Automatic date update in version.in
[binutils-gdb.git] / gdb / m32c-tdep.c
blob33ec44349d76246c6c77b5a85e28bcd92b86ee46
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 2004-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "sim/sim-m32c.h"
21 #include "gdbtypes.h"
22 #include "regcache.h"
23 #include "arch-utils.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "reggroups.h"
30 #include "prologue-value.h"
31 #include "objfiles.h"
32 #include "gdbarch.h"
35 /* The m32c tdep structure. */
37 static const reggroup *m32c_dma_reggroup;
39 /* The type of a function that moves the value of REG between CACHE or
40 BUF --- in either direction. */
41 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
42 struct regcache *cache,
43 const gdb_byte *buf);
45 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
46 readable_regcache *cache,
47 gdb_byte *buf);
49 struct m32c_reg
51 /* The name of this register. */
52 const char *name;
54 /* Its type. */
55 struct type *type;
57 /* The architecture this register belongs to. */
58 struct gdbarch *arch;
60 /* Its GDB register number. */
61 int num;
63 /* Its sim register number. */
64 int sim_num;
66 /* Its DWARF register number, or -1 if it doesn't have one. */
67 int dwarf_num;
69 /* Register group memberships. */
70 unsigned int general_p : 1;
71 unsigned int dma_p : 1;
72 unsigned int system_p : 1;
73 unsigned int save_restore_p : 1;
75 /* Functions to read its value from a regcache, and write its value
76 to a regcache. */
77 m32c_read_reg_t *read;
78 m32c_write_reg_t *write;
80 /* Data for READ and WRITE functions. The exact meaning depends on
81 the specific functions selected; see the comments for those
82 functions. */
83 struct m32c_reg *rx, *ry;
84 int n;
88 /* An overestimate of the number of raw and pseudoregisters we will
89 have. The exact answer depends on the variant of the architecture
90 at hand, but we can use this to declare statically allocated
91 arrays, and bump it up when needed. */
92 #define M32C_MAX_NUM_REGS (75)
94 /* The largest assigned DWARF register number. */
95 #define M32C_MAX_DWARF_REGNUM (40)
98 struct m32c_gdbarch_tdep : gdbarch_tdep_base
100 /* All the registers for this variant, indexed by GDB register
101 number, and the number of registers present. */
102 struct m32c_reg regs[M32C_MAX_NUM_REGS] {};
104 /* The number of valid registers. */
105 int num_regs = 0;
107 /* Interesting registers. These are pointers into REGS. */
108 struct m32c_reg *pc = nullptr, *flg = nullptr;
109 struct m32c_reg *r0 = nullptr, *r1 = nullptr, *r2 = nullptr, *r3 = nullptr,
110 *a0 = nullptr, *a1 = nullptr;
111 struct m32c_reg *r2r0 = nullptr, *r3r2r1r0 = nullptr, *r3r1r2r0 = nullptr;
112 struct m32c_reg *sb = nullptr, *fb = nullptr, *sp = nullptr;
114 /* A table indexed by DWARF register numbers, pointing into
115 REGS. */
116 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1] {};
118 /* Types for this architecture. We can't use the builtin_type_foo
119 types, because they're not initialized when building a gdbarch
120 structure. */
121 struct type *voyd = nullptr, *ptr_voyd = nullptr, *func_voyd = nullptr;
122 struct type *uint8 = nullptr, *uint16 = nullptr;
123 struct type *int8 = nullptr, *int16 = nullptr, *int32 = nullptr,
124 *int64 = nullptr;
126 /* The types for data address and code address registers. */
127 struct type *data_addr_reg_type = nullptr, *code_addr_reg_type = nullptr;
129 /* The number of bytes a return address pushed by a 'jsr' instruction
130 occupies on the stack. */
131 int ret_addr_bytes = 0;
133 /* The number of bytes an address register occupies on the stack
134 when saved by an 'enter' or 'pushm' instruction. */
135 int push_addr_bytes = 0;
139 /* Types. */
141 static void
142 make_types (struct gdbarch *arch)
144 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
145 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
146 int data_addr_reg_bits, code_addr_reg_bits;
147 char type_name[50];
149 #if 0
150 /* This is used to clip CORE_ADDR values, so this value is
151 appropriate both on the m32c, where pointers are 32 bits long,
152 and on the m16c, where pointers are sixteen bits long, but there
153 may be code above the 64k boundary. */
154 set_gdbarch_addr_bit (arch, 24);
155 #else
156 /* GCC uses 32 bits for addrs in the dwarf info, even though
157 only 16/24 bits are used. Setting addr_bit to 24 causes
158 errors in reading the dwarf addresses. */
159 set_gdbarch_addr_bit (arch, 32);
160 #endif
162 set_gdbarch_int_bit (arch, 16);
163 switch (mach)
165 case bfd_mach_m16c:
166 data_addr_reg_bits = 16;
167 code_addr_reg_bits = 24;
168 set_gdbarch_ptr_bit (arch, 16);
169 tdep->ret_addr_bytes = 3;
170 tdep->push_addr_bytes = 2;
171 break;
173 case bfd_mach_m32c:
174 data_addr_reg_bits = 24;
175 code_addr_reg_bits = 24;
176 set_gdbarch_ptr_bit (arch, 32);
177 tdep->ret_addr_bytes = 4;
178 tdep->push_addr_bytes = 4;
179 break;
181 default:
182 gdb_assert_not_reached ("unexpected mach");
185 /* The builtin_type_mumble variables are sometimes uninitialized when
186 this is called, so we avoid using them. */
187 type_allocator alloc (arch);
188 tdep->voyd = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
189 tdep->ptr_voyd
190 = init_pointer_type (alloc, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
191 tdep->func_voyd = lookup_function_type (tdep->voyd);
193 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
194 gdbarch_bfd_arch_info (arch)->printable_name);
195 tdep->data_addr_reg_type
196 = init_pointer_type (alloc, data_addr_reg_bits, type_name, tdep->voyd);
198 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
199 gdbarch_bfd_arch_info (arch)->printable_name);
200 tdep->code_addr_reg_type
201 = init_pointer_type (alloc, code_addr_reg_bits, type_name,
202 tdep->func_voyd);
204 tdep->uint8 = init_integer_type (alloc, 8, 1, "uint8_t");
205 tdep->uint16 = init_integer_type (alloc, 16, 1, "uint16_t");
206 tdep->int8 = init_integer_type (alloc, 8, 0, "int8_t");
207 tdep->int16 = init_integer_type (alloc, 16, 0, "int16_t");
208 tdep->int32 = init_integer_type (alloc, 32, 0, "int32_t");
209 tdep->int64 = init_integer_type (alloc, 64, 0, "int64_t");
214 /* Register set. */
216 static const char *
217 m32c_register_name (struct gdbarch *gdbarch, int num)
219 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
220 return tdep->regs[num].name;
224 static struct type *
225 m32c_register_type (struct gdbarch *arch, int reg_nr)
227 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
228 return tdep->regs[reg_nr].type;
232 static int
233 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
235 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
236 return tdep->regs[reg_nr].sim_num;
240 static int
241 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
243 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
244 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
245 && tdep->dwarf_regs[reg_nr])
246 return tdep->dwarf_regs[reg_nr]->num;
247 else
248 /* The DWARF CFI code expects to see -1 for invalid register
249 numbers. */
250 return -1;
254 static int
255 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
256 const struct reggroup *group)
258 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
259 struct m32c_reg *reg = &tdep->regs[regnum];
261 /* The anonymous raw registers aren't in any groups. */
262 if (! reg->name)
263 return 0;
265 if (group == all_reggroup)
266 return 1;
268 if (group == general_reggroup
269 && reg->general_p)
270 return 1;
272 if (group == m32c_dma_reggroup
273 && reg->dma_p)
274 return 1;
276 if (group == system_reggroup
277 && reg->system_p)
278 return 1;
280 /* Since the m32c DWARF register numbers refer to cooked registers, not
281 raw registers, and frame_pop depends on the save and restore groups
282 containing registers the DWARF CFI will actually mention, our save
283 and restore groups are cooked registers, not raw registers. (This is
284 why we can't use the default reggroup function.) */
285 if ((group == save_reggroup
286 || group == restore_reggroup)
287 && reg->save_restore_p)
288 return 1;
290 return 0;
294 /* Register move functions. We declare them here using
295 m32c_{read,write}_reg_t to check the types. */
296 static m32c_read_reg_t m32c_raw_read;
297 static m32c_read_reg_t m32c_banked_read;
298 static m32c_read_reg_t m32c_sb_read;
299 static m32c_read_reg_t m32c_part_read;
300 static m32c_read_reg_t m32c_cat_read;
301 static m32c_read_reg_t m32c_r3r2r1r0_read;
303 static m32c_write_reg_t m32c_raw_write;
304 static m32c_write_reg_t m32c_banked_write;
305 static m32c_write_reg_t m32c_sb_write;
306 static m32c_write_reg_t m32c_part_write;
307 static m32c_write_reg_t m32c_cat_write;
308 static m32c_write_reg_t m32c_r3r2r1r0_write;
310 /* Copy the value of the raw register REG from CACHE to BUF. */
311 static enum register_status
312 m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
314 return cache->raw_read (reg->num, buf);
318 /* Copy the value of the raw register REG from BUF to CACHE. */
319 static enum register_status
320 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
321 const gdb_byte *buf)
323 cache->raw_write (reg->num, buf);
325 return REG_VALID;
329 /* Return the value of the 'flg' register in CACHE. */
330 static int
331 m32c_read_flg (readable_regcache *cache)
333 gdbarch *arch = cache->arch ();
334 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
335 ULONGEST flg;
337 cache->raw_read (tdep->flg->num, &flg);
338 return flg & 0xffff;
342 /* Evaluate the real register number of a banked register. */
343 static struct m32c_reg *
344 m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
346 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
350 /* Move the value of a banked register from CACHE to BUF.
351 If the value of the 'flg' register in CACHE has any of the bits
352 masked in REG->n set, then read REG->ry. Otherwise, read
353 REG->rx. */
354 static enum register_status
355 m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
357 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
358 return cache->raw_read (bank_reg->num, buf);
362 /* Move the value of a banked register from BUF to CACHE.
363 If the value of the 'flg' register in CACHE has any of the bits
364 masked in REG->n set, then write REG->ry. Otherwise, write
365 REG->rx. */
366 static enum register_status
367 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
368 const gdb_byte *buf)
370 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
371 cache->raw_write (bank_reg->num, buf);
373 return REG_VALID;
377 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
378 banked register; on bfd_mach_m16c, it's not. */
379 static enum register_status
380 m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
382 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
383 return m32c_raw_read (reg->rx, cache, buf);
384 else
385 return m32c_banked_read (reg, cache, buf);
389 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
390 banked register; on bfd_mach_m16c, it's not. */
391 static enum register_status
392 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
394 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
395 m32c_raw_write (reg->rx, cache, buf);
396 else
397 m32c_banked_write (reg, cache, buf);
399 return REG_VALID;
403 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
404 and *LEN_P to the offset and length, in bytes, of the part REG
405 occupies in its underlying register. The offset is from the
406 lower-addressed end, regardless of the architecture's endianness.
407 (The M32C family is always little-endian, but let's keep those
408 assumptions out of here.) */
409 static void
410 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
412 /* The length of the containing register, of which REG is one part. */
413 int containing_len = reg->rx->type->length ();
415 /* The length of one "element" in our imaginary array. */
416 int elt_len = reg->type->length ();
418 /* The offset of REG's "element" from the least significant end of
419 the containing register. */
420 int elt_offset = reg->n * elt_len;
422 /* If we extend off the end, trim the length of the element. */
423 if (elt_offset + elt_len > containing_len)
425 elt_len = containing_len - elt_offset;
426 /* We shouldn't be declaring partial registers that go off the
427 end of their containing registers. */
428 gdb_assert (elt_len > 0);
431 /* Flip the offset around if we're big-endian. */
432 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
433 elt_offset = reg->rx->type->length () - elt_offset - elt_len;
435 *offset_p = elt_offset;
436 *len_p = elt_len;
440 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
441 to BUF. Treating the value of the register REG->rx as an array of
442 REG->type values, where higher indices refer to more significant
443 bits, read the value of the REG->n'th element. */
444 static enum register_status
445 m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
447 int offset, len;
449 memset (buf, 0, reg->type->length ());
450 m32c_find_part (reg, &offset, &len);
451 return cache->cooked_read_part (reg->rx->num, offset, len, buf);
455 /* Move the value of a banked register from BUF to CACHE.
456 Treating the value of the register REG->rx as an array of REG->type
457 values, where higher indices refer to more significant bits, write
458 the value of the REG->n'th element. */
459 static enum register_status
460 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
461 const gdb_byte *buf)
463 int offset, len;
465 m32c_find_part (reg, &offset, &len);
466 cache->cooked_write_part (reg->rx->num, offset, len, buf);
468 return REG_VALID;
472 /* Move the value of REG from CACHE to BUF. REG's value is the
473 concatenation of the values of the registers REG->rx and REG->ry,
474 with REG->rx contributing the more significant bits. */
475 static enum register_status
476 m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
478 int high_bytes = reg->rx->type->length ();
479 int low_bytes = reg->ry->type->length ();
480 enum register_status status;
482 gdb_assert (reg->type->length () == high_bytes + low_bytes);
484 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
486 status = cache->cooked_read (reg->rx->num, buf);
487 if (status == REG_VALID)
488 status = cache->cooked_read (reg->ry->num, buf + high_bytes);
490 else
492 status = cache->cooked_read (reg->rx->num, buf + low_bytes);
493 if (status == REG_VALID)
494 status = cache->cooked_read (reg->ry->num, buf);
496 return status;
500 /* Move the value of REG from CACHE to BUF. REG's value is the
501 concatenation of the values of the registers REG->rx and REG->ry,
502 with REG->rx contributing the more significant bits. */
503 static enum register_status
504 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
505 const gdb_byte *buf)
507 int high_bytes = reg->rx->type->length ();
508 int low_bytes = reg->ry->type->length ();
510 gdb_assert (reg->type->length () == high_bytes + low_bytes);
512 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
514 cache->cooked_write (reg->rx->num, buf);
515 cache->cooked_write (reg->ry->num, buf + high_bytes);
517 else
519 cache->cooked_write (reg->rx->num, buf + low_bytes);
520 cache->cooked_write (reg->ry->num, buf);
523 return REG_VALID;
527 /* Copy the value of the raw register REG from CACHE to BUF. REG is
528 the concatenation (from most significant to least) of r3, r2, r1,
529 and r0. */
530 static enum register_status
531 m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
533 gdbarch *arch = reg->arch;
534 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
535 int len = tdep->r0->type->length ();
536 enum register_status status;
538 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
540 status = cache->cooked_read (tdep->r0->num, buf + len * 3);
541 if (status == REG_VALID)
542 status = cache->cooked_read (tdep->r1->num, buf + len * 2);
543 if (status == REG_VALID)
544 status = cache->cooked_read (tdep->r2->num, buf + len * 1);
545 if (status == REG_VALID)
546 status = cache->cooked_read (tdep->r3->num, buf);
548 else
550 status = cache->cooked_read (tdep->r0->num, buf);
551 if (status == REG_VALID)
552 status = cache->cooked_read (tdep->r1->num, buf + len * 1);
553 if (status == REG_VALID)
554 status = cache->cooked_read (tdep->r2->num, buf + len * 2);
555 if (status == REG_VALID)
556 status = cache->cooked_read (tdep->r3->num, buf + len * 3);
559 return status;
563 /* Copy the value of the raw register REG from BUF to CACHE. REG is
564 the concatenation (from most significant to least) of r3, r2, r1,
565 and r0. */
566 static enum register_status
567 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
568 const gdb_byte *buf)
570 gdbarch *arch = reg->arch;
571 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
572 int len = tdep->r0->type->length ();
574 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
576 cache->cooked_write (tdep->r0->num, buf + len * 3);
577 cache->cooked_write (tdep->r1->num, buf + len * 2);
578 cache->cooked_write (tdep->r2->num, buf + len * 1);
579 cache->cooked_write (tdep->r3->num, buf);
581 else
583 cache->cooked_write (tdep->r0->num, buf);
584 cache->cooked_write (tdep->r1->num, buf + len * 1);
585 cache->cooked_write (tdep->r2->num, buf + len * 2);
586 cache->cooked_write (tdep->r3->num, buf + len * 3);
589 return REG_VALID;
593 static enum register_status
594 m32c_pseudo_register_read (struct gdbarch *arch,
595 readable_regcache *cache,
596 int cookednum,
597 gdb_byte *buf)
599 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
600 struct m32c_reg *reg;
602 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
603 gdb_assert (arch == cache->arch ());
604 gdb_assert (arch == tdep->regs[cookednum].arch);
605 reg = &tdep->regs[cookednum];
607 return reg->read (reg, cache, buf);
611 static void
612 m32c_pseudo_register_write (struct gdbarch *arch,
613 struct regcache *cache,
614 int cookednum,
615 const gdb_byte *buf)
617 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
618 struct m32c_reg *reg;
620 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
621 gdb_assert (arch == cache->arch ());
622 gdb_assert (arch == tdep->regs[cookednum].arch);
623 reg = &tdep->regs[cookednum];
625 reg->write (reg, cache, buf);
629 /* Add a register with the given fields to the end of ARCH's table.
630 Return a pointer to the newly added register. */
631 static struct m32c_reg *
632 add_reg (struct gdbarch *arch,
633 const char *name,
634 struct type *type,
635 int sim_num,
636 m32c_read_reg_t *read,
637 m32c_write_reg_t *write,
638 struct m32c_reg *rx,
639 struct m32c_reg *ry,
640 int n)
642 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
643 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
645 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
647 r->name = name;
648 r->type = type;
649 r->arch = arch;
650 r->num = tdep->num_regs;
651 r->sim_num = sim_num;
652 r->dwarf_num = -1;
653 r->general_p = 0;
654 r->dma_p = 0;
655 r->system_p = 0;
656 r->save_restore_p = 0;
657 r->read = read;
658 r->write = write;
659 r->rx = rx;
660 r->ry = ry;
661 r->n = n;
663 tdep->num_regs++;
665 return r;
669 /* Record NUM as REG's DWARF register number. */
670 static void
671 set_dwarf_regnum (struct m32c_reg *reg, int num)
673 gdb_assert (num < M32C_MAX_NUM_REGS);
675 /* Update the reg->DWARF mapping. Only count the first number
676 assigned to this register. */
677 if (reg->dwarf_num == -1)
678 reg->dwarf_num = num;
680 /* Update the DWARF->reg mapping. */
681 gdbarch *arch = reg->arch;
682 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
683 tdep->dwarf_regs[num] = reg;
687 /* Mark REG as a general-purpose register, and return it. */
688 static struct m32c_reg *
689 mark_general (struct m32c_reg *reg)
691 reg->general_p = 1;
692 return reg;
696 /* Mark REG as a DMA register. */
697 static void
698 mark_dma (struct m32c_reg *reg)
700 reg->dma_p = 1;
704 /* Mark REG as a SYSTEM register, and return it. */
705 static struct m32c_reg *
706 mark_system (struct m32c_reg *reg)
708 reg->system_p = 1;
709 return reg;
713 /* Mark REG as a save-restore register, and return it. */
714 static struct m32c_reg *
715 mark_save_restore (struct m32c_reg *reg)
717 reg->save_restore_p = 1;
718 return reg;
722 #define FLAGBIT_B 0x0010
723 #define FLAGBIT_U 0x0080
725 /* Handy macros for declaring registers. These all evaluate to
726 pointers to the register declared. Macros that define two
727 registers evaluate to a pointer to the first. */
729 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
730 #define R(name, type, sim_num) \
731 (add_reg (arch, (name), (type), (sim_num), \
732 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
734 /* The simulator register number for a raw register named NAME. */
735 #define SIM(name) (m32c_sim_reg_ ## name)
737 /* A raw unsigned 16-bit data register named NAME.
738 NAME should be an identifier, not a string. */
739 #define R16U(name) \
740 (R(#name, tdep->uint16, SIM (name)))
742 /* A raw data address register named NAME.
743 NAME should be an identifier, not a string. */
744 #define RA(name) \
745 (R(#name, tdep->data_addr_reg_type, SIM (name)))
747 /* A raw code address register named NAME. NAME should
748 be an identifier, not a string. */
749 #define RC(name) \
750 (R(#name, tdep->code_addr_reg_type, SIM (name)))
752 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
753 NAME should be an identifier, not a string. */
754 #define RP(name, type) \
755 (R(#name "0", (type), SIM (name ## 0)), \
756 R(#name "1", (type), SIM (name ## 1)) - 1)
758 /* A raw banked general-purpose data register named NAME.
759 NAME should be an identifier, not a string. */
760 #define RBD(name) \
761 (R("", tdep->int16, SIM (name ## _bank0)), \
762 R("", tdep->int16, SIM (name ## _bank1)) - 1)
764 /* A raw banked data address register named NAME.
765 NAME should be an identifier, not a string. */
766 #define RBA(name) \
767 (R("", tdep->data_addr_reg_type, SIM (name ## _bank0)), \
768 R("", tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
770 /* A cooked register named NAME referring to a raw banked register
771 from the bank selected by the current value of FLG. RAW_PAIR
772 should be a pointer to the first register in the banked pair.
773 NAME must be an identifier, not a string. */
774 #define CB(name, raw_pair) \
775 (add_reg (arch, #name, (raw_pair)->type, 0, \
776 m32c_banked_read, m32c_banked_write, \
777 (raw_pair), (raw_pair + 1), FLAGBIT_B))
779 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
780 access the top and bottom halves of the register pointed to by
781 NAME. NAME should be an identifier. */
782 #define CHL(name, type) \
783 (add_reg (arch, #name "h", (type), 0, \
784 m32c_part_read, m32c_part_write, name, NULL, 1), \
785 add_reg (arch, #name "l", (type), 0, \
786 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
788 /* A register constructed by concatenating the two registers HIGH and
789 LOW, whose name is HIGHLOW and whose type is TYPE. */
790 #define CCAT(high, low, type) \
791 (add_reg (arch, #high #low, (type), 0, \
792 m32c_cat_read, m32c_cat_write, (high), (low), 0))
794 /* Abbreviations for marking register group membership. */
795 #define G(reg) (mark_general (reg))
796 #define S(reg) (mark_system (reg))
797 #define DMA(reg) (mark_dma (reg))
800 /* Construct the register set for ARCH. */
801 static void
802 make_regs (struct gdbarch *arch)
804 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
805 int mach = gdbarch_bfd_arch_info (arch)->mach;
806 int num_raw_regs;
807 int num_cooked_regs;
809 struct m32c_reg *r0;
810 struct m32c_reg *r1;
811 struct m32c_reg *r2;
812 struct m32c_reg *r3;
813 struct m32c_reg *a0;
814 struct m32c_reg *a1;
815 struct m32c_reg *fb;
816 struct m32c_reg *sb;
817 struct m32c_reg *sp;
818 struct m32c_reg *r0hl;
819 struct m32c_reg *r1hl;
820 struct m32c_reg *r2r0;
821 struct m32c_reg *r3r1;
822 struct m32c_reg *r3r1r2r0;
823 struct m32c_reg *r3r2r1r0;
824 struct m32c_reg *a1a0;
826 struct m32c_reg *raw_r0_pair = RBD (r0);
827 struct m32c_reg *raw_r1_pair = RBD (r1);
828 struct m32c_reg *raw_r2_pair = RBD (r2);
829 struct m32c_reg *raw_r3_pair = RBD (r3);
830 struct m32c_reg *raw_a0_pair = RBA (a0);
831 struct m32c_reg *raw_a1_pair = RBA (a1);
832 struct m32c_reg *raw_fb_pair = RBA (fb);
834 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
835 We always declare both raw registers, and deal with the distinction
836 in the pseudoregister. */
837 struct m32c_reg *raw_sb_pair = RBA (sb);
839 struct m32c_reg *usp = S (RA (usp));
840 struct m32c_reg *isp = S (RA (isp));
841 struct m32c_reg *intb = S (RC (intb));
842 struct m32c_reg *pc = G (RC (pc));
843 struct m32c_reg *flg = G (R16U (flg));
845 if (mach == bfd_mach_m32c)
847 S (R16U (svf));
848 S (RC (svp));
849 S (RC (vct));
851 DMA (RP (dmd, tdep->uint8));
852 DMA (RP (dct, tdep->uint16));
853 DMA (RP (drc, tdep->uint16));
854 DMA (RP (dma, tdep->data_addr_reg_type));
855 DMA (RP (dsa, tdep->data_addr_reg_type));
856 DMA (RP (dra, tdep->data_addr_reg_type));
859 num_raw_regs = tdep->num_regs;
861 r0 = G (CB (r0, raw_r0_pair));
862 r1 = G (CB (r1, raw_r1_pair));
863 r2 = G (CB (r2, raw_r2_pair));
864 r3 = G (CB (r3, raw_r3_pair));
865 a0 = G (CB (a0, raw_a0_pair));
866 a1 = G (CB (a1, raw_a1_pair));
867 fb = G (CB (fb, raw_fb_pair));
869 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
870 Specify custom read/write functions that do the right thing. */
871 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
872 m32c_sb_read, m32c_sb_write,
873 raw_sb_pair, raw_sb_pair + 1, 0));
875 /* The current sp is either usp or isp, depending on the value of
876 the FLG register's U bit. */
877 sp = G (add_reg (arch, "sp", usp->type, 0,
878 m32c_banked_read, m32c_banked_write,
879 isp, usp, FLAGBIT_U));
881 r0hl = CHL (r0, tdep->int8);
882 r1hl = CHL (r1, tdep->int8);
883 CHL (r2, tdep->int8);
884 CHL (r3, tdep->int8);
885 CHL (intb, tdep->int16);
887 r2r0 = CCAT (r2, r0, tdep->int32);
888 r3r1 = CCAT (r3, r1, tdep->int32);
889 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
891 r3r2r1r0
892 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
893 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
895 if (mach == bfd_mach_m16c)
896 a1a0 = CCAT (a1, a0, tdep->int32);
897 else
898 a1a0 = NULL;
900 num_cooked_regs = tdep->num_regs - num_raw_regs;
902 tdep->pc = pc;
903 tdep->flg = flg;
904 tdep->r0 = r0;
905 tdep->r1 = r1;
906 tdep->r2 = r2;
907 tdep->r3 = r3;
908 tdep->r2r0 = r2r0;
909 tdep->r3r2r1r0 = r3r2r1r0;
910 tdep->r3r1r2r0 = r3r1r2r0;
911 tdep->a0 = a0;
912 tdep->a1 = a1;
913 tdep->sb = sb;
914 tdep->fb = fb;
915 tdep->sp = sp;
917 /* Set up the DWARF register table. */
918 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
919 set_dwarf_regnum (r0hl + 1, 0x01);
920 set_dwarf_regnum (r0hl + 0, 0x02);
921 set_dwarf_regnum (r1hl + 1, 0x03);
922 set_dwarf_regnum (r1hl + 0, 0x04);
923 set_dwarf_regnum (r0, 0x05);
924 set_dwarf_regnum (r1, 0x06);
925 set_dwarf_regnum (r2, 0x07);
926 set_dwarf_regnum (r3, 0x08);
927 set_dwarf_regnum (a0, 0x09);
928 set_dwarf_regnum (a1, 0x0a);
929 set_dwarf_regnum (fb, 0x0b);
930 set_dwarf_regnum (sp, 0x0c);
931 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
932 set_dwarf_regnum (sb, 0x13);
933 set_dwarf_regnum (r2r0, 0x15);
934 set_dwarf_regnum (r3r1, 0x16);
935 if (a1a0)
936 set_dwarf_regnum (a1a0, 0x17);
938 /* Enumerate the save/restore register group.
940 The regcache_save and regcache_restore functions apply their read
941 function to each register in this group.
943 Since frame_pop supplies frame_unwind_register as its read
944 function, the registers meaningful to the Dwarf unwinder need to
945 be in this group.
947 On the other hand, when we make inferior calls, save_inferior_status
948 and restore_inferior_status use them to preserve the current register
949 values across the inferior call. For this, you'd kind of like to
950 preserve all the raw registers, to protect the interrupted code from
951 any sort of bank switching the callee might have done. But we handle
952 those cases so badly anyway --- for example, it matters whether we
953 restore FLG before or after we restore the general-purpose registers,
954 but there's no way to express that --- that it isn't worth worrying
955 about.
957 We omit control registers like inthl: if you call a function that
958 changes those, it's probably because you wanted that change to be
959 visible to the interrupted code. */
960 mark_save_restore (r0);
961 mark_save_restore (r1);
962 mark_save_restore (r2);
963 mark_save_restore (r3);
964 mark_save_restore (a0);
965 mark_save_restore (a1);
966 mark_save_restore (sb);
967 mark_save_restore (fb);
968 mark_save_restore (sp);
969 mark_save_restore (pc);
970 mark_save_restore (flg);
972 set_gdbarch_num_regs (arch, num_raw_regs);
973 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
974 set_gdbarch_pc_regnum (arch, pc->num);
975 set_gdbarch_sp_regnum (arch, sp->num);
976 set_gdbarch_register_name (arch, m32c_register_name);
977 set_gdbarch_register_type (arch, m32c_register_type);
978 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
979 set_gdbarch_deprecated_pseudo_register_write (arch,
980 m32c_pseudo_register_write);
981 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
982 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
983 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
984 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
986 reggroup_add (arch, m32c_dma_reggroup);
991 /* Breakpoints. */
992 constexpr gdb_byte m32c_break_insn[] = { 0x00 }; /* brk */
994 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
997 /* Prologue analysis. */
999 enum m32c_prologue_kind
1001 /* This function uses a frame pointer. */
1002 prologue_with_frame_ptr,
1004 /* This function has no frame pointer. */
1005 prologue_sans_frame_ptr,
1007 /* This function sets up the stack, so its frame is the first
1008 frame on the stack. */
1009 prologue_first_frame
1012 struct m32c_prologue
1014 /* For consistency with the DWARF 2 .debug_frame info generated by
1015 GCC, a frame's CFA is the address immediately after the saved
1016 return address. */
1018 /* The architecture for which we generated this prologue info. */
1019 struct gdbarch *arch;
1021 enum m32c_prologue_kind kind;
1023 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1024 CFA to where the frame pointer points. This is always zero or
1025 negative. */
1026 LONGEST frame_ptr_offset;
1028 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1029 the stack pointer --- always zero or negative.
1031 Calling this a "size" is a bit misleading, but given that the
1032 stack grows downwards, using offsets for everything keeps one
1033 from going completely sign-crazy: you never change anything's
1034 sign for an ADD instruction; always change the second operand's
1035 sign for a SUB instruction; and everything takes care of
1036 itself.
1038 Functions that use alloca don't have a constant frame size. But
1039 they always have frame pointers, so we must use that to find the
1040 CFA (and perhaps to unwind the stack pointer). */
1041 LONGEST frame_size;
1043 /* The address of the first instruction at which the frame has been
1044 set up and the arguments are where the debug info says they are
1045 --- as best as we can tell. */
1046 CORE_ADDR prologue_end;
1048 /* reg_offset[R] is the offset from the CFA at which register R is
1049 saved, or 1 if register R has not been saved. (Real values are
1050 always zero or negative.) */
1051 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1055 /* The longest I've seen, anyway. */
1056 #define M32C_MAX_INSN_LEN (9)
1058 /* Processor state, for the prologue analyzer. */
1059 struct m32c_pv_state
1061 struct gdbarch *arch;
1062 pv_t r0, r1, r2, r3;
1063 pv_t a0, a1;
1064 pv_t sb, fb, sp;
1065 pv_t pc;
1066 struct pv_area *stack;
1068 /* Bytes from the current PC, the address they were read from,
1069 and the address of the next unconsumed byte. */
1070 gdb_byte insn[M32C_MAX_INSN_LEN];
1071 CORE_ADDR scan_pc, next_addr;
1075 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1076 all went well, or non-zero if simulating the action would trash our
1077 state. */
1078 static int
1079 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1081 if (state->stack->store_would_trash (state->sp))
1082 return 1;
1084 state->sp = pv_add_constant (state->sp, -size);
1085 state->stack->store (state->sp, size, value);
1087 return 0;
1091 enum srcdest_kind
1093 srcdest_reg,
1094 srcdest_partial_reg,
1095 srcdest_mem
1098 /* A source or destination location for an m16c or m32c
1099 instruction. */
1100 struct srcdest
1102 /* If srcdest_reg, the location is a register pointed to by REG.
1103 If srcdest_partial_reg, the location is part of a register pointed
1104 to by REG. We don't try to handle this too well.
1105 If srcdest_mem, the location is memory whose address is ADDR. */
1106 enum srcdest_kind kind;
1107 pv_t *reg, addr;
1111 /* Return the SIZE-byte value at LOC in STATE. */
1112 static pv_t
1113 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1115 if (loc.kind == srcdest_mem)
1116 return state->stack->fetch (loc.addr, size);
1117 else if (loc.kind == srcdest_partial_reg)
1118 return pv_unknown ();
1119 else
1120 return *loc.reg;
1124 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1125 all went well, or non-zero if simulating the store would trash our
1126 state. */
1127 static int
1128 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1129 pv_t value, int size)
1131 if (loc.kind == srcdest_mem)
1133 if (state->stack->store_would_trash (loc.addr))
1134 return 1;
1135 state->stack->store (loc.addr, size, value);
1137 else if (loc.kind == srcdest_partial_reg)
1138 *loc.reg = pv_unknown ();
1139 else
1140 *loc.reg = value;
1142 return 0;
1146 static int
1147 m32c_sign_ext (int v, int bits)
1149 int mask = 1 << (bits - 1);
1150 return (v ^ mask) - mask;
1153 static unsigned int
1154 m32c_next_byte (struct m32c_pv_state *st)
1156 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1157 return st->insn[st->next_addr++ - st->scan_pc];
1160 static int
1161 m32c_udisp8 (struct m32c_pv_state *st)
1163 return m32c_next_byte (st);
1167 static int
1168 m32c_sdisp8 (struct m32c_pv_state *st)
1170 return m32c_sign_ext (m32c_next_byte (st), 8);
1174 static int
1175 m32c_udisp16 (struct m32c_pv_state *st)
1177 int low = m32c_next_byte (st);
1178 int high = m32c_next_byte (st);
1180 return low + (high << 8);
1184 static int
1185 m32c_sdisp16 (struct m32c_pv_state *st)
1187 int low = m32c_next_byte (st);
1188 int high = m32c_next_byte (st);
1190 return m32c_sign_ext (low + (high << 8), 16);
1194 static int
1195 m32c_udisp24 (struct m32c_pv_state *st)
1197 int low = m32c_next_byte (st);
1198 int mid = m32c_next_byte (st);
1199 int high = m32c_next_byte (st);
1201 return low + (mid << 8) + (high << 16);
1205 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1206 static int
1207 m32c_get_src23 (unsigned char *i)
1209 return (((i[0] & 0x70) >> 2)
1210 | ((i[1] & 0x30) >> 4));
1214 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1215 static int
1216 m32c_get_dest23 (unsigned char *i)
1218 return (((i[0] & 0x0e) << 1)
1219 | ((i[1] & 0xc0) >> 6));
1223 static struct srcdest
1224 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1225 int code, int size)
1227 struct srcdest sd;
1229 if (code < 6)
1230 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1231 else
1232 sd.kind = srcdest_mem;
1234 sd.addr = pv_unknown ();
1235 sd.reg = 0;
1237 switch (code)
1239 case 0x0: sd.reg = &st->r0; break;
1240 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1241 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1242 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1244 case 0x4: sd.reg = &st->a0; break;
1245 case 0x5: sd.reg = &st->a1; break;
1247 case 0x6: sd.addr = st->a0; break;
1248 case 0x7: sd.addr = st->a1; break;
1250 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1251 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1252 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1253 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1255 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1256 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1257 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1258 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1260 default:
1261 gdb_assert_not_reached ("unexpected srcdest4");
1264 return sd;
1268 static struct srcdest
1269 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1271 struct srcdest sd;
1273 sd.addr = pv_unknown ();
1274 sd.reg = 0;
1276 switch (code)
1278 case 0x12:
1279 case 0x13:
1280 case 0x10:
1281 case 0x11:
1282 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1283 break;
1285 case 0x02:
1286 case 0x03:
1287 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1288 break;
1290 default:
1291 sd.kind = srcdest_mem;
1292 break;
1296 switch (code)
1298 case 0x12: sd.reg = &st->r0; break;
1299 case 0x13: sd.reg = &st->r1; break;
1300 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1301 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1302 case 0x02: sd.reg = &st->a0; break;
1303 case 0x03: sd.reg = &st->a1; break;
1305 case 0x00: sd.addr = st->a0; break;
1306 case 0x01: sd.addr = st->a1; break;
1307 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1308 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1309 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1310 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1311 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1312 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1313 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1314 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1315 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1316 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1317 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1318 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1319 default:
1320 gdb_assert_not_reached ("unexpected sd23");
1323 if (ind)
1325 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1326 sd.kind = srcdest_mem;
1329 return sd;
1333 /* The r16c and r32c machines have instructions with similar
1334 semantics, but completely different machine language encodings. So
1335 we break out the semantics into their own functions, and leave
1336 machine-specific decoding in m32c_analyze_prologue.
1338 The following functions all expect their arguments already decoded,
1339 and they all return zero if analysis should continue past this
1340 instruction, or non-zero if analysis should stop. */
1343 /* Simulate an 'enter SIZE' instruction in STATE. */
1344 static int
1345 m32c_pv_enter (struct m32c_pv_state *state, int size)
1347 /* If simulating this store would require us to forget
1348 everything we know about the stack frame in the name of
1349 accuracy, it would be better to just quit now. */
1350 if (state->stack->store_would_trash (state->sp))
1351 return 1;
1353 gdbarch *arch = state->arch;
1354 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1355 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1356 return 1;
1358 state->fb = state->sp;
1359 state->sp = pv_add_constant (state->sp, -size);
1361 return 0;
1365 static int
1366 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1367 int bit, int src, int size)
1369 if (bit & src)
1371 if (m32c_pv_push (state, reg, size))
1372 return 1;
1375 return 0;
1379 /* Simulate a 'pushm SRC' instruction in STATE. */
1380 static int
1381 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1383 gdbarch *arch = state->arch;
1384 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1386 /* The bits in SRC indicating which registers to save are:
1387 r0 r1 r2 r3 a0 a1 sb fb */
1388 return
1389 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1390 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1391 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1392 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1393 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1394 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1395 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1396 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1399 /* Return non-zero if VALUE is the first incoming argument register. */
1401 static int
1402 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1404 gdbarch *arch = state->arch;
1405 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1407 return (value.kind == pvk_register
1408 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1409 ? (value.reg == tdep->r1->num)
1410 : (value.reg == tdep->r0->num))
1411 && value.k == 0);
1414 /* Return non-zero if VALUE is an incoming argument register. */
1416 static int
1417 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1419 gdbarch *arch = state->arch;
1420 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1422 return (value.kind == pvk_register
1423 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1424 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1425 : (value.reg == tdep->r0->num))
1426 && value.k == 0);
1429 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1430 argument register to its stack slot in STATE. Such instructions
1431 should be included in the prologue, if possible.
1433 The store is a spill if:
1434 - the value being stored is the original value of an argument register;
1435 - the value has not already been stored somewhere in STACK; and
1436 - LOC is a stack slot (e.g., a memory location whose address is
1437 relative to the original value of the SP). */
1439 static int
1440 m32c_is_arg_spill (struct m32c_pv_state *st,
1441 struct srcdest loc,
1442 pv_t value)
1444 gdbarch *arch = st->arch;
1445 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1447 return (m32c_is_arg_reg (st, value)
1448 && loc.kind == srcdest_mem
1449 && pv_is_register (loc.addr, tdep->sp->num)
1450 && ! st->stack->find_reg (st->arch, value.reg, 0));
1453 /* Return non-zero if a store of VALUE to LOC is probably
1454 copying the struct return address into an address register
1455 for immediate use. This is basically a "spill" into the
1456 address register, instead of onto the stack.
1458 The prerequisites are:
1459 - value being stored is original value of the FIRST arg register;
1460 - value has not already been stored on stack; and
1461 - LOC is an address register (a0 or a1). */
1463 static int
1464 m32c_is_struct_return (struct m32c_pv_state *st,
1465 struct srcdest loc,
1466 pv_t value)
1468 gdbarch *arch = st->arch;
1469 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1471 return (m32c_is_1st_arg_reg (st, value)
1472 && !st->stack->find_reg (st->arch, value.reg, 0)
1473 && loc.kind == srcdest_reg
1474 && (pv_is_register (*loc.reg, tdep->a0->num)
1475 || pv_is_register (*loc.reg, tdep->a1->num)));
1478 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1479 was a register save:
1480 - all the named registers should have their original values, and
1481 - the stack pointer should be at a constant offset from the
1482 original stack pointer. */
1483 static int
1484 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1486 gdbarch *arch = st->arch;
1487 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1489 /* The bits in SRC indicating which registers to save are:
1490 r0 r1 r2 r3 a0 a1 sb fb */
1491 return
1492 (pv_is_register (st->sp, tdep->sp->num)
1493 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1494 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1495 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1496 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1497 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1498 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1499 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1500 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1504 /* Function for finding saved registers in a 'struct pv_area'; we pass
1505 this to pv_area::scan.
1507 If VALUE is a saved register, ADDR says it was saved at a constant
1508 offset from the frame base, and SIZE indicates that the whole
1509 register was saved, record its offset in RESULT_UNTYPED. */
1510 static void
1511 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1513 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1514 struct gdbarch *arch = prologue->arch;
1515 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1517 /* Is this the unchanged value of some register being saved on the
1518 stack? */
1519 if (value.kind == pvk_register
1520 && value.k == 0
1521 && pv_is_register (addr, tdep->sp->num))
1523 /* Some registers require special handling: they're saved as a
1524 larger value than the register itself. */
1525 CORE_ADDR saved_size = register_size (arch, value.reg);
1527 if (value.reg == tdep->pc->num)
1528 saved_size = tdep->ret_addr_bytes;
1529 else if (register_type (arch, value.reg)
1530 == tdep->data_addr_reg_type)
1531 saved_size = tdep->push_addr_bytes;
1533 if (size == saved_size)
1535 /* Find which end of the saved value corresponds to our
1536 register. */
1537 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1538 prologue->reg_offset[value.reg]
1539 = (addr.k + saved_size - register_size (arch, value.reg));
1540 else
1541 prologue->reg_offset[value.reg] = addr.k;
1547 /* Analyze the function prologue for ARCH at START, going no further
1548 than LIMIT, and place a description of what we found in
1549 PROLOGUE. */
1550 static void
1551 m32c_analyze_prologue (struct gdbarch *arch,
1552 CORE_ADDR start, CORE_ADDR limit,
1553 struct m32c_prologue *prologue)
1555 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1556 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1557 CORE_ADDR after_last_frame_related_insn;
1558 struct m32c_pv_state st;
1560 st.arch = arch;
1561 st.r0 = pv_register (tdep->r0->num, 0);
1562 st.r1 = pv_register (tdep->r1->num, 0);
1563 st.r2 = pv_register (tdep->r2->num, 0);
1564 st.r3 = pv_register (tdep->r3->num, 0);
1565 st.a0 = pv_register (tdep->a0->num, 0);
1566 st.a1 = pv_register (tdep->a1->num, 0);
1567 st.sb = pv_register (tdep->sb->num, 0);
1568 st.fb = pv_register (tdep->fb->num, 0);
1569 st.sp = pv_register (tdep->sp->num, 0);
1570 st.pc = pv_register (tdep->pc->num, 0);
1571 pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1572 st.stack = &stack;
1574 /* Record that the call instruction has saved the return address on
1575 the stack. */
1576 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1578 memset (prologue, 0, sizeof (*prologue));
1579 prologue->arch = arch;
1581 int i;
1582 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1583 prologue->reg_offset[i] = 1;
1586 st.scan_pc = after_last_frame_related_insn = start;
1588 while (st.scan_pc < limit)
1590 pv_t pre_insn_fb = st.fb;
1591 pv_t pre_insn_sp = st.sp;
1593 /* In theory we could get in trouble by trying to read ahead
1594 here, when we only know we're expecting one byte. In
1595 practice I doubt anyone will care, and it makes the rest of
1596 the code easier. */
1597 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1598 /* If we can't fetch the instruction from memory, stop here
1599 and hope for the best. */
1600 break;
1601 st.next_addr = st.scan_pc;
1603 /* The assembly instructions are written as they appear in the
1604 section of the processor manuals that describe the
1605 instruction encodings.
1607 When a single assembly language instruction has several
1608 different machine-language encodings, the manual
1609 distinguishes them by a number in parens, before the
1610 mnemonic. Those numbers are included, as well.
1612 The srcdest decoding instructions have the same names as the
1613 analogous functions in the simulator. */
1614 if (mach == bfd_mach_m16c)
1616 /* (1) ENTER #imm8 */
1617 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1619 if (m32c_pv_enter (&st, st.insn[2]))
1620 break;
1621 st.next_addr += 3;
1623 /* (1) PUSHM src */
1624 else if (st.insn[0] == 0xec)
1626 int src = st.insn[1];
1627 if (m32c_pv_pushm (&st, src))
1628 break;
1629 st.next_addr += 2;
1631 if (m32c_pushm_is_reg_save (&st, src))
1632 after_last_frame_related_insn = st.next_addr;
1635 /* (6) MOV.size:G src, dest */
1636 else if ((st.insn[0] & 0xfe) == 0x72)
1638 int size = (st.insn[0] & 0x01) ? 2 : 1;
1639 struct srcdest src;
1640 struct srcdest dest;
1641 pv_t src_value;
1642 st.next_addr += 2;
1645 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1646 dest
1647 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1648 src_value = m32c_srcdest_fetch (&st, src, size);
1650 if (m32c_is_arg_spill (&st, dest, src_value))
1651 after_last_frame_related_insn = st.next_addr;
1652 else if (m32c_is_struct_return (&st, dest, src_value))
1653 after_last_frame_related_insn = st.next_addr;
1655 if (m32c_srcdest_store (&st, dest, src_value, size))
1656 break;
1659 /* (1) LDC #IMM16, sp */
1660 else if (st.insn[0] == 0xeb
1661 && st.insn[1] == 0x50)
1663 st.next_addr += 2;
1664 st.sp = pv_constant (m32c_udisp16 (&st));
1667 else
1668 /* We've hit some instruction we don't know how to simulate.
1669 Strictly speaking, we should set every value we're
1670 tracking to "unknown". But we'll be optimistic, assume
1671 that we have enough information already, and stop
1672 analysis here. */
1673 break;
1675 else
1677 int src_indirect = 0;
1678 int dest_indirect = 0;
1679 int i = 0;
1681 gdb_assert (mach == bfd_mach_m32c);
1683 /* Check for prefix bytes indicating indirect addressing. */
1684 if (st.insn[0] == 0x41)
1686 src_indirect = 1;
1687 i++;
1689 else if (st.insn[0] == 0x09)
1691 dest_indirect = 1;
1692 i++;
1694 else if (st.insn[0] == 0x49)
1696 src_indirect = dest_indirect = 1;
1697 i++;
1700 /* (1) ENTER #imm8 */
1701 if (st.insn[i] == 0xec)
1703 if (m32c_pv_enter (&st, st.insn[i + 1]))
1704 break;
1705 st.next_addr += 2;
1708 /* (1) PUSHM src */
1709 else if (st.insn[i] == 0x8f)
1711 int src = st.insn[i + 1];
1712 if (m32c_pv_pushm (&st, src))
1713 break;
1714 st.next_addr += 2;
1716 if (m32c_pushm_is_reg_save (&st, src))
1717 after_last_frame_related_insn = st.next_addr;
1720 /* (7) MOV.size:G src, dest */
1721 else if ((st.insn[i] & 0x80) == 0x80
1722 && (st.insn[i + 1] & 0x0f) == 0x0b
1723 && m32c_get_src23 (&st.insn[i]) < 20
1724 && m32c_get_dest23 (&st.insn[i]) < 20)
1726 struct srcdest src;
1727 struct srcdest dest;
1728 pv_t src_value;
1729 int bw = st.insn[i] & 0x01;
1730 int size = bw ? 2 : 1;
1731 st.next_addr += 2;
1734 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1735 size, src_indirect);
1736 dest
1737 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1738 size, dest_indirect);
1739 src_value = m32c_srcdest_fetch (&st, src, size);
1741 if (m32c_is_arg_spill (&st, dest, src_value))
1742 after_last_frame_related_insn = st.next_addr;
1744 if (m32c_srcdest_store (&st, dest, src_value, size))
1745 break;
1747 /* (2) LDC #IMM24, sp */
1748 else if (st.insn[i] == 0xd5
1749 && st.insn[i + 1] == 0x29)
1751 st.next_addr += 2;
1752 st.sp = pv_constant (m32c_udisp24 (&st));
1754 else
1755 /* We've hit some instruction we don't know how to simulate.
1756 Strictly speaking, we should set every value we're
1757 tracking to "unknown". But we'll be optimistic, assume
1758 that we have enough information already, and stop
1759 analysis here. */
1760 break;
1763 /* If this instruction changed the FB or decreased the SP (i.e.,
1764 allocated more stack space), then this may be a good place to
1765 declare the prologue finished. However, there are some
1766 exceptions:
1768 - If the instruction just changed the FB back to its original
1769 value, then that's probably a restore instruction. The
1770 prologue should definitely end before that.
1772 - If the instruction increased the value of the SP (that is,
1773 shrunk the frame), then it's probably part of a frame
1774 teardown sequence, and the prologue should end before
1775 that. */
1777 if (! pv_is_identical (st.fb, pre_insn_fb))
1779 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1780 after_last_frame_related_insn = st.next_addr;
1782 else if (! pv_is_identical (st.sp, pre_insn_sp))
1784 /* The comparison of the constants looks odd, there, because
1785 .k is unsigned. All it really means is that the SP is
1786 lower than it was before the instruction. */
1787 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1788 && pv_is_register (st.sp, tdep->sp->num)
1789 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1790 after_last_frame_related_insn = st.next_addr;
1793 st.scan_pc = st.next_addr;
1796 /* Did we load a constant value into the stack pointer? */
1797 if (pv_is_constant (st.sp))
1798 prologue->kind = prologue_first_frame;
1800 /* Alternatively, did we initialize the frame pointer? Remember
1801 that the CFA is the address after the return address. */
1802 if (pv_is_register (st.fb, tdep->sp->num))
1804 prologue->kind = prologue_with_frame_ptr;
1805 prologue->frame_ptr_offset = st.fb.k;
1808 /* Is the frame size a known constant? Remember that frame_size is
1809 actually the offset from the CFA to the SP (i.e., a negative
1810 value). */
1811 else if (pv_is_register (st.sp, tdep->sp->num))
1813 prologue->kind = prologue_sans_frame_ptr;
1814 prologue->frame_size = st.sp.k;
1817 /* We haven't been able to make sense of this function's frame. Treat
1818 it as the first frame. */
1819 else
1820 prologue->kind = prologue_first_frame;
1822 /* Record where all the registers were saved. */
1823 st.stack->scan (check_for_saved, (void *) prologue);
1825 prologue->prologue_end = after_last_frame_related_insn;
1829 static CORE_ADDR
1830 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1832 const char *name;
1833 CORE_ADDR func_addr, func_end, sal_end;
1834 struct m32c_prologue p;
1836 /* Try to find the extent of the function that contains IP. */
1837 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1838 return ip;
1840 /* Find end by prologue analysis. */
1841 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1842 /* Find end by line info. */
1843 sal_end = skip_prologue_using_sal (gdbarch, ip);
1844 /* Return whichever is lower. */
1845 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1846 return sal_end;
1847 else
1848 return p.prologue_end;
1853 /* Stack unwinding. */
1855 static struct m32c_prologue *
1856 m32c_analyze_frame_prologue (const frame_info_ptr &this_frame,
1857 void **this_prologue_cache)
1859 if (! *this_prologue_cache)
1861 CORE_ADDR func_start = get_frame_func (this_frame);
1862 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1864 /* If we couldn't find any function containing the PC, then
1865 just initialize the prologue cache, but don't do anything. */
1866 if (! func_start)
1867 stop_addr = func_start;
1869 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1870 m32c_analyze_prologue (get_frame_arch (this_frame),
1871 func_start, stop_addr,
1872 (struct m32c_prologue *) *this_prologue_cache);
1875 return (struct m32c_prologue *) *this_prologue_cache;
1879 static CORE_ADDR
1880 m32c_frame_base (const frame_info_ptr &this_frame,
1881 void **this_prologue_cache)
1883 struct m32c_prologue *p
1884 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1885 gdbarch *arch = get_frame_arch (this_frame);
1886 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1888 /* In functions that use alloca, the distance between the stack
1889 pointer and the frame base varies dynamically, so we can't use
1890 the SP plus static information like prologue analysis to find the
1891 frame base. However, such functions must have a frame pointer,
1892 to be able to restore the SP on exit. So whenever we do have a
1893 frame pointer, use that to find the base. */
1894 switch (p->kind)
1896 case prologue_with_frame_ptr:
1898 CORE_ADDR fb
1899 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1900 return fb - p->frame_ptr_offset;
1903 case prologue_sans_frame_ptr:
1905 CORE_ADDR sp
1906 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1907 return sp - p->frame_size;
1910 case prologue_first_frame:
1911 return 0;
1913 default:
1914 gdb_assert_not_reached ("unexpected prologue kind");
1919 static void
1920 m32c_this_id (const frame_info_ptr &this_frame,
1921 void **this_prologue_cache,
1922 struct frame_id *this_id)
1924 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1926 if (base)
1927 *this_id = frame_id_build (base, get_frame_func (this_frame));
1928 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1932 static struct value *
1933 m32c_prev_register (const frame_info_ptr &this_frame,
1934 void **this_prologue_cache, int regnum)
1936 gdbarch *arch = get_frame_arch (this_frame);
1937 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1938 struct m32c_prologue *p
1939 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1940 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1942 if (regnum == tdep->sp->num)
1943 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1945 /* If prologue analysis says we saved this register somewhere,
1946 return a description of the stack slot holding it. */
1947 if (p->reg_offset[regnum] != 1)
1948 return frame_unwind_got_memory (this_frame, regnum,
1949 frame_base + p->reg_offset[regnum]);
1951 /* Otherwise, presume we haven't changed the value of this
1952 register, and get it from the next frame. */
1953 return frame_unwind_got_register (this_frame, regnum, regnum);
1957 static const struct frame_unwind m32c_unwind = {
1958 "m32c prologue",
1959 NORMAL_FRAME,
1960 default_frame_unwind_stop_reason,
1961 m32c_this_id,
1962 m32c_prev_register,
1963 NULL,
1964 default_frame_sniffer
1968 /* Inferior calls. */
1970 /* The calling conventions, according to GCC:
1972 r8c, m16c
1973 ---------
1974 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1975 HImode), (2) is named, and (3) is an integer or pointer type (no
1976 structs, floats, etc). Otherwise, it's passed on the stack.
1978 Second arg may be passed in r2, same restrictions (but not QImode),
1979 even if the first arg is passed on the stack.
1981 Third and further args are passed on the stack. No padding is
1982 used, stack "alignment" is 8 bits.
1984 m32cm, m32c
1985 -----------
1987 First arg may be passed in r0l or r0, same restrictions as above.
1989 Second and further args are passed on the stack. Padding is used
1990 after QImode parameters (i.e. lower-addressed byte is the value,
1991 higher-addressed byte is the padding), stack "alignment" is 16
1992 bits. */
1995 /* Return true if TYPE is a type that can be passed in registers. (We
1996 ignore the size, and pay attention only to the type code;
1997 acceptable sizes depends on which register is being considered to
1998 hold it.) */
1999 static int
2000 m32c_reg_arg_type (struct type *type)
2002 enum type_code code = type->code ();
2004 return (code == TYPE_CODE_INT
2005 || code == TYPE_CODE_ENUM
2006 || code == TYPE_CODE_PTR
2007 || TYPE_IS_REFERENCE (type)
2008 || code == TYPE_CODE_BOOL
2009 || code == TYPE_CODE_CHAR);
2013 static CORE_ADDR
2014 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2015 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2016 struct value **args, CORE_ADDR sp,
2017 function_call_return_method return_method,
2018 CORE_ADDR struct_addr)
2020 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
2021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2022 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2023 CORE_ADDR cfa;
2024 int i;
2026 /* The number of arguments given in this function's prototype, or
2027 zero if it has a non-prototyped function type. The m32c ABI
2028 passes arguments mentioned in the prototype differently from
2029 those in the ellipsis of a varargs function, or from those passed
2030 to a non-prototyped function. */
2031 int num_prototyped_args = 0;
2034 struct type *func_type = function->type ();
2036 /* Dereference function pointer types. */
2037 if (func_type->code () == TYPE_CODE_PTR)
2038 func_type = func_type->target_type ();
2040 gdb_assert (func_type->code () == TYPE_CODE_FUNC ||
2041 func_type->code () == TYPE_CODE_METHOD);
2043 #if 0
2044 /* The ABI description in gcc/config/m32c/m32c.abi says that
2045 we need to handle prototyped and non-prototyped functions
2046 separately, but the code in GCC doesn't actually do so. */
2047 if (TYPE_PROTOTYPED (func_type))
2048 #endif
2049 num_prototyped_args = func_type->num_fields ();
2052 /* First, if the function returns an aggregate by value, push a
2053 pointer to a buffer for it. This doesn't affect the way
2054 subsequent arguments are allocated to registers. */
2055 if (return_method == return_method_struct)
2057 int ptr_len = tdep->ptr_voyd->length ();
2058 sp -= ptr_len;
2059 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2062 /* Push the arguments. */
2063 for (i = nargs - 1; i >= 0; i--)
2065 struct value *arg = args[i];
2066 const gdb_byte *arg_bits = arg->contents ().data ();
2067 struct type *arg_type = arg->type ();
2068 ULONGEST arg_size = arg_type->length ();
2070 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2071 if (i == 0
2072 && arg_size <= 2
2073 && i < num_prototyped_args
2074 && m32c_reg_arg_type (arg_type))
2076 /* Extract and re-store as an integer as a terse way to make
2077 sure it ends up in the least significant end of r1. (GDB
2078 should avoid assuming endianness, even on uni-endian
2079 processors.) */
2080 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2081 byte_order);
2082 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2083 regcache_cooked_write_unsigned (regcache, reg->num, u);
2086 /* Can it go in r2? */
2087 else if (mach == bfd_mach_m16c
2088 && i == 1
2089 && arg_size == 2
2090 && i < num_prototyped_args
2091 && m32c_reg_arg_type (arg_type))
2092 regcache->cooked_write (tdep->r2->num, arg_bits);
2094 /* Everything else goes on the stack. */
2095 else
2097 sp -= arg_size;
2099 /* Align the stack. */
2100 if (mach == bfd_mach_m32c)
2101 sp &= ~1;
2103 write_memory (sp, arg_bits, arg_size);
2107 /* This is the CFA we use to identify the dummy frame. */
2108 cfa = sp;
2110 /* Push the return address. */
2111 sp -= tdep->ret_addr_bytes;
2112 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2113 bp_addr);
2115 /* Update the stack pointer. */
2116 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2118 /* We need to borrow an odd trick from the i386 target here.
2120 The value we return from this function gets used as the stack
2121 address (the CFA) for the dummy frame's ID. The obvious thing is
2122 to return the new TOS. However, that points at the return
2123 address, saved on the stack, which is inconsistent with the CFA's
2124 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2125 .debug_frame info uses the address immediately after the saved
2126 return address. So you end up with a dummy frame whose CFA
2127 points at the return address, but the frame for the function
2128 being called has a CFA pointing after the return address: the
2129 younger CFA is *greater than* the older CFA. The sanity checks
2130 in frame.c don't like that.
2132 So we try to be consistent with the CFA's used by DWARF 2.
2133 Having a dummy frame and a real frame with the *same* CFA is
2134 tolerable. */
2135 return cfa;
2140 /* Return values. */
2142 /* Return value conventions, according to GCC:
2144 r8c, m16c
2145 ---------
2147 QImode in r0l
2148 HImode in r0
2149 SImode in r2r0
2150 near pointer in r0
2151 far pointer in r2r0
2153 Aggregate values (regardless of size) are returned by pushing a
2154 pointer to a temporary area on the stack after the args are pushed.
2155 The function fills in this area with the value. Note that this
2156 pointer on the stack does not affect how register arguments, if any,
2157 are configured.
2159 m32cm, m32c
2160 -----------
2161 Same. */
2163 /* Return non-zero if values of type TYPE are returned by storing them
2164 in a buffer whose address is passed on the stack, ahead of the
2165 other arguments. */
2166 static int
2167 m32c_return_by_passed_buf (struct type *type)
2169 enum type_code code = type->code ();
2171 return (code == TYPE_CODE_STRUCT
2172 || code == TYPE_CODE_UNION);
2175 static enum return_value_convention
2176 m32c_return_value (struct gdbarch *gdbarch,
2177 struct value *function,
2178 struct type *valtype,
2179 struct regcache *regcache,
2180 gdb_byte *readbuf,
2181 const gdb_byte *writebuf)
2183 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
2184 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2185 enum return_value_convention conv;
2186 ULONGEST valtype_len = valtype->length ();
2188 if (m32c_return_by_passed_buf (valtype))
2189 conv = RETURN_VALUE_STRUCT_CONVENTION;
2190 else
2191 conv = RETURN_VALUE_REGISTER_CONVENTION;
2193 if (readbuf)
2195 /* We should never be called to find values being returned by
2196 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2197 unless we made the call ourselves. */
2198 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2200 gdb_assert (valtype_len <= 8);
2202 /* Anything that fits in r0 is returned there. */
2203 if (valtype_len <= tdep->r0->type->length ())
2205 ULONGEST u;
2206 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2207 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2209 else
2211 /* Everything else is passed in mem0, using as many bytes as
2212 needed. This is not what the Renesas tools do, but it's
2213 what GCC does at the moment. */
2214 struct bound_minimal_symbol mem0
2215 = lookup_minimal_symbol ("mem0", NULL, NULL);
2217 if (! mem0.minsym)
2218 error (_("The return value is stored in memory at 'mem0', "
2219 "but GDB cannot find\n"
2220 "its address."));
2221 read_memory (mem0.value_address (), readbuf, valtype_len);
2225 if (writebuf)
2227 /* We should never be called to store values to be returned
2228 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2229 finding the buffer, unless we made the call ourselves. */
2230 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2232 gdb_assert (valtype_len <= 8);
2234 /* Anything that fits in r0 is returned there. */
2235 if (valtype_len <= tdep->r0->type->length ())
2237 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2238 byte_order);
2239 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2241 else
2243 /* Everything else is passed in mem0, using as many bytes as
2244 needed. This is not what the Renesas tools do, but it's
2245 what GCC does at the moment. */
2246 struct bound_minimal_symbol mem0
2247 = lookup_minimal_symbol ("mem0", NULL, NULL);
2249 if (! mem0.minsym)
2250 error (_("The return value is stored in memory at 'mem0', "
2251 "but GDB cannot find\n"
2252 " its address."));
2253 write_memory (mem0.value_address (), writebuf, valtype_len);
2257 return conv;
2262 /* Trampolines. */
2264 /* The m16c and m32c use a trampoline function for indirect function
2265 calls. An indirect call looks like this:
2267 ... push arguments ...
2268 ... push target function address ...
2269 jsr.a m32c_jsri16
2271 The code for m32c_jsri16 looks like this:
2273 m32c_jsri16:
2275 # Save return address.
2276 pop.w m32c_jsri_ret
2277 pop.b m32c_jsri_ret+2
2279 # Store target function address.
2280 pop.w m32c_jsri_addr
2282 # Re-push return address.
2283 push.b m32c_jsri_ret+2
2284 push.w m32c_jsri_ret
2286 # Call the target function.
2287 jmpi.a m32c_jsri_addr
2289 Without further information, GDB will treat calls to m32c_jsri16
2290 like calls to any other function. Since m32c_jsri16 doesn't have
2291 debugging information, that normally means that GDB sets a step-
2292 resume breakpoint and lets the program continue --- which is not
2293 what the user wanted. (Giving the trampoline debugging info
2294 doesn't help: the user expects the program to stop in the function
2295 their program is calling, not in some trampoline code they've never
2296 seen before.)
2298 The gdbarch_skip_trampoline_code method tells GDB how to step
2299 through such trampoline functions transparently to the user. When
2300 given the address of a trampoline function's first instruction,
2301 gdbarch_skip_trampoline_code should return the address of the first
2302 instruction of the function really being called. If GDB decides it
2303 wants to step into that function, it will set a breakpoint there
2304 and silently continue to it.
2306 We recognize the trampoline by name, and extract the target address
2307 directly from the stack. This isn't great, but recognizing by its
2308 code sequence seems more fragile. */
2310 static CORE_ADDR
2311 m32c_skip_trampoline_code (const frame_info_ptr &frame, CORE_ADDR stop_pc)
2313 struct gdbarch *gdbarch = get_frame_arch (frame);
2314 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
2315 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2317 /* It would be nicer to simply look up the addresses of known
2318 trampolines once, and then compare stop_pc with them. However,
2319 we'd need to ensure that that cached address got invalidated when
2320 someone loaded a new executable, and I'm not quite sure of the
2321 best way to do that. find_pc_partial_function does do some
2322 caching, so we'll see how this goes. */
2323 const char *name;
2324 CORE_ADDR start, end;
2326 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2328 /* Are we stopped at the beginning of the trampoline function? */
2329 if (strcmp (name, "m32c_jsri16") == 0
2330 && stop_pc == start)
2332 /* Get the stack pointer. The return address is at the top,
2333 and the target function's address is just below that. We
2334 know it's a two-byte address, since the trampoline is
2335 m32c_jsri*16*. */
2336 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2337 CORE_ADDR target
2338 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2339 2, byte_order);
2341 /* What we have now is the address of a jump instruction.
2342 What we need is the destination of that jump.
2343 The opcode is 1 byte, and the destination is the next 3 bytes. */
2345 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2346 return target;
2350 return 0;
2354 /* Address/pointer conversions. */
2356 /* On the m16c, there is a 24-bit address space, but only a very few
2357 instructions can generate addresses larger than 0xffff: jumps,
2358 jumps to subroutines, and the lde/std (load/store extended)
2359 instructions.
2361 Since GCC can only support one size of pointer, we can't have
2362 distinct 'near' and 'far' pointer types; we have to pick one size
2363 for everything. If we wanted to use 24-bit pointers, then GCC
2364 would have to use lde and ste for all memory references, which
2365 would be terrible for performance and code size. So the GNU
2366 toolchain uses 16-bit pointers for everything, and gives up the
2367 ability to have pointers point outside the first 64k of memory.
2369 However, as a special hack, we let the linker place functions at
2370 addresses above 0xffff, as long as it also places a trampoline in
2371 the low 64k for every function whose address is taken. Each
2372 trampoline consists of a single jmp.a instruction that jumps to the
2373 function's real entry point. Pointers to functions can be 16 bits
2374 long, even though the functions themselves are at higher addresses:
2375 the pointers refer to the trampolines, not the functions.
2377 This complicates things for GDB, however: given the address of a
2378 function (from debug info or linker symbols, say) which could be
2379 anywhere in the 24-bit address space, how can we find an
2380 appropriate 16-bit value to use as a pointer to it?
2382 If the linker has not generated a trampoline for the function,
2383 we're out of luck. Well, I guess we could malloc some space and
2384 write a jmp.a instruction to it, but I'm not going to get into that
2385 at the moment.
2387 If the linker has generated a trampoline for the function, then it
2388 also emitted a symbol for the trampoline: if the function's linker
2389 symbol is named NAME, then the function's trampoline's linker
2390 symbol is named NAME.plt.
2392 So, given a code address:
2393 - We try to find a linker symbol at that address.
2394 - If we find such a symbol named NAME, we look for a linker symbol
2395 named NAME.plt.
2396 - If we find such a symbol, we assume it is a trampoline, and use
2397 its address as the pointer value.
2399 And, given a function pointer:
2400 - We try to find a linker symbol at that address named NAME.plt.
2401 - If we find such a symbol, we look for a linker symbol named NAME.
2402 - If we find that, we provide that as the function's address.
2403 - If any of the above steps fail, we return the original address
2404 unchanged; it might really be a function in the low 64k.
2406 See? You *knew* there was a reason you wanted to be a computer
2407 programmer! :) */
2409 static void
2410 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2411 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2413 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2414 enum type_code target_code;
2415 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2417 target_code = type->target_type ()->code ();
2419 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2421 const char *func_name;
2422 char *tramp_name;
2423 struct bound_minimal_symbol tramp_msym;
2425 /* Try to find a linker symbol at this address. */
2426 struct bound_minimal_symbol func_msym
2427 = lookup_minimal_symbol_by_pc (addr);
2429 if (! func_msym.minsym)
2430 error (_("Cannot convert code address %s to function pointer:\n"
2431 "couldn't find a symbol at that address, to find trampoline."),
2432 paddress (gdbarch, addr));
2434 func_name = func_msym.minsym->linkage_name ();
2435 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2436 strcpy (tramp_name, func_name);
2437 strcat (tramp_name, ".plt");
2439 /* Try to find a linker symbol for the trampoline. */
2440 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2442 /* We've either got another copy of the name now, or don't need
2443 the name any more. */
2444 xfree (tramp_name);
2446 if (! tramp_msym.minsym)
2448 CORE_ADDR ptrval;
2450 /* No PLT entry found. Mask off the upper bits of the address
2451 to make a pointer. As noted in the warning to the user
2452 below, this value might be useful if converted back into
2453 an address by GDB, but will otherwise, almost certainly,
2454 be garbage.
2456 Using this masked result does seem to be useful
2457 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2458 PASSes. These results appear to be correct as well.
2460 We print a warning here so that the user can make a
2461 determination about whether the result is useful or not. */
2462 ptrval = addr & 0xffff;
2464 warning (_("Cannot convert code address %s to function pointer:\n"
2465 "couldn't find trampoline named '%s.plt'.\n"
2466 "Returning pointer value %s instead; this may produce\n"
2467 "a useful result if converted back into an address by GDB,\n"
2468 "but will most likely not be useful otherwise."),
2469 paddress (gdbarch, addr), func_name,
2470 paddress (gdbarch, ptrval));
2472 addr = ptrval;
2475 else
2477 /* The trampoline's address is our pointer. */
2478 addr = tramp_msym.value_address ();
2482 store_unsigned_integer (buf, type->length (), byte_order, addr);
2486 static CORE_ADDR
2487 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2488 struct type *type, const gdb_byte *buf)
2490 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2491 CORE_ADDR ptr;
2492 enum type_code target_code;
2494 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2496 ptr = extract_unsigned_integer (buf, type->length (), byte_order);
2498 target_code = type->target_type ()->code ();
2500 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2502 /* See if there is a minimal symbol at that address whose name is
2503 "NAME.plt". */
2504 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2506 if (ptr_msym.minsym)
2508 const char *ptr_msym_name = ptr_msym.minsym->linkage_name ();
2509 int len = strlen (ptr_msym_name);
2511 if (len > 4
2512 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2514 struct bound_minimal_symbol func_msym;
2515 /* We have a .plt symbol; try to find the symbol for the
2516 corresponding function.
2518 Since the trampoline contains a jump instruction, we
2519 could also just extract the jump's target address. I
2520 don't see much advantage one way or the other. */
2521 char *func_name = (char *) xmalloc (len - 4 + 1);
2522 memcpy (func_name, ptr_msym_name, len - 4);
2523 func_name[len - 4] = '\0';
2524 func_msym
2525 = lookup_minimal_symbol (func_name, NULL, NULL);
2527 /* If we do have such a symbol, return its value as the
2528 function's true address. */
2529 if (func_msym.minsym)
2530 ptr = func_msym.value_address ();
2533 else
2535 int aspace;
2537 for (aspace = 1; aspace <= 15; aspace++)
2539 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2541 if (ptr_msym.minsym)
2542 ptr |= aspace << 16;
2547 return ptr;
2550 static void
2551 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2552 int *frame_regnum,
2553 LONGEST *frame_offset)
2555 const char *name;
2556 CORE_ADDR func_addr, func_end;
2557 struct m32c_prologue p;
2559 regcache *regcache = get_thread_regcache (inferior_thread ());
2560 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
2562 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2563 internal_error (_("No virtual frame pointer available"));
2565 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2566 switch (p.kind)
2568 case prologue_with_frame_ptr:
2569 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2570 *frame_offset = p.frame_ptr_offset;
2571 break;
2572 case prologue_sans_frame_ptr:
2573 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2574 *frame_offset = p.frame_size;
2575 break;
2576 default:
2577 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2578 *frame_offset = 0;
2579 break;
2581 /* Sanity check */
2582 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2583 internal_error (_("No virtual frame pointer available"));
2587 /* Initialization. */
2589 static struct gdbarch *
2590 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2592 unsigned long mach = info.bfd_arch_info->mach;
2594 /* Find a candidate among the list of architectures we've created
2595 already. */
2596 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2597 arches != NULL;
2598 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2599 return arches->gdbarch;
2601 gdbarch *gdbarch
2602 = gdbarch_alloc (&info, gdbarch_tdep_up (new m32c_gdbarch_tdep));
2604 /* Essential types. */
2605 make_types (gdbarch);
2607 /* Address/pointer conversions. */
2608 if (mach == bfd_mach_m16c)
2610 set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2611 set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2614 /* Register set. */
2615 make_regs (gdbarch);
2617 /* Breakpoints. */
2618 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2619 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2621 /* Prologue analysis and unwinding. */
2622 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2623 set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2624 #if 0
2625 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2626 They may be in the dwarf2 cfi code in GDB, or they may be in
2627 the debug info emitted by the upstream toolchain. I don't
2628 know which, but I do know that the prologue analyzer works better.
2629 MVS 04/13/06 */
2630 dwarf2_append_sniffers (gdbarch);
2631 #endif
2632 frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2634 /* Inferior calls. */
2635 set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2636 set_gdbarch_return_value (gdbarch, m32c_return_value);
2638 /* Trampolines. */
2639 set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2641 set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2643 /* m32c function boundary addresses are not necessarily even.
2644 Therefore, the `vbit', which indicates a pointer to a virtual
2645 member function, is stored in the delta field, rather than as
2646 the low bit of a function pointer address.
2648 In order to verify this, see the definition of
2649 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2650 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2651 set_gdbarch_vbit_in_delta (gdbarch, 1);
2653 return gdbarch;
2656 void _initialize_m32c_tdep ();
2657 void
2658 _initialize_m32c_tdep ()
2660 gdbarch_register (bfd_arch_m32c, m32c_gdbarch_init);
2662 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);