Automatic date update in version.in
[binutils-gdb.git] / gdb / amd64-windows-tdep.c
bloba559d967b3c98807e8848553b070e0bd5642b868
1 /* Copyright (C) 2009-2024 Free Software Foundation, Inc.
3 This file is part of GDB.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 #include "osabi.h"
19 #include "amd64-tdep.h"
20 #include "gdbsupport/x86-xstate.h"
21 #include "gdbtypes.h"
22 #include "gdbcore.h"
23 #include "regcache.h"
24 #include "windows-tdep.h"
25 #include "frame.h"
26 #include "objfiles.h"
27 #include "frame-unwind.h"
28 #include "coff/internal.h"
29 #include "coff/i386.h"
30 #include "coff/pe.h"
31 #include "libcoff.h"
32 #include "value.h"
33 #include <algorithm>
35 /* The registers used to pass integer arguments during a function call. */
36 static int amd64_windows_dummy_call_integer_regs[] =
38 AMD64_RCX_REGNUM, /* %rcx */
39 AMD64_RDX_REGNUM, /* %rdx */
40 AMD64_R8_REGNUM, /* %r8 */
41 AMD64_R9_REGNUM /* %r9 */
44 /* This vector maps GDB's idea of a register's number into an offset into
45 the Windows API CONTEXT structure. */
46 static int amd64_windows_gregset_reg_offset[] =
48 120, /* Rax */
49 144, /* Rbx */
50 128, /* Rcx */
51 136, /* Rdx */
52 168, /* Rsi */
53 176, /* Rdi */
54 160, /* Rbp */
55 152, /* Rsp */
56 184, /* R8 */
57 192, /* R9 */
58 200, /* R10 */
59 208, /* R11 */
60 216, /* R12 */
61 224, /* R13 */
62 232, /* R14 */
63 240, /* R15 */
64 248, /* Rip */
65 68, /* EFlags */
66 56, /* SegCs */
67 66, /* SegSs */
68 58, /* SegDs */
69 60, /* SegEs */
70 62, /* SegFs */
71 64, /* SegGs */
72 288, /* FloatSave.FloatRegisters[0] */
73 304, /* FloatSave.FloatRegisters[1] */
74 320, /* FloatSave.FloatRegisters[2] */
75 336, /* FloatSave.FloatRegisters[3] */
76 352, /* FloatSave.FloatRegisters[4] */
77 368, /* FloatSave.FloatRegisters[5] */
78 384, /* FloatSave.FloatRegisters[6] */
79 400, /* FloatSave.FloatRegisters[7] */
80 256, /* FloatSave.ControlWord */
81 258, /* FloatSave.StatusWord */
82 260, /* FloatSave.TagWord */
83 268, /* FloatSave.ErrorSelector */
84 264, /* FloatSave.ErrorOffset */
85 276, /* FloatSave.DataSelector */
86 272, /* FloatSave.DataOffset */
87 268, /* FloatSave.ErrorSelector */
88 416, /* Xmm0 */
89 432, /* Xmm1 */
90 448, /* Xmm2 */
91 464, /* Xmm3 */
92 480, /* Xmm4 */
93 496, /* Xmm5 */
94 512, /* Xmm6 */
95 528, /* Xmm7 */
96 544, /* Xmm8 */
97 560, /* Xmm9 */
98 576, /* Xmm10 */
99 592, /* Xmm11 */
100 608, /* Xmm12 */
101 624, /* Xmm13 */
102 640, /* Xmm14 */
103 656, /* Xmm15 */
104 280, /* FloatSave.MxCsr */
107 #define AMD64_WINDOWS_SIZEOF_GREGSET 1232
109 /* Return nonzero if an argument of type TYPE should be passed
110 via one of the integer registers. */
112 static int
113 amd64_windows_passed_by_integer_register (struct type *type)
115 switch (type->code ())
117 case TYPE_CODE_INT:
118 case TYPE_CODE_ENUM:
119 case TYPE_CODE_BOOL:
120 case TYPE_CODE_RANGE:
121 case TYPE_CODE_CHAR:
122 case TYPE_CODE_PTR:
123 case TYPE_CODE_REF:
124 case TYPE_CODE_RVALUE_REF:
125 case TYPE_CODE_STRUCT:
126 case TYPE_CODE_UNION:
127 case TYPE_CODE_COMPLEX:
128 return (type->length () == 1
129 || type->length () == 2
130 || type->length () == 4
131 || type->length () == 8);
133 default:
134 return 0;
138 /* Return nonzero if an argument of type TYPE should be passed
139 via one of the XMM registers. */
141 static int
142 amd64_windows_passed_by_xmm_register (struct type *type)
144 return ((type->code () == TYPE_CODE_FLT
145 || type->code () == TYPE_CODE_DECFLOAT)
146 && (type->length () == 4 || type->length () == 8));
149 /* Return non-zero iff an argument of the given TYPE should be passed
150 by pointer. */
152 static int
153 amd64_windows_passed_by_pointer (struct type *type)
155 if (amd64_windows_passed_by_integer_register (type))
156 return 0;
158 if (amd64_windows_passed_by_xmm_register (type))
159 return 0;
161 return 1;
164 /* For each argument that should be passed by pointer, reserve some
165 stack space, store a copy of the argument on the stack, and replace
166 the argument by its address. Return the new Stack Pointer value.
168 NARGS is the number of arguments. ARGS is the array containing
169 the value of each argument. SP is value of the Stack Pointer. */
171 static CORE_ADDR
172 amd64_windows_adjust_args_passed_by_pointer (struct value **args,
173 int nargs, CORE_ADDR sp)
175 int i;
177 for (i = 0; i < nargs; i++)
178 if (amd64_windows_passed_by_pointer (args[i]->type ()))
180 struct type *type = args[i]->type ();
181 const gdb_byte *valbuf = args[i]->contents ().data ();
182 const int len = type->length ();
184 /* Store a copy of that argument on the stack, aligned to
185 a 16 bytes boundary, and then use the copy's address as
186 the argument. */
188 sp -= len;
189 sp &= ~0xf;
190 write_memory (sp, valbuf, len);
192 args[i]
193 = value_addr (value_from_contents_and_address (type, valbuf, sp));
196 return sp;
199 /* Store the value of ARG in register REGNO (right-justified).
200 REGCACHE is the register cache. */
202 static void
203 amd64_windows_store_arg_in_reg (struct regcache *regcache,
204 struct value *arg, int regno)
206 struct type *type = arg->type ();
207 const gdb_byte *valbuf = arg->contents ().data ();
208 gdb_byte buf[8];
210 gdb_assert (type->length () <= 8);
211 memset (buf, 0, sizeof buf);
212 memcpy (buf, valbuf, std::min (type->length (), (ULONGEST) 8));
213 regcache->cooked_write (regno, buf);
216 /* Push the arguments for an inferior function call, and return
217 the updated value of the SP (Stack Pointer).
219 All arguments are identical to the arguments used in
220 amd64_windows_push_dummy_call. */
222 static CORE_ADDR
223 amd64_windows_push_arguments (struct regcache *regcache, int nargs,
224 struct value **args, CORE_ADDR sp,
225 function_call_return_method return_method)
227 int reg_idx = 0;
228 int i;
229 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
230 int num_stack_args = 0;
231 int num_elements = 0;
232 int element = 0;
234 /* First, handle the arguments passed by pointer.
236 These arguments are replaced by pointers to a copy we are making
237 in inferior memory. So use a copy of the ARGS table, to avoid
238 modifying the original one. */
240 struct value **args1 = XALLOCAVEC (struct value *, nargs);
242 memcpy (args1, args, nargs * sizeof (struct value *));
243 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
244 args = args1;
247 /* Reserve a register for the "hidden" argument. */
248 if (return_method == return_method_struct)
249 reg_idx++;
251 for (i = 0; i < nargs; i++)
253 struct type *type = args[i]->type ();
254 int len = type->length ();
255 int on_stack_p = 1;
257 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
259 if (amd64_windows_passed_by_integer_register (type))
261 amd64_windows_store_arg_in_reg
262 (regcache, args[i],
263 amd64_windows_dummy_call_integer_regs[reg_idx]);
264 on_stack_p = 0;
265 reg_idx++;
267 else if (amd64_windows_passed_by_xmm_register (type))
269 amd64_windows_store_arg_in_reg
270 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
271 /* In case of varargs, these parameters must also be
272 passed via the integer registers. */
273 amd64_windows_store_arg_in_reg
274 (regcache, args[i],
275 amd64_windows_dummy_call_integer_regs[reg_idx]);
276 on_stack_p = 0;
277 reg_idx++;
281 if (on_stack_p)
283 num_elements += ((len + 7) / 8);
284 stack_args[num_stack_args++] = args[i];
288 /* Allocate space for the arguments on the stack, keeping it
289 aligned on a 16 byte boundary. */
290 sp -= num_elements * 8;
291 sp &= ~0xf;
293 /* Write out the arguments to the stack. */
294 for (i = 0; i < num_stack_args; i++)
296 struct type *type = stack_args[i]->type ();
297 const gdb_byte *valbuf = stack_args[i]->contents ().data ();
299 write_memory (sp + element * 8, valbuf, type->length ());
300 element += ((type->length () + 7) / 8);
303 return sp;
306 /* Implement the "push_dummy_call" gdbarch method. */
308 static CORE_ADDR
309 amd64_windows_push_dummy_call
310 (struct gdbarch *gdbarch, struct value *function,
311 struct regcache *regcache, CORE_ADDR bp_addr,
312 int nargs, struct value **args, CORE_ADDR sp,
313 function_call_return_method return_method, CORE_ADDR struct_addr)
315 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
316 gdb_byte buf[8];
318 /* Pass arguments. */
319 sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
320 return_method);
322 /* Pass "hidden" argument". */
323 if (return_method == return_method_struct)
325 /* The "hidden" argument is passed throught the first argument
326 register. */
327 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
329 store_unsigned_integer (buf, 8, byte_order, struct_addr);
330 regcache->cooked_write (arg_regnum, buf);
333 /* Reserve some memory on the stack for the integer-parameter
334 registers, as required by the ABI. */
335 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
337 /* Store return address. */
338 sp -= 8;
339 store_unsigned_integer (buf, 8, byte_order, bp_addr);
340 write_memory (sp, buf, 8);
342 /* Update the stack pointer... */
343 store_unsigned_integer (buf, 8, byte_order, sp);
344 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
346 /* ...and fake a frame pointer. */
347 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
349 return sp + 16;
352 /* Implement the "return_value" gdbarch method for amd64-windows. */
354 static enum return_value_convention
355 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
356 struct type *type, struct regcache *regcache,
357 struct value **read_value, const gdb_byte *writebuf)
359 int len = type->length ();
360 int regnum = -1;
362 /* See if our value is returned through a register. If it is, then
363 store the associated register number in REGNUM. */
364 switch (type->code ())
366 case TYPE_CODE_FLT:
367 /* floats, and doubles are returned via XMM0. */
368 if (len == 4 || len == 8)
369 regnum = AMD64_XMM0_REGNUM;
370 break;
371 case TYPE_CODE_ARRAY:
372 /* __m128, __m128i and __m128d are returned via XMM0. */
373 if (type->is_vector () && len == 16)
375 enum type_code code = type->target_type ()->code ();
376 if (code == TYPE_CODE_INT || code == TYPE_CODE_FLT)
378 regnum = AMD64_XMM0_REGNUM;
379 break;
382 [[fallthrough]];
383 default:
384 /* All other values that are 1, 2, 4 or 8 bytes long are returned
385 via RAX. */
386 if (len == 1 || len == 2 || len == 4 || len == 8)
387 regnum = AMD64_RAX_REGNUM;
388 else if (len == 16 && type->code () == TYPE_CODE_INT)
389 regnum = AMD64_XMM0_REGNUM;
390 break;
393 if (regnum < 0)
395 /* RAX contains the address where the return value has been stored. */
396 if (read_value != nullptr)
398 ULONGEST addr;
400 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
401 *read_value = value_at_non_lval (type, addr);
403 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
405 else
407 /* Extract the return value from the register where it was stored. */
408 if (read_value != nullptr)
410 *read_value = value::allocate (type);
411 regcache->raw_read_part (regnum, 0, len,
412 (*read_value)->contents_raw ().data ());
414 if (writebuf)
415 regcache->raw_write_part (regnum, 0, len, writebuf);
416 return RETURN_VALUE_REGISTER_CONVENTION;
420 /* Check that the code pointed to by PC corresponds to a call to
421 __main, skip it if so. Return PC otherwise. */
423 static CORE_ADDR
424 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
426 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
427 gdb_byte op;
429 target_read_memory (pc, &op, 1);
430 if (op == 0xe8)
432 gdb_byte buf[4];
434 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
436 struct bound_minimal_symbol s;
437 CORE_ADDR call_dest;
439 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
440 s = lookup_minimal_symbol_by_pc (call_dest);
441 if (s.minsym != NULL
442 && s.minsym->linkage_name () != NULL
443 && strcmp (s.minsym->linkage_name (), "__main") == 0)
444 pc += 5;
448 return pc;
451 struct amd64_windows_frame_cache
453 /* ImageBase for the module. */
454 CORE_ADDR image_base;
456 /* Function start and end rva. */
457 CORE_ADDR start_rva;
458 CORE_ADDR end_rva;
460 /* Next instruction to be executed. */
461 CORE_ADDR pc;
463 /* Current sp. */
464 CORE_ADDR sp;
466 /* Address of saved integer and xmm registers. */
467 CORE_ADDR prev_reg_addr[16];
468 CORE_ADDR prev_xmm_addr[16];
470 /* These two next fields are set only for machine info frames. */
472 /* Likewise for RIP. */
473 CORE_ADDR prev_rip_addr;
475 /* Likewise for RSP. */
476 CORE_ADDR prev_rsp_addr;
478 /* Address of the previous frame. */
479 CORE_ADDR prev_sp;
482 /* Convert a Windows register number to gdb. */
483 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
485 AMD64_RAX_REGNUM,
486 AMD64_RCX_REGNUM,
487 AMD64_RDX_REGNUM,
488 AMD64_RBX_REGNUM,
489 AMD64_RSP_REGNUM,
490 AMD64_RBP_REGNUM,
491 AMD64_RSI_REGNUM,
492 AMD64_RDI_REGNUM,
493 AMD64_R8_REGNUM,
494 AMD64_R9_REGNUM,
495 AMD64_R10_REGNUM,
496 AMD64_R11_REGNUM,
497 AMD64_R12_REGNUM,
498 AMD64_R13_REGNUM,
499 AMD64_R14_REGNUM,
500 AMD64_R15_REGNUM
503 /* Return TRUE iff PC is the range of the function corresponding to
504 CACHE. */
506 static int
507 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
509 return (pc >= cache->image_base + cache->start_rva
510 && pc < cache->image_base + cache->end_rva);
513 /* Try to recognize and decode an epilogue sequence.
515 Return -1 if we fail to read the instructions for any reason.
516 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
518 static int
519 amd64_windows_frame_decode_epilogue (const frame_info_ptr &this_frame,
520 struct amd64_windows_frame_cache *cache)
522 /* According to MSDN an epilogue "must consist of either an add RSP,constant
523 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
524 register pops and a return or a jmp".
526 Furthermore, according to RtlVirtualUnwind, the complete list of
527 epilog marker is:
528 - ret [c3]
529 - ret n [c2 imm16]
530 - rep ret [f3 c3]
531 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
532 - jmp qword ptr imm32 - not handled
533 - rex.w jmp reg [4X ff eY]
536 CORE_ADDR pc = cache->pc;
537 CORE_ADDR cur_sp = cache->sp;
538 struct gdbarch *gdbarch = get_frame_arch (this_frame);
539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
540 gdb_byte op;
541 gdb_byte rex;
543 /* We don't care about the instruction deallocating the frame:
544 if it hasn't been executed, the pc is still in the body,
545 if it has been executed, the following epilog decoding will work. */
547 /* First decode:
548 - pop reg [41 58-5f] or [58-5f]. */
550 while (1)
552 /* Read opcode. */
553 if (target_read_memory (pc, &op, 1) != 0)
554 return -1;
556 if (op >= 0x40 && op <= 0x4f)
558 /* REX prefix. */
559 rex = op;
561 /* Read opcode. */
562 if (target_read_memory (pc + 1, &op, 1) != 0)
563 return -1;
565 else
566 rex = 0;
568 if (op >= 0x58 && op <= 0x5f)
570 /* pop reg */
571 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
573 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
574 cur_sp += 8;
575 pc += rex ? 2 : 1;
577 else
578 break;
580 /* Allow the user to break this loop. This shouldn't happen as the
581 number of consecutive pop should be small. */
582 QUIT;
585 /* Then decode the marker. */
587 /* Read opcode. */
588 if (target_read_memory (pc, &op, 1) != 0)
589 return -1;
591 switch (op)
593 case 0xc3:
594 /* Ret. */
595 cache->prev_rip_addr = cur_sp;
596 cache->prev_sp = cur_sp + 8;
597 return 1;
599 case 0xeb:
601 /* jmp rel8 */
602 gdb_byte rel8;
603 CORE_ADDR npc;
605 if (target_read_memory (pc + 1, &rel8, 1) != 0)
606 return -1;
607 npc = pc + 2 + (signed char) rel8;
609 /* If the jump is within the function, then this is not a marker,
610 otherwise this is a tail-call. */
611 return !pc_in_range (npc, cache);
614 case 0xec:
616 /* jmp rel32 */
617 gdb_byte rel32[4];
618 CORE_ADDR npc;
620 if (target_read_memory (pc + 1, rel32, 4) != 0)
621 return -1;
622 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
624 /* If the jump is within the function, then this is not a marker,
625 otherwise this is a tail-call. */
626 return !pc_in_range (npc, cache);
629 case 0xc2:
631 /* ret n */
632 gdb_byte imm16[2];
634 if (target_read_memory (pc + 1, imm16, 2) != 0)
635 return -1;
636 cache->prev_rip_addr = cur_sp;
637 cache->prev_sp = cur_sp
638 + extract_unsigned_integer (imm16, 4, byte_order);
639 return 1;
642 case 0xf3:
644 /* rep; ret */
645 gdb_byte op1;
647 if (target_read_memory (pc + 2, &op1, 1) != 0)
648 return -1;
649 if (op1 != 0xc3)
650 return 0;
652 cache->prev_rip_addr = cur_sp;
653 cache->prev_sp = cur_sp + 8;
654 return 1;
657 case 0x40:
658 case 0x41:
659 case 0x42:
660 case 0x43:
661 case 0x44:
662 case 0x45:
663 case 0x46:
664 case 0x47:
665 case 0x48:
666 case 0x49:
667 case 0x4a:
668 case 0x4b:
669 case 0x4c:
670 case 0x4d:
671 case 0x4e:
672 case 0x4f:
673 /* Got a REX prefix, read next byte. */
674 rex = op;
675 if (target_read_memory (pc + 1, &op, 1) != 0)
676 return -1;
678 if (op == 0xff)
680 /* rex jmp reg */
681 gdb_byte op1;
683 if (target_read_memory (pc + 2, &op1, 1) != 0)
684 return -1;
685 return (op1 & 0xf8) == 0xe0;
687 else
688 return 0;
690 default:
691 /* Not REX, so unknown. */
692 return 0;
696 /* Decode and execute unwind insns at UNWIND_INFO. */
698 static void
699 amd64_windows_frame_decode_insns (const frame_info_ptr &this_frame,
700 struct amd64_windows_frame_cache *cache,
701 CORE_ADDR unwind_info)
703 CORE_ADDR save_addr = 0;
704 CORE_ADDR cur_sp = cache->sp;
705 struct gdbarch *gdbarch = get_frame_arch (this_frame);
706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
707 int first = 1;
709 /* There are at least 3 possibilities to share an unwind info entry:
710 1. Two different runtime_function entries (in .pdata) can point to the
711 same unwind info entry. There is no such indication while unwinding,
712 so we don't really care about that case. We suppose this scheme is
713 used to save memory when the unwind entries are exactly the same.
714 2. Chained unwind_info entries, with no unwind codes (no prologue).
715 There is a major difference with the previous case: the pc range for
716 the function is different (in case 1, the pc range comes from the
717 runtime_function entry; in case 2, the pc range for the chained entry
718 comes from the first unwind entry). Case 1 cannot be used instead as
719 the pc is not in the prologue. This case is officially documented.
720 (There might be unwind code in the first unwind entry to handle
721 additional unwinding). GCC (at least until gcc 5.0) doesn't chain
722 entries.
723 3. Undocumented unwind info redirection. Hard to know the exact purpose,
724 so it is considered as a memory optimization of case 2.
727 if (unwind_info & 1)
729 /* Unofficially documented unwind info redirection, when UNWIND_INFO
730 address is odd (http://www.codemachine.com/article_x64deepdive.html).
732 struct external_pex64_runtime_function d;
734 if (target_read_memory (cache->image_base + (unwind_info & ~1),
735 (gdb_byte *) &d, sizeof (d)) != 0)
736 return;
738 cache->start_rva
739 = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
740 cache->end_rva
741 = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
742 unwind_info
743 = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
746 while (1)
748 struct external_pex64_unwind_info ex_ui;
749 /* There are at most 256 16-bit unwind insns. */
750 gdb_byte insns[2 * 256];
751 gdb_byte *p;
752 gdb_byte *end_insns;
753 unsigned char codes_count;
754 unsigned char frame_reg;
755 CORE_ADDR start;
757 /* Read and decode header. */
758 if (target_read_memory (cache->image_base + unwind_info,
759 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
760 return;
762 frame_debug_printf ("%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x",
763 paddress (gdbarch, unwind_info),
764 ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
765 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
767 /* Check version. */
768 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
769 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
770 return;
772 start = cache->image_base + cache->start_rva;
773 if (first
774 && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue))
776 /* We want to detect if the PC points to an epilogue. This needs
777 to be checked only once, and an epilogue can be anywhere but in
778 the prologue. If so, the epilogue detection+decoding function is
779 sufficient. Otherwise, the unwinder will consider that the PC
780 is in the body of the function and will need to decode unwind
781 info. */
782 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
783 return;
785 /* Not in an epilog. Clear possible side effects. */
786 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
789 codes_count = ex_ui.CountOfCodes;
790 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
792 if (frame_reg != 0)
794 /* According to msdn:
795 If an FP reg is used, then any unwind code taking an offset must
796 only be used after the FP reg is established in the prolog. */
797 gdb_byte buf[8];
798 int frreg = amd64_windows_w2gdb_regnum[frame_reg];
800 get_frame_register (this_frame, frreg, buf);
801 save_addr = extract_unsigned_integer (buf, 8, byte_order);
803 frame_debug_printf (" frame_reg=%s, val=%s",
804 gdbarch_register_name (gdbarch, frreg),
805 paddress (gdbarch, save_addr));
808 /* Read opcodes. */
809 if (codes_count != 0
810 && target_read_memory (cache->image_base + unwind_info
811 + sizeof (ex_ui),
812 insns, codes_count * 2) != 0)
813 return;
815 end_insns = &insns[codes_count * 2];
816 p = insns;
818 /* Skip opcodes 6 of version 2. This opcode is not documented. */
819 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
821 for (; p < end_insns; p += 2)
822 if (PEX64_UNWCODE_CODE (p[1]) != 6)
823 break;
826 for (; p < end_insns; p += 2)
828 int reg;
830 /* Virtually execute the operation if the pc is after the
831 corresponding instruction (that does matter in case of break
832 within the prologue). Note that for chained info (!first), the
833 prologue has been fully executed. */
834 if (cache->pc >= start + p[0] || cache->pc < start)
836 frame_debug_printf (" op #%u: off=0x%02x, insn=0x%02x",
837 (unsigned) (p - insns), p[0], p[1]);
839 /* If there is no frame registers defined, the current value of
840 rsp is used instead. */
841 if (frame_reg == 0)
842 save_addr = cur_sp;
844 reg = -1;
846 switch (PEX64_UNWCODE_CODE (p[1]))
848 case UWOP_PUSH_NONVOL:
849 /* Push pre-decrements RSP. */
850 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
851 cache->prev_reg_addr[reg] = cur_sp;
852 cur_sp += 8;
853 break;
854 case UWOP_ALLOC_LARGE:
855 if (PEX64_UNWCODE_INFO (p[1]) == 0)
856 cur_sp +=
857 8 * extract_unsigned_integer (p + 2, 2, byte_order);
858 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
859 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
860 else
861 return;
862 break;
863 case UWOP_ALLOC_SMALL:
864 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
865 break;
866 case UWOP_SET_FPREG:
867 cur_sp = save_addr
868 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
869 break;
870 case UWOP_SAVE_NONVOL:
871 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
872 cache->prev_reg_addr[reg] = save_addr
873 + 8 * extract_unsigned_integer (p + 2, 2, byte_order);
874 break;
875 case UWOP_SAVE_NONVOL_FAR:
876 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
877 cache->prev_reg_addr[reg] = save_addr
878 + 8 * extract_unsigned_integer (p + 2, 4, byte_order);
879 break;
880 case UWOP_SAVE_XMM128:
881 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
882 save_addr
883 - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
884 break;
885 case UWOP_SAVE_XMM128_FAR:
886 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
887 save_addr
888 - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
889 break;
890 case UWOP_PUSH_MACHFRAME:
891 if (PEX64_UNWCODE_INFO (p[1]) == 0)
893 cache->prev_rip_addr = cur_sp + 0;
894 cache->prev_rsp_addr = cur_sp + 24;
895 cur_sp += 40;
897 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
899 cache->prev_rip_addr = cur_sp + 8;
900 cache->prev_rsp_addr = cur_sp + 32;
901 cur_sp += 48;
903 else
904 return;
905 break;
906 default:
907 return;
910 /* Display address where the register was saved. */
911 if (reg >= 0)
912 frame_debug_printf (" [reg %s at %s]",
913 gdbarch_register_name (gdbarch, reg),
914 paddress (gdbarch,
915 cache->prev_reg_addr[reg]));
918 /* Adjust with the length of the opcode. */
919 switch (PEX64_UNWCODE_CODE (p[1]))
921 case UWOP_PUSH_NONVOL:
922 case UWOP_ALLOC_SMALL:
923 case UWOP_SET_FPREG:
924 case UWOP_PUSH_MACHFRAME:
925 break;
926 case UWOP_ALLOC_LARGE:
927 if (PEX64_UNWCODE_INFO (p[1]) == 0)
928 p += 2;
929 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
930 p += 4;
931 else
932 return;
933 break;
934 case UWOP_SAVE_NONVOL:
935 case UWOP_SAVE_XMM128:
936 p += 2;
937 break;
938 case UWOP_SAVE_NONVOL_FAR:
939 case UWOP_SAVE_XMM128_FAR:
940 p += 4;
941 break;
942 default:
943 return;
946 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
948 /* End of unwind info. */
949 break;
951 else
953 /* Read the chained unwind info. */
954 struct external_pex64_runtime_function d;
955 CORE_ADDR chain_vma;
957 /* Not anymore the first entry. */
958 first = 0;
960 /* Stay aligned on word boundary. */
961 chain_vma = cache->image_base + unwind_info
962 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
964 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
965 return;
967 /* Decode begin/end. This may be different from .pdata index, as
968 an unwind info may be shared by several functions (in particular
969 if many functions have the same prolog and handler. */
970 cache->start_rva =
971 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
972 cache->end_rva =
973 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
974 unwind_info =
975 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
977 frame_debug_printf ("next in chain: unwind_data=%s, start_rva=%s, "
978 "end_rva=%s",
979 paddress (gdbarch, unwind_info),
980 paddress (gdbarch, cache->start_rva),
981 paddress (gdbarch, cache->end_rva));
984 /* Allow the user to break this loop. */
985 QUIT;
987 /* PC is saved by the call. */
988 if (cache->prev_rip_addr == 0)
989 cache->prev_rip_addr = cur_sp;
990 cache->prev_sp = cur_sp + 8;
992 frame_debug_printf (" prev_sp: %s, prev_pc @%s",
993 paddress (gdbarch, cache->prev_sp),
994 paddress (gdbarch, cache->prev_rip_addr));
997 /* Find SEH unwind info for PC, returning 0 on success.
999 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
1000 to the base address of the corresponding image, and START_RVA
1001 to the rva of the function containing PC. */
1003 static int
1004 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
1005 CORE_ADDR *unwind_info,
1006 CORE_ADDR *image_base,
1007 CORE_ADDR *start_rva,
1008 CORE_ADDR *end_rva)
1010 struct obj_section *sec;
1011 pe_data_type *pe;
1012 IMAGE_DATA_DIRECTORY *dir;
1013 struct objfile *objfile;
1014 unsigned long lo, hi;
1015 CORE_ADDR base;
1016 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1018 /* Get the corresponding exception directory. */
1019 sec = find_pc_section (pc);
1020 if (sec == NULL)
1021 return -1;
1022 objfile = sec->objfile;
1023 pe = pe_data (sec->objfile->obfd);
1024 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
1026 base = pe->pe_opthdr.ImageBase + objfile->text_section_offset ();
1027 *image_base = base;
1029 /* Find the entry.
1031 Note: This does not handle dynamically added entries (for JIT
1032 engines). For this, we would need to ask the kernel directly,
1033 which means getting some info from the native layer. For the
1034 rest of the code, however, it's probably faster to search
1035 the entry ourselves. */
1036 lo = 0;
1037 hi = dir->Size / sizeof (struct external_pex64_runtime_function);
1038 *unwind_info = 0;
1039 while (lo <= hi)
1041 unsigned long mid = lo + (hi - lo) / 2;
1042 struct external_pex64_runtime_function d;
1043 CORE_ADDR sa, ea;
1045 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
1046 (gdb_byte *) &d, sizeof (d)) != 0)
1047 return -1;
1049 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
1050 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
1051 if (pc < base + sa)
1052 hi = mid - 1;
1053 else if (pc >= base + ea)
1054 lo = mid + 1;
1055 else if (pc >= base + sa && pc < base + ea)
1057 /* Got it. */
1058 *start_rva = sa;
1059 *end_rva = ea;
1060 *unwind_info =
1061 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
1062 break;
1064 else
1065 break;
1068 frame_debug_printf ("image_base=%s, unwind_data=%s",
1069 paddress (gdbarch, base),
1070 paddress (gdbarch, *unwind_info));
1072 return 0;
1075 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1076 for THIS_FRAME. */
1078 static struct amd64_windows_frame_cache *
1079 amd64_windows_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
1081 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1083 struct amd64_windows_frame_cache *cache;
1084 gdb_byte buf[8];
1085 CORE_ADDR pc;
1086 CORE_ADDR unwind_info = 0;
1088 if (*this_cache)
1089 return (struct amd64_windows_frame_cache *) *this_cache;
1091 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
1092 *this_cache = cache;
1094 /* Get current PC and SP. */
1095 pc = get_frame_pc (this_frame);
1096 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1097 cache->sp = extract_unsigned_integer (buf, 8, byte_order);
1098 cache->pc = pc;
1100 /* If we can't find the unwind info, keep trying as though this is a
1101 leaf function. This situation can happen when PC==0, see
1102 https://sourceware.org/bugzilla/show_bug.cgi?id=30255. */
1103 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1104 &cache->image_base,
1105 &cache->start_rva,
1106 &cache->end_rva)
1107 || unwind_info == 0)
1109 /* Assume a leaf function. */
1110 cache->prev_sp = cache->sp + 8;
1111 cache->prev_rip_addr = cache->sp;
1113 else
1115 /* Decode unwind insns to compute saved addresses. */
1116 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
1118 return cache;
1121 /* Implement the "prev_register" method of struct frame_unwind
1122 using the standard Windows x64 SEH info. */
1124 static struct value *
1125 amd64_windows_frame_prev_register (const frame_info_ptr &this_frame,
1126 void **this_cache, int regnum)
1128 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1129 struct amd64_windows_frame_cache *cache =
1130 amd64_windows_frame_cache (this_frame, this_cache);
1131 CORE_ADDR prev;
1133 frame_debug_printf ("%s for sp=%s",
1134 gdbarch_register_name (gdbarch, regnum),
1135 paddress (gdbarch, cache->prev_sp));
1137 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1138 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1139 else if (regnum == AMD64_RSP_REGNUM)
1141 prev = cache->prev_rsp_addr;
1142 if (prev == 0)
1143 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1145 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1146 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1147 else if (regnum == AMD64_RIP_REGNUM)
1148 prev = cache->prev_rip_addr;
1149 else
1150 prev = 0;
1152 if (prev != 0)
1153 frame_debug_printf (" -> at %s", paddress (gdbarch, prev));
1155 if (prev)
1157 /* Register was saved. */
1158 return frame_unwind_got_memory (this_frame, regnum, prev);
1160 else
1162 /* Register is either volatile or not modified. */
1163 return frame_unwind_got_register (this_frame, regnum, regnum);
1167 /* Implement the "this_id" method of struct frame_unwind using
1168 the standard Windows x64 SEH info. */
1170 static void
1171 amd64_windows_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
1172 struct frame_id *this_id)
1174 struct amd64_windows_frame_cache *cache =
1175 amd64_windows_frame_cache (this_frame, this_cache);
1177 *this_id = frame_id_build (cache->prev_sp,
1178 cache->image_base + cache->start_rva);
1181 /* Windows x64 SEH unwinder. */
1183 static const struct frame_unwind amd64_windows_frame_unwind =
1185 "amd64 windows",
1186 NORMAL_FRAME,
1187 default_frame_unwind_stop_reason,
1188 &amd64_windows_frame_this_id,
1189 &amd64_windows_frame_prev_register,
1190 NULL,
1191 default_frame_sniffer
1194 /* Implement the "skip_prologue" gdbarch method. */
1196 static CORE_ADDR
1197 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1199 CORE_ADDR func_addr;
1200 CORE_ADDR unwind_info = 0;
1201 CORE_ADDR image_base, start_rva, end_rva;
1202 struct external_pex64_unwind_info ex_ui;
1204 /* Use prologue size from unwind info. */
1205 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1206 &image_base, &start_rva, &end_rva) == 0)
1208 if (unwind_info == 0)
1210 /* Leaf function. */
1211 return pc;
1213 else if (target_read_memory (image_base + unwind_info,
1214 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1215 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1216 return std::max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1219 /* See if we can determine the end of the prologue via the symbol
1220 table. If so, then return either the PC, or the PC after
1221 the prologue, whichever is greater. */
1222 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1224 CORE_ADDR post_prologue_pc
1225 = skip_prologue_using_sal (gdbarch, func_addr);
1227 if (post_prologue_pc != 0)
1228 return std::max (pc, post_prologue_pc);
1231 return pc;
1234 /* Check Win64 DLL jmp trampolines and find jump destination. */
1236 static CORE_ADDR
1237 amd64_windows_skip_trampoline_code (const frame_info_ptr &frame, CORE_ADDR pc)
1239 CORE_ADDR destination = 0;
1240 struct gdbarch *gdbarch = get_frame_arch (frame);
1241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1244 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1246 /* Get opcode offset and see if we can find a reference in our data. */
1247 ULONGEST offset
1248 = read_memory_unsigned_integer (pc + 2, 4, byte_order);
1250 /* Get address of function pointer at end of pc. */
1251 CORE_ADDR indirect_addr = pc + offset + 6;
1253 struct minimal_symbol *indsym
1254 = (indirect_addr
1255 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1256 : NULL);
1257 const char *symname = indsym ? indsym->linkage_name () : NULL;
1259 if (symname)
1261 if (startswith (symname, "__imp_")
1262 || startswith (symname, "_imp_"))
1263 destination
1264 = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1268 return destination;
1271 /* Implement the "auto_wide_charset" gdbarch method. */
1273 static const char *
1274 amd64_windows_auto_wide_charset (void)
1276 return "UTF-16";
1279 /* Common parts for gdbarch initialization for Windows and Cygwin on AMD64. */
1281 static void
1282 amd64_windows_init_abi_common (gdbarch_info info, struct gdbarch *gdbarch)
1284 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
1286 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1287 preferred over the SEH one. The reasons are:
1288 - binaries without SEH but with dwarf2 debug info are correctly handled
1289 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1290 info).
1291 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1292 handled if the dwarf2 unwinder is used).
1294 The call to amd64_init_abi appends default unwinders, that aren't
1295 compatible with the SEH one.
1297 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1299 amd64_init_abi (info, gdbarch,
1300 amd64_target_description (X86_XSTATE_SSE_MASK, false));
1302 /* Function calls. */
1303 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
1304 set_gdbarch_return_value_as_value (gdbarch, amd64_windows_return_value);
1305 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
1306 set_gdbarch_skip_trampoline_code (gdbarch,
1307 amd64_windows_skip_trampoline_code);
1309 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1311 tdep->gregset_reg_offset = amd64_windows_gregset_reg_offset;
1312 tdep->gregset_num_regs = ARRAY_SIZE (amd64_windows_gregset_reg_offset);
1313 tdep->sizeof_gregset = AMD64_WINDOWS_SIZEOF_GREGSET;
1314 tdep->sizeof_fpregset = 0;
1316 /* Core file support. */
1317 set_gdbarch_core_xfer_shared_libraries
1318 (gdbarch, windows_core_xfer_shared_libraries);
1319 set_gdbarch_core_pid_to_str (gdbarch, windows_core_pid_to_str);
1321 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
1324 /* gdbarch initialization for Windows on AMD64. */
1326 static void
1327 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1329 amd64_windows_init_abi_common (info, gdbarch);
1330 windows_init_abi (info, gdbarch);
1332 /* On Windows, "long"s are only 32bit. */
1333 set_gdbarch_long_bit (gdbarch, 32);
1336 /* Sigwrapper unwinder instruction patterns for AMD64. */
1338 static const gdb_byte amd64_sigbe_bytes[] = {
1339 0x49, 0xc7, 0xc3, 0xf8, 0xff, 0xff, 0xff, /* movq $-8,%r11 */
1340 0x4d, 0x0f, 0xc1, 0x9a, /* xaddq %r11,$tls::stackptr(%r10) */
1341 /* 4 bytes for tls::stackptr operand. */
1344 static const gdb_byte amd64_sigdelayed_bytes[] = {
1345 0x49, 0xc7, 0xc3, 0xf8, 0xff, 0xff, 0xff, /* movq $-8,%r11 */
1346 0x4d, 0x0f, 0xc1, 0x9c, 0x24, /* xaddq %r11,$tls::stackptr(%r12) */
1347 /* 4 bytes for tls::stackptr operand. */
1350 static const gdb::array_view<const gdb_byte> amd64_sig_patterns[] {
1351 { amd64_sigbe_bytes },
1352 { amd64_sigdelayed_bytes },
1355 /* The sigwrapper unwinder on AMD64. */
1357 static const cygwin_sigwrapper_frame_unwind
1358 amd64_cygwin_sigwrapper_frame_unwind (amd64_sig_patterns);
1360 /* gdbarch initialization for Cygwin on AMD64. */
1362 static void
1363 amd64_cygwin_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1365 frame_unwind_append_unwinder (gdbarch, &amd64_cygwin_sigwrapper_frame_unwind);
1367 amd64_windows_init_abi_common (info, gdbarch);
1368 cygwin_init_abi (info, gdbarch);
1371 static gdb_osabi
1372 amd64_windows_osabi_sniffer (bfd *abfd)
1374 const char *target_name = bfd_get_target (abfd);
1376 if (!streq (target_name, "pei-x86-64"))
1377 return GDB_OSABI_UNKNOWN;
1379 if (is_linked_with_cygwin_dll (abfd))
1380 return GDB_OSABI_CYGWIN;
1382 return GDB_OSABI_WINDOWS;
1385 static enum gdb_osabi
1386 amd64_cygwin_core_osabi_sniffer (bfd *abfd)
1388 const char *target_name = bfd_get_target (abfd);
1390 /* Cygwin uses elf core dumps. Do not claim all ELF executables,
1391 check whether there is a .reg section of proper size. */
1392 if (strcmp (target_name, "elf64-x86-64") == 0)
1394 asection *section = bfd_get_section_by_name (abfd, ".reg");
1395 if (section != nullptr
1396 && bfd_section_size (section) == AMD64_WINDOWS_SIZEOF_GREGSET)
1397 return GDB_OSABI_CYGWIN;
1400 return GDB_OSABI_UNKNOWN;
1403 void _initialize_amd64_windows_tdep ();
1404 void
1405 _initialize_amd64_windows_tdep ()
1407 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_WINDOWS,
1408 amd64_windows_init_abi);
1409 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1410 amd64_cygwin_init_abi);
1412 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1413 amd64_windows_osabi_sniffer);
1415 /* Cygwin uses elf core dumps. */
1416 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour,
1417 amd64_cygwin_core_osabi_sniffer);