 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5894 case 121: /* ditto */
5895 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5896 case 89: /* ditto */
5897 case 112: /* VSX Vector Multiply Double-Precision */
5898 case 80: /* VSX Vector Multiply Single-Precision */
5899 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5900 case 233: /* ditto */
5901 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5902 case 201: /* ditto */
5903 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5904 case 249: /* ditto */
5905 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5906 case 217: /* ditto */
5907 case 104: /* VSX Vector Subtract Double-Precision */
5908 case 72: /* VSX Vector Subtract Single-Precision */
5909 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5910 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5911 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5912 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5913 case 3: /* VSX Scalar Compare Equal Double-Precision */
5914 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5915 case 19: /* VSX Scalar Compare Greater Than or Equal
5916 Double-Precision */
5917 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5918 [[fallthrough]];
5919 case 240: /* VSX Vector Copy Sign Double-Precision */
5920 case 208: /* VSX Vector Copy Sign Single-Precision */
5921 case 130: /* VSX Logical AND */
5922 case 138: /* VSX Logical AND with Complement */
5923 case 186: /* VSX Logical Equivalence */
5924 case 178: /* VSX Logical NAND */
5925 case 170: /* VSX Logical OR with Complement */
5926 case 162: /* VSX Logical NOR */
5927 case 146: /* VSX Logical OR */
5928 case 154: /* VSX Logical XOR */
5929 case 18: /* VSX Merge High Word */
5930 case 50: /* VSX Merge Low Word */
5931 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5932 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5933 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5934 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5935 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5936 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5937 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5938 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
5939 case 216: /* VSX Vector Insert Exponent Single-Precision */
5940 case 248: /* VSX Vector Insert Exponent Double-Precision */
5941 case 26: /* VSX Vector Permute */
5942 case 58: /* VSX Vector Permute Right-indexed */
5943 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5944 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5945 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5946 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
5947 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5948 return 0;
5950 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5951 case 125: /* VSX Vector Test for software Divide Double-Precision */
5952 case 93: /* VSX Vector Test for software Divide Single-Precision */
5953 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5954 return 0;
5956 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5957 case 43: /* VSX Scalar Compare Ordered Double-Precision */
5958 case 59: /* VSX Scalar Compare Exponents Double-Precision */
5959 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5960 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5961 return 0;
5964 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5966 case 99: /* VSX Vector Compare Equal To Double-Precision */
5967 case 67: /* VSX Vector Compare Equal To Single-Precision */
5968 case 115: /* VSX Vector Compare Greater Than or
5969 Equal To Double-Precision */
5970 case 83: /* VSX Vector Compare Greater Than or
5971 Equal To Single-Precision */
5972 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5973 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5974 if (PPC_Rc (insn))
5975 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5976 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5977 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5978 return 0;
5981 switch (ext >> 1)
5983 case 265: /* VSX Scalar round Double-Precision to
5984 Single-Precision and Convert to
5985 Single-Precision format */
5986 case 344: /* VSX Scalar truncate Double-Precision to
5987 Integer and Convert to Signed Integer
5988 Doubleword format with Saturate */
5989 case 88: /* VSX Scalar truncate Double-Precision to
5990 Integer and Convert to Signed Integer Word
5991 Format with Saturate */
5992 case 328: /* VSX Scalar truncate Double-Precision integer
5993 and Convert to Unsigned Integer Doubleword
5994 Format with Saturate */
5995 case 72: /* VSX Scalar truncate Double-Precision to
5996 Integer and Convert to Unsigned Integer Word
5997 Format with Saturate */
5998 case 329: /* VSX Scalar Convert Single-Precision to
5999 Double-Precision format */
6000 case 376: /* VSX Scalar Convert Signed Integer
6001 Doubleword to floating-point format and
6002 Round to Double-Precision format */
6003 case 312: /* VSX Scalar Convert Signed Integer
6004 Doubleword to floating-point format and
6005 round to Single-Precision */
6006 case 360: /* VSX Scalar Convert Unsigned Integer
6007 Doubleword to floating-point format and
6008 Round to Double-Precision format */
6009 case 296: /* VSX Scalar Convert Unsigned Integer
6010 Doubleword to floating-point format and
6011 Round to Single-Precision */
6012 case 73: /* VSX Scalar Round to Double-Precision Integer
6013 Using Round to Nearest Away */
6014 case 107: /* VSX Scalar Round to Double-Precision Integer
6015 Exact using Current rounding mode */
6016 case 121: /* VSX Scalar Round to Double-Precision Integer
6017 Using Round toward -Infinity */
6018 case 105: /* VSX Scalar Round to Double-Precision Integer
6019 Using Round toward +Infinity */
6020 case 89: /* VSX Scalar Round to Double-Precision Integer
6021 Using Round toward Zero */
6022 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
6023 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
6024 case 281: /* VSX Scalar Round to Single-Precision */
6025 case 74: /* VSX Scalar Reciprocal Square Root Estimate
6026 Double-Precision */
6027 case 10: /* VSX Scalar Reciprocal Square Root Estimate
6028 Single-Precision */
6029 case 75: /* VSX Scalar Square Root Double-Precision */
6030 case 11: /* VSX Scalar Square Root Single-Precision */
6031 case 393: /* VSX Vector round Double-Precision to
6032 Single-Precision and Convert to
6033 Single-Precision format */
6034 case 472: /* VSX Vector truncate Double-Precision to
6035 Integer and Convert to Signed Integer
6036 Doubleword format with Saturate */
6037 case 216: /* VSX Vector truncate Double-Precision to
6038 Integer and Convert to Signed Integer Word
6039 Format with Saturate */
6040 case 456: /* VSX Vector truncate Double-Precision to
6041 Integer and Convert to Unsigned Integer
6042 Doubleword format with Saturate */
6043 case 200: /* VSX Vector truncate Double-Precision to
6044 Integer and Convert to Unsigned Integer Word
6045 Format with Saturate */
6046 case 457: /* VSX Vector Convert Single-Precision to
6047 Double-Precision format */
6048 case 408: /* VSX Vector truncate Single-Precision to
6049 Integer and Convert to Signed Integer
6050 Doubleword format with Saturate */
6051 case 152: /* VSX Vector truncate Single-Precision to
6052 Integer and Convert to Signed Integer Word
6053 Format with Saturate */
6054 case 392: /* VSX Vector truncate Single-Precision to
6055 Integer and Convert to Unsigned Integer
6056 Doubleword format with Saturate */
6057 case 136: /* VSX Vector truncate Single-Precision to
6058 Integer and Convert to Unsigned Integer Word
6059 Format with Saturate */
6060 case 504: /* VSX Vector Convert and round Signed Integer
6061 Doubleword to Double-Precision format */
6062 case 440: /* VSX Vector Convert and round Signed Integer
6063 Doubleword to Single-Precision format */
6064 case 248: /* VSX Vector Convert Signed Integer Word to
6065 Double-Precision format */
6066 case 184: /* VSX Vector Convert and round Signed Integer
6067 Word to Single-Precision format */
6068 case 488: /* VSX Vector Convert and round Unsigned
6069 Integer Doubleword to Double-Precision format */
6070 case 424: /* VSX Vector Convert and round Unsigned
6071 Integer Doubleword to Single-Precision format */
6072 case 232: /* VSX Vector Convert and round Unsigned
6073 Integer Word to Double-Precision format */
6074 case 168: /* VSX Vector Convert and round Unsigned
6075 Integer Word to Single-Precision format */
6076 case 201: /* VSX Vector Round to Double-Precision
6077 Integer using round to Nearest Away */
6078 case 235: /* VSX Vector Round to Double-Precision
6079 Integer Exact using Current rounding mode */
6080 case 249: /* VSX Vector Round to Double-Precision
6081 Integer using round toward -Infinity */
6082 case 233: /* VSX Vector Round to Double-Precision
6083 Integer using round toward +Infinity */
6084 case 217: /* VSX Vector Round to Double-Precision
6085 Integer using round toward Zero */
6086 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
6087 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
6088 case 137: /* VSX Vector Round to Single-Precision Integer
6089 Using Round to Nearest Away */
6090 case 171: /* VSX Vector Round to Single-Precision Integer
6091 Exact Using Current rounding mode */
6092 case 185: /* VSX Vector Round to Single-Precision Integer
6093 Using Round toward -Infinity */
6094 case 169: /* VSX Vector Round to Single-Precision Integer
6095 Using Round toward +Infinity */
6096 case 153: /* VSX Vector Round to Single-Precision Integer
6097 Using round toward Zero */
6098 case 202: /* VSX Vector Reciprocal Square Root Estimate
6099 Double-Precision */
6100 case 138: /* VSX Vector Reciprocal Square Root Estimate
6101 Single-Precision */
6102 case 203: /* VSX Vector Square Root Double-Precision */
6103 case 139: /* VSX Vector Square Root Single-Precision */
6104 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6105 [[fallthrough]];
6106 case 345: /* VSX Scalar Absolute Value Double-Precision */
6107 case 267: /* VSX Scalar Convert Scalar Single-Precision to
6108 Vector Single-Precision format Non-signalling */
6109 case 331: /* VSX Scalar Convert Single-Precision to
6110 Double-Precision format Non-signalling */
6111 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
6112 case 377: /* VSX Scalar Negate Double-Precision */
6113 case 473: /* VSX Vector Absolute Value Double-Precision */
6114 case 409: /* VSX Vector Absolute Value Single-Precision */
6115 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
6116 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
6117 case 505: /* VSX Vector Negate Double-Precision */
6118 case 441: /* VSX Vector Negate Single-Precision */
6119 case 164: /* VSX Splat Word */
6120 case 165: /* VSX Vector Extract Unsigned Word */
6121 case 181: /* VSX Vector Insert Word */
6122 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6123 return 0;
6125 case 298: /* VSX Scalar Test Data Class Single-Precision */
6126 case 362: /* VSX Scalar Test Data Class Double-Precision */
6127 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6128 [[fallthrough]];
6129 case 106: /* VSX Scalar Test for software Square Root
6130 Double-Precision */
6131 case 234: /* VSX Vector Test for software Square Root
6132 Double-Precision */
6133 case 170: /* VSX Vector Test for software Square Root
6134 Single-Precision */
6135 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6136 return 0;
6138 case 347:
6139 switch (PPC_FIELD (insn, 11, 5))
6141 case 0: /* VSX Scalar Extract Exponent Double-Precision */
6142 case 1: /* VSX Scalar Extract Significand Double-Precision */
6143 record_full_arch_list_add_reg (regcache,
6144 tdep->ppc_gp0_regnum + PPC_RT (insn));
6145 return 0;
6146 case 16: /* VSX Scalar Convert Half-Precision format to
6147 Double-Precision format */
6148 case 17: /* VSX Scalar round & Convert Double-Precision format
6149 to Half-Precision format */
6150 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6151 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6152 return 0;
6154 break;
6156 case 475:
6157 if (ppc_process_record_op60_XX2 (gdbarch, regcache, addr, insn) != 0)
6158 return -1;
6159 return 0;
6162 switch (ext)
6164 case 360:
6165 if (PPC_FIELD (insn, 11, 2) == 0) /* VSX Vector Splat Immediate Byte */
6167 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6168 return 0;
6170 if (PPC_FIELD (insn, 11, 5) == 31) /* Load VSX Vector Special Value
6171 Quadword */
6173 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6174 return 0;
6176 break;
6177 case 916: /* VSX Vector Generate PCV from Byte Mask */
6178 case 917: /* VSX Vector Generate PCV from Halfword Mask */
6179 case 948: /* VSX Vector Generate PCV from Word Mask */
6180 case 949: /* VSX Vector Generate PCV from Doubleword Mask */
6181 case 918: /* VSX Scalar Insert Exponent Double-Precision */
6182 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6183 return 0;
6186 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
6188 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6189 return 0;
6192 gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
6193 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
6194 return -1;
6197 /* Parse and record instructions of primary opcode-61 at ADDR.
6198 Return 0 if successful. */
6200 static int
6201 ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
6202 CORE_ADDR addr, uint32_t insn)
6204 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6205 ULONGEST ea = 0;
6206 int size;
6208 switch (insn & 0x3)
6210 case 0: /* Store Floating-Point Double Pair */
6211 case 2: /* Store VSX Scalar Doubleword */
6212 case 3: /* Store VSX Scalar Single */
6213 if (PPC_RA (insn) != 0)
6214 regcache_raw_read_unsigned (regcache,
6215 tdep->ppc_gp0_regnum + PPC_RA (insn),
6216 &ea);
6217 ea += PPC_DS (insn) << 2;
6218 switch (insn & 0x3)
6220 case 0: /* Store Floating-Point Double Pair */
6221 size = 16;
6222 break;
6223 case 2: /* Store VSX Scalar Doubleword */
6224 size = 8;
6225 break;
6226 case 3: /* Store VSX Scalar Single */
6227 size = 4;
6228 break;
6229 default:
6230 gdb_assert (0);
6232 record_full_arch_list_add_mem (ea, size);
6233 return 0;
6236 switch (insn & 0x7)
6238 case 1: /* Load VSX Vector */
6239 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
6240 return 0;
6241 case 5: /* Store VSX Vector */
6242 if (PPC_RA (insn) != 0)
6243 regcache_raw_read_unsigned (regcache,
6244 tdep->ppc_gp0_regnum + PPC_RA (insn),
6245 &ea);
6246 ea += PPC_DQ (insn) << 4;
6247 record_full_arch_list_add_mem (ea, 16);
6248 return 0;
6251 gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
6252 "at %s.\n", insn, paddress (gdbarch, addr));
6253 return -1;
6256 /* Parse and record instructions of primary opcode-63 at ADDR.
6257 Return 0 if successful. */
6259 static int
6260 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
6261 CORE_ADDR addr, uint32_t insn)
6263 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6264 int ext = PPC_EXTOP (insn);
6265 int tmp;
6267 switch (ext & 0x1f)
6269 case 18: /* Floating Divide */
6270 case 20: /* Floating Subtract */
6271 case 21: /* Floating Add */
6272 case 22: /* Floating Square Root */
6273 case 24: /* Floating Reciprocal Estimate */
6274 case 25: /* Floating Multiply */
6275 case 26: /* Floating Reciprocal Square Root Estimate */
6276 case 28: /* Floating Multiply-Subtract */
6277 case 29: /* Floating Multiply-Add */
6278 case 30: /* Floating Negative Multiply-Subtract */
6279 case 31: /* Floating Negative Multiply-Add */
6280 record_full_arch_list_add_reg (regcache,
6281 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6282 if (PPC_RC (insn))
6283 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6284 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6285 return 0;
6287 case 23: /* Floating Select */
6288 record_full_arch_list_add_reg (regcache,
6289 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6290 if (PPC_RC (insn))
6291 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6292 return 0;
6295 switch (ext & 0xff)
6297 case 5: /* VSX Scalar Round to Quad-Precision Integer */
6298 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
6299 Precision */
6300 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6301 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6302 return 0;
6305 switch (ext)
6307 case 2: /* DFP Add Quad */
6308 case 3: /* DFP Quantize Quad */
6309 case 34: /* DFP Multiply Quad */
6310 case 35: /* DFP Reround Quad */
6311 case 67: /* DFP Quantize Immediate Quad */
6312 case 99: /* DFP Round To FP Integer With Inexact Quad */
6313 case 227: /* DFP Round To FP Integer Without Inexact Quad */
6314 case 258: /* DFP Convert To DFP Extended Quad */
6315 case 514: /* DFP Subtract Quad */
6316 case 546: /* DFP Divide Quad */
6317 case 770: /* DFP Round To DFP Long Quad */
6318 case 802: /* DFP Convert From Fixed Quad */
6319 case 834: /* DFP Encode BCD To DPD Quad */
6320 if (PPC_RC (insn))
6321 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6322 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
6323 record_full_arch_list_add_reg (regcache, tmp);
6324 record_full_arch_list_add_reg (regcache, tmp + 1);
6325 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6326 return 0;
6328 case 130: /* DFP Compare Ordered Quad */
6329 case 162: /* DFP Test Exponent Quad */
6330 case 194: /* DFP Test Data Class Quad */
6331 case 226: /* DFP Test Data Group Quad */
6332 case 642: /* DFP Compare Unordered Quad */
6333 case 674: /* DFP Test Significance Quad */
6334 case 675: /* DFP Test Significance Immediate Quad */
6335 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6336 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6337 return 0;
6339 case 66: /* DFP Shift Significand Left Immediate Quad */
6340 case 98: /* DFP Shift Significand Right Immediate Quad */
6341 case 322: /* DFP Decode DPD To BCD Quad */
6342 case 866: /* DFP Insert Biased Exponent Quad */
6343 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
6344 record_full_arch_list_add_reg (regcache, tmp);
6345 record_full_arch_list_add_reg (regcache, tmp + 1);
6346 if (PPC_RC (insn))
6347 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6348 return 0;
6350 case 290: /* DFP Convert To Fixed Quad */
6351 record_full_arch_list_add_reg (regcache,
6352 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6353 if (PPC_RC (insn))
6354 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6355 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6356 return 0;
6358 case 354: /* DFP Extract Biased Exponent Quad */
6359 record_full_arch_list_add_reg (regcache,
6360 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6361 if (PPC_RC (insn))
6362 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6363 return 0;
6365 case 12: /* Floating Round to Single-Precision */
6366 case 14: /* Floating Convert To Integer Word */
6367 case 15: /* Floating Convert To Integer Word
6368 with round toward Zero */
6369 case 142: /* Floating Convert To Integer Word Unsigned */
6370 case 143: /* Floating Convert To Integer Word Unsigned
6371 with round toward Zero */
6372 case 392: /* Floating Round to Integer Nearest */
6373 case 424: /* Floating Round to Integer Toward Zero */
6374 case 456: /* Floating Round to Integer Plus */
6375 case 488: /* Floating Round to Integer Minus */
6376 case 814: /* Floating Convert To Integer Doubleword */
6377 case 815: /* Floating Convert To Integer Doubleword
6378 with round toward Zero */
6379 case 846: /* Floating Convert From Integer Doubleword */
6380 case 942: /* Floating Convert To Integer Doubleword Unsigned */
6381 case 943: /* Floating Convert To Integer Doubleword Unsigned
6382 with round toward Zero */
6383 case 974: /* Floating Convert From Integer Doubleword Unsigned */
6384 record_full_arch_list_add_reg (regcache,
6385 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6386 if (PPC_RC (insn))
6387 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6388 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6389 return 0;
6391 case 583:
6392 switch (PPC_FIELD (insn, 11, 5))
6394 case 1: /* Move From FPSCR & Clear Enables */
6395 case 20: /* Move From FPSCR Control & set DRN */
6396 case 21: /* Move From FPSCR Control & set DRN Immediate */
6397 case 22: /* Move From FPSCR Control & set RN */
6398 case 23: /* Move From FPSCR Control & set RN Immediate */
6399 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6400 [[fallthrough]];
6401 case 0: /* Move From FPSCR */
6402 case 24: /* Move From FPSCR Lightweight */
6403 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
6404 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6405 record_full_arch_list_add_reg (regcache,
6406 tdep->ppc_fp0_regnum
6407 + PPC_FRT (insn));
6408 return 0;
6410 break;
6412 case 8: /* Floating Copy Sign */
6413 case 40: /* Floating Negate */
6414 case 72: /* Floating Move Register */
6415 case 136: /* Floating Negative Absolute Value */
6416 case 264: /* Floating Absolute Value */
6417 record_full_arch_list_add_reg (regcache,
6418 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6419 if (PPC_RC (insn))
6420 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6421 return 0;
6423 case 838: /* Floating Merge Odd Word */
6424 case 966: /* Floating Merge Even Word */
6425 record_full_arch_list_add_reg (regcache,
6426 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6427 return 0;
6429 case 38: /* Move To FPSCR Bit 1 */
6430 case 70: /* Move To FPSCR Bit 0 */
6431 case 134: /* Move To FPSCR Field Immediate */
6432 case 711: /* Move To FPSCR Fields */
6433 if (PPC_RC (insn))
6434 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6435 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6436 return 0;
6438 case 0: /* Floating Compare Unordered */
6439 case 32: /* Floating Compare Ordered */
6440 case 64: /* Move to Condition Register from FPSCR */
6441 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
6442 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
6443 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
6444 case 708: /* VSX Scalar Test Data Class Quad-Precision */
6445 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6446 [[fallthrough]];
6447 case 128: /* Floating Test for software Divide */
6448 case 160: /* Floating Test for software Square Root */
6449 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
6450 return 0;
6452 case 4: /* VSX Scalar Add Quad-Precision */
6453 case 36: /* VSX Scalar Multiply Quad-Precision */
6454 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
6455 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
6456 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
6457 case 484: /* VSX Scalar Negative Multiply-Subtract
6458 Quad-Precision */
6459 case 516: /* VSX Scalar Subtract Quad-Precision */
6460 case 548: /* VSX Scalar Divide Quad-Precision */
6461 case 994:
6463 switch (PPC_FIELD (insn, 11, 5))
6465 case 0: /* DFP Convert From Fixed Quadword Quad */
6466 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6468 record_full_arch_list_add_reg (regcache,
6469 tdep->ppc_fp0_regnum
6470 + PPC_FRT (insn));
6471 record_full_arch_list_add_reg (regcache,
6472 tdep->ppc_fp0_regnum
6473 + PPC_FRT (insn) + 1);
6474 return 0;
6475 case 1: /* DFP Convert To Fixed Quadword Quad */
6476 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6477 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6478 return 0;
6482 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6483 [[fallthrough]];
6484 case 68: /* VSX Scalar Compare Equal Quad-Precision */
6485 case 196: /* VSX Scalar Compare Greater Than or Equal
6486 Quad-Precision */
6487 case 228: /* VSX Scalar Compare Greater Than Quad-Precision */
6488 case 676: /* VSX Scalar Maximum Type-C Quad-Precision */
6489 case 740: /* VSX Scalar Minimum Type-C Quad-Precision */
6490 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6491 [[fallthrough]];
6492 case 100: /* VSX Scalar Copy Sign Quad-Precision */
6493 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
6494 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6495 return 0;
6497 case 804:
6498 switch (PPC_FIELD (insn, 11, 5))
6500 case 27: /* VSX Scalar Square Root Quad-Precision */
6501 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6502 [[fallthrough]];
6503 case 0: /* VSX Scalar Absolute Quad-Precision */
6504 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
6505 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
6506 case 16: /* VSX Scalar Negate Quad-Precision */
6507 case 18: /* VSX Scalar Extract Significand Quad-Precision */
6508 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6509 return 0;
6511 break;
6513 case 836:
6514 switch (PPC_FIELD (insn, 11, 5))
6516 case 0: /* VSX Scalar Convert with round to zero
6517 Quad-Precision to Unsigned Quadword */
6518 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
6519 to Unsigned Word format */
6520 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
6521 Quad-Precision format */
6522 case 3: /* VSX Scalar Convert with round
6523 Unsigned Quadword to Quad-Precision */
6524 case 8: /* VSX Scalar Convert with round to zero
6525 Quad-Precision to Signed Quadword */
6526 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
6527 to Signed Word format */
6528 case 10: /* VSX Scalar Convert Signed Doubleword format to
6529 Quad-Precision format */
6530 case 11: /* VSX Scalar Convert with round
6531 Signed Quadword to Quad-Precision */
6532 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
6533 to Unsigned Doubleword format */
6534 case 20: /* VSX Scalar round & Convert Quad-Precision format to
6535 Double-Precision format */
6536 case 22: /* VSX Scalar Convert Double-Precision format to
6537 Quad-Precision format */
6538 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
6539 to Signed Doubleword format */
6540 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6541 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6542 return 0;
6546 gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
6547 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
6548 return -1;
6551 /* Record the prefixed instructions with primary opcode 32. The arguments are
6552 the first 32-bits of the instruction (insn_prefix), and the second 32-bits
6553 of the instruction (insn_suffix). Return 0 on success. */
6555 static int
6556 ppc_process_record_prefix_op42 (struct gdbarch *gdbarch,
6557 struct regcache *regcache,
6558 uint32_t insn_prefix, uint32_t insn_suffix)
6560 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6561 int type = PPC_FIELD (insn_prefix, 6, 2);
6562 int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6564 if (ST1 != 0)
6565 return -1;
6567 switch (type)
6569 case 0: /* Prefixed Load VSX Scalar Doubleword, plxsd */
6570 ppc_record_vsr (regcache, tdep, PPC_VRT (insn_suffix) + 32);
6571 break;
6572 case 2: /* Prefixed Load Halfword Algebraic, plha */
6573 record_full_arch_list_add_reg (regcache,
6574 tdep->ppc_gp0_regnum
6575 + PPC_RT (insn_suffix));
6576 break;
6577 default:
6578 return -1;
6580 return 0;
6583 /* Record the prefixed XX3-Form instructions with primary opcode 59. The
6584 arguments are the first 32-bits of the instruction (insn_prefix), and the
6585 second 32-bits of the instruction (insn_suffix). Return 0 on success. */
6587 static int
6588 ppc_process_record_prefix_op59_XX3 (struct gdbarch *gdbarch,
6589 struct regcache *regcache,
6590 uint32_t insn_prefix, uint32_t insn_suffix)
6592 int opcode = PPC_FIELD (insn_suffix, 21, 8);
6593 int type = PPC_FIELD (insn_prefix, 6, 2);
6594 int ST4 = PPC_FIELD (insn_prefix, 8, 4);
6595 int at = PPC_FIELD (insn_suffix, 6, 3);
6596 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6598 /* Note, the mnemonics for the pmxvf16ger*, pmxvf32ger*,pmxvf64ger*,
6599 pmxvi4ger8*, pmxvi8ger4* pmxvi16ger2* instructions were officially
6600 changed to pmdmxbf16ger*, pmdmxvf32ger*, pmdmxvf64ger*, pmdmxvi4ger8*,
6601 pmdmxvi8ger4*, pmdmxvi16ger* respectively. The old mnemonics are still
6602 supported by the assembler as extended mnemonics. The disassembler
6603 generates the new mnemonics. */
6604 if (type == 3)
6606 if (ST4 == 9)
6607 switch (opcode)
6609 case 35: /* Prefixed Masked VSX Vector 4-bit Signed Integer GER
6610 MMIRR, pmdmxvi4ger8 (pmxvi4ger8) */
6611 case 34: /* Prefixed Masked VSX Vector 4-bit Signed Integer GER
6612 MMIRR, pmdmxvi4ger8pp (pmxvi4ger8pp) */
6614 case 99: /* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
6615 Integer GER with Saturate Positive multiply,
6616 Positive accumulate, xvi8ger4spp */
6618 case 3: /* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
6619 Integer GER MMIRR, pmdmxvi8ger4 (pmxvi8ger4) */
6620 case 2: /* Prefixed Masked VSX Vector 8-bit Signed/Unsigned
6621 Integer GER Positive multiply, Positive accumulate
6622 MMIRR, pmdmxvi8ger4pp (pmxvi8ger4pp) */
6624 case 75: /* Prefixed Masked VSX Vector 16-bit Signed Integer
6625 GER MMIRR, pmdmxvi16ger2 (pmxvi16ger2) */
6626 case 107: /* Prefixed Masked VSX Vector 16-bit Signed Integer
6627 GER Positive multiply, Positive accumulate,
6628 pmdmxvi16ger2pp (pmxvi16ger2pp) */
6630 case 43: /* Prefixed Masked VSX Vector 16-bit Signed Integer
6631 GER with Saturation MMIRR, pmdmxvi16ger2s
6632 (pmxvi16ger2s) */
6633 case 42: /* Prefixed Masked VSX Vector 16-bit Signed Integer
6634 GER with Saturation Positive multiply, Positive
6635 accumulate MMIRR, pmdmxvi16ger2spp (pmxvi16ger2spp)
6637 ppc_record_ACC_fpscr (regcache, tdep, at, false);
6638 return 0;
6640 case 19: /* Prefixed Masked VSX Vector 16-bit Floating-Point
6641 GER MMIRR, pmdmxvf16ger2 (pmxvf16ger2) */
6642 case 18: /* Prefixed Masked VSX Vector 16-bit Floating-Point
6643 GER Positive multiply, Positive accumulate MMIRR,
6644 pmdmxvf16ger2pp (pmxvf16ger2pp) */
6645 case 146: /* Prefixed Masked VSX Vector 16-bit Floating-Point
6646 GER Positive multiply, Negative accumulate MMIRR,
6647 pmdmxvf16ger2pn (pmxvf16ger2pn) */
6648 case 82: /* Prefixed Masked VSX Vector 16-bit Floating-Point
6649 GER Negative multiply, Positive accumulate MMIRR,
6650 pmdmxvf16ger2np (pmxvf16ger2np) */
6651 case 210: /* Prefixed Masked VSX Vector 16-bit Floating-Point
6652 GER Negative multiply, Negative accumulate MMIRR,
6653 pmdmxvf16ger2nn (pmxvf16ger2nn) */
6655 case 27: /* Prefixed Masked VSX Vector 32-bit Floating-Point
6656 GER MMIRR, pmdmxvf32ger (pmxvf32ger) */
6657 case 26: /* Prefixed Masked VSX Vector 32-bit Floating-Point
6658 GER Positive multiply, Positive accumulate MMIRR,
6659 pmdmxvf32gerpp (pmxvf32gerpp) */
6660 case 154: /* Prefixed Masked VSX Vector 32-bit Floating-Point
6661 GER Positive multiply, Negative accumulate MMIRR,
6662 pmdmxvf32gerpn (pmxvf32gerpn) */
6663 case 90: /* Prefixed Masked VSX Vector 32-bit Floating-Point
6664 GER Negative multiply, Positive accumulate MMIRR,
6665 pmdmxvf32gernp (pmxvf32gernp )*/
6666 case 218: /* Prefixed Masked VSX Vector 32-bit Floating-Point
6667 GER Negative multiply, Negative accumulate MMIRR,
6668 pmdmxvf32gernn (pmxvf32gernn) */
6670 case 59: /* Prefixed Masked VSX Vector 64-bit Floating-Point
6671 GER MMIRR, pmdmxvf64ger (pmxvf64ger) */
6672 case 58: /* Floating-Point GER Positive multiply, Positive
6673 accumulate MMIRR, pmdmxvf64gerpp (pmxvf64gerpp) */
6674 case 186: /* Prefixed Masked VSX Vector 64-bit Floating-Point
6675 GER Positive multiply, Negative accumulate MMIRR,
6676 pmdmxvf64gerpn (pmxvf64gerpn) */
6677 case 122: /* Prefixed Masked VSX Vector 64-bit Floating-Point
6678 GER Negative multiply, Positive accumulate MMIRR,
6679 pmdmxvf64gernp (pmxvf64gernp) */
6680 case 250: /* Prefixed Masked VSX Vector 64-bit Floating-Point
6681 GER Negative multiply, Negative accumulate MMIRR,
6682 pmdmxvf64gernn (pmxvf64gernn) */
6684 case 51: /* Prefixed Masked VSX Vector bfloat16 GER MMIRR,
6685 pmdmxvbf16ger2 (pmxvbf16ger2) */
6686 case 50: /* Prefixed Masked VSX Vector bfloat16 GER Positive
6687 multiply, Positive accumulate MMIRR,
6688 pmdmxvbf16ger2pp (pmxvbf16ger2pp) */
6689 case 178: /* Prefixed Masked VSX Vector bfloat16 GER Positive
6690 multiply, Negative accumulate MMIRR,
6691 pmdmxvbf16ger2pn (pmxvbf16ger2pn) */
6692 case 114: /* Prefixed Masked VSX Vector bfloat16 GER Negative
6693 multiply, Positive accumulate MMIRR,
6694 pmdmxvbf16ger2np (pmxvbf16ger2np) */
6695 case 242: /* Prefixed Masked VSX Vector bfloat16 GER Negative
6696 multiply, Negative accumulate MMIRR,
6697 pmdmxvbf16ger2nn (pmxvbf16ger2nn) */
6698 ppc_record_ACC_fpscr (regcache, tdep, at, true);
6699 return 0;
6702 else
6703 return -1;
6705 return 0;
6708 /* Record the prefixed store instructions. The arguments are the instruction
6709 address, the first 32-bits of the instruction(insn_prefix) and the following
6710 32-bits of the instruction (insn_suffix). Return 0 on success. */
6712 static int
6713 ppc_process_record_prefix_store (struct gdbarch *gdbarch,
6714 struct regcache *regcache,
6715 CORE_ADDR addr, uint32_t insn_prefix,
6716 uint32_t insn_suffix)
6718 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6719 ULONGEST iaddr = 0;
6720 int size;
6721 int R = PPC_BIT (insn_prefix, 11);
6722 int op6 = PPC_OP6 (insn_suffix);
6724 if (R == 0)
6726 if (PPC_RA (insn_suffix) != 0)
6727 regcache_raw_read_unsigned (regcache, tdep->ppc_gp0_regnum
6728 + PPC_RA (insn_suffix), &iaddr);
6730 else
6732 iaddr = addr; /* PC relative */
6735 switch (op6)
6737 case 38:
6738 size = 1; /* store byte, pstb */
6739 break;
6740 case 44:
6741 size = 2; /* store halfword, psth */
6742 break;
6743 case 36:
6744 case 52:
6745 size = 4; /* store word, pstw, pstfs */
6746 break;
6747 case 54:
6748 case 61:
6749 size = 8; /* store double word, pstd, pstfd */
6750 break;
6751 case 60:
6752 size = 16; /* store quadword, pstq */
6753 break;
6754 default: return -1;
6757 iaddr += P_PPC_D (insn_prefix, insn_suffix);
6758 record_full_arch_list_add_mem (iaddr, size);
6759 return 0;
6762 /* Record the prefixed instructions with primary op code 32. The arguments
6763 are the first 32-bits of the instruction (insn_prefix) and the following
6764 32-bits of the instruction (insn_suffix). Return 0 on success. */
6766 static int
6767 ppc_process_record_prefix_op32 (struct gdbarch *gdbarch,
6768 struct regcache *regcache,
6769 uint32_t insn_prefix, uint32_t insn_suffix)
6771 int type = PPC_FIELD (insn_prefix, 6, 2);
6772 int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6773 int ST4 = PPC_FIELD (insn_prefix, 8, 4);
6774 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6776 if (type == 1)
6778 if (ST4 == 0)
6780 switch (PPC_FIELD (insn_suffix, 11, 3))
6782 case 0: /* VSX Vector Splat Immediate Word 8RR, xxsplti32dx */
6783 ppc_record_vsr (regcache, tdep, P_PPC_XT15 (insn_suffix));
6784 return 0;
6787 switch (PPC_FIELD (insn_suffix, 11, 4))
6789 case 2: /* VSX Vector Splat Immediate Double-Precision
6790 8RR, xxspltidp */
6791 case 3: /* VSX Vector Splat Immediate Word 8RR, xxspltiw */
6792 ppc_record_vsr (regcache, tdep, P_PPC_XT15 (insn_suffix));
6793 return 0;
6794 default:
6795 return -1;
6798 else
6799 return -1;
6802 else if (type == 2)
6804 if (ST1 == 0) /* Prefixed Load Word and Zero, plwz */
6805 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum
6806 + PPC_RT (insn_suffix));
6807 else
6808 return -1;
6811 else
6812 return -1;
6814 return 0;
6817 /* Record the prefixed instructions with primary op code 33. The arguments
6818 are the first 32-bits of the instruction(insn_prefix) and the following
6819 32-bits of the instruction (insn_suffix). Return 0 on success. */
6821 static int
6822 ppc_process_record_prefix_op33 (struct gdbarch *gdbarch,
6823 struct regcache *regcache,
6824 uint32_t insn_prefix, uint32_t insn_suffix)
6826 int type = PPC_FIELD (insn_prefix, 6, 2);
6827 int ST4 = PPC_FIELD (insn_prefix, 8, 4);
6828 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6830 if (type == 1)
6832 if (ST4 == 0)
6833 switch (PPC_FIELD (insn_suffix, 26, 2))
6835 case 0: /* VSX Vector Blend Variable Byte 8RR, xxblendvb */
6836 case 1: /* VSX Vector Blend Variable Halfword, xxblendvh */
6837 case 2: /* VSX Vector Blend Variable Word, xxblendvw */
6838 case 3: /* VSX Vector Blend Variable Doubleword, xxblendvd */
6839 ppc_record_vsr (regcache, tdep, PPC_XT (insn_suffix));
6840 break;
6841 default:
6842 return -1;
6844 else
6845 return -1;
6848 else
6849 return -1;
6851 return 0;
6854 /* Record the prefixed instructions with primary op code 34. The arguments
6855 are the first 32-bits of the instruction(insn_prefix) and the following
6856 32-bits of the instruction (insn_suffix). Return 0 on success. */
6858 static int
6859 ppc_process_record_prefix_op34 (struct gdbarch *gdbarch,
6860 struct regcache *regcache,
6861 uint32_t insn_prefix, uint32_t insn_suffix)
6863 int type = PPC_FIELD (insn_prefix, 6, 2);
6864 int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6865 int ST4 = PPC_FIELD (insn_prefix, 8, 4);
6866 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6868 if (type == 1)
6870 if (ST4 == 0)
6871 switch (PPC_FIELD (insn_suffix, 26, 2))
6873 case 0: /* VSX Vector Permute Extended 8RR, xxpermx */
6874 case 1: /* VSX Vector Evaluate 8RR, xxeval */
6875 ppc_record_vsr (regcache, tdep, P_PPC_XT (insn_suffix));
6876 break;
6877 default:
6878 return -1;
6880 else
6881 return -1;
6884 else if (type == 2)
6886 if (ST1 == 0) /* Prefixed Load Word and Zero, plbz */
6887 record_full_arch_list_add_reg (regcache,
6888 tdep->ppc_gp0_regnum
6889 + PPC_RT (insn_suffix));
6890 else
6891 return -1;
6894 else
6895 return -1;
6897 return 0;
6900 /* Record the prefixed VSX store, form DS, instructions. The arguments are the
6901 instruction address (addr), the first 32-bits of the instruction
6902 (insn_prefix) followed by the 32-bit instruction suffix (insn_suffix).
6903 Return 0 on success. */
6905 static int
6906 ppc_process_record_prefix_store_vsx_ds_form (struct gdbarch *gdbarch,
6907 struct regcache *regcache,
6908 CORE_ADDR addr,
6909 uint32_t insn_prefix,
6910 uint32_t insn_suffix)
6912 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6913 ULONGEST ea = 0;
6914 int size;
6915 int R = PPC_BIT (insn_prefix, 11);
6916 int type = PPC_FIELD (insn_prefix, 6, 2);
6917 int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6919 if ((type == 0) && (ST1 == 0))
6921 if (R == 0)
6923 if (PPC_RA (insn_suffix) != 0)
6924 regcache_raw_read_unsigned (regcache,
6925 tdep->ppc_gp0_regnum
6926 + PPC_RA (insn_suffix),
6927 &ea);
6929 else
6931 ea = addr; /* PC relative */
6934 ea += P_PPC_D (insn_prefix, insn_suffix);
6935 switch (PPC_FIELD (insn_suffix, 0, 6))
6937 case 46: /* Prefixed Store VSX Scalar Doubleword, pstxsd */
6938 size = 8;
6939 break;
6940 case 47: /* Prefixed,Store VSX Scalar Single-Precision, pstxssp */
6941 size = 4;
6942 break;
6943 default:
6944 return -1;
6946 record_full_arch_list_add_mem (ea, size);
6947 return 0;
6949 else
6950 return -1;
6953 /* Record the prefixed VSX, form D, instructions. The arguments are the
6954 instruction address for PC-relative addresss (addr), the first 32-bits of
6955 the instruction (insn_prefix) and the following 32-bits of the instruction
6956 (insn_suffix). Return 0 on success. */
6958 static int
6959 ppc_process_record_prefix_vsx_d_form (struct gdbarch *gdbarch,
6960 struct regcache *regcache,
6961 CORE_ADDR addr,
6962 uint32_t insn_prefix,
6963 uint32_t insn_suffix)
6965 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
6966 ULONGEST ea = 0;
6967 int size;
6968 int R = PPC_BIT (insn_prefix, 11);
6969 int type = PPC_FIELD (insn_prefix, 6, 2);
6970 int ST1 = PPC_FIELD (insn_prefix, 8, 1);
6972 if ((type == 0) && (ST1 == 0))
6974 switch (PPC_FIELD (insn_suffix, 0, 5))
6976 case 25: /* Prefixed Load VSX Vector, plxv */
6977 ppc_record_vsr (regcache, tdep, P_PPC_XT5 (insn_prefix));
6978 return 0;
6979 case 27: /* Prefixed Store VSX Vector 8LS, pstxv */
6981 size = 16;
6982 if (R == 0)
6984 if (PPC_RA (insn_suffix) != 0)
6985 regcache_raw_read_unsigned (regcache,
6986 tdep->ppc_gp0_regnum
6987 + PPC_RA (insn_suffix),
6988 &ea);
6990 else
6992 ea = addr; /* PC relative */
6995 ea += P_PPC_D (insn_prefix, insn_suffix);
6996 record_full_arch_list_add_mem (ea, size);
6997 return 0;
7000 return -1;
7002 else
7003 return -1;
7006 /* Parse the current instruction and record the values of the registers and
7007 memory that will be changed in current instruction to "record_arch_list".
7008 Return -1 if something wrong. */
7010 /* This handles the recording of the various prefix instructions. It takes
7011 the instruction address, the first 32-bits of the instruction (insn_prefix)
7012 and the following 32-bits of the instruction (insn_suffix). Return 0 on
7013 success. */
7015 static int
7016 ppc_process_prefix_instruction (int insn_prefix, int insn_suffix,
7017 CORE_ADDR addr, struct gdbarch *gdbarch,
7018 struct regcache *regcache)
7020 int type = PPC_FIELD (insn_prefix, 6, 2);
7021 int ST1 = PPC_FIELD (insn_prefix, 8, 1);
7022 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
7023 int op6;
7025 /* D-form has uses a 5-bit opcode in the instruction suffix */
7026 if (ppc_process_record_prefix_vsx_d_form ( gdbarch, regcache, addr,
7027 insn_prefix, insn_suffix) == 0)
7028 goto SUCCESS;
7030 op6 = PPC_OP6 (insn_suffix); /* 6-bit opcode in the instruction suffix */
7032 switch (op6)
7034 case 14: /* Prefixed Add Immediate, paddi */
7035 if ((type == 2) && (ST1 == 0))
7036 record_full_arch_list_add_reg (regcache,
7037 tdep->ppc_gp0_regnum
7038 + PPC_RT (insn_suffix));
7039 else
7040 goto UNKNOWN_PREFIX_OP;
7041 break;
7043 case 32:
7044 if (ppc_process_record_prefix_op32 (gdbarch, regcache,
7045 insn_prefix, insn_suffix) != 0)
7046 goto UNKNOWN_PREFIX_OP;
7047 break;
7049 case 33:
7050 if (ppc_process_record_prefix_op33 (gdbarch, regcache,
7051 insn_prefix, insn_suffix) != 0)
7052 goto UNKNOWN_PREFIX_OP;
7053 break;
7055 case 34: /* Prefixed Load Byte and Zero, plbz */
7056 if (ppc_process_record_prefix_op34 (gdbarch, regcache,
7057 insn_prefix, insn_suffix) != 0)
7058 goto UNKNOWN_PREFIX_OP;
7059 break;
7060 case 40: /* Prefixed Load Halfword and Zero, plhz */
7061 if ((type == 2) && (ST1 == 0))
7062 record_full_arch_list_add_reg (regcache,
7063 tdep->ppc_gp0_regnum
7064 + PPC_RT (insn_suffix));
7065 else
7066 goto UNKNOWN_PREFIX_OP;
7067 break;
7069 break;
7071 case 36: /* Prefixed Store Word, pstw */
7072 case 38: /* Prefixed Store Byte, pstb */
7073 case 44: /* Prefixed Store Halfword, psth */
7074 case 52: /* Prefixed Store Floating-Point Single, pstfs */
7075 case 54: /* Prefixed Store Floating-Point Double, pstfd */
7076 case 60: /* Prefixed Store Quadword, pstq */
7077 case 61: /* Prefixed Store Doubleword, pstd */
7078 if (ppc_process_record_prefix_store (gdbarch, regcache, addr,
7079 insn_prefix, insn_suffix) != 0)
7080 goto UNKNOWN_PREFIX_OP;
7081 break;
7083 case 42:
7084 if (ppc_process_record_prefix_op42 (gdbarch, regcache,
7085 insn_prefix, insn_suffix) != 0)
7086 goto UNKNOWN_PREFIX_OP;
7087 break;
7089 case 43: /* Prefixed Load VSX Scalar Single-Precision, plxssp */
7090 if ((type == 0) && (ST1 == 0))
7091 ppc_record_vsr (regcache, tdep, PPC_VRT (insn_suffix) + 32);
7092 else
7093 goto UNKNOWN_PREFIX_OP;
7094 break;
7096 case 46:
7097 case 47:
7098 if (ppc_process_record_prefix_store_vsx_ds_form (gdbarch, regcache, addr,
7099 insn_prefix, insn_suffix) != 0)
7100 goto UNKNOWN_PREFIX_OP;
7101 break;
7103 case 56: /* Prefixed Load Quadword, plq */
7105 if ((type == 0) && (ST1 == 0))
7107 int tmp;
7108 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn_suffix) & ~1);
7109 record_full_arch_list_add_reg (regcache, tmp);
7110 record_full_arch_list_add_reg (regcache, tmp + 1);
7112 else
7113 goto UNKNOWN_PREFIX_OP;
7114 break;
7117 case 41: /* Prefixed Load Word Algebraic, plwa */
7118 case 57: /* Prefixed Load Doubleword, pld */
7119 if ((type == 0) && (ST1 == 0))
7120 record_full_arch_list_add_reg (regcache,
7121 tdep->ppc_gp0_regnum
7122 + PPC_RT (insn_suffix));
7123 else
7124 goto UNKNOWN_PREFIX_OP;
7125 break;
7127 case 48: /* Prefixed Load Floating-Point Single, plfs */
7128 case 50: /* Prefixed Load Floating-Point Double, plfd */
7129 if ((type == 2) && (ST1 == 0))
7130 record_full_arch_list_add_reg (regcache,
7131 tdep->ppc_fp0_regnum
7132 + PPC_FRT (insn_suffix));
7133 else
7134 goto UNKNOWN_PREFIX_OP;
7135 break;
7137 case 58: /* Prefixed Load VSX Vector Paired, plxvp */
7138 if ((type == 0) && (ST1 == 0))
7140 ppc_record_vsr (regcache, tdep, PPC_XTp (insn_suffix));
7141 ppc_record_vsr (regcache, tdep, PPC_XTp (insn_suffix) + 1);
7143 else
7144 goto UNKNOWN_PREFIX_OP;
7145 break;
7147 case 59:
7148 if (ppc_process_record_prefix_op59_XX3 (gdbarch, regcache, insn_prefix,
7149 insn_suffix) != 0)
7150 goto UNKNOWN_PREFIX_OP;
7151 break;
7153 case 62: /* Prefixed Store VSX Vector Paired 8LS, pstxvp */
7154 if ((type == 0) && (ST1 == 0))
7156 int R = PPC_BIT (insn_prefix, 11);
7157 CORE_ADDR ea = 0;
7159 if (R == 0)
7161 if (PPC_RA (insn_suffix) != 0)
7162 regcache_raw_read_unsigned (regcache,
7163 tdep->ppc_gp0_regnum
7164 + PPC_RA (insn_suffix), &ea);
7166 else
7168 ea = addr; /* PC relative */
7171 ea += P_PPC_D (insn_prefix, insn_suffix) << 4;
7172 record_full_arch_list_add_mem (ea, 32);
7174 else
7175 goto UNKNOWN_PREFIX_OP;
7176 break;
7178 default:
7179 UNKNOWN_PREFIX_OP:
7180 gdb_printf (gdb_stdlog,
7181 "Warning: Don't know how to record prefix instruction "
7182 "%08x %08x at %s, %d.\n",
7183 insn_prefix, insn_suffix, paddress (gdbarch, addr),
7184 op6);
7185 return -1;
7188 SUCCESS:
7189 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
7190 return -1;
7192 if (record_full_arch_list_add_end ())
7193 return -1;
7194 return 0;
7198 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
7199 CORE_ADDR addr)
7201 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
7202 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7203 uint32_t insn, insn_suffix;
7204 int op6, tmp, i;
7206 insn = read_memory_unsigned_integer (addr, 4, byte_order);
7207 op6 = PPC_OP6 (insn);
7209 switch (op6)
7211 case 1: /* prefixed instruction */
7213 /* Get the lower 32-bits of the prefixed instruction. */
7214 insn_suffix = read_memory_unsigned_integer (addr+4, 4, byte_order);
7215 return ppc_process_prefix_instruction (insn, insn_suffix, addr,
7216 gdbarch, regcache);
7218 case 2: /* Trap Doubleword Immediate */
7219 case 3: /* Trap Word Immediate */
7220 /* Do nothing. */
7221 break;
7223 case 4: /* Vector Integer, Compare, Logical, Shift, etc. */
7224 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
7225 return -1;
7226 break;
7228 case 6: /* Vector Load and Store */
7229 if (ppc_process_record_op6 (gdbarch, regcache, addr, insn) != 0)
7230 return -1;
7231 break;
7233 case 17: /* System call */
7234 if (PPC_LEV (insn) != 0)
7235 goto UNKNOWN_OP;
7237 if (tdep->ppc_syscall_record != NULL)
7239 if (tdep->ppc_syscall_record (regcache) != 0)
7240 return -1;
7242 else
7244 gdb_printf (gdb_stderr, _("no syscall record support\n"));
7245 return -1;
7247 break;
7249 case 7: /* Multiply Low Immediate */
7250 record_full_arch_list_add_reg (regcache,
7251 tdep->ppc_gp0_regnum + PPC_RT (insn));
7252 break;
7254 case 8: /* Subtract From Immediate Carrying */
7255 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
7256 record_full_arch_list_add_reg (regcache,
7257 tdep->ppc_gp0_regnum + PPC_RT (insn));
7258 break;
7260 case 10: /* Compare Logical Immediate */
7261 case 11: /* Compare Immediate */
7262 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
7263 break;
7265 case 13: /* Add Immediate Carrying and Record */
7266 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
7267 [[fallthrough]];
7268 case 12: /* Add Immediate Carrying */
7269 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
7270 [[fallthrough]];
7271 case 14: /* Add Immediate */
7272 case 15: /* Add Immediate Shifted */
7273 record_full_arch_list_add_reg (regcache,
7274 tdep->ppc_gp0_regnum + PPC_RT (insn));
7275 break;
7277 case 16: /* Branch Conditional */
7278 if ((PPC_BO (insn) & 0x4) == 0)
7279 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
7280 [[fallthrough]];
7281 case 18: /* Branch */
7282 if (PPC_LK (insn))
7283 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
7284 break;
7286 case 19:
7287 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
7288 return -1;
7289 break;
7291 case 20: /* Rotate Left Word Immediate then Mask Insert */
7292 case 21: /* Rotate Left Word Immediate then AND with Mask */
7293 case 23: /* Rotate Left Word then AND with Mask */
7294 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
7295 /* Rotate Left Doubleword Immediate then Clear Right */
7296 /* Rotate Left Doubleword Immediate then Clear */
7297 /* Rotate Left Doubleword then Clear Left */
7298 /* Rotate Left Doubleword then Clear Right */
7299 /* Rotate Left Doubleword Immediate then Mask Insert */
7300 if (PPC_RC (insn))
7301 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
7302 record_full_arch_list_add_reg (regcache,
7303 tdep->ppc_gp0_regnum + PPC_RA (insn));
7304 break;
7306 case 28: /* AND Immediate */
7307 case 29: /* AND Immediate Shifted */
7308 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
7309 [[fallthrough]];
7310 case 24: /* OR Immediate */
7311 case 25: /* OR Immediate Shifted */
7312 case 26: /* XOR Immediate */
7313 case 27: /* XOR Immediate Shifted */
7314 record_full_arch_list_add_reg (regcache,
7315 tdep->ppc_gp0_regnum + PPC_RA (insn));
7316 break;
7318 case 31:
7319 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
7320 return -1;
7321 break;
7323 case 33: /* Load Word and Zero with Update */
7324 case 35: /* Load Byte and Zero with Update */
7325 case 41: /* Load Halfword and Zero with Update */
7326 case 43: /* Load Halfword Algebraic with Update */
7327 record_full_arch_list_add_reg (regcache,
7328 tdep->ppc_gp0_regnum + PPC_RA (insn));
7329 [[fallthrough]];
7330 case 32: /* Load Word and Zero */
7331 case 34: /* Load Byte and Zero */
7332 case 40: /* Load Halfword and Zero */
7333 case 42: /* Load Halfword Algebraic */
7334 record_full_arch_list_add_reg (regcache,
7335 tdep->ppc_gp0_regnum + PPC_RT (insn));
7336 break;
7338 case 46: /* Load Multiple Word */
7339 for (i = PPC_RT (insn); i < 32; i++)
7340 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
7341 break;
7343 case 56: /* Load Quadword */
7344 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
7345 record_full_arch_list_add_reg (regcache, tmp);
7346 record_full_arch_list_add_reg (regcache, tmp + 1);
7347 break;
7349 case 49: /* Load Floating-Point Single with Update */
7350 case 51: /* Load Floating-Point Double with Update */
7351 record_full_arch_list_add_reg (regcache,
7352 tdep->ppc_gp0_regnum + PPC_RA (insn));
7353 [[fallthrough]];
7354 case 48: /* Load Floating-Point Single */
7355 case 50: /* Load Floating-Point Double */
7356 record_full_arch_list_add_reg (regcache,
7357 tdep->ppc_fp0_regnum + PPC_FRT (insn));
7358 break;
7360 case 47: /* Store Multiple Word */
7362 ULONGEST iaddr = 0;
7364 if (PPC_RA (insn) != 0)
7365 regcache_raw_read_unsigned (regcache,
7366 tdep->ppc_gp0_regnum + PPC_RA (insn),
7367 &iaddr);
7369 iaddr += PPC_D (insn);
7370 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
7372 break;
7374 case 37: /* Store Word with Update */
7375 case 39: /* Store Byte with Update */
7376 case 45: /* Store Halfword with Update */
7377 case 53: /* Store Floating-Point Single with Update */
7378 case 55: /* Store Floating-Point Double with Update */
7379 record_full_arch_list_add_reg (regcache,
7380 tdep->ppc_gp0_regnum + PPC_RA (insn));
7381 [[fallthrough]];
7382 case 36: /* Store Word */
7383 case 38: /* Store Byte */
7384 case 44: /* Store Halfword */
7385 case 52: /* Store Floating-Point Single */
7386 case 54: /* Store Floating-Point Double */
7388 ULONGEST iaddr = 0;
7389 int size = -1;
7391 if (PPC_RA (insn) != 0)
7392 regcache_raw_read_unsigned (regcache,
7393 tdep->ppc_gp0_regnum + PPC_RA (insn),
7394 &iaddr);
7395 iaddr += PPC_D (insn);
7397 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
7398 size = 4;
7399 else if (op6 == 54 || op6 == 55)
7400 size = 8;
7401 else if (op6 == 44 || op6 == 45)
7402 size = 2;
7403 else if (op6 == 38 || op6 == 39)
7404 size = 1;
7405 else
7406 gdb_assert (0);
7408 record_full_arch_list_add_mem (iaddr, size);
7410 break;
7412 case 57:
7413 switch (insn & 0x3)
7415 case 0: /* Load Floating-Point Double Pair */
7416 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
7417 record_full_arch_list_add_reg (regcache, tmp);
7418 record_full_arch_list_add_reg (regcache, tmp + 1);
7419 break;
7420 case 2: /* Load VSX Scalar Doubleword */
7421 case 3: /* Load VSX Scalar Single */
7422 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
7423 break;
7424 default:
7425 goto UNKNOWN_OP;
7427 break;
7429 case 58: /* Load Doubleword */
7430 /* Load Doubleword with Update */
7431 /* Load Word Algebraic */
7432 if (PPC_FIELD (insn, 30, 2) > 2)
7433 goto UNKNOWN_OP;
7435 record_full_arch_list_add_reg (regcache,
7436 tdep->ppc_gp0_regnum + PPC_RT (insn));
7437 if (PPC_BIT (insn, 31))
7438 record_full_arch_list_add_reg (regcache,
7439 tdep->ppc_gp0_regnum + PPC_RA (insn));
7440 break;
7442 case 59:
7443 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
7444 return -1;
7445 break;
7447 case 60:
7448 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
7449 return -1;
7450 break;
7452 case 61:
7453 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
7454 return -1;
7455 break;
7457 case 62: /* Store Doubleword */
7458 /* Store Doubleword with Update */
7459 /* Store Quadword with Update */
7461 ULONGEST iaddr = 0;
7462 int size;
7463 int sub2 = PPC_FIELD (insn, 30, 2);
7465 if (sub2 > 2)
7466 goto UNKNOWN_OP;
7468 if (PPC_RA (insn) != 0)
7469 regcache_raw_read_unsigned (regcache,
7470 tdep->ppc_gp0_regnum + PPC_RA (insn),
7471 &iaddr);
7473 size = (sub2 == 2) ? 16 : 8;
7475 iaddr += PPC_DS (insn) << 2;
7476 record_full_arch_list_add_mem (iaddr, size);
7478 if (op6 == 62 && sub2 == 1)
7479 record_full_arch_list_add_reg (regcache,
7480 tdep->ppc_gp0_regnum +
7481 PPC_RA (insn));
7483 break;
7486 case 63:
7487 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
7488 return -1;
7489 break;
7491 default:
7492 UNKNOWN_OP:
7493 gdb_printf (gdb_stdlog, "Warning: Don't know how to record %08x "
7494 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
7495 return -1;
7498 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
7499 return -1;
7500 if (record_full_arch_list_add_end ())
7501 return -1;
7502 return 0;
7505 /* Used for matching tw, twi, td and tdi instructions for POWER. */
7507 static constexpr uint32_t TX_INSN_MASK = 0xFC0007FF;
7508 static constexpr uint32_t TW_INSN = 0x7C000008;
7509 static constexpr uint32_t TD_INSN = 0x7C000088;
7511 static constexpr uint32_t TXI_INSN_MASK = 0xFC000000;
7512 static constexpr uint32_t TWI_INSN = 0x0C000000;
7513 static constexpr uint32_t TDI_INSN = 0x08000000;
7515 static inline bool
7516 is_tw_insn (uint32_t insn)
7518 return (insn & TX_INSN_MASK) == TW_INSN;
7521 static inline bool
7522 is_twi_insn (uint32_t insn)
7524 return (insn & TXI_INSN_MASK) == TWI_INSN;
7527 static inline bool
7528 is_td_insn (uint32_t insn)
7530 return (insn & TX_INSN_MASK) == TD_INSN;
7533 static inline bool
7534 is_tdi_insn (uint32_t insn)
7536 return (insn & TXI_INSN_MASK) == TDI_INSN;
7539 /* Implementation of gdbarch_program_breakpoint_here_p for POWER. */
7541 static bool
7542 rs6000_program_breakpoint_here_p (gdbarch *gdbarch, CORE_ADDR address)
7544 gdb_byte target_mem[PPC_INSN_SIZE];
7546 /* Enable the automatic memory restoration from breakpoints while
7547 we read the memory. Otherwise we may find temporary breakpoints, ones
7548 inserted by GDB, and flag them as permanent breakpoints. */
7549 scoped_restore restore_memory
7550 = make_scoped_restore_show_memory_breakpoints (0);
7552 if (target_read_memory (address, target_mem, PPC_INSN_SIZE) == 0)
7554 uint32_t insn = (uint32_t) extract_unsigned_integer
7555 (target_mem, PPC_INSN_SIZE, gdbarch_byte_order_for_code (gdbarch));
7557 /* Check if INSN is a TW, TWI, TD or TDI instruction. There
7558 are multiple choices of such instructions with different registers
7559 and / or immediate values but they all cause a break. */
7560 if (is_tw_insn (insn) || is_twi_insn (insn) || is_td_insn (insn)
7561 || is_tdi_insn (insn))
7562 return true;
7565 return false;
7568 /* Implement the update_call_site_pc arch hook. */
7570 static CORE_ADDR
7571 ppc64_update_call_site_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
7573 /* Some versions of GCC emit:
7575 . bl function
7576 . nop
7577 . ...
7579 but emit DWARF where the DW_AT_call_return_pc points to
7580 instruction after the 'nop'. Note that while the compiler emits
7581 a 'nop', the linker might put some other instruction there -- so
7582 we just unconditionally check the next instruction. */
7583 return pc + 4;
7586 /* Initialize the current architecture based on INFO. If possible, re-use an
7587 architecture from ARCHES, which is a list of architectures already created
7588 during this debugging session.
7590 Called e.g. at program startup, when reading a core file, and when reading
7591 a binary file. */
7593 static struct gdbarch *
7594 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7596 int wordsize, from_xcoff_exec, from_elf_exec;
7597 enum bfd_architecture arch;
7598 unsigned long mach;
7599 bfd abfd;
7600 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
7601 int soft_float;
7602 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
7603 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
7604 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
7605 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
7606 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
7607 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
7608 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
7609 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
7610 int have_htm_tar = 0;
7611 int tdesc_wordsize = -1;
7612 const struct target_desc *tdesc = info.target_desc;
7613 tdesc_arch_data_up tdesc_data;
7614 int num_pseudoregs = 0;
7615 int cur_reg;
7617 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7618 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
7620 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
7621 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
7623 /* Check word size. If INFO is from a binary file, infer it from
7624 that, else choose a likely default. */
7625 if (from_xcoff_exec)
7627 if (bfd_xcoff_is_xcoff64 (info.abfd))
7628 wordsize = 8;
7629 else
7630 wordsize = 4;
7632 else if (from_elf_exec)
7634 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7635 wordsize = 8;
7636 else
7637 wordsize = 4;
7639 else if (tdesc_has_registers (tdesc))
7640 wordsize = -1;
7641 else
7643 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
7644 wordsize = (info.bfd_arch_info->bits_per_word
7645 / info.bfd_arch_info->bits_per_byte);
7646 else
7647 wordsize = 4;
7650 /* Get the architecture and machine from the BFD. */
7651 arch = info.bfd_arch_info->arch;
7652 mach = info.bfd_arch_info->mach;
7654 /* For e500 executables, the apuinfo section is of help here. Such
7655 section contains the identifier and revision number of each
7656 Application-specific Processing Unit that is present on the
7657 chip. The content of the section is determined by the assembler
7658 which looks at each instruction and determines which unit (and
7659 which version of it) can execute it. Grovel through the section
7660 looking for relevant e500 APUs. */
7662 if (bfd_uses_spe_extensions (info.abfd))
7664 arch = info.bfd_arch_info->arch;
7665 mach = bfd_mach_ppc_e500;
7666 bfd_default_set_arch_mach (&abfd, arch, mach);
7667 info.bfd_arch_info = bfd_get_arch_info (&abfd);
7670 /* Find a default target description which describes our register
7671 layout, if we do not already have one. */
7672 if (! tdesc_has_registers (tdesc))
7674 const struct ppc_variant *v;
7676 /* Choose variant. */
7677 v = find_variant_by_arch (arch, mach);
7678 if (!v)
7679 return NULL;
7681 tdesc = *v->tdesc;
7684 gdb_assert (tdesc_has_registers (tdesc));
7686 /* Check any target description for validity. */
7687 if (tdesc_has_registers (tdesc))
7689 static const char *const gprs[] = {
7690 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7691 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
7692 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
7693 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
7695 const struct tdesc_feature *feature;
7696 int i, valid_p;
7697 static const char *const msr_names[] = { "msr", "ps" };
7698 static const char *const cr_names[] = { "cr", "cnd" };
7699 static const char *const ctr_names[] = { "ctr", "cnt" };
7701 feature = tdesc_find_feature (tdesc,
7702 "org.gnu.gdb.power.core");
7703 if (feature == NULL)
7704 return NULL;
7706 tdesc_data = tdesc_data_alloc ();
7708 valid_p = 1;
7709 for (i = 0; i < ppc_num_gprs; i++)
7710 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7711 i, gprs[i]);
7712 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7713 PPC_PC_REGNUM, "pc");
7714 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7715 PPC_LR_REGNUM, "lr");
7716 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7717 PPC_XER_REGNUM, "xer");
7719 /* Allow alternate names for these registers, to accommodate GDB's
7720 historic naming. */
7721 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7722 PPC_MSR_REGNUM, msr_names);
7723 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7724 PPC_CR_REGNUM, cr_names);
7725 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7726 PPC_CTR_REGNUM, ctr_names);
7728 if (!valid_p)
7729 return NULL;
7731 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
7732 PPC_MQ_REGNUM, "mq");
7734 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
7735 if (wordsize == -1)
7736 wordsize = tdesc_wordsize;
7738 feature = tdesc_find_feature (tdesc,
7739 "org.gnu.gdb.power.fpu");
7740 if (feature != NULL)
7742 static const char *const fprs[] = {
7743 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
7744 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
7745 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
7746 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
7748 valid_p = 1;
7749 for (i = 0; i < ppc_num_fprs; i++)
7750 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7751 PPC_F0_REGNUM + i, fprs[i]);
7752 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7753 PPC_FPSCR_REGNUM, "fpscr");
7755 if (!valid_p)
7756 return NULL;
7757 have_fpu = 1;
7759 /* The fpscr register was expanded in isa 2.05 to 64 bits
7760 along with the addition of the decimal floating point
7761 facility. */
7762 if (tdesc_register_bitsize (feature, "fpscr") > 32)
7763 have_dfp = 1;
7765 else
7766 have_fpu = 0;
7768 feature = tdesc_find_feature (tdesc,
7769 "org.gnu.gdb.power.altivec");
7770 if (feature != NULL)
7772 static const char *const vector_regs[] = {
7773 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
7774 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
7775 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
7776 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
7779 valid_p = 1;
7780 for (i = 0; i < ppc_num_gprs; i++)
7781 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7782 PPC_VR0_REGNUM + i,
7783 vector_regs[i]);
7784 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7785 PPC_VSCR_REGNUM, "vscr");
7786 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7787 PPC_VRSAVE_REGNUM, "vrsave");
7789 if (have_spe || !valid_p)
7790 return NULL;
7791 have_altivec = 1;
7793 else
7794 have_altivec = 0;
7796 /* Check for POWER7 VSX registers support. */
7797 feature = tdesc_find_feature (tdesc,
7798 "org.gnu.gdb.power.vsx");
7800 if (feature != NULL)
7802 static const char *const vsx_regs[] = {
7803 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
7804 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
7805 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
7806 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
7807 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
7808 "vs30h", "vs31h"
7811 valid_p = 1;
7813 for (i = 0; i < ppc_num_vshrs; i++)
7814 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7815 PPC_VSR0_UPPER_REGNUM + i,
7816 vsx_regs[i]);
7818 if (!valid_p || !have_fpu || !have_altivec)
7819 return NULL;
7821 have_vsx = 1;
7823 else
7824 have_vsx = 0;
7826 /* On machines supporting the SPE APU, the general-purpose registers
7827 are 64 bits long. There are SIMD vector instructions to treat them
7828 as pairs of floats, but the rest of the instruction set treats them
7829 as 32-bit registers, and only operates on their lower halves.
7831 In the GDB regcache, we treat their high and low halves as separate
7832 registers. The low halves we present as the general-purpose
7833 registers, and then we have pseudo-registers that stitch together
7834 the upper and lower halves and present them as pseudo-registers.
7836 Thus, the target description is expected to supply the upper
7837 halves separately. */
7839 feature = tdesc_find_feature (tdesc,
7840 "org.gnu.gdb.power.spe");
7841 if (feature != NULL)
7843 static const char *const upper_spe[] = {
7844 "ev0h", "ev1h", "ev2h", "ev3h",
7845 "ev4h", "ev5h", "ev6h", "ev7h",
7846 "ev8h", "ev9h", "ev10h", "ev11h",
7847 "ev12h", "ev13h", "ev14h", "ev15h",
7848 "ev16h", "ev17h", "ev18h", "ev19h",
7849 "ev20h", "ev21h", "ev22h", "ev23h",
7850 "ev24h", "ev25h", "ev26h", "ev27h",
7851 "ev28h", "ev29h", "ev30h", "ev31h"
7854 valid_p = 1;
7855 for (i = 0; i < ppc_num_gprs; i++)
7856 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7857 PPC_SPE_UPPER_GP0_REGNUM + i,
7858 upper_spe[i]);
7859 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7860 PPC_SPE_ACC_REGNUM, "acc");
7861 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7862 PPC_SPE_FSCR_REGNUM, "spefscr");
7864 if (have_mq || have_fpu || !valid_p)
7865 return NULL;
7866 have_spe = 1;
7868 else
7869 have_spe = 0;
7871 /* Program Priority Register. */
7872 feature = tdesc_find_feature (tdesc,
7873 "org.gnu.gdb.power.ppr");
7874 if (feature != NULL)
7876 valid_p = 1;
7877 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7878 PPC_PPR_REGNUM, "ppr");
7880 if (!valid_p)
7881 return NULL;
7882 have_ppr = 1;
7884 else
7885 have_ppr = 0;
7887 /* Data Stream Control Register. */
7888 feature = tdesc_find_feature (tdesc,
7889 "org.gnu.gdb.power.dscr");
7890 if (feature != NULL)
7892 valid_p = 1;
7893 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7894 PPC_DSCR_REGNUM, "dscr");
7896 if (!valid_p)
7897 return NULL;
7898 have_dscr = 1;
7900 else
7901 have_dscr = 0;
7903 /* Target Address Register. */
7904 feature = tdesc_find_feature (tdesc,
7905 "org.gnu.gdb.power.tar");
7906 if (feature != NULL)
7908 valid_p = 1;
7909 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7910 PPC_TAR_REGNUM, "tar");
7912 if (!valid_p)
7913 return NULL;
7914 have_tar = 1;
7916 else
7917 have_tar = 0;
7919 /* Event-based Branching Registers. */
7920 feature = tdesc_find_feature (tdesc,
7921 "org.gnu.gdb.power.ebb");
7922 if (feature != NULL)
7924 static const char *const ebb_regs[] = {
7925 "bescr", "ebbhr", "ebbrr"
7928 valid_p = 1;
7929 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
7930 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7931 PPC_BESCR_REGNUM + i,
7932 ebb_regs[i]);
7933 if (!valid_p)
7934 return NULL;
7935 have_ebb = 1;
7937 else
7938 have_ebb = 0;
7940 /* Subset of the ISA 2.07 Performance Monitor Registers provided
7941 by Linux. */
7942 feature = tdesc_find_feature (tdesc,
7943 "org.gnu.gdb.power.linux.pmu");
7944 if (feature != NULL)
7946 valid_p = 1;
7948 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7949 PPC_MMCR0_REGNUM,
7950 "mmcr0");
7951 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7952 PPC_MMCR2_REGNUM,
7953 "mmcr2");
7954 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7955 PPC_SIAR_REGNUM,
7956 "siar");
7957 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7958 PPC_SDAR_REGNUM,
7959 "sdar");
7960 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7961 PPC_SIER_REGNUM,
7962 "sier");
7964 if (!valid_p)
7965 return NULL;
7966 have_pmu = 1;
7968 else
7969 have_pmu = 0;
7971 /* Hardware Transactional Memory Registers. */
7972 feature = tdesc_find_feature (tdesc,
7973 "org.gnu.gdb.power.htm.spr");
7974 if (feature != NULL)
7976 static const char *const tm_spr_regs[] = {
7977 "tfhar", "texasr", "tfiar"
7980 valid_p = 1;
7981 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
7982 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7983 PPC_TFHAR_REGNUM + i,
7984 tm_spr_regs[i]);
7985 if (!valid_p)
7986 return NULL;
7988 have_htm_spr = 1;
7990 else
7991 have_htm_spr = 0;
7993 feature = tdesc_find_feature (tdesc,
7994 "org.gnu.gdb.power.htm.core");
7995 if (feature != NULL)
7997 static const char *const cgprs[] = {
7998 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
7999 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
8000 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
8001 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
8002 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
8005 valid_p = 1;
8007 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
8008 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8009 PPC_CR0_REGNUM + i,
8010 cgprs[i]);
8011 if (!valid_p)
8012 return NULL;
8014 have_htm_core = 1;
8016 else
8017 have_htm_core = 0;
8019 feature = tdesc_find_feature (tdesc,
8020 "org.gnu.gdb.power.htm.fpu");
8021 if (feature != NULL)
8023 valid_p = 1;
8025 static const char *const cfprs[] = {
8026 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
8027 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
8028 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
8029 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
8030 "cf30", "cf31", "cfpscr"
8033 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
8034 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8035 PPC_CF0_REGNUM + i,
8036 cfprs[i]);
8038 if (!valid_p)
8039 return NULL;
8040 have_htm_fpu = 1;
8042 else
8043 have_htm_fpu = 0;
8045 feature = tdesc_find_feature (tdesc,
8046 "org.gnu.gdb.power.htm.altivec");
8047 if (feature != NULL)
8049 valid_p = 1;
8051 static const char *const cvmx[] = {
8052 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
8053 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
8054 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
8055 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
8056 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
8057 "cvrsave"
8060 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
8061 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8062 PPC_CVR0_REGNUM + i,
8063 cvmx[i]);
8065 if (!valid_p)
8066 return NULL;
8067 have_htm_altivec = 1;
8069 else
8070 have_htm_altivec = 0;
8072 feature = tdesc_find_feature (tdesc,
8073 "org.gnu.gdb.power.htm.vsx");
8074 if (feature != NULL)
8076 valid_p = 1;
8078 static const char *const cvsx[] = {
8079 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
8080 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
8081 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
8082 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
8083 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
8084 "cvs30h", "cvs31h"
8087 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
8088 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8089 (PPC_CVSR0_UPPER_REGNUM
8090 + i),
8091 cvsx[i]);
8093 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
8094 return NULL;
8095 have_htm_vsx = 1;
8097 else
8098 have_htm_vsx = 0;
8100 feature = tdesc_find_feature (tdesc,
8101 "org.gnu.gdb.power.htm.ppr");
8102 if (feature != NULL)
8104 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8105 PPC_CPPR_REGNUM, "cppr");
8107 if (!valid_p)
8108 return NULL;
8109 have_htm_ppr = 1;
8111 else
8112 have_htm_ppr = 0;
8114 feature = tdesc_find_feature (tdesc,
8115 "org.gnu.gdb.power.htm.dscr");
8116 if (feature != NULL)
8118 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8119 PPC_CDSCR_REGNUM, "cdscr");
8121 if (!valid_p)
8122 return NULL;
8123 have_htm_dscr = 1;
8125 else
8126 have_htm_dscr = 0;
8128 feature = tdesc_find_feature (tdesc,
8129 "org.gnu.gdb.power.htm.tar");
8130 if (feature != NULL)
8132 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8133 PPC_CTAR_REGNUM, "ctar");
8135 if (!valid_p)
8136 return NULL;
8137 have_htm_tar = 1;
8139 else
8140 have_htm_tar = 0;
8143 /* If we have a 64-bit binary on a 32-bit target, complain. Also
8144 complain for a 32-bit binary on a 64-bit target; we do not yet
8145 support that. For instance, the 32-bit ABI routines expect
8146 32-bit GPRs.
8148 As long as there isn't an explicit target description, we'll
8149 choose one based on the BFD architecture and get a word size
8150 matching the binary (probably powerpc:common or
8151 powerpc:common64). So there is only trouble if a 64-bit target
8152 supplies a 64-bit description while debugging a 32-bit
8153 binary. */
8154 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
8155 return NULL;
8157 #ifdef HAVE_ELF
8158 if (from_elf_exec)
8160 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
8162 case 1:
8163 elf_abi = POWERPC_ELF_V1;
8164 break;
8165 case 2:
8166 elf_abi = POWERPC_ELF_V2;
8167 break;
8168 default:
8169 break;
8173 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
8175 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8176 Tag_GNU_Power_ABI_FP) & 3)
8178 case 1:
8179 soft_float_flag = AUTO_BOOLEAN_FALSE;
8180 break;
8181 case 2:
8182 soft_float_flag = AUTO_BOOLEAN_TRUE;
8183 break;
8184 default:
8185 break;
8189 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
8191 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8192 Tag_GNU_Power_ABI_FP) >> 2)
8194 case 1:
8195 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
8196 break;
8197 case 3:
8198 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
8199 break;
8200 default:
8201 break;
8205 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
8207 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8208 Tag_GNU_Power_ABI_Vector))
8210 case 1:
8211 vector_abi = POWERPC_VEC_GENERIC;
8212 break;
8213 case 2:
8214 vector_abi = POWERPC_VEC_ALTIVEC;
8215 break;
8216 case 3:
8217 vector_abi = POWERPC_VEC_SPE;
8218 break;
8219 default:
8220 break;
8223 #endif
8225 /* At this point, the only supported ELF-based 64-bit little-endian
8226 operating system is GNU/Linux, and this uses the ELFv2 ABI by
8227 default. All other supported ELF-based operating systems use the
8228 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
8229 e.g. because we run a legacy binary, or have attached to a process
8230 and have not found any associated binary file, set the default
8231 according to this heuristic. */
8232 if (elf_abi == POWERPC_ELF_AUTO)
8234 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
8235 elf_abi = POWERPC_ELF_V2;
8236 else
8237 elf_abi = POWERPC_ELF_V1;
8240 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
8241 soft_float = 1;
8242 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
8243 soft_float = 0;
8244 else
8245 soft_float = !have_fpu;
8247 /* If we have a hard float binary or setting but no floating point
8248 registers, downgrade to soft float anyway. We're still somewhat
8249 useful in this scenario. */
8250 if (!soft_float && !have_fpu)
8251 soft_float = 1;
8253 /* Similarly for vector registers. */
8254 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
8255 vector_abi = POWERPC_VEC_GENERIC;
8257 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
8258 vector_abi = POWERPC_VEC_GENERIC;
8260 if (vector_abi == POWERPC_VEC_AUTO)
8262 if (have_altivec)
8263 vector_abi = POWERPC_VEC_ALTIVEC;
8264 else if (have_spe)
8265 vector_abi = POWERPC_VEC_SPE;
8266 else
8267 vector_abi = POWERPC_VEC_GENERIC;
8270 /* Do not limit the vector ABI based on available hardware, since we
8271 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
8273 /* Find a candidate among extant architectures. */
8274 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8275 arches != NULL;
8276 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8278 /* Word size in the various PowerPC bfd_arch_info structs isn't
8279 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
8280 separate word size check. */
8281 ppc_gdbarch_tdep *tdep
8282 = gdbarch_tdep<ppc_gdbarch_tdep> (arches->gdbarch);
8283 if (tdep && tdep->elf_abi != elf_abi)
8284 continue;
8285 if (tdep && tdep->soft_float != soft_float)
8286 continue;
8287 if (tdep && tdep->long_double_abi != long_double_abi)
8288 continue;
8289 if (tdep && tdep->vector_abi != vector_abi)
8290 continue;
8291 if (tdep && tdep->wordsize == wordsize)
8292 return arches->gdbarch;
8295 /* None found, create a new architecture from INFO, whose bfd_arch_info
8296 validity depends on the source:
8297 - executable useless
8298 - rs6000_host_arch() good
8299 - core file good
8300 - "set arch" trust blindly
8301 - GDB startup useless but harmless */
8303 gdbarch *gdbarch
8304 = gdbarch_alloc (&info, gdbarch_tdep_up (new ppc_gdbarch_tdep));
8305 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
8307 tdep->wordsize = wordsize;
8308 tdep->elf_abi = elf_abi;
8309 tdep->soft_float = soft_float;
8310 tdep->long_double_abi = long_double_abi;
8311 tdep->vector_abi = vector_abi;
8313 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
8314 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
8315 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
8316 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
8317 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
8318 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
8319 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
8320 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
8322 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
8323 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
8324 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
8325 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
8326 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
8327 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
8328 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
8329 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
8330 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
8331 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
8332 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
8333 tdep->have_ebb = have_ebb;
8335 /* If additional pmu registers are added, care must be taken when
8336 setting new fields in the tdep below, to maintain compatibility
8337 with features that only provide some of the registers. Currently
8338 gdb access to the pmu registers is only supported in linux, and
8339 linux only provides a subset of the pmu registers defined in the
8340 architecture. */
8342 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
8343 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
8344 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
8345 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
8346 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
8348 tdep->have_htm_spr = have_htm_spr;
8349 tdep->have_htm_core = have_htm_core;
8350 tdep->have_htm_fpu = have_htm_fpu;
8351 tdep->have_htm_altivec = have_htm_altivec;
8352 tdep->have_htm_vsx = have_htm_vsx;
8353 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
8354 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
8355 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
8357 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
8358 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
8359 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
8360 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
8362 /* The XML specification for PowerPC sensibly calls the MSR "msr".
8363 GDB traditionally called it "ps", though, so let GDB add an
8364 alias. */
8365 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
8367 if (wordsize == 8)
8369 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
8370 set_gdbarch_update_call_site_pc (gdbarch, ppc64_update_call_site_pc);
8372 else
8373 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
8374 set_gdbarch_get_return_buf_addr (gdbarch, ppc_sysv_get_return_buf_addr);
8376 /* Set lr_frame_offset. */
8377 if (wordsize == 8)
8378 tdep->lr_frame_offset = 16;
8379 else
8380 tdep->lr_frame_offset = 4;
8382 if (have_spe || have_dfp || have_altivec
8383 || have_vsx || have_htm_fpu || have_htm_vsx)
8385 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
8386 set_gdbarch_deprecated_pseudo_register_write
8387 (gdbarch, rs6000_pseudo_register_write);
8388 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8389 rs6000_ax_pseudo_register_collect);
8392 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
8394 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8396 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
8398 if (have_spe)
8399 num_pseudoregs += 32;
8400 if (have_dfp)
8401 num_pseudoregs += 16;
8402 if (have_altivec)
8403 num_pseudoregs += 32;
8404 if (have_vsx)
8405 /* Include both VSX and Extended FP registers. */
8406 num_pseudoregs += 96;
8407 if (have_htm_fpu)
8408 num_pseudoregs += 16;
8409 /* Include both checkpointed VSX and EFP registers. */
8410 if (have_htm_vsx)
8411 num_pseudoregs += 64 + 32;
8413 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
8415 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
8416 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
8417 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
8418 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
8419 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
8420 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
8421 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
8422 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
8423 set_gdbarch_char_signed (gdbarch, 0);
8425 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8426 if (wordsize == 8)
8427 /* PPC64 SYSV. */
8428 set_gdbarch_frame_red_zone_size (gdbarch, 288);
8430 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
8431 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
8432 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
8433 set_gdbarch_value_from_register (gdbarch, rs6000_value_from_register);
8435 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
8436 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
8438 if (wordsize == 4)
8439 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8440 else if (wordsize == 8)
8441 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
8443 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
8444 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8445 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
8447 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8449 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
8450 rs6000_breakpoint::kind_from_pc);
8451 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
8452 rs6000_breakpoint::bp_from_kind);
8453 set_gdbarch_program_breakpoint_here_p (gdbarch,
8454 rs6000_program_breakpoint_here_p);
8456 /* The value of symbols of type N_SO and N_FUN maybe null when
8457 it shouldn't be. */
8458 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
8460 /* Handles single stepping of atomic sequences. */
8461 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
8463 /* Not sure on this. FIXMEmgo */
8464 set_gdbarch_frame_args_skip (gdbarch, 8);
8466 /* Helpers for function argument information. */
8467 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
8469 /* Trampoline. */
8470 set_gdbarch_in_solib_return_trampoline
8471 (gdbarch, rs6000_in_solib_return_trampoline);
8472 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
8474 /* Hook in the DWARF CFI frame unwinder. */
8475 dwarf2_append_unwinders (gdbarch);
8476 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
8478 /* Frame handling. */
8479 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
8481 /* Setup displaced stepping. */
8482 set_gdbarch_displaced_step_copy_insn (gdbarch,
8483 ppc_displaced_step_copy_insn);
8484 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
8485 ppc_displaced_step_hw_singlestep);
8486 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
8487 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
8488 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
8489 set_gdbarch_displaced_step_restore_all_in_ptid
8490 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
8491 set_gdbarch_displaced_step_buffer_length (gdbarch, 2 * PPC_INSN_SIZE);
8493 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
8495 /* Hook in ABI-specific overrides, if they have been registered. */
8496 info.target_desc = tdesc;
8497 info.tdesc_data = tdesc_data.get ();
8498 gdbarch_init_osabi (info, gdbarch);
8500 switch (info.osabi)
8502 case GDB_OSABI_LINUX:
8503 case GDB_OSABI_NETBSD:
8504 case GDB_OSABI_UNKNOWN:
8505 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
8506 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
8507 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
8508 break;
8509 default:
8510 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
8512 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
8513 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
8514 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
8517 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
8518 set_tdesc_pseudo_register_reggroup_p (gdbarch,
8519 rs6000_pseudo_register_reggroup_p);
8520 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8522 /* Override the normal target description method to make the SPE upper
8523 halves anonymous. */
8524 set_gdbarch_register_name (gdbarch, rs6000_register_name);
8526 /* Choose register numbers for all supported pseudo-registers. */
8527 tdep->ppc_ev0_regnum = -1;
8528 tdep->ppc_dl0_regnum = -1;
8529 tdep->ppc_v0_alias_regnum = -1;
8530 tdep->ppc_vsr0_regnum = -1;
8531 tdep->ppc_efpr0_regnum = -1;
8532 tdep->ppc_cdl0_regnum = -1;
8533 tdep->ppc_cvsr0_regnum = -1;
8534 tdep->ppc_cefpr0_regnum = -1;
8536 cur_reg = gdbarch_num_regs (gdbarch);
8538 if (have_spe)
8540 tdep->ppc_ev0_regnum = cur_reg;
8541 cur_reg += 32;
8543 if (have_dfp)
8545 tdep->ppc_dl0_regnum = cur_reg;
8546 cur_reg += 16;
8548 if (have_altivec)
8550 tdep->ppc_v0_alias_regnum = cur_reg;
8551 cur_reg += 32;
8553 if (have_vsx)
8555 tdep->ppc_vsr0_regnum = cur_reg;
8556 cur_reg += 64;
8557 tdep->ppc_efpr0_regnum = cur_reg;
8558 cur_reg += 32;
8560 if (have_htm_fpu)
8562 tdep->ppc_cdl0_regnum = cur_reg;
8563 cur_reg += 16;
8565 if (have_htm_vsx)
8567 tdep->ppc_cvsr0_regnum = cur_reg;
8568 cur_reg += 64;
8569 tdep->ppc_cefpr0_regnum = cur_reg;
8570 cur_reg += 32;
8573 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
8575 /* Register the ravenscar_arch_ops. */
8576 if (mach == bfd_mach_ppc_e500)
8577 register_e500_ravenscar_ops (gdbarch);
8578 else
8579 register_ppc_ravenscar_ops (gdbarch);
8581 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
8582 set_gdbarch_valid_disassembler_options (gdbarch,
8583 disassembler_options_powerpc ());
8585 return gdbarch;
8588 static void
8589 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8591 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
8593 if (tdep == NULL)
8594 return;
8596 /* FIXME: Dump gdbarch_tdep. */
8599 static void
8600 powerpc_set_soft_float (const char *args, int from_tty,
8601 struct cmd_list_element *c)
8603 struct gdbarch_info info;
8605 /* Update the architecture. */
8606 if (!gdbarch_update_p (info))
8607 internal_error (_("could not update architecture"));
8610 static void
8611 powerpc_set_vector_abi (const char *args, int from_tty,
8612 struct cmd_list_element *c)
8614 int vector_abi;
8616 for (vector_abi = POWERPC_VEC_AUTO;
8617 vector_abi != POWERPC_VEC_LAST;
8618 vector_abi++)
8619 if (strcmp (powerpc_vector_abi_string,
8620 powerpc_vector_strings[vector_abi]) == 0)
8622 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
8623 break;
8626 if (vector_abi == POWERPC_VEC_LAST)
8627 internal_error (_("Invalid vector ABI accepted: %s."),
8628 powerpc_vector_abi_string);
8630 /* Update the architecture. */
8631 gdbarch_info info;
8632 if (!gdbarch_update_p (info))
8633 internal_error (_("could not update architecture"));
8636 /* Show the current setting of the exact watchpoints flag. */
8638 static void
8639 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
8640 struct cmd_list_element *c,
8641 const char *value)
8643 gdb_printf (file, _("Use of exact watchpoints is %s.\n"), value);
8646 /* Read a PPC instruction from memory. */
8648 static unsigned int
8649 read_insn (const frame_info_ptr &frame, CORE_ADDR pc)
8651 struct gdbarch *gdbarch = get_frame_arch (frame);
8652 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8654 return read_memory_unsigned_integer (pc, 4, byte_order);
8657 /* Return non-zero if the instructions at PC match the series
8658 described in PATTERN, or zero otherwise. PATTERN is an array of
8659 'struct ppc_insn_pattern' objects, terminated by an entry whose
8660 mask is zero.
8662 When the match is successful, fill INSNS[i] with what PATTERN[i]
8663 matched. If PATTERN[i] is optional, and the instruction wasn't
8664 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
8665 INSNS should have as many elements as PATTERN, minus the terminator.
8666 Note that, if PATTERN contains optional instructions which aren't
8667 present in memory, then INSNS will have holes, so INSNS[i] isn't
8668 necessarily the i'th instruction in memory. */
8671 ppc_insns_match_pattern (const frame_info_ptr &frame, CORE_ADDR pc,
8672 const struct ppc_insn_pattern *pattern,
8673 unsigned int *insns)
8675 int i;
8676 unsigned int insn;
8678 for (i = 0, insn = 0; pattern[i].mask; i++)
8680 if (insn == 0)
8681 insn = read_insn (frame, pc);
8682 insns[i] = 0;
8683 if ((insn & pattern[i].mask) == pattern[i].data)
8685 insns[i] = insn;
8686 pc += 4;
8687 insn = 0;
8689 else if (!pattern[i].optional)
8690 return 0;
8693 return 1;
8696 /* Return the 'd' field of the d-form instruction INSN, properly
8697 sign-extended. */
8699 CORE_ADDR
8700 ppc_insn_d_field (unsigned int insn)
8702 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
8705 /* Return the 'ds' field of the ds-form instruction INSN, with the two
8706 zero bits concatenated at the right, and properly
8707 sign-extended. */
8709 CORE_ADDR
8710 ppc_insn_ds_field (unsigned int insn)
8712 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
8715 CORE_ADDR
8716 ppc_insn_prefix_dform (unsigned int insn1, unsigned int insn2)
8718 /* result is 34-bits */
8719 return (CORE_ADDR) ((((insn1 & 0x3ffff) ^ 0x20000) - 0x20000) << 16)
8720 | (CORE_ADDR)(insn2 & 0xffff);
8723 /* Initialization code. */
8725 void _initialize_rs6000_tdep ();
8726 void
8727 _initialize_rs6000_tdep ()
8729 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
8730 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
8732 /* Initialize the standard target descriptions. */
8733 initialize_tdesc_powerpc_32 ();
8734 initialize_tdesc_powerpc_altivec32 ();
8735 initialize_tdesc_powerpc_vsx32 ();
8736 initialize_tdesc_powerpc_403 ();
8737 initialize_tdesc_powerpc_403gc ();
8738 initialize_tdesc_powerpc_405 ();
8739 initialize_tdesc_powerpc_505 ();
8740 initialize_tdesc_powerpc_601 ();
8741 initialize_tdesc_powerpc_602 ();
8742 initialize_tdesc_powerpc_603 ();
8743 initialize_tdesc_powerpc_604 ();
8744 initialize_tdesc_powerpc_64 ();
8745 initialize_tdesc_powerpc_altivec64 ();
8746 initialize_tdesc_powerpc_vsx64 ();
8747 initialize_tdesc_powerpc_7400 ();
8748 initialize_tdesc_powerpc_750 ();
8749 initialize_tdesc_powerpc_860 ();
8750 initialize_tdesc_powerpc_e500 ();
8751 initialize_tdesc_rs6000 ();
8753 /* Add root prefix command for all "set powerpc"/"show powerpc"
8754 commands. */
8755 add_setshow_prefix_cmd ("powerpc", no_class,
8756 _("Various PowerPC-specific commands."),
8757 _("Various PowerPC-specific commands."),
8758 &setpowerpccmdlist, &showpowerpccmdlist,
8759 &setlist, &showlist);
8761 /* Add a command to allow the user to force the ABI. */
8762 add_setshow_auto_boolean_cmd ("soft-float", class_support,
8763 &powerpc_soft_float_global,
8764 _("Set whether to use a soft-float ABI."),
8765 _("Show whether to use a soft-float ABI."),
8766 NULL,
8767 powerpc_set_soft_float, NULL,
8768 &setpowerpccmdlist, &showpowerpccmdlist);
8770 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
8771 &powerpc_vector_abi_string,
8772 _("Set the vector ABI."),
8773 _("Show the vector ABI."),
8774 NULL, powerpc_set_vector_abi, NULL,
8775 &setpowerpccmdlist, &showpowerpccmdlist);
8777 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
8778 &target_exact_watchpoints,
8779 _("\
8780 Set whether to use just one debug register for watchpoints on scalars."),
8781 _("\
8782 Show whether to use just one debug register for watchpoints on scalars."),
8783 _("\
8784 If true, GDB will use only one debug register when watching a variable of\n\
8785 scalar type, thus assuming that the variable is accessed through the address\n\
8786 of its first byte."),
8787 NULL, show_powerpc_exact_watchpoints,
8788 &setpowerpccmdlist, &showpowerpccmdlist);