nm: Add --quiet to suppress "no symbols" diagnostic
[binutils-gdb.git] / gdb / target.c
blob0889da82ea593ad295741e75f6455c1fcd45d055
1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2021 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "gdbsupport/search.h"
51 #include "terminal.h"
52 #include <unordered_map>
53 #include "target-connection.h"
54 #include "valprint.h"
56 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
58 static void default_terminal_info (struct target_ops *, const char *, int);
60 static int default_watchpoint_addr_within_range (struct target_ops *,
61 CORE_ADDR, CORE_ADDR, int);
63 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
64 CORE_ADDR, int);
66 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
68 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
69 long lwp, long tid);
71 static void default_mourn_inferior (struct target_ops *self);
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
86 static struct target_ops *find_default_run_target (const char *);
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
92 static gdb::unique_xmalloc_ptr<char> dummy_make_corefile_notes
93 (struct target_ops *self, bfd *ignore1, int *ignore2);
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
109 /* The singleton debug target. */
111 static struct target_ops *the_debug_target;
113 /* Top of target stack. */
114 /* The target structure we are currently using to talk to a process
115 or file or whatever "inferior" we have. */
117 target_ops *
118 current_top_target ()
120 return current_inferior ()->top_target ();
123 /* Command list for target. */
125 static struct cmd_list_element *targetlist = NULL;
127 /* True if we should trust readonly sections from the
128 executable when reading memory. */
130 static bool trust_readonly = false;
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
135 static int show_memory_breakpoints = 0;
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertent disruption, such as in non-stop mode. */
141 bool may_write_registers = true;
143 bool may_write_memory = true;
145 bool may_insert_breakpoints = true;
147 bool may_insert_tracepoints = true;
149 bool may_insert_fast_tracepoints = true;
151 bool may_stop = true;
153 /* Non-zero if we want to see trace of target level stuff. */
155 static unsigned int targetdebug = 0;
157 static void
158 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
160 if (targetdebug)
161 push_target (the_debug_target);
162 else
163 unpush_target (the_debug_target);
166 static void
167 show_targetdebug (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
170 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
174 target_has_memory ()
176 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
177 if (t->has_memory ())
178 return 1;
180 return 0;
184 target_has_stack ()
186 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
187 if (t->has_stack ())
188 return 1;
190 return 0;
194 target_has_registers ()
196 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
197 if (t->has_registers ())
198 return 1;
200 return 0;
203 bool
204 target_has_execution (inferior *inf)
206 if (inf == nullptr)
207 inf = current_inferior ();
209 for (target_ops *t = inf->top_target ();
210 t != nullptr;
211 t = inf->find_target_beneath (t))
212 if (t->has_execution (inf))
213 return true;
215 return false;
218 /* This is used to implement the various target commands. */
220 static void
221 open_target (const char *args, int from_tty, struct cmd_list_element *command)
223 auto *ti = static_cast<target_info *> (get_cmd_context (command));
224 target_open_ftype *func = target_factories[ti];
226 if (targetdebug)
227 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
228 ti->shortname);
230 func (args, from_tty);
232 if (targetdebug)
233 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
234 ti->shortname, args, from_tty);
237 /* See target.h. */
239 void
240 add_target (const target_info &t, target_open_ftype *func,
241 completer_ftype *completer)
243 struct cmd_list_element *c;
245 auto &func_slot = target_factories[&t];
246 if (func_slot != nullptr)
247 internal_error (__FILE__, __LINE__,
248 _("target already added (\"%s\")."), t.shortname);
249 func_slot = func;
251 if (targetlist == NULL)
252 add_basic_prefix_cmd ("target", class_run, _("\
253 Connect to a target machine or process.\n\
254 The first argument is the type or protocol of the target machine.\n\
255 Remaining arguments are interpreted by the target protocol. For more\n\
256 information on the arguments for a particular protocol, type\n\
257 `help target ' followed by the protocol name."),
258 &targetlist, "target ", 0, &cmdlist);
259 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
260 set_cmd_context (c, (void *) &t);
261 set_cmd_sfunc (c, open_target);
262 if (completer != NULL)
263 set_cmd_completer (c, completer);
266 /* See target.h. */
268 void
269 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
271 struct cmd_list_element *c;
272 char *alt;
274 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
275 see PR cli/15104. */
276 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
277 set_cmd_sfunc (c, open_target);
278 set_cmd_context (c, (void *) &tinfo);
279 alt = xstrprintf ("target %s", tinfo.shortname);
280 deprecate_cmd (c, alt);
283 /* Stub functions */
285 void
286 target_kill (void)
288 current_top_target ()->kill ();
291 void
292 target_load (const char *arg, int from_tty)
294 target_dcache_invalidate ();
295 current_top_target ()->load (arg, from_tty);
298 /* Define it. */
300 target_terminal_state target_terminal::m_terminal_state
301 = target_terminal_state::is_ours;
303 /* See target/target.h. */
305 void
306 target_terminal::init (void)
308 current_top_target ()->terminal_init ();
310 m_terminal_state = target_terminal_state::is_ours;
313 /* See target/target.h. */
315 void
316 target_terminal::inferior (void)
318 struct ui *ui = current_ui;
320 /* A background resume (``run&'') should leave GDB in control of the
321 terminal. */
322 if (ui->prompt_state != PROMPT_BLOCKED)
323 return;
325 /* Since we always run the inferior in the main console (unless "set
326 inferior-tty" is in effect), when some UI other than the main one
327 calls target_terminal::inferior, then we leave the main UI's
328 terminal settings as is. */
329 if (ui != main_ui)
330 return;
332 /* If GDB is resuming the inferior in the foreground, install
333 inferior's terminal modes. */
335 struct inferior *inf = current_inferior ();
337 if (inf->terminal_state != target_terminal_state::is_inferior)
339 current_top_target ()->terminal_inferior ();
340 inf->terminal_state = target_terminal_state::is_inferior;
343 m_terminal_state = target_terminal_state::is_inferior;
345 /* If the user hit C-c before, pretend that it was hit right
346 here. */
347 if (check_quit_flag ())
348 target_pass_ctrlc ();
351 /* See target/target.h. */
353 void
354 target_terminal::restore_inferior (void)
356 struct ui *ui = current_ui;
358 /* See target_terminal::inferior(). */
359 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
360 return;
362 /* Restore the terminal settings of inferiors that were in the
363 foreground but are now ours_for_output due to a temporary
364 target_target::ours_for_output() call. */
367 scoped_restore_current_inferior restore_inferior;
369 for (::inferior *inf : all_inferiors ())
371 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
373 set_current_inferior (inf);
374 current_top_target ()->terminal_inferior ();
375 inf->terminal_state = target_terminal_state::is_inferior;
380 m_terminal_state = target_terminal_state::is_inferior;
382 /* If the user hit C-c before, pretend that it was hit right
383 here. */
384 if (check_quit_flag ())
385 target_pass_ctrlc ();
388 /* Switch terminal state to DESIRED_STATE, either is_ours, or
389 is_ours_for_output. */
391 static void
392 target_terminal_is_ours_kind (target_terminal_state desired_state)
394 scoped_restore_current_inferior restore_inferior;
396 /* Must do this in two passes. First, have all inferiors save the
397 current terminal settings. Then, after all inferiors have add a
398 chance to safely save the terminal settings, restore GDB's
399 terminal settings. */
401 for (inferior *inf : all_inferiors ())
403 if (inf->terminal_state == target_terminal_state::is_inferior)
405 set_current_inferior (inf);
406 current_top_target ()->terminal_save_inferior ();
410 for (inferior *inf : all_inferiors ())
412 /* Note we don't check is_inferior here like above because we
413 need to handle 'is_ours_for_output -> is_ours' too. Careful
414 to never transition from 'is_ours' to 'is_ours_for_output',
415 though. */
416 if (inf->terminal_state != target_terminal_state::is_ours
417 && inf->terminal_state != desired_state)
419 set_current_inferior (inf);
420 if (desired_state == target_terminal_state::is_ours)
421 current_top_target ()->terminal_ours ();
422 else if (desired_state == target_terminal_state::is_ours_for_output)
423 current_top_target ()->terminal_ours_for_output ();
424 else
425 gdb_assert_not_reached ("unhandled desired state");
426 inf->terminal_state = desired_state;
431 /* See target/target.h. */
433 void
434 target_terminal::ours ()
436 struct ui *ui = current_ui;
438 /* See target_terminal::inferior. */
439 if (ui != main_ui)
440 return;
442 if (m_terminal_state == target_terminal_state::is_ours)
443 return;
445 target_terminal_is_ours_kind (target_terminal_state::is_ours);
446 m_terminal_state = target_terminal_state::is_ours;
449 /* See target/target.h. */
451 void
452 target_terminal::ours_for_output ()
454 struct ui *ui = current_ui;
456 /* See target_terminal::inferior. */
457 if (ui != main_ui)
458 return;
460 if (!target_terminal::is_inferior ())
461 return;
463 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
464 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
467 /* See target/target.h. */
469 void
470 target_terminal::info (const char *arg, int from_tty)
472 current_top_target ()->terminal_info (arg, from_tty);
475 /* See target.h. */
477 bool
478 target_supports_terminal_ours (void)
480 /* The current top target is the target at the top of the target
481 stack of the current inferior. While normally there's always an
482 inferior, we must check for nullptr here because we can get here
483 very early during startup, before the initial inferior is first
484 created. */
485 inferior *inf = current_inferior ();
487 if (inf == nullptr)
488 return false;
489 return inf->top_target ()->supports_terminal_ours ();
492 static void
493 tcomplain (void)
495 error (_("You can't do that when your target is `%s'"),
496 current_top_target ()->shortname ());
499 void
500 noprocess (void)
502 error (_("You can't do that without a process to debug."));
505 static void
506 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
508 printf_unfiltered (_("No saved terminal information.\n"));
511 /* A default implementation for the to_get_ada_task_ptid target method.
513 This function builds the PTID by using both LWP and TID as part of
514 the PTID lwp and tid elements. The pid used is the pid of the
515 inferior_ptid. */
517 static ptid_t
518 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
520 return ptid_t (inferior_ptid.pid (), lwp, tid);
523 static enum exec_direction_kind
524 default_execution_direction (struct target_ops *self)
526 if (!target_can_execute_reverse ())
527 return EXEC_FORWARD;
528 else if (!target_can_async_p ())
529 return EXEC_FORWARD;
530 else
531 gdb_assert_not_reached ("\
532 to_execution_direction must be implemented for reverse async");
535 /* See target.h. */
537 void
538 decref_target (target_ops *t)
540 t->decref ();
541 if (t->refcount () == 0)
543 if (t->stratum () == process_stratum)
544 connection_list_remove (as_process_stratum_target (t));
545 target_close (t);
549 /* See target.h. */
551 void
552 target_stack::push (target_ops *t)
554 t->incref ();
556 strata stratum = t->stratum ();
558 if (stratum == process_stratum)
559 connection_list_add (as_process_stratum_target (t));
561 /* If there's already a target at this stratum, remove it. */
563 if (m_stack[stratum] != NULL)
564 unpush (m_stack[stratum]);
566 /* Now add the new one. */
567 m_stack[stratum] = t;
569 if (m_top < stratum)
570 m_top = stratum;
573 /* See target.h. */
575 void
576 push_target (struct target_ops *t)
578 current_inferior ()->push_target (t);
581 /* See target.h. */
583 void
584 push_target (target_ops_up &&t)
586 current_inferior ()->push_target (t.get ());
587 t.release ();
590 /* See target.h. */
593 unpush_target (struct target_ops *t)
595 return current_inferior ()->unpush_target (t);
598 /* See target.h. */
600 bool
601 target_stack::unpush (target_ops *t)
603 gdb_assert (t != NULL);
605 strata stratum = t->stratum ();
607 if (stratum == dummy_stratum)
608 internal_error (__FILE__, __LINE__,
609 _("Attempt to unpush the dummy target"));
611 /* Look for the specified target. Note that a target can only occur
612 once in the target stack. */
614 if (m_stack[stratum] != t)
616 /* If T wasn't pushed, quit. Only open targets should be
617 closed. */
618 return false;
621 /* Unchain the target. */
622 m_stack[stratum] = NULL;
624 if (m_top == stratum)
625 m_top = t->beneath ()->stratum ();
627 /* Finally close the target, if there are no inferiors
628 referencing this target still. Note we do this after unchaining,
629 so any target method calls from within the target_close
630 implementation don't end up in T anymore. Do leave the target
631 open if we have are other inferiors referencing this target
632 still. */
633 decref_target (t);
635 return true;
638 /* Unpush TARGET and assert that it worked. */
640 static void
641 unpush_target_and_assert (struct target_ops *target)
643 if (!unpush_target (target))
645 fprintf_unfiltered (gdb_stderr,
646 "pop_all_targets couldn't find target %s\n",
647 target->shortname ());
648 internal_error (__FILE__, __LINE__,
649 _("failed internal consistency check"));
653 void
654 pop_all_targets_above (enum strata above_stratum)
656 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
657 unpush_target_and_assert (current_top_target ());
660 /* See target.h. */
662 void
663 pop_all_targets_at_and_above (enum strata stratum)
665 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
666 unpush_target_and_assert (current_top_target ());
669 void
670 pop_all_targets (void)
672 pop_all_targets_above (dummy_stratum);
675 /* Return true if T is now pushed in the current inferior's target
676 stack. Return false otherwise. */
678 bool
679 target_is_pushed (target_ops *t)
681 return current_inferior ()->target_is_pushed (t);
684 /* Default implementation of to_get_thread_local_address. */
686 static void
687 generic_tls_error (void)
689 throw_error (TLS_GENERIC_ERROR,
690 _("Cannot find thread-local variables on this target"));
693 /* Using the objfile specified in OBJFILE, find the address for the
694 current thread's thread-local storage with offset OFFSET. */
695 CORE_ADDR
696 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
698 volatile CORE_ADDR addr = 0;
699 struct target_ops *target = current_top_target ();
700 struct gdbarch *gdbarch = target_gdbarch ();
702 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
704 ptid_t ptid = inferior_ptid;
708 CORE_ADDR lm_addr;
710 /* Fetch the load module address for this objfile. */
711 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
712 objfile);
714 if (gdbarch_get_thread_local_address_p (gdbarch))
715 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
716 offset);
717 else
718 addr = target->get_thread_local_address (ptid, lm_addr, offset);
720 /* If an error occurred, print TLS related messages here. Otherwise,
721 throw the error to some higher catcher. */
722 catch (const gdb_exception &ex)
724 int objfile_is_library = (objfile->flags & OBJF_SHARED);
726 switch (ex.error)
728 case TLS_NO_LIBRARY_SUPPORT_ERROR:
729 error (_("Cannot find thread-local variables "
730 "in this thread library."));
731 break;
732 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
733 if (objfile_is_library)
734 error (_("Cannot find shared library `%s' in dynamic"
735 " linker's load module list"), objfile_name (objfile));
736 else
737 error (_("Cannot find executable file `%s' in dynamic"
738 " linker's load module list"), objfile_name (objfile));
739 break;
740 case TLS_NOT_ALLOCATED_YET_ERROR:
741 if (objfile_is_library)
742 error (_("The inferior has not yet allocated storage for"
743 " thread-local variables in\n"
744 "the shared library `%s'\n"
745 "for %s"),
746 objfile_name (objfile),
747 target_pid_to_str (ptid).c_str ());
748 else
749 error (_("The inferior has not yet allocated storage for"
750 " thread-local variables in\n"
751 "the executable `%s'\n"
752 "for %s"),
753 objfile_name (objfile),
754 target_pid_to_str (ptid).c_str ());
755 break;
756 case TLS_GENERIC_ERROR:
757 if (objfile_is_library)
758 error (_("Cannot find thread-local storage for %s, "
759 "shared library %s:\n%s"),
760 target_pid_to_str (ptid).c_str (),
761 objfile_name (objfile), ex.what ());
762 else
763 error (_("Cannot find thread-local storage for %s, "
764 "executable file %s:\n%s"),
765 target_pid_to_str (ptid).c_str (),
766 objfile_name (objfile), ex.what ());
767 break;
768 default:
769 throw;
770 break;
774 else
775 error (_("Cannot find thread-local variables on this target"));
777 return addr;
780 const char *
781 target_xfer_status_to_string (enum target_xfer_status status)
783 #define CASE(X) case X: return #X
784 switch (status)
786 CASE(TARGET_XFER_E_IO);
787 CASE(TARGET_XFER_UNAVAILABLE);
788 default:
789 return "<unknown>";
791 #undef CASE
795 /* See target.h. */
797 gdb::unique_xmalloc_ptr<char>
798 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
800 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
802 int ignore;
803 if (bytes_read == nullptr)
804 bytes_read = &ignore;
806 /* Note that the endian-ness does not matter here. */
807 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
808 &buffer, bytes_read);
809 if (errcode != 0)
810 return {};
812 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
815 const target_section_table *
816 target_get_section_table (struct target_ops *target)
818 return target->get_section_table ();
821 /* Find a section containing ADDR. */
823 const struct target_section *
824 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
826 const target_section_table *table = target_get_section_table (target);
828 if (table == NULL)
829 return NULL;
831 for (const target_section &secp : *table)
833 if (addr >= secp.addr && addr < secp.endaddr)
834 return &secp;
836 return NULL;
839 /* See target.h. */
841 const target_section_table *
842 default_get_section_table ()
844 return &current_program_space->target_sections ();
847 /* Helper for the memory xfer routines. Checks the attributes of the
848 memory region of MEMADDR against the read or write being attempted.
849 If the access is permitted returns true, otherwise returns false.
850 REGION_P is an optional output parameter. If not-NULL, it is
851 filled with a pointer to the memory region of MEMADDR. REG_LEN
852 returns LEN trimmed to the end of the region. This is how much the
853 caller can continue requesting, if the access is permitted. A
854 single xfer request must not straddle memory region boundaries. */
856 static int
857 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
858 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
859 struct mem_region **region_p)
861 struct mem_region *region;
863 region = lookup_mem_region (memaddr);
865 if (region_p != NULL)
866 *region_p = region;
868 switch (region->attrib.mode)
870 case MEM_RO:
871 if (writebuf != NULL)
872 return 0;
873 break;
875 case MEM_WO:
876 if (readbuf != NULL)
877 return 0;
878 break;
880 case MEM_FLASH:
881 /* We only support writing to flash during "load" for now. */
882 if (writebuf != NULL)
883 error (_("Writing to flash memory forbidden in this context"));
884 break;
886 case MEM_NONE:
887 return 0;
890 /* region->hi == 0 means there's no upper bound. */
891 if (memaddr + len < region->hi || region->hi == 0)
892 *reg_len = len;
893 else
894 *reg_len = region->hi - memaddr;
896 return 1;
899 /* Read memory from more than one valid target. A core file, for
900 instance, could have some of memory but delegate other bits to
901 the target below it. So, we must manually try all targets. */
903 enum target_xfer_status
904 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
905 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
906 ULONGEST *xfered_len)
908 enum target_xfer_status res;
912 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
913 readbuf, writebuf, memaddr, len,
914 xfered_len);
915 if (res == TARGET_XFER_OK)
916 break;
918 /* Stop if the target reports that the memory is not available. */
919 if (res == TARGET_XFER_UNAVAILABLE)
920 break;
922 /* Don't continue past targets which have all the memory.
923 At one time, this code was necessary to read data from
924 executables / shared libraries when data for the requested
925 addresses weren't available in the core file. But now the
926 core target handles this case itself. */
927 if (ops->has_all_memory ())
928 break;
930 ops = ops->beneath ();
932 while (ops != NULL);
934 /* The cache works at the raw memory level. Make sure the cache
935 gets updated with raw contents no matter what kind of memory
936 object was originally being written. Note we do write-through
937 first, so that if it fails, we don't write to the cache contents
938 that never made it to the target. */
939 if (writebuf != NULL
940 && inferior_ptid != null_ptid
941 && target_dcache_init_p ()
942 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
944 DCACHE *dcache = target_dcache_get ();
946 /* Note that writing to an area of memory which wasn't present
947 in the cache doesn't cause it to be loaded in. */
948 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
951 return res;
954 /* Perform a partial memory transfer.
955 For docs see target.h, to_xfer_partial. */
957 static enum target_xfer_status
958 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
959 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
960 ULONGEST len, ULONGEST *xfered_len)
962 enum target_xfer_status res;
963 ULONGEST reg_len;
964 struct mem_region *region;
965 struct inferior *inf;
967 /* For accesses to unmapped overlay sections, read directly from
968 files. Must do this first, as MEMADDR may need adjustment. */
969 if (readbuf != NULL && overlay_debugging)
971 struct obj_section *section = find_pc_overlay (memaddr);
973 if (pc_in_unmapped_range (memaddr, section))
975 const target_section_table *table = target_get_section_table (ops);
976 const char *section_name = section->the_bfd_section->name;
978 memaddr = overlay_mapped_address (memaddr, section);
980 auto match_cb = [=] (const struct target_section *s)
982 return (strcmp (section_name, s->the_bfd_section->name) == 0);
985 return section_table_xfer_memory_partial (readbuf, writebuf,
986 memaddr, len, xfered_len,
987 *table, match_cb);
991 /* Try the executable files, if "trust-readonly-sections" is set. */
992 if (readbuf != NULL && trust_readonly)
994 const struct target_section *secp
995 = target_section_by_addr (ops, memaddr);
996 if (secp != NULL
997 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
999 const target_section_table *table = target_get_section_table (ops);
1000 return section_table_xfer_memory_partial (readbuf, writebuf,
1001 memaddr, len, xfered_len,
1002 *table);
1006 /* Try GDB's internal data cache. */
1008 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1009 &region))
1010 return TARGET_XFER_E_IO;
1012 if (inferior_ptid != null_ptid)
1013 inf = current_inferior ();
1014 else
1015 inf = NULL;
1017 if (inf != NULL
1018 && readbuf != NULL
1019 /* The dcache reads whole cache lines; that doesn't play well
1020 with reading from a trace buffer, because reading outside of
1021 the collected memory range fails. */
1022 && get_traceframe_number () == -1
1023 && (region->attrib.cache
1024 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1025 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1027 DCACHE *dcache = target_dcache_get_or_init ();
1029 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1030 reg_len, xfered_len);
1033 /* If none of those methods found the memory we wanted, fall back
1034 to a target partial transfer. Normally a single call to
1035 to_xfer_partial is enough; if it doesn't recognize an object
1036 it will call the to_xfer_partial of the next target down.
1037 But for memory this won't do. Memory is the only target
1038 object which can be read from more than one valid target.
1039 A core file, for instance, could have some of memory but
1040 delegate other bits to the target below it. So, we must
1041 manually try all targets. */
1043 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1044 xfered_len);
1046 /* If we still haven't got anything, return the last error. We
1047 give up. */
1048 return res;
1051 /* Perform a partial memory transfer. For docs see target.h,
1052 to_xfer_partial. */
1054 static enum target_xfer_status
1055 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1056 gdb_byte *readbuf, const gdb_byte *writebuf,
1057 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1059 enum target_xfer_status res;
1061 /* Zero length requests are ok and require no work. */
1062 if (len == 0)
1063 return TARGET_XFER_EOF;
1065 memaddr = address_significant (target_gdbarch (), memaddr);
1067 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1068 breakpoint insns, thus hiding out from higher layers whether
1069 there are software breakpoints inserted in the code stream. */
1070 if (readbuf != NULL)
1072 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1073 xfered_len);
1075 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1076 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1078 else
1080 /* A large write request is likely to be partially satisfied
1081 by memory_xfer_partial_1. We will continually malloc
1082 and free a copy of the entire write request for breakpoint
1083 shadow handling even though we only end up writing a small
1084 subset of it. Cap writes to a limit specified by the target
1085 to mitigate this. */
1086 len = std::min (ops->get_memory_xfer_limit (), len);
1088 gdb::byte_vector buf (writebuf, writebuf + len);
1089 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1090 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1091 xfered_len);
1094 return res;
1097 scoped_restore_tmpl<int>
1098 make_scoped_restore_show_memory_breakpoints (int show)
1100 return make_scoped_restore (&show_memory_breakpoints, show);
1103 /* For docs see target.h, to_xfer_partial. */
1105 enum target_xfer_status
1106 target_xfer_partial (struct target_ops *ops,
1107 enum target_object object, const char *annex,
1108 gdb_byte *readbuf, const gdb_byte *writebuf,
1109 ULONGEST offset, ULONGEST len,
1110 ULONGEST *xfered_len)
1112 enum target_xfer_status retval;
1114 /* Transfer is done when LEN is zero. */
1115 if (len == 0)
1116 return TARGET_XFER_EOF;
1118 if (writebuf && !may_write_memory)
1119 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1120 core_addr_to_string_nz (offset), plongest (len));
1122 *xfered_len = 0;
1124 /* If this is a memory transfer, let the memory-specific code
1125 have a look at it instead. Memory transfers are more
1126 complicated. */
1127 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1128 || object == TARGET_OBJECT_CODE_MEMORY)
1129 retval = memory_xfer_partial (ops, object, readbuf,
1130 writebuf, offset, len, xfered_len);
1131 else if (object == TARGET_OBJECT_RAW_MEMORY)
1133 /* Skip/avoid accessing the target if the memory region
1134 attributes block the access. Check this here instead of in
1135 raw_memory_xfer_partial as otherwise we'd end up checking
1136 this twice in the case of the memory_xfer_partial path is
1137 taken; once before checking the dcache, and another in the
1138 tail call to raw_memory_xfer_partial. */
1139 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1140 NULL))
1141 return TARGET_XFER_E_IO;
1143 /* Request the normal memory object from other layers. */
1144 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1145 xfered_len);
1147 else
1148 retval = ops->xfer_partial (object, annex, readbuf,
1149 writebuf, offset, len, xfered_len);
1151 if (targetdebug)
1153 const unsigned char *myaddr = NULL;
1155 fprintf_unfiltered (gdb_stdlog,
1156 "%s:target_xfer_partial "
1157 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1158 ops->shortname (),
1159 (int) object,
1160 (annex ? annex : "(null)"),
1161 host_address_to_string (readbuf),
1162 host_address_to_string (writebuf),
1163 core_addr_to_string_nz (offset),
1164 pulongest (len), retval,
1165 pulongest (*xfered_len));
1167 if (readbuf)
1168 myaddr = readbuf;
1169 if (writebuf)
1170 myaddr = writebuf;
1171 if (retval == TARGET_XFER_OK && myaddr != NULL)
1173 int i;
1175 fputs_unfiltered (", bytes =", gdb_stdlog);
1176 for (i = 0; i < *xfered_len; i++)
1178 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1180 if (targetdebug < 2 && i > 0)
1182 fprintf_unfiltered (gdb_stdlog, " ...");
1183 break;
1185 fprintf_unfiltered (gdb_stdlog, "\n");
1188 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1192 fputc_unfiltered ('\n', gdb_stdlog);
1195 /* Check implementations of to_xfer_partial update *XFERED_LEN
1196 properly. Do assertion after printing debug messages, so that we
1197 can find more clues on assertion failure from debugging messages. */
1198 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1199 gdb_assert (*xfered_len > 0);
1201 return retval;
1204 /* Read LEN bytes of target memory at address MEMADDR, placing the
1205 results in GDB's memory at MYADDR. Returns either 0 for success or
1206 -1 if any error occurs.
1208 If an error occurs, no guarantee is made about the contents of the data at
1209 MYADDR. In particular, the caller should not depend upon partial reads
1210 filling the buffer with good data. There is no way for the caller to know
1211 how much good data might have been transfered anyway. Callers that can
1212 deal with partial reads should call target_read (which will retry until
1213 it makes no progress, and then return how much was transferred). */
1216 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1218 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1219 myaddr, memaddr, len) == len)
1220 return 0;
1221 else
1222 return -1;
1225 /* See target/target.h. */
1228 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1230 gdb_byte buf[4];
1231 int r;
1233 r = target_read_memory (memaddr, buf, sizeof buf);
1234 if (r != 0)
1235 return r;
1236 *result = extract_unsigned_integer (buf, sizeof buf,
1237 gdbarch_byte_order (target_gdbarch ()));
1238 return 0;
1241 /* Like target_read_memory, but specify explicitly that this is a read
1242 from the target's raw memory. That is, this read bypasses the
1243 dcache, breakpoint shadowing, etc. */
1246 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1248 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1249 myaddr, memaddr, len) == len)
1250 return 0;
1251 else
1252 return -1;
1255 /* Like target_read_memory, but specify explicitly that this is a read from
1256 the target's stack. This may trigger different cache behavior. */
1259 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1261 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1262 myaddr, memaddr, len) == len)
1263 return 0;
1264 else
1265 return -1;
1268 /* Like target_read_memory, but specify explicitly that this is a read from
1269 the target's code. This may trigger different cache behavior. */
1272 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1274 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1275 myaddr, memaddr, len) == len)
1276 return 0;
1277 else
1278 return -1;
1281 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1282 Returns either 0 for success or -1 if any error occurs. If an
1283 error occurs, no guarantee is made about how much data got written.
1284 Callers that can deal with partial writes should call
1285 target_write. */
1288 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1290 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1291 myaddr, memaddr, len) == len)
1292 return 0;
1293 else
1294 return -1;
1297 /* Write LEN bytes from MYADDR to target raw memory at address
1298 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1299 If an error occurs, no guarantee is made about how much data got
1300 written. Callers that can deal with partial writes should call
1301 target_write. */
1304 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1306 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1307 myaddr, memaddr, len) == len)
1308 return 0;
1309 else
1310 return -1;
1313 /* Fetch the target's memory map. */
1315 std::vector<mem_region>
1316 target_memory_map (void)
1318 std::vector<mem_region> result = current_top_target ()->memory_map ();
1319 if (result.empty ())
1320 return result;
1322 std::sort (result.begin (), result.end ());
1324 /* Check that regions do not overlap. Simultaneously assign
1325 a numbering for the "mem" commands to use to refer to
1326 each region. */
1327 mem_region *last_one = NULL;
1328 for (size_t ix = 0; ix < result.size (); ix++)
1330 mem_region *this_one = &result[ix];
1331 this_one->number = ix;
1333 if (last_one != NULL && last_one->hi > this_one->lo)
1335 warning (_("Overlapping regions in memory map: ignoring"));
1336 return std::vector<mem_region> ();
1339 last_one = this_one;
1342 return result;
1345 void
1346 target_flash_erase (ULONGEST address, LONGEST length)
1348 current_top_target ()->flash_erase (address, length);
1351 void
1352 target_flash_done (void)
1354 current_top_target ()->flash_done ();
1357 static void
1358 show_trust_readonly (struct ui_file *file, int from_tty,
1359 struct cmd_list_element *c, const char *value)
1361 fprintf_filtered (file,
1362 _("Mode for reading from readonly sections is %s.\n"),
1363 value);
1366 /* Target vector read/write partial wrapper functions. */
1368 static enum target_xfer_status
1369 target_read_partial (struct target_ops *ops,
1370 enum target_object object,
1371 const char *annex, gdb_byte *buf,
1372 ULONGEST offset, ULONGEST len,
1373 ULONGEST *xfered_len)
1375 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1376 xfered_len);
1379 static enum target_xfer_status
1380 target_write_partial (struct target_ops *ops,
1381 enum target_object object,
1382 const char *annex, const gdb_byte *buf,
1383 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1385 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1386 xfered_len);
1389 /* Wrappers to perform the full transfer. */
1391 /* For docs on target_read see target.h. */
1393 LONGEST
1394 target_read (struct target_ops *ops,
1395 enum target_object object,
1396 const char *annex, gdb_byte *buf,
1397 ULONGEST offset, LONGEST len)
1399 LONGEST xfered_total = 0;
1400 int unit_size = 1;
1402 /* If we are reading from a memory object, find the length of an addressable
1403 unit for that architecture. */
1404 if (object == TARGET_OBJECT_MEMORY
1405 || object == TARGET_OBJECT_STACK_MEMORY
1406 || object == TARGET_OBJECT_CODE_MEMORY
1407 || object == TARGET_OBJECT_RAW_MEMORY)
1408 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1410 while (xfered_total < len)
1412 ULONGEST xfered_partial;
1413 enum target_xfer_status status;
1415 status = target_read_partial (ops, object, annex,
1416 buf + xfered_total * unit_size,
1417 offset + xfered_total, len - xfered_total,
1418 &xfered_partial);
1420 /* Call an observer, notifying them of the xfer progress? */
1421 if (status == TARGET_XFER_EOF)
1422 return xfered_total;
1423 else if (status == TARGET_XFER_OK)
1425 xfered_total += xfered_partial;
1426 QUIT;
1428 else
1429 return TARGET_XFER_E_IO;
1432 return len;
1435 /* Assuming that the entire [begin, end) range of memory cannot be
1436 read, try to read whatever subrange is possible to read.
1438 The function returns, in RESULT, either zero or one memory block.
1439 If there's a readable subrange at the beginning, it is completely
1440 read and returned. Any further readable subrange will not be read.
1441 Otherwise, if there's a readable subrange at the end, it will be
1442 completely read and returned. Any readable subranges before it
1443 (obviously, not starting at the beginning), will be ignored. In
1444 other cases -- either no readable subrange, or readable subrange(s)
1445 that is neither at the beginning, or end, nothing is returned.
1447 The purpose of this function is to handle a read across a boundary
1448 of accessible memory in a case when memory map is not available.
1449 The above restrictions are fine for this case, but will give
1450 incorrect results if the memory is 'patchy'. However, supporting
1451 'patchy' memory would require trying to read every single byte,
1452 and it seems unacceptable solution. Explicit memory map is
1453 recommended for this case -- and target_read_memory_robust will
1454 take care of reading multiple ranges then. */
1456 static void
1457 read_whatever_is_readable (struct target_ops *ops,
1458 const ULONGEST begin, const ULONGEST end,
1459 int unit_size,
1460 std::vector<memory_read_result> *result)
1462 ULONGEST current_begin = begin;
1463 ULONGEST current_end = end;
1464 int forward;
1465 ULONGEST xfered_len;
1467 /* If we previously failed to read 1 byte, nothing can be done here. */
1468 if (end - begin <= 1)
1469 return;
1471 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1473 /* Check that either first or the last byte is readable, and give up
1474 if not. This heuristic is meant to permit reading accessible memory
1475 at the boundary of accessible region. */
1476 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1477 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1479 forward = 1;
1480 ++current_begin;
1482 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1483 buf.get () + (end - begin) - 1, end - 1, 1,
1484 &xfered_len) == TARGET_XFER_OK)
1486 forward = 0;
1487 --current_end;
1489 else
1490 return;
1492 /* Loop invariant is that the [current_begin, current_end) was previously
1493 found to be not readable as a whole.
1495 Note loop condition -- if the range has 1 byte, we can't divide the range
1496 so there's no point trying further. */
1497 while (current_end - current_begin > 1)
1499 ULONGEST first_half_begin, first_half_end;
1500 ULONGEST second_half_begin, second_half_end;
1501 LONGEST xfer;
1502 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1504 if (forward)
1506 first_half_begin = current_begin;
1507 first_half_end = middle;
1508 second_half_begin = middle;
1509 second_half_end = current_end;
1511 else
1513 first_half_begin = middle;
1514 first_half_end = current_end;
1515 second_half_begin = current_begin;
1516 second_half_end = middle;
1519 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1520 buf.get () + (first_half_begin - begin) * unit_size,
1521 first_half_begin,
1522 first_half_end - first_half_begin);
1524 if (xfer == first_half_end - first_half_begin)
1526 /* This half reads up fine. So, the error must be in the
1527 other half. */
1528 current_begin = second_half_begin;
1529 current_end = second_half_end;
1531 else
1533 /* This half is not readable. Because we've tried one byte, we
1534 know some part of this half if actually readable. Go to the next
1535 iteration to divide again and try to read.
1537 We don't handle the other half, because this function only tries
1538 to read a single readable subrange. */
1539 current_begin = first_half_begin;
1540 current_end = first_half_end;
1544 if (forward)
1546 /* The [begin, current_begin) range has been read. */
1547 result->emplace_back (begin, current_end, std::move (buf));
1549 else
1551 /* The [current_end, end) range has been read. */
1552 LONGEST region_len = end - current_end;
1554 gdb::unique_xmalloc_ptr<gdb_byte> data
1555 ((gdb_byte *) xmalloc (region_len * unit_size));
1556 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1557 region_len * unit_size);
1558 result->emplace_back (current_end, end, std::move (data));
1562 std::vector<memory_read_result>
1563 read_memory_robust (struct target_ops *ops,
1564 const ULONGEST offset, const LONGEST len)
1566 std::vector<memory_read_result> result;
1567 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1569 LONGEST xfered_total = 0;
1570 while (xfered_total < len)
1572 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1573 LONGEST region_len;
1575 /* If there is no explicit region, a fake one should be created. */
1576 gdb_assert (region);
1578 if (region->hi == 0)
1579 region_len = len - xfered_total;
1580 else
1581 region_len = region->hi - offset;
1583 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1585 /* Cannot read this region. Note that we can end up here only
1586 if the region is explicitly marked inaccessible, or
1587 'inaccessible-by-default' is in effect. */
1588 xfered_total += region_len;
1590 else
1592 LONGEST to_read = std::min (len - xfered_total, region_len);
1593 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1594 ((gdb_byte *) xmalloc (to_read * unit_size));
1596 LONGEST xfered_partial =
1597 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1598 offset + xfered_total, to_read);
1599 /* Call an observer, notifying them of the xfer progress? */
1600 if (xfered_partial <= 0)
1602 /* Got an error reading full chunk. See if maybe we can read
1603 some subrange. */
1604 read_whatever_is_readable (ops, offset + xfered_total,
1605 offset + xfered_total + to_read,
1606 unit_size, &result);
1607 xfered_total += to_read;
1609 else
1611 result.emplace_back (offset + xfered_total,
1612 offset + xfered_total + xfered_partial,
1613 std::move (buffer));
1614 xfered_total += xfered_partial;
1616 QUIT;
1620 return result;
1624 /* An alternative to target_write with progress callbacks. */
1626 LONGEST
1627 target_write_with_progress (struct target_ops *ops,
1628 enum target_object object,
1629 const char *annex, const gdb_byte *buf,
1630 ULONGEST offset, LONGEST len,
1631 void (*progress) (ULONGEST, void *), void *baton)
1633 LONGEST xfered_total = 0;
1634 int unit_size = 1;
1636 /* If we are writing to a memory object, find the length of an addressable
1637 unit for that architecture. */
1638 if (object == TARGET_OBJECT_MEMORY
1639 || object == TARGET_OBJECT_STACK_MEMORY
1640 || object == TARGET_OBJECT_CODE_MEMORY
1641 || object == TARGET_OBJECT_RAW_MEMORY)
1642 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1644 /* Give the progress callback a chance to set up. */
1645 if (progress)
1646 (*progress) (0, baton);
1648 while (xfered_total < len)
1650 ULONGEST xfered_partial;
1651 enum target_xfer_status status;
1653 status = target_write_partial (ops, object, annex,
1654 buf + xfered_total * unit_size,
1655 offset + xfered_total, len - xfered_total,
1656 &xfered_partial);
1658 if (status != TARGET_XFER_OK)
1659 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1661 if (progress)
1662 (*progress) (xfered_partial, baton);
1664 xfered_total += xfered_partial;
1665 QUIT;
1667 return len;
1670 /* For docs on target_write see target.h. */
1672 LONGEST
1673 target_write (struct target_ops *ops,
1674 enum target_object object,
1675 const char *annex, const gdb_byte *buf,
1676 ULONGEST offset, LONGEST len)
1678 return target_write_with_progress (ops, object, annex, buf, offset, len,
1679 NULL, NULL);
1682 /* Help for target_read_alloc and target_read_stralloc. See their comments
1683 for details. */
1685 template <typename T>
1686 gdb::optional<gdb::def_vector<T>>
1687 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1688 const char *annex)
1690 gdb::def_vector<T> buf;
1691 size_t buf_pos = 0;
1692 const int chunk = 4096;
1694 /* This function does not have a length parameter; it reads the
1695 entire OBJECT). Also, it doesn't support objects fetched partly
1696 from one target and partly from another (in a different stratum,
1697 e.g. a core file and an executable). Both reasons make it
1698 unsuitable for reading memory. */
1699 gdb_assert (object != TARGET_OBJECT_MEMORY);
1701 /* Start by reading up to 4K at a time. The target will throttle
1702 this number down if necessary. */
1703 while (1)
1705 ULONGEST xfered_len;
1706 enum target_xfer_status status;
1708 buf.resize (buf_pos + chunk);
1710 status = target_read_partial (ops, object, annex,
1711 (gdb_byte *) &buf[buf_pos],
1712 buf_pos, chunk,
1713 &xfered_len);
1715 if (status == TARGET_XFER_EOF)
1717 /* Read all there was. */
1718 buf.resize (buf_pos);
1719 return buf;
1721 else if (status != TARGET_XFER_OK)
1723 /* An error occurred. */
1724 return {};
1727 buf_pos += xfered_len;
1729 QUIT;
1733 /* See target.h */
1735 gdb::optional<gdb::byte_vector>
1736 target_read_alloc (struct target_ops *ops, enum target_object object,
1737 const char *annex)
1739 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1742 /* See target.h. */
1744 gdb::optional<gdb::char_vector>
1745 target_read_stralloc (struct target_ops *ops, enum target_object object,
1746 const char *annex)
1748 gdb::optional<gdb::char_vector> buf
1749 = target_read_alloc_1<char> (ops, object, annex);
1751 if (!buf)
1752 return {};
1754 if (buf->empty () || buf->back () != '\0')
1755 buf->push_back ('\0');
1757 /* Check for embedded NUL bytes; but allow trailing NULs. */
1758 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1759 it != buf->end (); it++)
1760 if (*it != '\0')
1762 warning (_("target object %d, annex %s, "
1763 "contained unexpected null characters"),
1764 (int) object, annex ? annex : "(none)");
1765 break;
1768 return buf;
1771 /* Memory transfer methods. */
1773 void
1774 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1775 LONGEST len)
1777 /* This method is used to read from an alternate, non-current
1778 target. This read must bypass the overlay support (as symbols
1779 don't match this target), and GDB's internal cache (wrong cache
1780 for this target). */
1781 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1782 != len)
1783 memory_error (TARGET_XFER_E_IO, addr);
1786 ULONGEST
1787 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1788 int len, enum bfd_endian byte_order)
1790 gdb_byte buf[sizeof (ULONGEST)];
1792 gdb_assert (len <= sizeof (buf));
1793 get_target_memory (ops, addr, buf, len);
1794 return extract_unsigned_integer (buf, len, byte_order);
1797 /* See target.h. */
1800 target_insert_breakpoint (struct gdbarch *gdbarch,
1801 struct bp_target_info *bp_tgt)
1803 if (!may_insert_breakpoints)
1805 warning (_("May not insert breakpoints"));
1806 return 1;
1809 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1812 /* See target.h. */
1815 target_remove_breakpoint (struct gdbarch *gdbarch,
1816 struct bp_target_info *bp_tgt,
1817 enum remove_bp_reason reason)
1819 /* This is kind of a weird case to handle, but the permission might
1820 have been changed after breakpoints were inserted - in which case
1821 we should just take the user literally and assume that any
1822 breakpoints should be left in place. */
1823 if (!may_insert_breakpoints)
1825 warning (_("May not remove breakpoints"));
1826 return 1;
1829 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1832 static void
1833 info_target_command (const char *args, int from_tty)
1835 int has_all_mem = 0;
1837 if (current_program_space->symfile_object_file != NULL)
1839 objfile *objf = current_program_space->symfile_object_file;
1840 printf_unfiltered (_("Symbols from \"%s\".\n"),
1841 objfile_name (objf));
1844 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1846 if (!t->has_memory ())
1847 continue;
1849 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1850 continue;
1851 if (has_all_mem)
1852 printf_unfiltered (_("\tWhile running this, "
1853 "GDB does not access memory from...\n"));
1854 printf_unfiltered ("%s:\n", t->longname ());
1855 t->files_info ();
1856 has_all_mem = t->has_all_memory ();
1860 /* This function is called before any new inferior is created, e.g.
1861 by running a program, attaching, or connecting to a target.
1862 It cleans up any state from previous invocations which might
1863 change between runs. This is a subset of what target_preopen
1864 resets (things which might change between targets). */
1866 void
1867 target_pre_inferior (int from_tty)
1869 /* Clear out solib state. Otherwise the solib state of the previous
1870 inferior might have survived and is entirely wrong for the new
1871 target. This has been observed on GNU/Linux using glibc 2.3. How
1872 to reproduce:
1874 bash$ ./foo&
1875 [1] 4711
1876 bash$ ./foo&
1877 [1] 4712
1878 bash$ gdb ./foo
1879 [...]
1880 (gdb) attach 4711
1881 (gdb) detach
1882 (gdb) attach 4712
1883 Cannot access memory at address 0xdeadbeef
1886 /* In some OSs, the shared library list is the same/global/shared
1887 across inferiors. If code is shared between processes, so are
1888 memory regions and features. */
1889 if (!gdbarch_has_global_solist (target_gdbarch ()))
1891 no_shared_libraries (NULL, from_tty);
1893 invalidate_target_mem_regions ();
1895 target_clear_description ();
1898 /* attach_flag may be set if the previous process associated with
1899 the inferior was attached to. */
1900 current_inferior ()->attach_flag = 0;
1902 current_inferior ()->highest_thread_num = 0;
1904 agent_capability_invalidate ();
1907 /* This is to be called by the open routine before it does
1908 anything. */
1910 void
1911 target_preopen (int from_tty)
1913 dont_repeat ();
1915 if (current_inferior ()->pid != 0)
1917 if (!from_tty
1918 || !target_has_execution ()
1919 || query (_("A program is being debugged already. Kill it? ")))
1921 /* Core inferiors actually should be detached, not
1922 killed. */
1923 if (target_has_execution ())
1924 target_kill ();
1925 else
1926 target_detach (current_inferior (), 0);
1928 else
1929 error (_("Program not killed."));
1932 /* Calling target_kill may remove the target from the stack. But if
1933 it doesn't (which seems like a win for UDI), remove it now. */
1934 /* Leave the exec target, though. The user may be switching from a
1935 live process to a core of the same program. */
1936 pop_all_targets_above (file_stratum);
1938 target_pre_inferior (from_tty);
1941 /* See target.h. */
1943 void
1944 target_detach (inferior *inf, int from_tty)
1946 /* After we have detached, we will clear the register cache for this inferior
1947 by calling registers_changed_ptid. We must save the pid_ptid before
1948 detaching, as the target detach method will clear inf->pid. */
1949 ptid_t save_pid_ptid = ptid_t (inf->pid);
1951 /* As long as some to_detach implementations rely on the current_inferior
1952 (either directly, or indirectly, like through target_gdbarch or by
1953 reading memory), INF needs to be the current inferior. When that
1954 requirement will become no longer true, then we can remove this
1955 assertion. */
1956 gdb_assert (inf == current_inferior ());
1958 prepare_for_detach ();
1960 /* Hold a strong reference because detaching may unpush the
1961 target. */
1962 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1964 current_top_target ()->detach (inf, from_tty);
1966 process_stratum_target *proc_target
1967 = as_process_stratum_target (proc_target_ref.get ());
1969 registers_changed_ptid (proc_target, save_pid_ptid);
1971 /* We have to ensure we have no frame cache left. Normally,
1972 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1973 inferior_ptid matches save_pid_ptid, but in our case, it does not
1974 call it, as inferior_ptid has been reset. */
1975 reinit_frame_cache ();
1978 void
1979 target_disconnect (const char *args, int from_tty)
1981 /* If we're in breakpoints-always-inserted mode or if breakpoints
1982 are global across processes, we have to remove them before
1983 disconnecting. */
1984 remove_breakpoints ();
1986 current_top_target ()->disconnect (args, from_tty);
1989 /* See target/target.h. */
1991 ptid_t
1992 target_wait (ptid_t ptid, struct target_waitstatus *status,
1993 target_wait_flags options)
1995 target_ops *target = current_top_target ();
1997 if (!target->can_async_p ())
1998 gdb_assert ((options & TARGET_WNOHANG) == 0);
2000 return target->wait (ptid, status, options);
2003 /* See target.h. */
2005 ptid_t
2006 default_target_wait (struct target_ops *ops,
2007 ptid_t ptid, struct target_waitstatus *status,
2008 target_wait_flags options)
2010 status->kind = TARGET_WAITKIND_IGNORE;
2011 return minus_one_ptid;
2014 std::string
2015 target_pid_to_str (ptid_t ptid)
2017 return current_top_target ()->pid_to_str (ptid);
2020 const char *
2021 target_thread_name (struct thread_info *info)
2023 gdb_assert (info->inf == current_inferior ());
2025 return current_top_target ()->thread_name (info);
2028 struct thread_info *
2029 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2030 int handle_len,
2031 struct inferior *inf)
2033 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2034 handle_len, inf);
2037 /* See target.h. */
2039 gdb::byte_vector
2040 target_thread_info_to_thread_handle (struct thread_info *tip)
2042 return current_top_target ()->thread_info_to_thread_handle (tip);
2045 void
2046 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2048 process_stratum_target *curr_target = current_inferior ()->process_target ();
2050 target_dcache_invalidate ();
2052 current_top_target ()->resume (ptid, step, signal);
2054 registers_changed_ptid (curr_target, ptid);
2055 /* We only set the internal executing state here. The user/frontend
2056 running state is set at a higher level. This also clears the
2057 thread's stop_pc as side effect. */
2058 set_executing (curr_target, ptid, true);
2059 clear_inline_frame_state (curr_target, ptid);
2062 /* If true, target_commit_resume is a nop. */
2063 static int defer_target_commit_resume;
2065 /* See target.h. */
2067 void
2068 target_commit_resume (void)
2070 if (defer_target_commit_resume)
2071 return;
2073 current_top_target ()->commit_resume ();
2076 /* See target.h. */
2078 scoped_restore_tmpl<int>
2079 make_scoped_defer_target_commit_resume ()
2081 return make_scoped_restore (&defer_target_commit_resume, 1);
2084 void
2085 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2087 current_top_target ()->pass_signals (pass_signals);
2090 void
2091 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2093 current_top_target ()->program_signals (program_signals);
2096 static bool
2097 default_follow_fork (struct target_ops *self, bool follow_child,
2098 bool detach_fork)
2100 /* Some target returned a fork event, but did not know how to follow it. */
2101 internal_error (__FILE__, __LINE__,
2102 _("could not find a target to follow fork"));
2105 /* Look through the list of possible targets for a target that can
2106 follow forks. */
2108 bool
2109 target_follow_fork (bool follow_child, bool detach_fork)
2111 return current_top_target ()->follow_fork (follow_child, detach_fork);
2114 /* Target wrapper for follow exec hook. */
2116 void
2117 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2119 current_top_target ()->follow_exec (inf, execd_pathname);
2122 static void
2123 default_mourn_inferior (struct target_ops *self)
2125 internal_error (__FILE__, __LINE__,
2126 _("could not find a target to follow mourn inferior"));
2129 void
2130 target_mourn_inferior (ptid_t ptid)
2132 gdb_assert (ptid.pid () == inferior_ptid.pid ());
2133 current_top_target ()->mourn_inferior ();
2135 /* We no longer need to keep handles on any of the object files.
2136 Make sure to release them to avoid unnecessarily locking any
2137 of them while we're not actually debugging. */
2138 bfd_cache_close_all ();
2141 /* Look for a target which can describe architectural features, starting
2142 from TARGET. If we find one, return its description. */
2144 const struct target_desc *
2145 target_read_description (struct target_ops *target)
2147 return target->read_description ();
2151 /* Default implementation of memory-searching. */
2153 static int
2154 default_search_memory (struct target_ops *self,
2155 CORE_ADDR start_addr, ULONGEST search_space_len,
2156 const gdb_byte *pattern, ULONGEST pattern_len,
2157 CORE_ADDR *found_addrp)
2159 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
2161 return target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
2162 result, addr, len) == len;
2165 /* Start over from the top of the target stack. */
2166 return simple_search_memory (read_memory, start_addr, search_space_len,
2167 pattern, pattern_len, found_addrp);
2170 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2171 sequence of bytes in PATTERN with length PATTERN_LEN.
2173 The result is 1 if found, 0 if not found, and -1 if there was an error
2174 requiring halting of the search (e.g. memory read error).
2175 If the pattern is found the address is recorded in FOUND_ADDRP. */
2178 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2179 const gdb_byte *pattern, ULONGEST pattern_len,
2180 CORE_ADDR *found_addrp)
2182 return current_top_target ()->search_memory (start_addr, search_space_len,
2183 pattern, pattern_len, found_addrp);
2186 /* Look through the currently pushed targets. If none of them will
2187 be able to restart the currently running process, issue an error
2188 message. */
2190 void
2191 target_require_runnable (void)
2193 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2195 /* If this target knows how to create a new program, then
2196 assume we will still be able to after killing the current
2197 one. Either killing and mourning will not pop T, or else
2198 find_default_run_target will find it again. */
2199 if (t->can_create_inferior ())
2200 return;
2202 /* Do not worry about targets at certain strata that can not
2203 create inferiors. Assume they will be pushed again if
2204 necessary, and continue to the process_stratum. */
2205 if (t->stratum () > process_stratum)
2206 continue;
2208 error (_("The \"%s\" target does not support \"run\". "
2209 "Try \"help target\" or \"continue\"."),
2210 t->shortname ());
2213 /* This function is only called if the target is running. In that
2214 case there should have been a process_stratum target and it
2215 should either know how to create inferiors, or not... */
2216 internal_error (__FILE__, __LINE__, _("No targets found"));
2219 /* Whether GDB is allowed to fall back to the default run target for
2220 "run", "attach", etc. when no target is connected yet. */
2221 static bool auto_connect_native_target = true;
2223 static void
2224 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2225 struct cmd_list_element *c, const char *value)
2227 fprintf_filtered (file,
2228 _("Whether GDB may automatically connect to the "
2229 "native target is %s.\n"),
2230 value);
2233 /* A pointer to the target that can respond to "run" or "attach".
2234 Native targets are always singletons and instantiated early at GDB
2235 startup. */
2236 static target_ops *the_native_target;
2238 /* See target.h. */
2240 void
2241 set_native_target (target_ops *target)
2243 if (the_native_target != NULL)
2244 internal_error (__FILE__, __LINE__,
2245 _("native target already set (\"%s\")."),
2246 the_native_target->longname ());
2248 the_native_target = target;
2251 /* See target.h. */
2253 target_ops *
2254 get_native_target ()
2256 return the_native_target;
2259 /* Look through the list of possible targets for a target that can
2260 execute a run or attach command without any other data. This is
2261 used to locate the default process stratum.
2263 If DO_MESG is not NULL, the result is always valid (error() is
2264 called for errors); else, return NULL on error. */
2266 static struct target_ops *
2267 find_default_run_target (const char *do_mesg)
2269 if (auto_connect_native_target && the_native_target != NULL)
2270 return the_native_target;
2272 if (do_mesg != NULL)
2273 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2274 return NULL;
2277 /* See target.h. */
2279 struct target_ops *
2280 find_attach_target (void)
2282 /* If a target on the current stack can attach, use it. */
2283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2285 if (t->can_attach ())
2286 return t;
2289 /* Otherwise, use the default run target for attaching. */
2290 return find_default_run_target ("attach");
2293 /* See target.h. */
2295 struct target_ops *
2296 find_run_target (void)
2298 /* If a target on the current stack can run, use it. */
2299 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2301 if (t->can_create_inferior ())
2302 return t;
2305 /* Otherwise, use the default run target. */
2306 return find_default_run_target ("run");
2309 bool
2310 target_ops::info_proc (const char *args, enum info_proc_what what)
2312 return false;
2315 /* Implement the "info proc" command. */
2318 target_info_proc (const char *args, enum info_proc_what what)
2320 struct target_ops *t;
2322 /* If we're already connected to something that can get us OS
2323 related data, use it. Otherwise, try using the native
2324 target. */
2325 t = find_target_at (process_stratum);
2326 if (t == NULL)
2327 t = find_default_run_target (NULL);
2329 for (; t != NULL; t = t->beneath ())
2331 if (t->info_proc (args, what))
2333 if (targetdebug)
2334 fprintf_unfiltered (gdb_stdlog,
2335 "target_info_proc (\"%s\", %d)\n", args, what);
2337 return 1;
2341 return 0;
2344 static int
2345 find_default_supports_disable_randomization (struct target_ops *self)
2347 struct target_ops *t;
2349 t = find_default_run_target (NULL);
2350 if (t != NULL)
2351 return t->supports_disable_randomization ();
2352 return 0;
2356 target_supports_disable_randomization (void)
2358 return current_top_target ()->supports_disable_randomization ();
2361 /* See target/target.h. */
2364 target_supports_multi_process (void)
2366 return current_top_target ()->supports_multi_process ();
2369 /* See target.h. */
2371 gdb::optional<gdb::char_vector>
2372 target_get_osdata (const char *type)
2374 struct target_ops *t;
2376 /* If we're already connected to something that can get us OS
2377 related data, use it. Otherwise, try using the native
2378 target. */
2379 t = find_target_at (process_stratum);
2380 if (t == NULL)
2381 t = find_default_run_target ("get OS data");
2383 if (!t)
2384 return {};
2386 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2389 /* Determine the current address space of thread PTID. */
2391 struct address_space *
2392 target_thread_address_space (ptid_t ptid)
2394 struct address_space *aspace;
2396 aspace = current_top_target ()->thread_address_space (ptid);
2397 gdb_assert (aspace != NULL);
2399 return aspace;
2402 /* See target.h. */
2404 target_ops *
2405 target_ops::beneath () const
2407 return current_inferior ()->find_target_beneath (this);
2410 void
2411 target_ops::close ()
2415 bool
2416 target_ops::can_attach ()
2418 return 0;
2421 void
2422 target_ops::attach (const char *, int)
2424 gdb_assert_not_reached ("target_ops::attach called");
2427 bool
2428 target_ops::can_create_inferior ()
2430 return 0;
2433 void
2434 target_ops::create_inferior (const char *, const std::string &,
2435 char **, int)
2437 gdb_assert_not_reached ("target_ops::create_inferior called");
2440 bool
2441 target_ops::can_run ()
2443 return false;
2447 target_can_run ()
2449 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2451 if (t->can_run ())
2452 return 1;
2455 return 0;
2458 /* Target file operations. */
2460 static struct target_ops *
2461 default_fileio_target (void)
2463 struct target_ops *t;
2465 /* If we're already connected to something that can perform
2466 file I/O, use it. Otherwise, try using the native target. */
2467 t = find_target_at (process_stratum);
2468 if (t != NULL)
2469 return t;
2470 return find_default_run_target ("file I/O");
2473 /* File handle for target file operations. */
2475 struct fileio_fh_t
2477 /* The target on which this file is open. NULL if the target is
2478 meanwhile closed while the handle is open. */
2479 target_ops *target;
2481 /* The file descriptor on the target. */
2482 int target_fd;
2484 /* Check whether this fileio_fh_t represents a closed file. */
2485 bool is_closed ()
2487 return target_fd < 0;
2491 /* Vector of currently open file handles. The value returned by
2492 target_fileio_open and passed as the FD argument to other
2493 target_fileio_* functions is an index into this vector. This
2494 vector's entries are never freed; instead, files are marked as
2495 closed, and the handle becomes available for reuse. */
2496 static std::vector<fileio_fh_t> fileio_fhandles;
2498 /* Index into fileio_fhandles of the lowest handle that might be
2499 closed. This permits handle reuse without searching the whole
2500 list each time a new file is opened. */
2501 static int lowest_closed_fd;
2503 /* Invalidate the target associated with open handles that were open
2504 on target TARG, since we're about to close (and maybe destroy) the
2505 target. The handles remain open from the client's perspective, but
2506 trying to do anything with them other than closing them will fail
2507 with EIO. */
2509 static void
2510 fileio_handles_invalidate_target (target_ops *targ)
2512 for (fileio_fh_t &fh : fileio_fhandles)
2513 if (fh.target == targ)
2514 fh.target = NULL;
2517 /* Acquire a target fileio file descriptor. */
2519 static int
2520 acquire_fileio_fd (target_ops *target, int target_fd)
2522 /* Search for closed handles to reuse. */
2523 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2525 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2527 if (fh.is_closed ())
2528 break;
2531 /* Push a new handle if no closed handles were found. */
2532 if (lowest_closed_fd == fileio_fhandles.size ())
2533 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2534 else
2535 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2537 /* Should no longer be marked closed. */
2538 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2540 /* Return its index, and start the next lookup at
2541 the next index. */
2542 return lowest_closed_fd++;
2545 /* Release a target fileio file descriptor. */
2547 static void
2548 release_fileio_fd (int fd, fileio_fh_t *fh)
2550 fh->target_fd = -1;
2551 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2554 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2556 static fileio_fh_t *
2557 fileio_fd_to_fh (int fd)
2559 return &fileio_fhandles[fd];
2563 /* Default implementations of file i/o methods. We don't want these
2564 to delegate automatically, because we need to know which target
2565 supported the method, in order to call it directly from within
2566 pread/pwrite, etc. */
2569 target_ops::fileio_open (struct inferior *inf, const char *filename,
2570 int flags, int mode, int warn_if_slow,
2571 int *target_errno)
2573 *target_errno = FILEIO_ENOSYS;
2574 return -1;
2578 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2579 ULONGEST offset, int *target_errno)
2581 *target_errno = FILEIO_ENOSYS;
2582 return -1;
2586 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2587 ULONGEST offset, int *target_errno)
2589 *target_errno = FILEIO_ENOSYS;
2590 return -1;
2594 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2596 *target_errno = FILEIO_ENOSYS;
2597 return -1;
2601 target_ops::fileio_close (int fd, int *target_errno)
2603 *target_errno = FILEIO_ENOSYS;
2604 return -1;
2608 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2609 int *target_errno)
2611 *target_errno = FILEIO_ENOSYS;
2612 return -1;
2615 gdb::optional<std::string>
2616 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2617 int *target_errno)
2619 *target_errno = FILEIO_ENOSYS;
2620 return {};
2623 /* See target.h. */
2626 target_fileio_open (struct inferior *inf, const char *filename,
2627 int flags, int mode, bool warn_if_slow, int *target_errno)
2629 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2631 int fd = t->fileio_open (inf, filename, flags, mode,
2632 warn_if_slow, target_errno);
2634 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2635 continue;
2637 if (fd < 0)
2638 fd = -1;
2639 else
2640 fd = acquire_fileio_fd (t, fd);
2642 if (targetdebug)
2643 fprintf_unfiltered (gdb_stdlog,
2644 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2645 " = %d (%d)\n",
2646 inf == NULL ? 0 : inf->num,
2647 filename, flags, mode,
2648 warn_if_slow, fd,
2649 fd != -1 ? 0 : *target_errno);
2650 return fd;
2653 *target_errno = FILEIO_ENOSYS;
2654 return -1;
2657 /* See target.h. */
2660 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2661 ULONGEST offset, int *target_errno)
2663 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2664 int ret = -1;
2666 if (fh->is_closed ())
2667 *target_errno = EBADF;
2668 else if (fh->target == NULL)
2669 *target_errno = EIO;
2670 else
2671 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2672 len, offset, target_errno);
2674 if (targetdebug)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "target_fileio_pwrite (%d,...,%d,%s) "
2677 "= %d (%d)\n",
2678 fd, len, pulongest (offset),
2679 ret, ret != -1 ? 0 : *target_errno);
2680 return ret;
2683 /* See target.h. */
2686 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2687 ULONGEST offset, int *target_errno)
2689 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2690 int ret = -1;
2692 if (fh->is_closed ())
2693 *target_errno = EBADF;
2694 else if (fh->target == NULL)
2695 *target_errno = EIO;
2696 else
2697 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2698 len, offset, target_errno);
2700 if (targetdebug)
2701 fprintf_unfiltered (gdb_stdlog,
2702 "target_fileio_pread (%d,...,%d,%s) "
2703 "= %d (%d)\n",
2704 fd, len, pulongest (offset),
2705 ret, ret != -1 ? 0 : *target_errno);
2706 return ret;
2709 /* See target.h. */
2712 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2714 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2715 int ret = -1;
2717 if (fh->is_closed ())
2718 *target_errno = EBADF;
2719 else if (fh->target == NULL)
2720 *target_errno = EIO;
2721 else
2722 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2724 if (targetdebug)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "target_fileio_fstat (%d) = %d (%d)\n",
2727 fd, ret, ret != -1 ? 0 : *target_errno);
2728 return ret;
2731 /* See target.h. */
2734 target_fileio_close (int fd, int *target_errno)
2736 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2737 int ret = -1;
2739 if (fh->is_closed ())
2740 *target_errno = EBADF;
2741 else
2743 if (fh->target != NULL)
2744 ret = fh->target->fileio_close (fh->target_fd,
2745 target_errno);
2746 else
2747 ret = 0;
2748 release_fileio_fd (fd, fh);
2751 if (targetdebug)
2752 fprintf_unfiltered (gdb_stdlog,
2753 "target_fileio_close (%d) = %d (%d)\n",
2754 fd, ret, ret != -1 ? 0 : *target_errno);
2755 return ret;
2758 /* See target.h. */
2761 target_fileio_unlink (struct inferior *inf, const char *filename,
2762 int *target_errno)
2764 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2766 int ret = t->fileio_unlink (inf, filename, target_errno);
2768 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2769 continue;
2771 if (targetdebug)
2772 fprintf_unfiltered (gdb_stdlog,
2773 "target_fileio_unlink (%d,%s)"
2774 " = %d (%d)\n",
2775 inf == NULL ? 0 : inf->num, filename,
2776 ret, ret != -1 ? 0 : *target_errno);
2777 return ret;
2780 *target_errno = FILEIO_ENOSYS;
2781 return -1;
2784 /* See target.h. */
2786 gdb::optional<std::string>
2787 target_fileio_readlink (struct inferior *inf, const char *filename,
2788 int *target_errno)
2790 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2792 gdb::optional<std::string> ret
2793 = t->fileio_readlink (inf, filename, target_errno);
2795 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2796 continue;
2798 if (targetdebug)
2799 fprintf_unfiltered (gdb_stdlog,
2800 "target_fileio_readlink (%d,%s)"
2801 " = %s (%d)\n",
2802 inf == NULL ? 0 : inf->num,
2803 filename, ret ? ret->c_str () : "(nil)",
2804 ret ? 0 : *target_errno);
2805 return ret;
2808 *target_errno = FILEIO_ENOSYS;
2809 return {};
2812 /* Like scoped_fd, but specific to target fileio. */
2814 class scoped_target_fd
2816 public:
2817 explicit scoped_target_fd (int fd) noexcept
2818 : m_fd (fd)
2822 ~scoped_target_fd ()
2824 if (m_fd >= 0)
2826 int target_errno;
2828 target_fileio_close (m_fd, &target_errno);
2832 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2834 int get () const noexcept
2836 return m_fd;
2839 private:
2840 int m_fd;
2843 /* Read target file FILENAME, in the filesystem as seen by INF. If
2844 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2845 remote targets, the remote stub). Store the result in *BUF_P and
2846 return the size of the transferred data. PADDING additional bytes
2847 are available in *BUF_P. This is a helper function for
2848 target_fileio_read_alloc; see the declaration of that function for
2849 more information. */
2851 static LONGEST
2852 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2853 gdb_byte **buf_p, int padding)
2855 size_t buf_alloc, buf_pos;
2856 gdb_byte *buf;
2857 LONGEST n;
2858 int target_errno;
2860 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2861 0700, false, &target_errno));
2862 if (fd.get () == -1)
2863 return -1;
2865 /* Start by reading up to 4K at a time. The target will throttle
2866 this number down if necessary. */
2867 buf_alloc = 4096;
2868 buf = (gdb_byte *) xmalloc (buf_alloc);
2869 buf_pos = 0;
2870 while (1)
2872 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2873 buf_alloc - buf_pos - padding, buf_pos,
2874 &target_errno);
2875 if (n < 0)
2877 /* An error occurred. */
2878 xfree (buf);
2879 return -1;
2881 else if (n == 0)
2883 /* Read all there was. */
2884 if (buf_pos == 0)
2885 xfree (buf);
2886 else
2887 *buf_p = buf;
2888 return buf_pos;
2891 buf_pos += n;
2893 /* If the buffer is filling up, expand it. */
2894 if (buf_alloc < buf_pos * 2)
2896 buf_alloc *= 2;
2897 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2900 QUIT;
2904 /* See target.h. */
2906 LONGEST
2907 target_fileio_read_alloc (struct inferior *inf, const char *filename,
2908 gdb_byte **buf_p)
2910 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
2913 /* See target.h. */
2915 gdb::unique_xmalloc_ptr<char>
2916 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
2918 gdb_byte *buffer;
2919 char *bufstr;
2920 LONGEST i, transferred;
2922 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
2923 bufstr = (char *) buffer;
2925 if (transferred < 0)
2926 return gdb::unique_xmalloc_ptr<char> (nullptr);
2928 if (transferred == 0)
2929 return make_unique_xstrdup ("");
2931 bufstr[transferred] = 0;
2933 /* Check for embedded NUL bytes; but allow trailing NULs. */
2934 for (i = strlen (bufstr); i < transferred; i++)
2935 if (bufstr[i] != 0)
2937 warning (_("target file %s "
2938 "contained unexpected null characters"),
2939 filename);
2940 break;
2943 return gdb::unique_xmalloc_ptr<char> (bufstr);
2947 static int
2948 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2949 CORE_ADDR addr, int len)
2951 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2954 static int
2955 default_watchpoint_addr_within_range (struct target_ops *target,
2956 CORE_ADDR addr,
2957 CORE_ADDR start, int length)
2959 return addr >= start && addr < start + length;
2962 /* See target.h. */
2964 target_ops *
2965 target_stack::find_beneath (const target_ops *t) const
2967 /* Look for a non-empty slot at stratum levels beneath T's. */
2968 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
2969 if (m_stack[stratum] != NULL)
2970 return m_stack[stratum];
2972 return NULL;
2975 /* See target.h. */
2977 struct target_ops *
2978 find_target_at (enum strata stratum)
2980 return current_inferior ()->target_at (stratum);
2985 /* See target.h */
2987 void
2988 target_announce_detach (int from_tty)
2990 pid_t pid;
2991 const char *exec_file;
2993 if (!from_tty)
2994 return;
2996 exec_file = get_exec_file (0);
2997 if (exec_file == NULL)
2998 exec_file = "";
3000 pid = inferior_ptid.pid ();
3001 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3002 target_pid_to_str (ptid_t (pid)).c_str ());
3005 /* The inferior process has died. Long live the inferior! */
3007 void
3008 generic_mourn_inferior (void)
3010 inferior *inf = current_inferior ();
3012 switch_to_no_thread ();
3014 /* Mark breakpoints uninserted in case something tries to delete a
3015 breakpoint while we delete the inferior's threads (which would
3016 fail, since the inferior is long gone). */
3017 mark_breakpoints_out ();
3019 if (inf->pid != 0)
3020 exit_inferior (inf);
3022 /* Note this wipes step-resume breakpoints, so needs to be done
3023 after exit_inferior, which ends up referencing the step-resume
3024 breakpoints through clear_thread_inferior_resources. */
3025 breakpoint_init_inferior (inf_exited);
3027 registers_changed ();
3029 reopen_exec_file ();
3030 reinit_frame_cache ();
3032 if (deprecated_detach_hook)
3033 deprecated_detach_hook ();
3036 /* Convert a normal process ID to a string. Returns the string in a
3037 static buffer. */
3039 std::string
3040 normal_pid_to_str (ptid_t ptid)
3042 return string_printf ("process %d", ptid.pid ());
3045 static std::string
3046 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3048 return normal_pid_to_str (ptid);
3051 /* Error-catcher for target_find_memory_regions. */
3052 static int
3053 dummy_find_memory_regions (struct target_ops *self,
3054 find_memory_region_ftype ignore1, void *ignore2)
3056 error (_("Command not implemented for this target."));
3057 return 0;
3060 /* Error-catcher for target_make_corefile_notes. */
3061 static gdb::unique_xmalloc_ptr<char>
3062 dummy_make_corefile_notes (struct target_ops *self,
3063 bfd *ignore1, int *ignore2)
3065 error (_("Command not implemented for this target."));
3066 return NULL;
3069 #include "target-delegates.c"
3071 /* The initial current target, so that there is always a semi-valid
3072 current target. */
3074 static dummy_target the_dummy_target;
3076 /* See target.h. */
3078 target_ops *
3079 get_dummy_target ()
3081 return &the_dummy_target;
3084 static const target_info dummy_target_info = {
3085 "None",
3086 N_("None"),
3090 strata
3091 dummy_target::stratum () const
3093 return dummy_stratum;
3096 strata
3097 debug_target::stratum () const
3099 return debug_stratum;
3102 const target_info &
3103 dummy_target::info () const
3105 return dummy_target_info;
3108 const target_info &
3109 debug_target::info () const
3111 return beneath ()->info ();
3116 void
3117 target_close (struct target_ops *targ)
3119 gdb_assert (!target_is_pushed (targ));
3121 fileio_handles_invalidate_target (targ);
3123 targ->close ();
3125 if (targetdebug)
3126 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3130 target_thread_alive (ptid_t ptid)
3132 return current_top_target ()->thread_alive (ptid);
3135 void
3136 target_update_thread_list (void)
3138 current_top_target ()->update_thread_list ();
3141 void
3142 target_stop (ptid_t ptid)
3144 if (!may_stop)
3146 warning (_("May not interrupt or stop the target, ignoring attempt"));
3147 return;
3150 current_top_target ()->stop (ptid);
3153 void
3154 target_interrupt ()
3156 if (!may_stop)
3158 warning (_("May not interrupt or stop the target, ignoring attempt"));
3159 return;
3162 current_top_target ()->interrupt ();
3165 /* See target.h. */
3167 void
3168 target_pass_ctrlc (void)
3170 /* Pass the Ctrl-C to the first target that has a thread
3171 running. */
3172 for (inferior *inf : all_inferiors ())
3174 target_ops *proc_target = inf->process_target ();
3175 if (proc_target == NULL)
3176 continue;
3178 for (thread_info *thr : inf->non_exited_threads ())
3180 /* A thread can be THREAD_STOPPED and executing, while
3181 running an infcall. */
3182 if (thr->state == THREAD_RUNNING || thr->executing)
3184 /* We can get here quite deep in target layers. Avoid
3185 switching thread context or anything that would
3186 communicate with the target (e.g., to fetch
3187 registers), or flushing e.g., the frame cache. We
3188 just switch inferior in order to be able to call
3189 through the target_stack. */
3190 scoped_restore_current_inferior restore_inferior;
3191 set_current_inferior (inf);
3192 current_top_target ()->pass_ctrlc ();
3193 return;
3199 /* See target.h. */
3201 void
3202 default_target_pass_ctrlc (struct target_ops *ops)
3204 target_interrupt ();
3207 /* See target/target.h. */
3209 void
3210 target_stop_and_wait (ptid_t ptid)
3212 struct target_waitstatus status;
3213 bool was_non_stop = non_stop;
3215 non_stop = true;
3216 target_stop (ptid);
3218 memset (&status, 0, sizeof (status));
3219 target_wait (ptid, &status, 0);
3221 non_stop = was_non_stop;
3224 /* See target/target.h. */
3226 void
3227 target_continue_no_signal (ptid_t ptid)
3229 target_resume (ptid, 0, GDB_SIGNAL_0);
3232 /* See target/target.h. */
3234 void
3235 target_continue (ptid_t ptid, enum gdb_signal signal)
3237 target_resume (ptid, 0, signal);
3240 /* Concatenate ELEM to LIST, a comma-separated list. */
3242 static void
3243 str_comma_list_concat_elem (std::string *list, const char *elem)
3245 if (!list->empty ())
3246 list->append (", ");
3248 list->append (elem);
3251 /* Helper for target_options_to_string. If OPT is present in
3252 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3253 OPT is removed from TARGET_OPTIONS. */
3255 static void
3256 do_option (target_wait_flags *target_options, std::string *ret,
3257 target_wait_flag opt, const char *opt_str)
3259 if ((*target_options & opt) != 0)
3261 str_comma_list_concat_elem (ret, opt_str);
3262 *target_options &= ~opt;
3266 /* See target.h. */
3268 std::string
3269 target_options_to_string (target_wait_flags target_options)
3271 std::string ret;
3273 #define DO_TARG_OPTION(OPT) \
3274 do_option (&target_options, &ret, OPT, #OPT)
3276 DO_TARG_OPTION (TARGET_WNOHANG);
3278 if (target_options != 0)
3279 str_comma_list_concat_elem (&ret, "unknown???");
3281 return ret;
3284 void
3285 target_fetch_registers (struct regcache *regcache, int regno)
3287 current_top_target ()->fetch_registers (regcache, regno);
3288 if (targetdebug)
3289 regcache->debug_print_register ("target_fetch_registers", regno);
3292 void
3293 target_store_registers (struct regcache *regcache, int regno)
3295 if (!may_write_registers)
3296 error (_("Writing to registers is not allowed (regno %d)"), regno);
3298 current_top_target ()->store_registers (regcache, regno);
3299 if (targetdebug)
3301 regcache->debug_print_register ("target_store_registers", regno);
3306 target_core_of_thread (ptid_t ptid)
3308 return current_top_target ()->core_of_thread (ptid);
3312 simple_verify_memory (struct target_ops *ops,
3313 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3315 LONGEST total_xfered = 0;
3317 while (total_xfered < size)
3319 ULONGEST xfered_len;
3320 enum target_xfer_status status;
3321 gdb_byte buf[1024];
3322 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3324 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3325 buf, NULL, lma + total_xfered, howmuch,
3326 &xfered_len);
3327 if (status == TARGET_XFER_OK
3328 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3330 total_xfered += xfered_len;
3331 QUIT;
3333 else
3334 return 0;
3336 return 1;
3339 /* Default implementation of memory verification. */
3341 static int
3342 default_verify_memory (struct target_ops *self,
3343 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3345 /* Start over from the top of the target stack. */
3346 return simple_verify_memory (current_top_target (),
3347 data, memaddr, size);
3351 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3353 return current_top_target ()->verify_memory (data, memaddr, size);
3356 /* The documentation for this function is in its prototype declaration in
3357 target.h. */
3360 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3361 enum target_hw_bp_type rw)
3363 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3366 /* The documentation for this function is in its prototype declaration in
3367 target.h. */
3370 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3371 enum target_hw_bp_type rw)
3373 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3376 /* The documentation for this function is in its prototype declaration
3377 in target.h. */
3380 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3382 return current_top_target ()->masked_watch_num_registers (addr, mask);
3385 /* The documentation for this function is in its prototype declaration
3386 in target.h. */
3389 target_ranged_break_num_registers (void)
3391 return current_top_target ()->ranged_break_num_registers ();
3394 /* See target.h. */
3396 struct btrace_target_info *
3397 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3399 return current_top_target ()->enable_btrace (ptid, conf);
3402 /* See target.h. */
3404 void
3405 target_disable_btrace (struct btrace_target_info *btinfo)
3407 current_top_target ()->disable_btrace (btinfo);
3410 /* See target.h. */
3412 void
3413 target_teardown_btrace (struct btrace_target_info *btinfo)
3415 current_top_target ()->teardown_btrace (btinfo);
3418 /* See target.h. */
3420 enum btrace_error
3421 target_read_btrace (struct btrace_data *btrace,
3422 struct btrace_target_info *btinfo,
3423 enum btrace_read_type type)
3425 return current_top_target ()->read_btrace (btrace, btinfo, type);
3428 /* See target.h. */
3430 const struct btrace_config *
3431 target_btrace_conf (const struct btrace_target_info *btinfo)
3433 return current_top_target ()->btrace_conf (btinfo);
3436 /* See target.h. */
3438 void
3439 target_stop_recording (void)
3441 current_top_target ()->stop_recording ();
3444 /* See target.h. */
3446 void
3447 target_save_record (const char *filename)
3449 current_top_target ()->save_record (filename);
3452 /* See target.h. */
3455 target_supports_delete_record ()
3457 return current_top_target ()->supports_delete_record ();
3460 /* See target.h. */
3462 void
3463 target_delete_record (void)
3465 current_top_target ()->delete_record ();
3468 /* See target.h. */
3470 enum record_method
3471 target_record_method (ptid_t ptid)
3473 return current_top_target ()->record_method (ptid);
3476 /* See target.h. */
3479 target_record_is_replaying (ptid_t ptid)
3481 return current_top_target ()->record_is_replaying (ptid);
3484 /* See target.h. */
3487 target_record_will_replay (ptid_t ptid, int dir)
3489 return current_top_target ()->record_will_replay (ptid, dir);
3492 /* See target.h. */
3494 void
3495 target_record_stop_replaying (void)
3497 current_top_target ()->record_stop_replaying ();
3500 /* See target.h. */
3502 void
3503 target_goto_record_begin (void)
3505 current_top_target ()->goto_record_begin ();
3508 /* See target.h. */
3510 void
3511 target_goto_record_end (void)
3513 current_top_target ()->goto_record_end ();
3516 /* See target.h. */
3518 void
3519 target_goto_record (ULONGEST insn)
3521 current_top_target ()->goto_record (insn);
3524 /* See target.h. */
3526 void
3527 target_insn_history (int size, gdb_disassembly_flags flags)
3529 current_top_target ()->insn_history (size, flags);
3532 /* See target.h. */
3534 void
3535 target_insn_history_from (ULONGEST from, int size,
3536 gdb_disassembly_flags flags)
3538 current_top_target ()->insn_history_from (from, size, flags);
3541 /* See target.h. */
3543 void
3544 target_insn_history_range (ULONGEST begin, ULONGEST end,
3545 gdb_disassembly_flags flags)
3547 current_top_target ()->insn_history_range (begin, end, flags);
3550 /* See target.h. */
3552 void
3553 target_call_history (int size, record_print_flags flags)
3555 current_top_target ()->call_history (size, flags);
3558 /* See target.h. */
3560 void
3561 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3563 current_top_target ()->call_history_from (begin, size, flags);
3566 /* See target.h. */
3568 void
3569 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3571 current_top_target ()->call_history_range (begin, end, flags);
3574 /* See target.h. */
3576 const struct frame_unwind *
3577 target_get_unwinder (void)
3579 return current_top_target ()->get_unwinder ();
3582 /* See target.h. */
3584 const struct frame_unwind *
3585 target_get_tailcall_unwinder (void)
3587 return current_top_target ()->get_tailcall_unwinder ();
3590 /* See target.h. */
3592 void
3593 target_prepare_to_generate_core (void)
3595 current_top_target ()->prepare_to_generate_core ();
3598 /* See target.h. */
3600 void
3601 target_done_generating_core (void)
3603 current_top_target ()->done_generating_core ();
3608 static char targ_desc[] =
3609 "Names of targets and files being debugged.\nShows the entire \
3610 stack of targets currently in use (including the exec-file,\n\
3611 core-file, and process, if any), as well as the symbol file name.";
3613 static void
3614 default_rcmd (struct target_ops *self, const char *command,
3615 struct ui_file *output)
3617 error (_("\"monitor\" command not supported by this target."));
3620 static void
3621 do_monitor_command (const char *cmd, int from_tty)
3623 target_rcmd (cmd, gdb_stdtarg);
3626 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3627 ignored. */
3629 void
3630 flash_erase_command (const char *cmd, int from_tty)
3632 /* Used to communicate termination of flash operations to the target. */
3633 bool found_flash_region = false;
3634 struct gdbarch *gdbarch = target_gdbarch ();
3636 std::vector<mem_region> mem_regions = target_memory_map ();
3638 /* Iterate over all memory regions. */
3639 for (const mem_region &m : mem_regions)
3641 /* Is this a flash memory region? */
3642 if (m.attrib.mode == MEM_FLASH)
3644 found_flash_region = true;
3645 target_flash_erase (m.lo, m.hi - m.lo);
3647 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3649 current_uiout->message (_("Erasing flash memory region at address "));
3650 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3651 current_uiout->message (", size = ");
3652 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3653 current_uiout->message ("\n");
3657 /* Did we do any flash operations? If so, we need to finalize them. */
3658 if (found_flash_region)
3659 target_flash_done ();
3660 else
3661 current_uiout->message (_("No flash memory regions found.\n"));
3664 /* Print the name of each layers of our target stack. */
3666 static void
3667 maintenance_print_target_stack (const char *cmd, int from_tty)
3669 printf_filtered (_("The current target stack is:\n"));
3671 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3673 if (t->stratum () == debug_stratum)
3674 continue;
3675 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3679 /* See target.h. */
3681 void
3682 target_async (int enable)
3684 infrun_async (enable);
3685 current_top_target ()->async (enable);
3688 /* See target.h. */
3690 void
3691 target_thread_events (int enable)
3693 current_top_target ()->thread_events (enable);
3696 /* Controls if targets can report that they can/are async. This is
3697 just for maintainers to use when debugging gdb. */
3698 bool target_async_permitted = true;
3700 /* The set command writes to this variable. If the inferior is
3701 executing, target_async_permitted is *not* updated. */
3702 static bool target_async_permitted_1 = true;
3704 static void
3705 maint_set_target_async_command (const char *args, int from_tty,
3706 struct cmd_list_element *c)
3708 if (have_live_inferiors ())
3710 target_async_permitted_1 = target_async_permitted;
3711 error (_("Cannot change this setting while the inferior is running."));
3714 target_async_permitted = target_async_permitted_1;
3717 static void
3718 maint_show_target_async_command (struct ui_file *file, int from_tty,
3719 struct cmd_list_element *c,
3720 const char *value)
3722 fprintf_filtered (file,
3723 _("Controlling the inferior in "
3724 "asynchronous mode is %s.\n"), value);
3727 /* Return true if the target operates in non-stop mode even with "set
3728 non-stop off". */
3730 static int
3731 target_always_non_stop_p (void)
3733 return current_top_target ()->always_non_stop_p ();
3736 /* See target.h. */
3738 bool
3739 target_is_non_stop_p ()
3741 return (non_stop
3742 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3743 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3744 && target_always_non_stop_p ()));
3747 /* See target.h. */
3749 bool
3750 exists_non_stop_target ()
3752 if (target_is_non_stop_p ())
3753 return true;
3755 scoped_restore_current_thread restore_thread;
3757 for (inferior *inf : all_inferiors ())
3759 switch_to_inferior_no_thread (inf);
3760 if (target_is_non_stop_p ())
3761 return true;
3764 return false;
3767 /* Controls if targets can report that they always run in non-stop
3768 mode. This is just for maintainers to use when debugging gdb. */
3769 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3771 /* The set command writes to this variable. If the inferior is
3772 executing, target_non_stop_enabled is *not* updated. */
3773 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3775 /* Implementation of "maint set target-non-stop". */
3777 static void
3778 maint_set_target_non_stop_command (const char *args, int from_tty,
3779 struct cmd_list_element *c)
3781 if (have_live_inferiors ())
3783 target_non_stop_enabled_1 = target_non_stop_enabled;
3784 error (_("Cannot change this setting while the inferior is running."));
3787 target_non_stop_enabled = target_non_stop_enabled_1;
3790 /* Implementation of "maint show target-non-stop". */
3792 static void
3793 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3794 struct cmd_list_element *c,
3795 const char *value)
3797 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3798 fprintf_filtered (file,
3799 _("Whether the target is always in non-stop mode "
3800 "is %s (currently %s).\n"), value,
3801 target_always_non_stop_p () ? "on" : "off");
3802 else
3803 fprintf_filtered (file,
3804 _("Whether the target is always in non-stop mode "
3805 "is %s.\n"), value);
3808 /* Temporary copies of permission settings. */
3810 static bool may_write_registers_1 = true;
3811 static bool may_write_memory_1 = true;
3812 static bool may_insert_breakpoints_1 = true;
3813 static bool may_insert_tracepoints_1 = true;
3814 static bool may_insert_fast_tracepoints_1 = true;
3815 static bool may_stop_1 = true;
3817 /* Make the user-set values match the real values again. */
3819 void
3820 update_target_permissions (void)
3822 may_write_registers_1 = may_write_registers;
3823 may_write_memory_1 = may_write_memory;
3824 may_insert_breakpoints_1 = may_insert_breakpoints;
3825 may_insert_tracepoints_1 = may_insert_tracepoints;
3826 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3827 may_stop_1 = may_stop;
3830 /* The one function handles (most of) the permission flags in the same
3831 way. */
3833 static void
3834 set_target_permissions (const char *args, int from_tty,
3835 struct cmd_list_element *c)
3837 if (target_has_execution ())
3839 update_target_permissions ();
3840 error (_("Cannot change this setting while the inferior is running."));
3843 /* Make the real values match the user-changed values. */
3844 may_write_registers = may_write_registers_1;
3845 may_insert_breakpoints = may_insert_breakpoints_1;
3846 may_insert_tracepoints = may_insert_tracepoints_1;
3847 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3848 may_stop = may_stop_1;
3849 update_observer_mode ();
3852 /* Set memory write permission independently of observer mode. */
3854 static void
3855 set_write_memory_permission (const char *args, int from_tty,
3856 struct cmd_list_element *c)
3858 /* Make the real values match the user-changed values. */
3859 may_write_memory = may_write_memory_1;
3860 update_observer_mode ();
3863 void _initialize_target ();
3865 void
3866 _initialize_target ()
3868 the_debug_target = new debug_target ();
3870 add_info ("target", info_target_command, targ_desc);
3871 add_info ("files", info_target_command, targ_desc);
3873 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3874 Set target debugging."), _("\
3875 Show target debugging."), _("\
3876 When non-zero, target debugging is enabled. Higher numbers are more\n\
3877 verbose."),
3878 set_targetdebug,
3879 show_targetdebug,
3880 &setdebuglist, &showdebuglist);
3882 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3883 &trust_readonly, _("\
3884 Set mode for reading from readonly sections."), _("\
3885 Show mode for reading from readonly sections."), _("\
3886 When this mode is on, memory reads from readonly sections (such as .text)\n\
3887 will be read from the object file instead of from the target. This will\n\
3888 result in significant performance improvement for remote targets."),
3889 NULL,
3890 show_trust_readonly,
3891 &setlist, &showlist);
3893 add_com ("monitor", class_obscure, do_monitor_command,
3894 _("Send a command to the remote monitor (remote targets only)."));
3896 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3897 _("Print the name of each layer of the internal target stack."),
3898 &maintenanceprintlist);
3900 add_setshow_boolean_cmd ("target-async", no_class,
3901 &target_async_permitted_1, _("\
3902 Set whether gdb controls the inferior in asynchronous mode."), _("\
3903 Show whether gdb controls the inferior in asynchronous mode."), _("\
3904 Tells gdb whether to control the inferior in asynchronous mode."),
3905 maint_set_target_async_command,
3906 maint_show_target_async_command,
3907 &maintenance_set_cmdlist,
3908 &maintenance_show_cmdlist);
3910 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
3911 &target_non_stop_enabled_1, _("\
3912 Set whether gdb always controls the inferior in non-stop mode."), _("\
3913 Show whether gdb always controls the inferior in non-stop mode."), _("\
3914 Tells gdb whether to control the inferior in non-stop mode."),
3915 maint_set_target_non_stop_command,
3916 maint_show_target_non_stop_command,
3917 &maintenance_set_cmdlist,
3918 &maintenance_show_cmdlist);
3920 add_setshow_boolean_cmd ("may-write-registers", class_support,
3921 &may_write_registers_1, _("\
3922 Set permission to write into registers."), _("\
3923 Show permission to write into registers."), _("\
3924 When this permission is on, GDB may write into the target's registers.\n\
3925 Otherwise, any sort of write attempt will result in an error."),
3926 set_target_permissions, NULL,
3927 &setlist, &showlist);
3929 add_setshow_boolean_cmd ("may-write-memory", class_support,
3930 &may_write_memory_1, _("\
3931 Set permission to write into target memory."), _("\
3932 Show permission to write into target memory."), _("\
3933 When this permission is on, GDB may write into the target's memory.\n\
3934 Otherwise, any sort of write attempt will result in an error."),
3935 set_write_memory_permission, NULL,
3936 &setlist, &showlist);
3938 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3939 &may_insert_breakpoints_1, _("\
3940 Set permission to insert breakpoints in the target."), _("\
3941 Show permission to insert breakpoints in the target."), _("\
3942 When this permission is on, GDB may insert breakpoints in the program.\n\
3943 Otherwise, any sort of insertion attempt will result in an error."),
3944 set_target_permissions, NULL,
3945 &setlist, &showlist);
3947 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3948 &may_insert_tracepoints_1, _("\
3949 Set permission to insert tracepoints in the target."), _("\
3950 Show permission to insert tracepoints in the target."), _("\
3951 When this permission is on, GDB may insert tracepoints in the program.\n\
3952 Otherwise, any sort of insertion attempt will result in an error."),
3953 set_target_permissions, NULL,
3954 &setlist, &showlist);
3956 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3957 &may_insert_fast_tracepoints_1, _("\
3958 Set permission to insert fast tracepoints in the target."), _("\
3959 Show permission to insert fast tracepoints in the target."), _("\
3960 When this permission is on, GDB may insert fast tracepoints.\n\
3961 Otherwise, any sort of insertion attempt will result in an error."),
3962 set_target_permissions, NULL,
3963 &setlist, &showlist);
3965 add_setshow_boolean_cmd ("may-interrupt", class_support,
3966 &may_stop_1, _("\
3967 Set permission to interrupt or signal the target."), _("\
3968 Show permission to interrupt or signal the target."), _("\
3969 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3970 Otherwise, any attempt to interrupt or stop will be ignored."),
3971 set_target_permissions, NULL,
3972 &setlist, &showlist);
3974 add_com ("flash-erase", no_class, flash_erase_command,
3975 _("Erase all flash memory regions."));
3977 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3978 &auto_connect_native_target, _("\
3979 Set whether GDB may automatically connect to the native target."), _("\
3980 Show whether GDB may automatically connect to the native target."), _("\
3981 When on, and GDB is not connected to a target yet, GDB\n\
3982 attempts \"run\" and other commands with the native target."),
3983 NULL, show_auto_connect_native_target,
3984 &setlist, &showlist);