Automatic date update in version.in
[binutils-gdb.git] / gdb / hppa-linux-tdep.c
blob659c265bfb861da912499aa084e4c786dad46036
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
3 Copyright (C) 2004-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "gdbcore.h"
21 #include "osabi.h"
22 #include "target.h"
23 #include "objfiles.h"
24 #include "solib-svr4.h"
25 #include "glibc-tdep.h"
26 #include "frame-unwind.h"
27 #include "trad-frame.h"
28 #include "dwarf2/frame.h"
29 #include "value.h"
30 #include "regset.h"
31 #include "regcache.h"
32 #include "hppa-tdep.h"
33 #include "linux-tdep.h"
34 #include "elf/common.h"
36 /* Map DWARF DBX register numbers to GDB register numbers. */
37 static int
38 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
40 /* The general registers and the sar are the same in both sets. */
41 if (reg >= 0 && reg <= 32)
42 return reg;
44 /* fr4-fr31 (left and right halves) are mapped from 72. */
45 if (reg >= 72 && reg <= 72 + 28 * 2)
46 return HPPA_FP4_REGNUM + (reg - 72);
48 return -1;
51 static void
52 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
54 /* Probably this should be done by the kernel, but it isn't. */
55 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
56 regcache_cooked_write_unsigned (regcache,
57 HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
60 /* An instruction to match. */
61 struct insn_pattern
63 unsigned int data; /* See if it matches this.... */
64 unsigned int mask; /* ... with this mask. */
67 static struct insn_pattern hppa_sigtramp[] = {
68 /* ldi 0, %r25 or ldi 1, %r25 */
69 { 0x34190000, 0xfffffffd },
70 /* ldi __NR_rt_sigreturn, %r20 */
71 { 0x3414015a, 0xffffffff },
72 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
73 { 0xe4008200, 0xffffffff },
74 /* nop */
75 { 0x08000240, 0xffffffff },
76 { 0, 0 }
79 #define HPPA_MAX_INSN_PATTERN_LEN (4)
81 /* Return non-zero if the instructions at PC match the series
82 described in PATTERN, or zero otherwise. PATTERN is an array of
83 'struct insn_pattern' objects, terminated by an entry whose mask is
84 zero.
86 When the match is successful, fill INSN[i] with what PATTERN[i]
87 matched. */
88 static int
89 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc,
90 struct insn_pattern *pattern,
91 unsigned int *insn)
93 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
94 int i;
95 CORE_ADDR npc = pc;
97 for (i = 0; pattern[i].mask; i++)
99 gdb_byte buf[4];
101 target_read_memory (npc, buf, 4);
102 insn[i] = extract_unsigned_integer (buf, 4, byte_order);
103 if ((insn[i] & pattern[i].mask) == pattern[i].data)
104 npc += 4;
105 else
106 return 0;
108 return 1;
111 /* Signal frames. */
113 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
115 Unfortunately, because of various bugs and changes to the kernel,
116 we have several cases to deal with.
118 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
119 the beginning of the trampoline and struct rt_sigframe.
121 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
122 the 4th word in the trampoline structure. This is wrong, it should point
123 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
125 To detect these cases, we first take pc, align it to 64-bytes
126 to get the beginning of the signal frame, and then check offsets 0, 4
127 and 5 to see if we found the beginning of the trampoline. This will
128 tell us how to locate the sigcontext structure.
130 Note that with a 2.4 64-bit kernel, the signal context is not properly
131 passed back to userspace so the unwind will not work correctly. */
132 static CORE_ADDR
133 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc)
135 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
136 int offs = 0;
137 int attempt;
138 /* offsets to try to find the trampoline */
139 static int pcoffs[] = { 0, 4*4, 5*4 };
140 /* offsets to the rt_sigframe structure */
141 static int sfoffs[] = { 4*4, 10*4, 10*4 };
142 CORE_ADDR sp;
144 /* Most of the time, this will be correct. The one case when this will
145 fail is if the user defined an alternate stack, in which case the
146 beginning of the stack will not be align_down (pc, 64). */
147 sp = align_down (pc, 64);
149 /* rt_sigreturn trampoline:
150 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
151 3414015a ldi __NR_rt_sigreturn, %r20
152 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
153 08000240 nop */
155 for (attempt = 0; attempt < ARRAY_SIZE (pcoffs); attempt++)
157 if (insns_match_pattern (gdbarch, sp + pcoffs[attempt],
158 hppa_sigtramp, dummy))
160 offs = sfoffs[attempt];
161 break;
165 if (offs == 0)
167 if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy))
169 /* sigaltstack case: we have no way of knowing which offset to
170 use in this case; default to new kernel handling. If this is
171 wrong the unwinding will fail. */
172 attempt = 2;
173 sp = pc - pcoffs[attempt];
175 else
176 return 0;
179 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
180 a struct siginfo and a struct ucontext. struct ucontext contains
181 a struct sigcontext. Return an offset to this sigcontext here. Too
182 bad we cannot include system specific headers :-(.
183 sizeof(struct siginfo) == 128
184 offsetof(struct ucontext, uc_mcontext) == 24. */
185 return sp + sfoffs[attempt] + 128 + 24;
188 struct hppa_linux_sigtramp_unwind_cache
190 CORE_ADDR base;
191 trad_frame_saved_reg *saved_regs;
194 static struct hppa_linux_sigtramp_unwind_cache *
195 hppa_linux_sigtramp_frame_unwind_cache (const frame_info_ptr &this_frame,
196 void **this_cache)
198 struct gdbarch *gdbarch = get_frame_arch (this_frame);
199 struct hppa_linux_sigtramp_unwind_cache *info;
200 CORE_ADDR pc, scptr;
201 int i;
203 if (*this_cache)
204 return (struct hppa_linux_sigtramp_unwind_cache *) *this_cache;
206 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
207 *this_cache = info;
208 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
210 pc = get_frame_pc (this_frame);
211 scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc);
213 /* structure of struct sigcontext:
215 struct sigcontext {
216 unsigned long sc_flags;
217 unsigned long sc_gr[32];
218 unsigned long long sc_fr[32];
219 unsigned long sc_iasq[2];
220 unsigned long sc_iaoq[2];
221 unsigned long sc_sar; */
223 /* Skip sc_flags. */
224 scptr += 4;
226 /* GR[0] is the psw. */
227 info->saved_regs[HPPA_IPSW_REGNUM].set_addr (scptr);
228 scptr += 4;
230 /* General registers. */
231 for (i = 1; i < 32; i++)
233 info->saved_regs[HPPA_R0_REGNUM + i].set_addr (scptr);
234 scptr += 4;
237 /* Pad to long long boundary. */
238 scptr += 4;
240 /* FP regs; FP0-3 are not restored. */
241 scptr += (8 * 4);
243 for (i = 4; i < 32; i++)
245 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].set_addr (scptr);
246 scptr += 4;
247 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].set_addr (scptr);
248 scptr += 4;
251 /* IASQ/IAOQ. */
252 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].set_addr (scptr);
253 scptr += 4;
254 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].set_addr (scptr);
255 scptr += 4;
257 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_addr (scptr);
258 scptr += 4;
259 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].set_addr (scptr);
260 scptr += 4;
262 info->saved_regs[HPPA_SAR_REGNUM].set_addr (scptr);
264 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
266 return info;
269 static void
270 hppa_linux_sigtramp_frame_this_id (const frame_info_ptr &this_frame,
271 void **this_prologue_cache,
272 struct frame_id *this_id)
274 struct hppa_linux_sigtramp_unwind_cache *info
275 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
276 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
279 static struct value *
280 hppa_linux_sigtramp_frame_prev_register (const frame_info_ptr &this_frame,
281 void **this_prologue_cache,
282 int regnum)
284 struct hppa_linux_sigtramp_unwind_cache *info
285 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
286 return hppa_frame_prev_register_helper (this_frame,
287 info->saved_regs, regnum);
290 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
291 address should point to a signal trampoline on the stack. The signal
292 trampoline is embedded in a rt_sigframe structure that is aligned on
293 the stack. We take advantage of the fact that sp must be 64-byte aligned,
294 and the trampoline is small, so by rounding down the trampoline address
295 we can find the beginning of the struct rt_sigframe. */
296 static int
297 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
298 const frame_info_ptr &this_frame,
299 void **this_prologue_cache)
301 struct gdbarch *gdbarch = get_frame_arch (this_frame);
302 CORE_ADDR pc = get_frame_pc (this_frame);
304 if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc))
305 return 1;
307 return 0;
310 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
311 "hppa linux sigtramp",
312 SIGTRAMP_FRAME,
313 default_frame_unwind_stop_reason,
314 hppa_linux_sigtramp_frame_this_id,
315 hppa_linux_sigtramp_frame_prev_register,
316 NULL,
317 hppa_linux_sigtramp_frame_sniffer
320 /* Attempt to find (and return) the global pointer for the given
321 function.
323 This is a rather nasty bit of code searchs for the .dynamic section
324 in the objfile corresponding to the pc of the function we're trying
325 to call. Once it finds the addresses at which the .dynamic section
326 lives in the child process, it scans the Elf32_Dyn entries for a
327 DT_PLTGOT tag. If it finds one of these, the corresponding
328 d_un.d_ptr value is the global pointer. */
330 static CORE_ADDR
331 hppa_linux_find_global_pointer (struct gdbarch *gdbarch,
332 struct value *function)
334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335 struct obj_section *faddr_sect;
336 CORE_ADDR faddr;
338 faddr = value_as_address (function);
340 /* Is this a plabel? If so, dereference it to get the gp value. */
341 if (faddr & 2)
343 int status;
344 gdb_byte buf[4];
346 faddr &= ~3;
348 status = target_read_memory (faddr + 4, buf, sizeof (buf));
349 if (status == 0)
350 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
353 /* If the address is in the plt section, then the real function hasn't
354 yet been fixed up by the linker so we cannot determine the gp of
355 that function. */
356 if (in_plt_section (faddr))
357 return 0;
359 faddr_sect = find_pc_section (faddr);
360 if (faddr_sect != NULL)
362 for (obj_section *osect : faddr_sect->objfile->sections ())
364 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
366 CORE_ADDR addr, endaddr;
368 addr = osect->addr ();
369 endaddr = osect->endaddr ();
371 while (addr < endaddr)
373 int status;
374 LONGEST tag;
375 gdb_byte buf[4];
377 status = target_read_memory (addr, buf, sizeof (buf));
378 if (status != 0)
379 break;
380 tag = extract_signed_integer (buf, byte_order);
382 if (tag == DT_PLTGOT)
384 CORE_ADDR global_pointer;
386 status = target_read_memory (addr + 4, buf,
387 sizeof (buf));
388 if (status != 0)
389 break;
390 global_pointer
391 = extract_unsigned_integer (buf, sizeof (buf),
392 byte_order);
393 /* The payoff... */
394 return global_pointer;
397 if (tag == DT_NULL)
398 break;
400 addr += 8;
402 break;
406 return 0;
410 * Registers saved in a coredump:
411 * gr0..gr31
412 * sr0..sr7
413 * iaoq0..iaoq1
414 * iasq0..iasq1
415 * sar, iir, isr, ior, ipsw
416 * cr0, cr24..cr31
417 * cr8,9,12,13
418 * cr10, cr15
421 static const struct regcache_map_entry hppa_linux_gregmap[] =
423 { 32, HPPA_R0_REGNUM },
424 { 1, HPPA_SR4_REGNUM+1 },
425 { 1, HPPA_SR4_REGNUM+2 },
426 { 1, HPPA_SR4_REGNUM+3 },
427 { 1, HPPA_SR4_REGNUM+4 },
428 { 1, HPPA_SR4_REGNUM },
429 { 1, HPPA_SR4_REGNUM+5 },
430 { 1, HPPA_SR4_REGNUM+6 },
431 { 1, HPPA_SR4_REGNUM+7 },
432 { 1, HPPA_PCOQ_HEAD_REGNUM },
433 { 1, HPPA_PCOQ_TAIL_REGNUM },
434 { 1, HPPA_PCSQ_HEAD_REGNUM },
435 { 1, HPPA_PCSQ_TAIL_REGNUM },
436 { 1, HPPA_SAR_REGNUM },
437 { 1, HPPA_IIR_REGNUM },
438 { 1, HPPA_ISR_REGNUM },
439 { 1, HPPA_IOR_REGNUM },
440 { 1, HPPA_IPSW_REGNUM },
441 { 1, HPPA_RCR_REGNUM },
442 { 8, HPPA_TR0_REGNUM },
443 { 4, HPPA_PID0_REGNUM },
444 { 1, HPPA_CCR_REGNUM },
445 { 1, HPPA_EIEM_REGNUM },
446 { 0 }
449 static const struct regcache_map_entry hppa_linux_fpregmap[] =
451 /* FIXME: Only works for 32-bit mode. In 64-bit mode there should
452 be 32 fpregs, 8 bytes each. */
453 { 64, HPPA_FP0_REGNUM, 4 },
454 { 0 }
457 /* HPPA Linux kernel register set. */
458 static const struct regset hppa_linux_regset =
460 hppa_linux_gregmap,
461 regcache_supply_regset, regcache_collect_regset
464 static const struct regset hppa_linux_fpregset =
466 hppa_linux_fpregmap,
467 regcache_supply_regset, regcache_collect_regset
470 static void
471 hppa_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
472 iterate_over_regset_sections_cb *cb,
473 void *cb_data,
474 const struct regcache *regcache)
476 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
478 cb (".reg", 80 * tdep->bytes_per_address, 80 * tdep->bytes_per_address,
479 &hppa_linux_regset, NULL, cb_data);
480 cb (".reg2", 64 * 4, 64 * 4, &hppa_linux_fpregset, NULL, cb_data);
483 static void
484 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
486 hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
488 linux_init_abi (info, gdbarch, 0);
490 /* GNU/Linux is always ELF. */
491 tdep->is_elf = 1;
493 tdep->find_global_pointer = hppa_linux_find_global_pointer;
495 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
497 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
499 /* GNU/Linux uses SVR4-style shared libraries. */
500 set_solib_svr4_fetch_link_map_offsets
501 (gdbarch, linux_ilp32_fetch_link_map_offsets);
503 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
504 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
506 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
507 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
509 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
510 some discussions to support 128-bit long double, but it requires some
511 more work in gcc and glibc first. */
512 set_gdbarch_long_double_bit (gdbarch, 64);
513 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
515 set_gdbarch_iterate_over_regset_sections
516 (gdbarch, hppa_linux_iterate_over_regset_sections);
518 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
520 /* Enable TLS support. */
521 set_gdbarch_fetch_tls_load_module_address (gdbarch,
522 svr4_fetch_objfile_link_map);
525 void _initialize_hppa_linux_tdep ();
526 void
527 _initialize_hppa_linux_tdep ()
529 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX,
530 hppa_linux_init_abi);
531 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w,
532 GDB_OSABI_LINUX, hppa_linux_init_abi);