1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
23 #include "bfd_stdint.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
39 struct elf_info_failed
41 struct bfd_link_info
*info
;
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
48 struct elf_find_verdep_info
50 /* General link information. */
51 struct bfd_link_info
*info
;
52 /* The number of dependencies. */
54 /* Whether we had a failure. */
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie
*cookie
,
63 unsigned long r_symndx
,
66 if (r_symndx
>= cookie
->locsymcount
67 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
69 struct elf_link_hash_entry
*h
;
71 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
73 while (h
->root
.type
== bfd_link_hash_indirect
74 || h
->root
.type
== bfd_link_hash_warning
)
75 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
77 if ((h
->root
.type
== bfd_link_hash_defined
78 || h
->root
.type
== bfd_link_hash_defweak
)
79 && discarded_section (h
->root
.u
.def
.section
))
80 return h
->root
.u
.def
.section
;
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
90 Elf_Internal_Sym
*isym
;
92 /* Need to: get the symbol; get the section. */
93 isym
= &cookie
->locsyms
[r_symndx
];
94 isec
= bfd_section_from_elf_index (cookie
->abfd
, isym
->st_shndx
);
96 && discard
? discarded_section (isec
) : 1)
102 /* Define a symbol in a dynamic linkage section. */
104 struct elf_link_hash_entry
*
105 _bfd_elf_define_linkage_sym (bfd
*abfd
,
106 struct bfd_link_info
*info
,
110 struct elf_link_hash_entry
*h
;
111 struct bfd_link_hash_entry
*bh
;
112 const struct elf_backend_data
*bed
;
114 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h
->root
.type
= bfd_link_hash_new
;
125 bed
= get_elf_backend_data (abfd
);
126 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
127 sec
, 0, NULL
, FALSE
, bed
->collect
,
130 h
= (struct elf_link_hash_entry
*) bh
;
133 h
->root
.linker_def
= 1;
134 h
->type
= STT_OBJECT
;
135 if (ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
)
136 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
138 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
143 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
147 struct elf_link_hash_entry
*h
;
148 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
149 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
151 /* This function may be called more than once. */
152 s
= bfd_get_linker_section (abfd
, ".got");
156 flags
= bed
->dynamic_sec_flags
;
158 s
= bfd_make_section_anyway_with_flags (abfd
,
159 (bed
->rela_plts_and_copies_p
160 ? ".rela.got" : ".rel.got"),
161 (bed
->dynamic_sec_flags
164 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
168 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
170 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
174 if (bed
->want_got_plt
)
176 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
178 || !bfd_set_section_alignment (abfd
, s
,
179 bed
->s
->log_file_align
))
184 /* The first bit of the global offset table is the header. */
185 s
->size
+= bed
->got_header_size
;
187 if (bed
->want_got_sym
)
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info
)->hgot
= h
;
203 /* Create a strtab to hold the dynamic symbol names. */
205 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
207 struct elf_link_hash_table
*hash_table
;
209 hash_table
= elf_hash_table (info
);
210 if (hash_table
->dynobj
== NULL
)
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd
->flags
& (DYNAMIC
| BFD_PLUGIN
)) != 0)
219 for (ibfd
= info
->input_bfds
; ibfd
; ibfd
= ibfd
->link
.next
)
221 & (DYNAMIC
| BFD_LINKER_CREATED
| BFD_PLUGIN
)) == 0)
227 hash_table
->dynobj
= abfd
;
230 if (hash_table
->dynstr
== NULL
)
232 hash_table
->dynstr
= _bfd_elf_strtab_init ();
233 if (hash_table
->dynstr
== NULL
)
239 /* Create some sections which will be filled in with dynamic linking
240 information. ABFD is an input file which requires dynamic sections
241 to be created. The dynamic sections take up virtual memory space
242 when the final executable is run, so we need to create them before
243 addresses are assigned to the output sections. We work out the
244 actual contents and size of these sections later. */
247 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
251 const struct elf_backend_data
*bed
;
252 struct elf_link_hash_entry
*h
;
254 if (! is_elf_hash_table (info
->hash
))
257 if (elf_hash_table (info
)->dynamic_sections_created
)
260 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
263 abfd
= elf_hash_table (info
)->dynobj
;
264 bed
= get_elf_backend_data (abfd
);
266 flags
= bed
->dynamic_sec_flags
;
268 /* A dynamically linked executable has a .interp section, but a
269 shared library does not. */
270 if (bfd_link_executable (info
) && !info
->nointerp
)
272 s
= bfd_make_section_anyway_with_flags (abfd
, ".interp",
273 flags
| SEC_READONLY
);
278 /* Create sections to hold version informations. These are removed
279 if they are not needed. */
280 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_d",
281 flags
| SEC_READONLY
);
283 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
286 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version",
287 flags
| SEC_READONLY
);
289 || ! bfd_set_section_alignment (abfd
, s
, 1))
292 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_r",
293 flags
| SEC_READONLY
);
295 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
298 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynsym",
299 flags
| SEC_READONLY
);
301 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
303 elf_hash_table (info
)->dynsym
= s
;
305 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynstr",
306 flags
| SEC_READONLY
);
310 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynamic", flags
);
312 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
315 /* The special symbol _DYNAMIC is always set to the start of the
316 .dynamic section. We could set _DYNAMIC in a linker script, but we
317 only want to define it if we are, in fact, creating a .dynamic
318 section. We don't want to define it if there is no .dynamic
319 section, since on some ELF platforms the start up code examines it
320 to decide how to initialize the process. */
321 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC");
322 elf_hash_table (info
)->hdynamic
= h
;
328 s
= bfd_make_section_anyway_with_flags (abfd
, ".hash",
329 flags
| SEC_READONLY
);
331 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
333 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
336 if (info
->emit_gnu_hash
)
338 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.hash",
339 flags
| SEC_READONLY
);
341 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
343 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
344 4 32-bit words followed by variable count of 64-bit words, then
345 variable count of 32-bit words. */
346 if (bed
->s
->arch_size
== 64)
347 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
349 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
352 /* Let the backend create the rest of the sections. This lets the
353 backend set the right flags. The backend will normally create
354 the .got and .plt sections. */
355 if (bed
->elf_backend_create_dynamic_sections
== NULL
356 || ! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
359 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
364 /* Create dynamic sections when linking against a dynamic object. */
367 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
369 flagword flags
, pltflags
;
370 struct elf_link_hash_entry
*h
;
372 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
373 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
375 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
376 .rel[a].bss sections. */
377 flags
= bed
->dynamic_sec_flags
;
380 if (bed
->plt_not_loaded
)
381 /* We do not clear SEC_ALLOC here because we still want the OS to
382 allocate space for the section; it's just that there's nothing
383 to read in from the object file. */
384 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
386 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
387 if (bed
->plt_readonly
)
388 pltflags
|= SEC_READONLY
;
390 s
= bfd_make_section_anyway_with_flags (abfd
, ".plt", pltflags
);
392 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
396 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
398 if (bed
->want_plt_sym
)
400 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
401 "_PROCEDURE_LINKAGE_TABLE_");
402 elf_hash_table (info
)->hplt
= h
;
407 s
= bfd_make_section_anyway_with_flags (abfd
,
408 (bed
->rela_plts_and_copies_p
409 ? ".rela.plt" : ".rel.plt"),
410 flags
| SEC_READONLY
);
412 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
416 if (! _bfd_elf_create_got_section (abfd
, info
))
419 if (bed
->want_dynbss
)
421 /* The .dynbss section is a place to put symbols which are defined
422 by dynamic objects, are referenced by regular objects, and are
423 not functions. We must allocate space for them in the process
424 image and use a R_*_COPY reloc to tell the dynamic linker to
425 initialize them at run time. The linker script puts the .dynbss
426 section into the .bss section of the final image. */
427 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynbss",
428 (SEC_ALLOC
| SEC_LINKER_CREATED
));
432 /* The .rel[a].bss section holds copy relocs. This section is not
433 normally needed. We need to create it here, though, so that the
434 linker will map it to an output section. We can't just create it
435 only if we need it, because we will not know whether we need it
436 until we have seen all the input files, and the first time the
437 main linker code calls BFD after examining all the input files
438 (size_dynamic_sections) the input sections have already been
439 mapped to the output sections. If the section turns out not to
440 be needed, we can discard it later. We will never need this
441 section when generating a shared object, since they do not use
443 if (! bfd_link_pic (info
))
445 s
= bfd_make_section_anyway_with_flags (abfd
,
446 (bed
->rela_plts_and_copies_p
447 ? ".rela.bss" : ".rel.bss"),
448 flags
| SEC_READONLY
);
450 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
458 /* Record a new dynamic symbol. We record the dynamic symbols as we
459 read the input files, since we need to have a list of all of them
460 before we can determine the final sizes of the output sections.
461 Note that we may actually call this function even though we are not
462 going to output any dynamic symbols; in some cases we know that a
463 symbol should be in the dynamic symbol table, but only if there is
467 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
468 struct elf_link_hash_entry
*h
)
470 if (h
->dynindx
== -1)
472 struct elf_strtab_hash
*dynstr
;
477 /* XXX: The ABI draft says the linker must turn hidden and
478 internal symbols into STB_LOCAL symbols when producing the
479 DSO. However, if ld.so honors st_other in the dynamic table,
480 this would not be necessary. */
481 switch (ELF_ST_VISIBILITY (h
->other
))
485 if (h
->root
.type
!= bfd_link_hash_undefined
486 && h
->root
.type
!= bfd_link_hash_undefweak
)
489 if (!elf_hash_table (info
)->is_relocatable_executable
)
497 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
498 ++elf_hash_table (info
)->dynsymcount
;
500 dynstr
= elf_hash_table (info
)->dynstr
;
503 /* Create a strtab to hold the dynamic symbol names. */
504 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
509 /* We don't put any version information in the dynamic string
511 name
= h
->root
.root
.string
;
512 p
= strchr (name
, ELF_VER_CHR
);
514 /* We know that the p points into writable memory. In fact,
515 there are only a few symbols that have read-only names, being
516 those like _GLOBAL_OFFSET_TABLE_ that are created specially
517 by the backends. Most symbols will have names pointing into
518 an ELF string table read from a file, or to objalloc memory. */
521 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
526 if (indx
== (size_t) -1)
528 h
->dynstr_index
= indx
;
534 /* Mark a symbol dynamic. */
537 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
538 struct elf_link_hash_entry
*h
,
539 Elf_Internal_Sym
*sym
)
541 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
543 /* It may be called more than once on the same H. */
544 if(h
->dynamic
|| bfd_link_relocatable (info
))
547 if ((info
->dynamic_data
548 && (h
->type
== STT_OBJECT
549 || h
->type
== STT_COMMON
551 && (ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
552 || ELF_ST_TYPE (sym
->st_info
) == STT_COMMON
))))
554 && h
->root
.type
== bfd_link_hash_new
555 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
559 /* Record an assignment to a symbol made by a linker script. We need
560 this in case some dynamic object refers to this symbol. */
563 bfd_elf_record_link_assignment (bfd
*output_bfd
,
564 struct bfd_link_info
*info
,
569 struct elf_link_hash_entry
*h
, *hv
;
570 struct elf_link_hash_table
*htab
;
571 const struct elf_backend_data
*bed
;
573 if (!is_elf_hash_table (info
->hash
))
576 htab
= elf_hash_table (info
);
577 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
581 if (h
->versioned
== unknown
)
583 /* Set versioned if symbol version is unknown. */
584 char *version
= strrchr (name
, ELF_VER_CHR
);
587 if (version
> name
&& version
[-1] != ELF_VER_CHR
)
588 h
->versioned
= versioned_hidden
;
590 h
->versioned
= versioned
;
594 switch (h
->root
.type
)
596 case bfd_link_hash_defined
:
597 case bfd_link_hash_defweak
:
598 case bfd_link_hash_common
:
600 case bfd_link_hash_undefweak
:
601 case bfd_link_hash_undefined
:
602 /* Since we're defining the symbol, don't let it seem to have not
603 been defined. record_dynamic_symbol and size_dynamic_sections
604 may depend on this. */
605 h
->root
.type
= bfd_link_hash_new
;
606 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
607 bfd_link_repair_undef_list (&htab
->root
);
609 case bfd_link_hash_new
:
610 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
613 case bfd_link_hash_indirect
:
614 /* We had a versioned symbol in a dynamic library. We make the
615 the versioned symbol point to this one. */
616 bed
= get_elf_backend_data (output_bfd
);
618 while (hv
->root
.type
== bfd_link_hash_indirect
619 || hv
->root
.type
== bfd_link_hash_warning
)
620 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
621 /* We don't need to update h->root.u since linker will set them
623 h
->root
.type
= bfd_link_hash_undefined
;
624 hv
->root
.type
= bfd_link_hash_indirect
;
625 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
626 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
628 case bfd_link_hash_warning
:
633 /* If this symbol is being provided by the linker script, and it is
634 currently defined by a dynamic object, but not by a regular
635 object, then mark it as undefined so that the generic linker will
636 force the correct value. */
640 h
->root
.type
= bfd_link_hash_undefined
;
642 /* If this symbol is not being provided by the linker script, and it is
643 currently defined by a dynamic object, but not by a regular object,
644 then clear out any version information because the symbol will not be
645 associated with the dynamic object any more. */
649 h
->verinfo
.verdef
= NULL
;
655 bed
= get_elf_backend_data (output_bfd
);
656 if (ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
)
657 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
658 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
661 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
663 if (!bfd_link_relocatable (info
)
665 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
666 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
671 || bfd_link_dll (info
)
672 || elf_hash_table (info
)->is_relocatable_executable
)
675 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
678 /* If this is a weak defined symbol, and we know a corresponding
679 real symbol from the same dynamic object, make sure the real
680 symbol is also made into a dynamic symbol. */
681 if (h
->u
.weakdef
!= NULL
682 && h
->u
.weakdef
->dynindx
== -1)
684 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
692 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
693 success, and 2 on a failure caused by attempting to record a symbol
694 in a discarded section, eg. a discarded link-once section symbol. */
697 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
702 struct elf_link_local_dynamic_entry
*entry
;
703 struct elf_link_hash_table
*eht
;
704 struct elf_strtab_hash
*dynstr
;
707 Elf_External_Sym_Shndx eshndx
;
708 char esym
[sizeof (Elf64_External_Sym
)];
710 if (! is_elf_hash_table (info
->hash
))
713 /* See if the entry exists already. */
714 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
715 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
718 amt
= sizeof (*entry
);
719 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
723 /* Go find the symbol, so that we can find it's name. */
724 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
725 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
727 bfd_release (input_bfd
, entry
);
731 if (entry
->isym
.st_shndx
!= SHN_UNDEF
732 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
736 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
737 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
739 /* We can still bfd_release here as nothing has done another
740 bfd_alloc. We can't do this later in this function. */
741 bfd_release (input_bfd
, entry
);
746 name
= (bfd_elf_string_from_elf_section
747 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
748 entry
->isym
.st_name
));
750 dynstr
= elf_hash_table (info
)->dynstr
;
753 /* Create a strtab to hold the dynamic symbol names. */
754 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
759 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
760 if (dynstr_index
== (size_t) -1)
762 entry
->isym
.st_name
= dynstr_index
;
764 eht
= elf_hash_table (info
);
766 entry
->next
= eht
->dynlocal
;
767 eht
->dynlocal
= entry
;
768 entry
->input_bfd
= input_bfd
;
769 entry
->input_indx
= input_indx
;
772 /* Whatever binding the symbol had before, it's now local. */
774 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
776 /* The dynindx will be set at the end of size_dynamic_sections. */
781 /* Return the dynindex of a local dynamic symbol. */
784 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
788 struct elf_link_local_dynamic_entry
*e
;
790 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
791 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
796 /* This function is used to renumber the dynamic symbols, if some of
797 them are removed because they are marked as local. This is called
798 via elf_link_hash_traverse. */
801 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
804 size_t *count
= (size_t *) data
;
809 if (h
->dynindx
!= -1)
810 h
->dynindx
= ++(*count
);
816 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
817 STB_LOCAL binding. */
820 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
823 size_t *count
= (size_t *) data
;
825 if (!h
->forced_local
)
828 if (h
->dynindx
!= -1)
829 h
->dynindx
= ++(*count
);
834 /* Return true if the dynamic symbol for a given section should be
835 omitted when creating a shared library. */
837 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
838 struct bfd_link_info
*info
,
841 struct elf_link_hash_table
*htab
;
844 switch (elf_section_data (p
)->this_hdr
.sh_type
)
848 /* If sh_type is yet undecided, assume it could be
849 SHT_PROGBITS/SHT_NOBITS. */
851 htab
= elf_hash_table (info
);
852 if (p
== htab
->tls_sec
)
855 if (htab
->text_index_section
!= NULL
)
856 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
858 return (htab
->dynobj
!= NULL
859 && (ip
= bfd_get_linker_section (htab
->dynobj
, p
->name
)) != NULL
860 && ip
->output_section
== p
);
862 /* There shouldn't be section relative relocations
863 against any other section. */
869 /* Assign dynsym indices. In a shared library we generate a section
870 symbol for each output section, which come first. Next come symbols
871 which have been forced to local binding. Then all of the back-end
872 allocated local dynamic syms, followed by the rest of the global
876 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
877 struct bfd_link_info
*info
,
878 unsigned long *section_sym_count
)
880 unsigned long dynsymcount
= 0;
882 if (bfd_link_pic (info
)
883 || elf_hash_table (info
)->is_relocatable_executable
)
885 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
887 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
888 if ((p
->flags
& SEC_EXCLUDE
) == 0
889 && (p
->flags
& SEC_ALLOC
) != 0
890 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
891 elf_section_data (p
)->dynindx
= ++dynsymcount
;
893 elf_section_data (p
)->dynindx
= 0;
895 *section_sym_count
= dynsymcount
;
897 elf_link_hash_traverse (elf_hash_table (info
),
898 elf_link_renumber_local_hash_table_dynsyms
,
901 if (elf_hash_table (info
)->dynlocal
)
903 struct elf_link_local_dynamic_entry
*p
;
904 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
905 p
->dynindx
= ++dynsymcount
;
907 elf_hash_table (info
)->local_dynsymcount
= dynsymcount
;
909 elf_link_hash_traverse (elf_hash_table (info
),
910 elf_link_renumber_hash_table_dynsyms
,
913 /* There is an unused NULL entry at the head of the table which we
914 must account for in our count even if the table is empty since it
915 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
919 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
923 /* Merge st_other field. */
926 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
927 const Elf_Internal_Sym
*isym
, asection
*sec
,
928 bfd_boolean definition
, bfd_boolean dynamic
)
930 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
932 /* If st_other has a processor-specific meaning, specific
933 code might be needed here. */
934 if (bed
->elf_backend_merge_symbol_attribute
)
935 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
940 unsigned symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
941 unsigned hvis
= ELF_ST_VISIBILITY (h
->other
);
943 /* Keep the most constraining visibility. Leave the remainder
944 of the st_other field to elf_backend_merge_symbol_attribute. */
945 if (symvis
- 1 < hvis
- 1)
946 h
->other
= symvis
| (h
->other
& ~ELF_ST_VISIBILITY (-1));
949 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_DEFAULT
950 && (sec
->flags
& SEC_READONLY
) == 0)
951 h
->protected_def
= 1;
954 /* This function is called when we want to merge a new symbol with an
955 existing symbol. It handles the various cases which arise when we
956 find a definition in a dynamic object, or when there is already a
957 definition in a dynamic object. The new symbol is described by
958 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
959 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
960 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
961 of an old common symbol. We set OVERRIDE if the old symbol is
962 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
963 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
964 to change. By OK to change, we mean that we shouldn't warn if the
965 type or size does change. */
968 _bfd_elf_merge_symbol (bfd
*abfd
,
969 struct bfd_link_info
*info
,
971 Elf_Internal_Sym
*sym
,
974 struct elf_link_hash_entry
**sym_hash
,
976 bfd_boolean
*pold_weak
,
977 unsigned int *pold_alignment
,
979 bfd_boolean
*override
,
980 bfd_boolean
*type_change_ok
,
981 bfd_boolean
*size_change_ok
,
982 bfd_boolean
*matched
)
984 asection
*sec
, *oldsec
;
985 struct elf_link_hash_entry
*h
;
986 struct elf_link_hash_entry
*hi
;
987 struct elf_link_hash_entry
*flip
;
990 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
991 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
992 const struct elf_backend_data
*bed
;
999 bind
= ELF_ST_BIND (sym
->st_info
);
1001 if (! bfd_is_und_section (sec
))
1002 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
1004 h
= ((struct elf_link_hash_entry
*)
1005 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
1010 bed
= get_elf_backend_data (abfd
);
1012 /* NEW_VERSION is the symbol version of the new symbol. */
1013 if (h
->versioned
!= unversioned
)
1015 /* Symbol version is unknown or versioned. */
1016 new_version
= strrchr (name
, ELF_VER_CHR
);
1019 if (h
->versioned
== unknown
)
1021 if (new_version
> name
&& new_version
[-1] != ELF_VER_CHR
)
1022 h
->versioned
= versioned_hidden
;
1024 h
->versioned
= versioned
;
1027 if (new_version
[0] == '\0')
1031 h
->versioned
= unversioned
;
1036 /* For merging, we only care about real symbols. But we need to make
1037 sure that indirect symbol dynamic flags are updated. */
1039 while (h
->root
.type
== bfd_link_hash_indirect
1040 || h
->root
.type
== bfd_link_hash_warning
)
1041 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1045 if (hi
== h
|| h
->root
.type
== bfd_link_hash_new
)
1049 /* OLD_HIDDEN is true if the existing symbol is only visible
1050 to the symbol with the same symbol version. NEW_HIDDEN is
1051 true if the new symbol is only visible to the symbol with
1052 the same symbol version. */
1053 bfd_boolean old_hidden
= h
->versioned
== versioned_hidden
;
1054 bfd_boolean new_hidden
= hi
->versioned
== versioned_hidden
;
1055 if (!old_hidden
&& !new_hidden
)
1056 /* The new symbol matches the existing symbol if both
1061 /* OLD_VERSION is the symbol version of the existing
1065 if (h
->versioned
>= versioned
)
1066 old_version
= strrchr (h
->root
.root
.string
,
1071 /* The new symbol matches the existing symbol if they
1072 have the same symbol version. */
1073 *matched
= (old_version
== new_version
1074 || (old_version
!= NULL
1075 && new_version
!= NULL
1076 && strcmp (old_version
, new_version
) == 0));
1081 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1086 switch (h
->root
.type
)
1091 case bfd_link_hash_undefined
:
1092 case bfd_link_hash_undefweak
:
1093 oldbfd
= h
->root
.u
.undef
.abfd
;
1096 case bfd_link_hash_defined
:
1097 case bfd_link_hash_defweak
:
1098 oldbfd
= h
->root
.u
.def
.section
->owner
;
1099 oldsec
= h
->root
.u
.def
.section
;
1102 case bfd_link_hash_common
:
1103 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1104 oldsec
= h
->root
.u
.c
.p
->section
;
1106 *pold_alignment
= h
->root
.u
.c
.p
->alignment_power
;
1109 if (poldbfd
&& *poldbfd
== NULL
)
1112 /* Differentiate strong and weak symbols. */
1113 newweak
= bind
== STB_WEAK
;
1114 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1115 || h
->root
.type
== bfd_link_hash_undefweak
);
1117 *pold_weak
= oldweak
;
1119 /* This code is for coping with dynamic objects, and is only useful
1120 if we are doing an ELF link. */
1121 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
1124 /* We have to check it for every instance since the first few may be
1125 references and not all compilers emit symbol type for undefined
1127 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
1129 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1130 respectively, is from a dynamic object. */
1132 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1134 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1135 syms and defined syms in dynamic libraries respectively.
1136 ref_dynamic on the other hand can be set for a symbol defined in
1137 a dynamic library, and def_dynamic may not be set; When the
1138 definition in a dynamic lib is overridden by a definition in the
1139 executable use of the symbol in the dynamic lib becomes a
1140 reference to the executable symbol. */
1143 if (bfd_is_und_section (sec
))
1145 if (bind
!= STB_WEAK
)
1147 h
->ref_dynamic_nonweak
= 1;
1148 hi
->ref_dynamic_nonweak
= 1;
1153 /* Update the existing symbol only if they match. */
1156 hi
->dynamic_def
= 1;
1160 /* If we just created the symbol, mark it as being an ELF symbol.
1161 Other than that, there is nothing to do--there is no merge issue
1162 with a newly defined symbol--so we just return. */
1164 if (h
->root
.type
== bfd_link_hash_new
)
1170 /* In cases involving weak versioned symbols, we may wind up trying
1171 to merge a symbol with itself. Catch that here, to avoid the
1172 confusion that results if we try to override a symbol with
1173 itself. The additional tests catch cases like
1174 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1175 dynamic object, which we do want to handle here. */
1177 && (newweak
|| oldweak
)
1178 && ((abfd
->flags
& DYNAMIC
) == 0
1179 || !h
->def_regular
))
1184 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1185 else if (oldsec
!= NULL
)
1187 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1188 indices used by MIPS ELF. */
1189 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1192 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1193 respectively, appear to be a definition rather than reference. */
1195 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1197 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1198 && h
->root
.type
!= bfd_link_hash_undefweak
1199 && h
->root
.type
!= bfd_link_hash_common
);
1201 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1202 respectively, appear to be a function. */
1204 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1205 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1207 oldfunc
= (h
->type
!= STT_NOTYPE
1208 && bed
->is_function_type (h
->type
));
1210 /* If creating a default indirect symbol ("foo" or "foo@") from a
1211 dynamic versioned definition ("foo@@") skip doing so if there is
1212 an existing regular definition with a different type. We don't
1213 want, for example, a "time" variable in the executable overriding
1214 a "time" function in a shared library. */
1215 if (pold_alignment
== NULL
1219 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1220 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1221 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1222 && h
->type
!= STT_NOTYPE
1223 && !(newfunc
&& oldfunc
))
1229 /* Check TLS symbols. We don't check undefined symbols introduced
1230 by "ld -u" which have no type (and oldbfd NULL), and we don't
1231 check symbols from plugins because they also have no type. */
1233 && (oldbfd
->flags
& BFD_PLUGIN
) == 0
1234 && (abfd
->flags
& BFD_PLUGIN
) == 0
1235 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1236 && (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
))
1239 bfd_boolean ntdef
, tdef
;
1240 asection
*ntsec
, *tsec
;
1242 if (h
->type
== STT_TLS
)
1262 (*_bfd_error_handler
)
1263 (_("%s: TLS definition in %B section %A "
1264 "mismatches non-TLS definition in %B section %A"),
1265 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1266 else if (!tdef
&& !ntdef
)
1267 (*_bfd_error_handler
)
1268 (_("%s: TLS reference in %B "
1269 "mismatches non-TLS reference in %B"),
1270 tbfd
, ntbfd
, h
->root
.root
.string
);
1272 (*_bfd_error_handler
)
1273 (_("%s: TLS definition in %B section %A "
1274 "mismatches non-TLS reference in %B"),
1275 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1277 (*_bfd_error_handler
)
1278 (_("%s: TLS reference in %B "
1279 "mismatches non-TLS definition in %B section %A"),
1280 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1282 bfd_set_error (bfd_error_bad_value
);
1286 /* If the old symbol has non-default visibility, we ignore the new
1287 definition from a dynamic object. */
1289 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1290 && !bfd_is_und_section (sec
))
1293 /* Make sure this symbol is dynamic. */
1295 hi
->ref_dynamic
= 1;
1296 /* A protected symbol has external availability. Make sure it is
1297 recorded as dynamic.
1299 FIXME: Should we check type and size for protected symbol? */
1300 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1301 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1306 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1309 /* If the new symbol with non-default visibility comes from a
1310 relocatable file and the old definition comes from a dynamic
1311 object, we remove the old definition. */
1312 if (hi
->root
.type
== bfd_link_hash_indirect
)
1314 /* Handle the case where the old dynamic definition is
1315 default versioned. We need to copy the symbol info from
1316 the symbol with default version to the normal one if it
1317 was referenced before. */
1320 hi
->root
.type
= h
->root
.type
;
1321 h
->root
.type
= bfd_link_hash_indirect
;
1322 (*bed
->elf_backend_copy_indirect_symbol
) (info
, hi
, h
);
1324 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1325 if (ELF_ST_VISIBILITY (sym
->st_other
) != STV_PROTECTED
)
1327 /* If the new symbol is hidden or internal, completely undo
1328 any dynamic link state. */
1329 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1330 h
->forced_local
= 0;
1337 /* FIXME: Should we check type and size for protected symbol? */
1347 /* If the old symbol was undefined before, then it will still be
1348 on the undefs list. If the new symbol is undefined or
1349 common, we can't make it bfd_link_hash_new here, because new
1350 undefined or common symbols will be added to the undefs list
1351 by _bfd_generic_link_add_one_symbol. Symbols may not be
1352 added twice to the undefs list. Also, if the new symbol is
1353 undefweak then we don't want to lose the strong undef. */
1354 if (h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1356 h
->root
.type
= bfd_link_hash_undefined
;
1357 h
->root
.u
.undef
.abfd
= abfd
;
1361 h
->root
.type
= bfd_link_hash_new
;
1362 h
->root
.u
.undef
.abfd
= NULL
;
1365 if (ELF_ST_VISIBILITY (sym
->st_other
) != STV_PROTECTED
)
1367 /* If the new symbol is hidden or internal, completely undo
1368 any dynamic link state. */
1369 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1370 h
->forced_local
= 0;
1376 /* FIXME: Should we check type and size for protected symbol? */
1382 /* If a new weak symbol definition comes from a regular file and the
1383 old symbol comes from a dynamic library, we treat the new one as
1384 strong. Similarly, an old weak symbol definition from a regular
1385 file is treated as strong when the new symbol comes from a dynamic
1386 library. Further, an old weak symbol from a dynamic library is
1387 treated as strong if the new symbol is from a dynamic library.
1388 This reflects the way glibc's ld.so works.
1390 Do this before setting *type_change_ok or *size_change_ok so that
1391 we warn properly when dynamic library symbols are overridden. */
1393 if (newdef
&& !newdyn
&& olddyn
)
1395 if (olddef
&& newdyn
)
1398 /* Allow changes between different types of function symbol. */
1399 if (newfunc
&& oldfunc
)
1400 *type_change_ok
= TRUE
;
1402 /* It's OK to change the type if either the existing symbol or the
1403 new symbol is weak. A type change is also OK if the old symbol
1404 is undefined and the new symbol is defined. */
1409 && h
->root
.type
== bfd_link_hash_undefined
))
1410 *type_change_ok
= TRUE
;
1412 /* It's OK to change the size if either the existing symbol or the
1413 new symbol is weak, or if the old symbol is undefined. */
1416 || h
->root
.type
== bfd_link_hash_undefined
)
1417 *size_change_ok
= TRUE
;
1419 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1420 symbol, respectively, appears to be a common symbol in a dynamic
1421 object. If a symbol appears in an uninitialized section, and is
1422 not weak, and is not a function, then it may be a common symbol
1423 which was resolved when the dynamic object was created. We want
1424 to treat such symbols specially, because they raise special
1425 considerations when setting the symbol size: if the symbol
1426 appears as a common symbol in a regular object, and the size in
1427 the regular object is larger, we must make sure that we use the
1428 larger size. This problematic case can always be avoided in C,
1429 but it must be handled correctly when using Fortran shared
1432 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1433 likewise for OLDDYNCOMMON and OLDDEF.
1435 Note that this test is just a heuristic, and that it is quite
1436 possible to have an uninitialized symbol in a shared object which
1437 is really a definition, rather than a common symbol. This could
1438 lead to some minor confusion when the symbol really is a common
1439 symbol in some regular object. However, I think it will be
1445 && (sec
->flags
& SEC_ALLOC
) != 0
1446 && (sec
->flags
& SEC_LOAD
) == 0
1449 newdyncommon
= TRUE
;
1451 newdyncommon
= FALSE
;
1455 && h
->root
.type
== bfd_link_hash_defined
1457 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1458 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1461 olddyncommon
= TRUE
;
1463 olddyncommon
= FALSE
;
1465 /* We now know everything about the old and new symbols. We ask the
1466 backend to check if we can merge them. */
1467 if (bed
->merge_symbol
!= NULL
)
1469 if (!bed
->merge_symbol (h
, sym
, psec
, newdef
, olddef
, oldbfd
, oldsec
))
1474 /* If both the old and the new symbols look like common symbols in a
1475 dynamic object, set the size of the symbol to the larger of the
1480 && sym
->st_size
!= h
->size
)
1482 /* Since we think we have two common symbols, issue a multiple
1483 common warning if desired. Note that we only warn if the
1484 size is different. If the size is the same, we simply let
1485 the old symbol override the new one as normally happens with
1486 symbols defined in dynamic objects. */
1488 (*info
->callbacks
->multiple_common
) (info
, &h
->root
, abfd
,
1489 bfd_link_hash_common
, sym
->st_size
);
1490 if (sym
->st_size
> h
->size
)
1491 h
->size
= sym
->st_size
;
1493 *size_change_ok
= TRUE
;
1496 /* If we are looking at a dynamic object, and we have found a
1497 definition, we need to see if the symbol was already defined by
1498 some other object. If so, we want to use the existing
1499 definition, and we do not want to report a multiple symbol
1500 definition error; we do this by clobbering *PSEC to be
1501 bfd_und_section_ptr.
1503 We treat a common symbol as a definition if the symbol in the
1504 shared library is a function, since common symbols always
1505 represent variables; this can cause confusion in principle, but
1506 any such confusion would seem to indicate an erroneous program or
1507 shared library. We also permit a common symbol in a regular
1508 object to override a weak symbol in a shared object. A common
1509 symbol in executable also overrides a symbol in a shared object. */
1514 || (h
->root
.type
== bfd_link_hash_common
1517 || (!olddyn
&& bfd_link_executable (info
))))))
1521 newdyncommon
= FALSE
;
1523 *psec
= sec
= bfd_und_section_ptr
;
1524 *size_change_ok
= TRUE
;
1526 /* If we get here when the old symbol is a common symbol, then
1527 we are explicitly letting it override a weak symbol or
1528 function in a dynamic object, and we don't want to warn about
1529 a type change. If the old symbol is a defined symbol, a type
1530 change warning may still be appropriate. */
1532 if (h
->root
.type
== bfd_link_hash_common
)
1533 *type_change_ok
= TRUE
;
1536 /* Handle the special case of an old common symbol merging with a
1537 new symbol which looks like a common symbol in a shared object.
1538 We change *PSEC and *PVALUE to make the new symbol look like a
1539 common symbol, and let _bfd_generic_link_add_one_symbol do the
1543 && h
->root
.type
== bfd_link_hash_common
)
1547 newdyncommon
= FALSE
;
1548 *pvalue
= sym
->st_size
;
1549 *psec
= sec
= bed
->common_section (oldsec
);
1550 *size_change_ok
= TRUE
;
1553 /* Skip weak definitions of symbols that are already defined. */
1554 if (newdef
&& olddef
&& newweak
)
1556 /* Don't skip new non-IR weak syms. */
1557 if (!(oldbfd
!= NULL
1558 && (oldbfd
->flags
& BFD_PLUGIN
) != 0
1559 && (abfd
->flags
& BFD_PLUGIN
) == 0))
1565 /* Merge st_other. If the symbol already has a dynamic index,
1566 but visibility says it should not be visible, turn it into a
1568 elf_merge_st_other (abfd
, h
, sym
, sec
, newdef
, newdyn
);
1569 if (h
->dynindx
!= -1)
1570 switch (ELF_ST_VISIBILITY (h
->other
))
1574 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1579 /* If the old symbol is from a dynamic object, and the new symbol is
1580 a definition which is not from a dynamic object, then the new
1581 symbol overrides the old symbol. Symbols from regular files
1582 always take precedence over symbols from dynamic objects, even if
1583 they are defined after the dynamic object in the link.
1585 As above, we again permit a common symbol in a regular object to
1586 override a definition in a shared object if the shared object
1587 symbol is a function or is weak. */
1592 || (bfd_is_com_section (sec
)
1593 && (oldweak
|| oldfunc
)))
1598 /* Change the hash table entry to undefined, and let
1599 _bfd_generic_link_add_one_symbol do the right thing with the
1602 h
->root
.type
= bfd_link_hash_undefined
;
1603 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1604 *size_change_ok
= TRUE
;
1607 olddyncommon
= FALSE
;
1609 /* We again permit a type change when a common symbol may be
1610 overriding a function. */
1612 if (bfd_is_com_section (sec
))
1616 /* If a common symbol overrides a function, make sure
1617 that it isn't defined dynamically nor has type
1620 h
->type
= STT_NOTYPE
;
1622 *type_change_ok
= TRUE
;
1625 if (hi
->root
.type
== bfd_link_hash_indirect
)
1628 /* This union may have been set to be non-NULL when this symbol
1629 was seen in a dynamic object. We must force the union to be
1630 NULL, so that it is correct for a regular symbol. */
1631 h
->verinfo
.vertree
= NULL
;
1634 /* Handle the special case of a new common symbol merging with an
1635 old symbol that looks like it might be a common symbol defined in
1636 a shared object. Note that we have already handled the case in
1637 which a new common symbol should simply override the definition
1638 in the shared library. */
1641 && bfd_is_com_section (sec
)
1644 /* It would be best if we could set the hash table entry to a
1645 common symbol, but we don't know what to use for the section
1646 or the alignment. */
1647 (*info
->callbacks
->multiple_common
) (info
, &h
->root
, abfd
,
1648 bfd_link_hash_common
, sym
->st_size
);
1650 /* If the presumed common symbol in the dynamic object is
1651 larger, pretend that the new symbol has its size. */
1653 if (h
->size
> *pvalue
)
1656 /* We need to remember the alignment required by the symbol
1657 in the dynamic object. */
1658 BFD_ASSERT (pold_alignment
);
1659 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1662 olddyncommon
= FALSE
;
1664 h
->root
.type
= bfd_link_hash_undefined
;
1665 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1667 *size_change_ok
= TRUE
;
1668 *type_change_ok
= TRUE
;
1670 if (hi
->root
.type
== bfd_link_hash_indirect
)
1673 h
->verinfo
.vertree
= NULL
;
1678 /* Handle the case where we had a versioned symbol in a dynamic
1679 library and now find a definition in a normal object. In this
1680 case, we make the versioned symbol point to the normal one. */
1681 flip
->root
.type
= h
->root
.type
;
1682 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1683 h
->root
.type
= bfd_link_hash_indirect
;
1684 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1685 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1689 flip
->ref_dynamic
= 1;
1696 /* This function is called to create an indirect symbol from the
1697 default for the symbol with the default version if needed. The
1698 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1699 set DYNSYM if the new indirect symbol is dynamic. */
1702 _bfd_elf_add_default_symbol (bfd
*abfd
,
1703 struct bfd_link_info
*info
,
1704 struct elf_link_hash_entry
*h
,
1706 Elf_Internal_Sym
*sym
,
1710 bfd_boolean
*dynsym
)
1712 bfd_boolean type_change_ok
;
1713 bfd_boolean size_change_ok
;
1716 struct elf_link_hash_entry
*hi
;
1717 struct bfd_link_hash_entry
*bh
;
1718 const struct elf_backend_data
*bed
;
1719 bfd_boolean collect
;
1720 bfd_boolean dynamic
;
1721 bfd_boolean override
;
1723 size_t len
, shortlen
;
1725 bfd_boolean matched
;
1727 if (h
->versioned
== unversioned
|| h
->versioned
== versioned_hidden
)
1730 /* If this symbol has a version, and it is the default version, we
1731 create an indirect symbol from the default name to the fully
1732 decorated name. This will cause external references which do not
1733 specify a version to be bound to this version of the symbol. */
1734 p
= strchr (name
, ELF_VER_CHR
);
1735 if (h
->versioned
== unknown
)
1739 h
->versioned
= unversioned
;
1744 if (p
[1] != ELF_VER_CHR
)
1746 h
->versioned
= versioned_hidden
;
1750 h
->versioned
= versioned
;
1755 /* PR ld/19073: We may see an unversioned definition after the
1761 bed
= get_elf_backend_data (abfd
);
1762 collect
= bed
->collect
;
1763 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1765 shortlen
= p
- name
;
1766 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1767 if (shortname
== NULL
)
1769 memcpy (shortname
, name
, shortlen
);
1770 shortname
[shortlen
] = '\0';
1772 /* We are going to create a new symbol. Merge it with any existing
1773 symbol with this name. For the purposes of the merge, act as
1774 though we were defining the symbol we just defined, although we
1775 actually going to define an indirect symbol. */
1776 type_change_ok
= FALSE
;
1777 size_change_ok
= FALSE
;
1780 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &tmp_sec
, &value
,
1781 &hi
, poldbfd
, NULL
, NULL
, &skip
, &override
,
1782 &type_change_ok
, &size_change_ok
, &matched
))
1788 if (hi
->def_regular
)
1790 /* If the undecorated symbol will have a version added by a
1791 script different to H, then don't indirect to/from the
1792 undecorated symbol. This isn't ideal because we may not yet
1793 have seen symbol versions, if given by a script on the
1794 command line rather than via --version-script. */
1795 if (hi
->verinfo
.vertree
== NULL
&& info
->version_info
!= NULL
)
1800 = bfd_find_version_for_sym (info
->version_info
,
1801 hi
->root
.root
.string
, &hide
);
1802 if (hi
->verinfo
.vertree
!= NULL
&& hide
)
1804 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
1808 if (hi
->verinfo
.vertree
!= NULL
1809 && strcmp (p
+ 1 + (p
[1] == '@'), hi
->verinfo
.vertree
->name
) != 0)
1815 /* Add the default symbol if not performing a relocatable link. */
1816 if (! bfd_link_relocatable (info
))
1819 if (! (_bfd_generic_link_add_one_symbol
1820 (info
, abfd
, shortname
, BSF_INDIRECT
,
1821 bfd_ind_section_ptr
,
1822 0, name
, FALSE
, collect
, &bh
)))
1824 hi
= (struct elf_link_hash_entry
*) bh
;
1829 /* In this case the symbol named SHORTNAME is overriding the
1830 indirect symbol we want to add. We were planning on making
1831 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1832 is the name without a version. NAME is the fully versioned
1833 name, and it is the default version.
1835 Overriding means that we already saw a definition for the
1836 symbol SHORTNAME in a regular object, and it is overriding
1837 the symbol defined in the dynamic object.
1839 When this happens, we actually want to change NAME, the
1840 symbol we just added, to refer to SHORTNAME. This will cause
1841 references to NAME in the shared object to become references
1842 to SHORTNAME in the regular object. This is what we expect
1843 when we override a function in a shared object: that the
1844 references in the shared object will be mapped to the
1845 definition in the regular object. */
1847 while (hi
->root
.type
== bfd_link_hash_indirect
1848 || hi
->root
.type
== bfd_link_hash_warning
)
1849 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1851 h
->root
.type
= bfd_link_hash_indirect
;
1852 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1856 hi
->ref_dynamic
= 1;
1860 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1865 /* Now set HI to H, so that the following code will set the
1866 other fields correctly. */
1870 /* Check if HI is a warning symbol. */
1871 if (hi
->root
.type
== bfd_link_hash_warning
)
1872 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1874 /* If there is a duplicate definition somewhere, then HI may not
1875 point to an indirect symbol. We will have reported an error to
1876 the user in that case. */
1878 if (hi
->root
.type
== bfd_link_hash_indirect
)
1880 struct elf_link_hash_entry
*ht
;
1882 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1883 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1885 /* A reference to the SHORTNAME symbol from a dynamic library
1886 will be satisfied by the versioned symbol at runtime. In
1887 effect, we have a reference to the versioned symbol. */
1888 ht
->ref_dynamic_nonweak
|= hi
->ref_dynamic_nonweak
;
1889 hi
->dynamic_def
|= ht
->dynamic_def
;
1891 /* See if the new flags lead us to realize that the symbol must
1897 if (! bfd_link_executable (info
)
1904 if (hi
->ref_regular
)
1910 /* We also need to define an indirection from the nondefault version
1914 len
= strlen (name
);
1915 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1916 if (shortname
== NULL
)
1918 memcpy (shortname
, name
, shortlen
);
1919 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1921 /* Once again, merge with any existing symbol. */
1922 type_change_ok
= FALSE
;
1923 size_change_ok
= FALSE
;
1925 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &tmp_sec
, &value
,
1926 &hi
, poldbfd
, NULL
, NULL
, &skip
, &override
,
1927 &type_change_ok
, &size_change_ok
, &matched
))
1935 /* Here SHORTNAME is a versioned name, so we don't expect to see
1936 the type of override we do in the case above unless it is
1937 overridden by a versioned definition. */
1938 if (hi
->root
.type
!= bfd_link_hash_defined
1939 && hi
->root
.type
!= bfd_link_hash_defweak
)
1940 (*_bfd_error_handler
)
1941 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1947 if (! (_bfd_generic_link_add_one_symbol
1948 (info
, abfd
, shortname
, BSF_INDIRECT
,
1949 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1951 hi
= (struct elf_link_hash_entry
*) bh
;
1953 /* If there is a duplicate definition somewhere, then HI may not
1954 point to an indirect symbol. We will have reported an error
1955 to the user in that case. */
1957 if (hi
->root
.type
== bfd_link_hash_indirect
)
1959 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1960 h
->ref_dynamic_nonweak
|= hi
->ref_dynamic_nonweak
;
1961 hi
->dynamic_def
|= h
->dynamic_def
;
1963 /* See if the new flags lead us to realize that the symbol
1969 if (! bfd_link_executable (info
)
1975 if (hi
->ref_regular
)
1985 /* This routine is used to export all defined symbols into the dynamic
1986 symbol table. It is called via elf_link_hash_traverse. */
1989 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1991 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1993 /* Ignore indirect symbols. These are added by the versioning code. */
1994 if (h
->root
.type
== bfd_link_hash_indirect
)
1997 /* Ignore this if we won't export it. */
1998 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
2001 if (h
->dynindx
== -1
2002 && (h
->def_regular
|| h
->ref_regular
)
2003 && ! bfd_hide_sym_by_version (eif
->info
->version_info
,
2004 h
->root
.root
.string
))
2006 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2016 /* Look through the symbols which are defined in other shared
2017 libraries and referenced here. Update the list of version
2018 dependencies. This will be put into the .gnu.version_r section.
2019 This function is called via elf_link_hash_traverse. */
2022 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
2025 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
2026 Elf_Internal_Verneed
*t
;
2027 Elf_Internal_Vernaux
*a
;
2030 /* We only care about symbols defined in shared objects with version
2035 || h
->verinfo
.verdef
== NULL
2036 || (elf_dyn_lib_class (h
->verinfo
.verdef
->vd_bfd
)
2037 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
| DYN_NO_NEEDED
)))
2040 /* See if we already know about this version. */
2041 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
2045 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
2048 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
2049 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
2055 /* This is a new version. Add it to tree we are building. */
2060 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
2063 rinfo
->failed
= TRUE
;
2067 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
2068 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
2069 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
2073 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
2076 rinfo
->failed
= TRUE
;
2080 /* Note that we are copying a string pointer here, and testing it
2081 above. If bfd_elf_string_from_elf_section is ever changed to
2082 discard the string data when low in memory, this will have to be
2084 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
2086 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
2087 a
->vna_nextptr
= t
->vn_auxptr
;
2089 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
2092 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
2099 /* Figure out appropriate versions for all the symbols. We may not
2100 have the version number script until we have read all of the input
2101 files, so until that point we don't know which symbols should be
2102 local. This function is called via elf_link_hash_traverse. */
2105 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
2107 struct elf_info_failed
*sinfo
;
2108 struct bfd_link_info
*info
;
2109 const struct elf_backend_data
*bed
;
2110 struct elf_info_failed eif
;
2113 sinfo
= (struct elf_info_failed
*) data
;
2116 /* Fix the symbol flags. */
2119 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
2122 sinfo
->failed
= TRUE
;
2126 /* We only need version numbers for symbols defined in regular
2128 if (!h
->def_regular
)
2131 bed
= get_elf_backend_data (info
->output_bfd
);
2132 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
2133 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
2135 struct bfd_elf_version_tree
*t
;
2138 if (*p
== ELF_VER_CHR
)
2141 /* If there is no version string, we can just return out. */
2145 /* Look for the version. If we find it, it is no longer weak. */
2146 for (t
= sinfo
->info
->version_info
; t
!= NULL
; t
= t
->next
)
2148 if (strcmp (t
->name
, p
) == 0)
2152 struct bfd_elf_version_expr
*d
;
2154 len
= p
- h
->root
.root
.string
;
2155 alc
= (char *) bfd_malloc (len
);
2158 sinfo
->failed
= TRUE
;
2161 memcpy (alc
, h
->root
.root
.string
, len
- 1);
2162 alc
[len
- 1] = '\0';
2163 if (alc
[len
- 2] == ELF_VER_CHR
)
2164 alc
[len
- 2] = '\0';
2166 h
->verinfo
.vertree
= t
;
2170 if (t
->globals
.list
!= NULL
)
2171 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2173 /* See if there is anything to force this symbol to
2175 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2177 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2180 && ! info
->export_dynamic
)
2181 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2189 /* If we are building an application, we need to create a
2190 version node for this version. */
2191 if (t
== NULL
&& bfd_link_executable (info
))
2193 struct bfd_elf_version_tree
**pp
;
2196 /* If we aren't going to export this symbol, we don't need
2197 to worry about it. */
2198 if (h
->dynindx
== -1)
2201 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
,
2205 sinfo
->failed
= TRUE
;
2210 t
->name_indx
= (unsigned int) -1;
2214 /* Don't count anonymous version tag. */
2215 if (sinfo
->info
->version_info
!= NULL
2216 && sinfo
->info
->version_info
->vernum
== 0)
2218 for (pp
= &sinfo
->info
->version_info
;
2222 t
->vernum
= version_index
;
2226 h
->verinfo
.vertree
= t
;
2230 /* We could not find the version for a symbol when
2231 generating a shared archive. Return an error. */
2232 (*_bfd_error_handler
)
2233 (_("%B: version node not found for symbol %s"),
2234 info
->output_bfd
, h
->root
.root
.string
);
2235 bfd_set_error (bfd_error_bad_value
);
2236 sinfo
->failed
= TRUE
;
2241 /* If we don't have a version for this symbol, see if we can find
2243 if (h
->verinfo
.vertree
== NULL
&& sinfo
->info
->version_info
!= NULL
)
2248 = bfd_find_version_for_sym (sinfo
->info
->version_info
,
2249 h
->root
.root
.string
, &hide
);
2250 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2251 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2257 /* Read and swap the relocs from the section indicated by SHDR. This
2258 may be either a REL or a RELA section. The relocations are
2259 translated into RELA relocations and stored in INTERNAL_RELOCS,
2260 which should have already been allocated to contain enough space.
2261 The EXTERNAL_RELOCS are a buffer where the external form of the
2262 relocations should be stored.
2264 Returns FALSE if something goes wrong. */
2267 elf_link_read_relocs_from_section (bfd
*abfd
,
2269 Elf_Internal_Shdr
*shdr
,
2270 void *external_relocs
,
2271 Elf_Internal_Rela
*internal_relocs
)
2273 const struct elf_backend_data
*bed
;
2274 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2275 const bfd_byte
*erela
;
2276 const bfd_byte
*erelaend
;
2277 Elf_Internal_Rela
*irela
;
2278 Elf_Internal_Shdr
*symtab_hdr
;
2281 /* Position ourselves at the start of the section. */
2282 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2285 /* Read the relocations. */
2286 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2289 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2290 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2292 bed
= get_elf_backend_data (abfd
);
2294 /* Convert the external relocations to the internal format. */
2295 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2296 swap_in
= bed
->s
->swap_reloc_in
;
2297 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2298 swap_in
= bed
->s
->swap_reloca_in
;
2301 bfd_set_error (bfd_error_wrong_format
);
2305 erela
= (const bfd_byte
*) external_relocs
;
2306 erelaend
= erela
+ shdr
->sh_size
;
2307 irela
= internal_relocs
;
2308 while (erela
< erelaend
)
2312 (*swap_in
) (abfd
, erela
, irela
);
2313 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2314 if (bed
->s
->arch_size
== 64)
2318 if ((size_t) r_symndx
>= nsyms
)
2320 (*_bfd_error_handler
)
2321 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2322 " for offset 0x%lx in section `%A'"),
2324 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2325 bfd_set_error (bfd_error_bad_value
);
2329 else if (r_symndx
!= STN_UNDEF
)
2331 (*_bfd_error_handler
)
2332 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2333 " when the object file has no symbol table"),
2335 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2336 bfd_set_error (bfd_error_bad_value
);
2339 irela
+= bed
->s
->int_rels_per_ext_rel
;
2340 erela
+= shdr
->sh_entsize
;
2346 /* Read and swap the relocs for a section O. They may have been
2347 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2348 not NULL, they are used as buffers to read into. They are known to
2349 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2350 the return value is allocated using either malloc or bfd_alloc,
2351 according to the KEEP_MEMORY argument. If O has two relocation
2352 sections (both REL and RELA relocations), then the REL_HDR
2353 relocations will appear first in INTERNAL_RELOCS, followed by the
2354 RELA_HDR relocations. */
2357 _bfd_elf_link_read_relocs (bfd
*abfd
,
2359 void *external_relocs
,
2360 Elf_Internal_Rela
*internal_relocs
,
2361 bfd_boolean keep_memory
)
2363 void *alloc1
= NULL
;
2364 Elf_Internal_Rela
*alloc2
= NULL
;
2365 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2366 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
2367 Elf_Internal_Rela
*internal_rela_relocs
;
2369 if (esdo
->relocs
!= NULL
)
2370 return esdo
->relocs
;
2372 if (o
->reloc_count
== 0)
2375 if (internal_relocs
== NULL
)
2379 size
= o
->reloc_count
;
2380 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2382 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2384 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2385 if (internal_relocs
== NULL
)
2389 if (external_relocs
== NULL
)
2391 bfd_size_type size
= 0;
2394 size
+= esdo
->rel
.hdr
->sh_size
;
2396 size
+= esdo
->rela
.hdr
->sh_size
;
2398 alloc1
= bfd_malloc (size
);
2401 external_relocs
= alloc1
;
2404 internal_rela_relocs
= internal_relocs
;
2407 if (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rel
.hdr
,
2411 external_relocs
= (((bfd_byte
*) external_relocs
)
2412 + esdo
->rel
.hdr
->sh_size
);
2413 internal_rela_relocs
+= (NUM_SHDR_ENTRIES (esdo
->rel
.hdr
)
2414 * bed
->s
->int_rels_per_ext_rel
);
2418 && (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rela
.hdr
,
2420 internal_rela_relocs
)))
2423 /* Cache the results for next time, if we can. */
2425 esdo
->relocs
= internal_relocs
;
2430 /* Don't free alloc2, since if it was allocated we are passing it
2431 back (under the name of internal_relocs). */
2433 return internal_relocs
;
2441 bfd_release (abfd
, alloc2
);
2448 /* Compute the size of, and allocate space for, REL_HDR which is the
2449 section header for a section containing relocations for O. */
2452 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2453 struct bfd_elf_section_reloc_data
*reldata
)
2455 Elf_Internal_Shdr
*rel_hdr
= reldata
->hdr
;
2457 /* That allows us to calculate the size of the section. */
2458 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reldata
->count
;
2460 /* The contents field must last into write_object_contents, so we
2461 allocate it with bfd_alloc rather than malloc. Also since we
2462 cannot be sure that the contents will actually be filled in,
2463 we zero the allocated space. */
2464 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2465 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2468 if (reldata
->hashes
== NULL
&& reldata
->count
)
2470 struct elf_link_hash_entry
**p
;
2472 p
= ((struct elf_link_hash_entry
**)
2473 bfd_zmalloc (reldata
->count
* sizeof (*p
)));
2477 reldata
->hashes
= p
;
2483 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2484 originated from the section given by INPUT_REL_HDR) to the
2488 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2489 asection
*input_section
,
2490 Elf_Internal_Shdr
*input_rel_hdr
,
2491 Elf_Internal_Rela
*internal_relocs
,
2492 struct elf_link_hash_entry
**rel_hash
2495 Elf_Internal_Rela
*irela
;
2496 Elf_Internal_Rela
*irelaend
;
2498 struct bfd_elf_section_reloc_data
*output_reldata
;
2499 asection
*output_section
;
2500 const struct elf_backend_data
*bed
;
2501 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2502 struct bfd_elf_section_data
*esdo
;
2504 output_section
= input_section
->output_section
;
2506 bed
= get_elf_backend_data (output_bfd
);
2507 esdo
= elf_section_data (output_section
);
2508 if (esdo
->rel
.hdr
&& esdo
->rel
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2510 output_reldata
= &esdo
->rel
;
2511 swap_out
= bed
->s
->swap_reloc_out
;
2513 else if (esdo
->rela
.hdr
2514 && esdo
->rela
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2516 output_reldata
= &esdo
->rela
;
2517 swap_out
= bed
->s
->swap_reloca_out
;
2521 (*_bfd_error_handler
)
2522 (_("%B: relocation size mismatch in %B section %A"),
2523 output_bfd
, input_section
->owner
, input_section
);
2524 bfd_set_error (bfd_error_wrong_format
);
2528 erel
= output_reldata
->hdr
->contents
;
2529 erel
+= output_reldata
->count
* input_rel_hdr
->sh_entsize
;
2530 irela
= internal_relocs
;
2531 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2532 * bed
->s
->int_rels_per_ext_rel
);
2533 while (irela
< irelaend
)
2535 (*swap_out
) (output_bfd
, irela
, erel
);
2536 irela
+= bed
->s
->int_rels_per_ext_rel
;
2537 erel
+= input_rel_hdr
->sh_entsize
;
2540 /* Bump the counter, so that we know where to add the next set of
2542 output_reldata
->count
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2547 /* Make weak undefined symbols in PIE dynamic. */
2550 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2551 struct elf_link_hash_entry
*h
)
2553 if (bfd_link_pie (info
)
2555 && h
->root
.type
== bfd_link_hash_undefweak
)
2556 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2561 /* Fix up the flags for a symbol. This handles various cases which
2562 can only be fixed after all the input files are seen. This is
2563 currently called by both adjust_dynamic_symbol and
2564 assign_sym_version, which is unnecessary but perhaps more robust in
2565 the face of future changes. */
2568 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2569 struct elf_info_failed
*eif
)
2571 const struct elf_backend_data
*bed
;
2573 /* If this symbol was mentioned in a non-ELF file, try to set
2574 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2575 permit a non-ELF file to correctly refer to a symbol defined in
2576 an ELF dynamic object. */
2579 while (h
->root
.type
== bfd_link_hash_indirect
)
2580 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2582 if (h
->root
.type
!= bfd_link_hash_defined
2583 && h
->root
.type
!= bfd_link_hash_defweak
)
2586 h
->ref_regular_nonweak
= 1;
2590 if (h
->root
.u
.def
.section
->owner
!= NULL
2591 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2592 == bfd_target_elf_flavour
))
2595 h
->ref_regular_nonweak
= 1;
2601 if (h
->dynindx
== -1
2605 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2614 /* Unfortunately, NON_ELF is only correct if the symbol
2615 was first seen in a non-ELF file. Fortunately, if the symbol
2616 was first seen in an ELF file, we're probably OK unless the
2617 symbol was defined in a non-ELF file. Catch that case here.
2618 FIXME: We're still in trouble if the symbol was first seen in
2619 a dynamic object, and then later in a non-ELF regular object. */
2620 if ((h
->root
.type
== bfd_link_hash_defined
2621 || h
->root
.type
== bfd_link_hash_defweak
)
2623 && (h
->root
.u
.def
.section
->owner
!= NULL
2624 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2625 != bfd_target_elf_flavour
)
2626 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2627 && !h
->def_dynamic
)))
2631 /* Backend specific symbol fixup. */
2632 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2633 if (bed
->elf_backend_fixup_symbol
2634 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2637 /* If this is a final link, and the symbol was defined as a common
2638 symbol in a regular object file, and there was no definition in
2639 any dynamic object, then the linker will have allocated space for
2640 the symbol in a common section but the DEF_REGULAR
2641 flag will not have been set. */
2642 if (h
->root
.type
== bfd_link_hash_defined
2646 && (h
->root
.u
.def
.section
->owner
->flags
& (DYNAMIC
| BFD_PLUGIN
)) == 0)
2649 /* If -Bsymbolic was used (which means to bind references to global
2650 symbols to the definition within the shared object), and this
2651 symbol was defined in a regular object, then it actually doesn't
2652 need a PLT entry. Likewise, if the symbol has non-default
2653 visibility. If the symbol has hidden or internal visibility, we
2654 will force it local. */
2656 && bfd_link_pic (eif
->info
)
2657 && is_elf_hash_table (eif
->info
->hash
)
2658 && (SYMBOLIC_BIND (eif
->info
, h
)
2659 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2662 bfd_boolean force_local
;
2664 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2665 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2666 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2669 /* If a weak undefined symbol has non-default visibility, we also
2670 hide it from the dynamic linker. */
2671 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2672 && h
->root
.type
== bfd_link_hash_undefweak
)
2673 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2675 /* If this is a weak defined symbol in a dynamic object, and we know
2676 the real definition in the dynamic object, copy interesting flags
2677 over to the real definition. */
2678 if (h
->u
.weakdef
!= NULL
)
2680 /* If the real definition is defined by a regular object file,
2681 don't do anything special. See the longer description in
2682 _bfd_elf_adjust_dynamic_symbol, below. */
2683 if (h
->u
.weakdef
->def_regular
)
2684 h
->u
.weakdef
= NULL
;
2687 struct elf_link_hash_entry
*weakdef
= h
->u
.weakdef
;
2689 while (h
->root
.type
== bfd_link_hash_indirect
)
2690 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2692 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2693 || h
->root
.type
== bfd_link_hash_defweak
);
2694 BFD_ASSERT (weakdef
->def_dynamic
);
2695 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2696 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2697 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2704 /* Make the backend pick a good value for a dynamic symbol. This is
2705 called via elf_link_hash_traverse, and also calls itself
2709 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2711 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2713 const struct elf_backend_data
*bed
;
2715 if (! is_elf_hash_table (eif
->info
->hash
))
2718 /* Ignore indirect symbols. These are added by the versioning code. */
2719 if (h
->root
.type
== bfd_link_hash_indirect
)
2722 /* Fix the symbol flags. */
2723 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2726 /* If this symbol does not require a PLT entry, and it is not
2727 defined by a dynamic object, or is not referenced by a regular
2728 object, ignore it. We do have to handle a weak defined symbol,
2729 even if no regular object refers to it, if we decided to add it
2730 to the dynamic symbol table. FIXME: Do we normally need to worry
2731 about symbols which are defined by one dynamic object and
2732 referenced by another one? */
2734 && h
->type
!= STT_GNU_IFUNC
2738 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2740 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2744 /* If we've already adjusted this symbol, don't do it again. This
2745 can happen via a recursive call. */
2746 if (h
->dynamic_adjusted
)
2749 /* Don't look at this symbol again. Note that we must set this
2750 after checking the above conditions, because we may look at a
2751 symbol once, decide not to do anything, and then get called
2752 recursively later after REF_REGULAR is set below. */
2753 h
->dynamic_adjusted
= 1;
2755 /* If this is a weak definition, and we know a real definition, and
2756 the real symbol is not itself defined by a regular object file,
2757 then get a good value for the real definition. We handle the
2758 real symbol first, for the convenience of the backend routine.
2760 Note that there is a confusing case here. If the real definition
2761 is defined by a regular object file, we don't get the real symbol
2762 from the dynamic object, but we do get the weak symbol. If the
2763 processor backend uses a COPY reloc, then if some routine in the
2764 dynamic object changes the real symbol, we will not see that
2765 change in the corresponding weak symbol. This is the way other
2766 ELF linkers work as well, and seems to be a result of the shared
2769 I will clarify this issue. Most SVR4 shared libraries define the
2770 variable _timezone and define timezone as a weak synonym. The
2771 tzset call changes _timezone. If you write
2772 extern int timezone;
2774 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2775 you might expect that, since timezone is a synonym for _timezone,
2776 the same number will print both times. However, if the processor
2777 backend uses a COPY reloc, then actually timezone will be copied
2778 into your process image, and, since you define _timezone
2779 yourself, _timezone will not. Thus timezone and _timezone will
2780 wind up at different memory locations. The tzset call will set
2781 _timezone, leaving timezone unchanged. */
2783 if (h
->u
.weakdef
!= NULL
)
2785 /* If we get to this point, there is an implicit reference to
2786 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2787 h
->u
.weakdef
->ref_regular
= 1;
2789 /* Ensure that the backend adjust_dynamic_symbol function sees
2790 H->U.WEAKDEF before H by recursively calling ourselves. */
2791 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2795 /* If a symbol has no type and no size and does not require a PLT
2796 entry, then we are probably about to do the wrong thing here: we
2797 are probably going to create a COPY reloc for an empty object.
2798 This case can arise when a shared object is built with assembly
2799 code, and the assembly code fails to set the symbol type. */
2801 && h
->type
== STT_NOTYPE
2803 (*_bfd_error_handler
)
2804 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2805 h
->root
.root
.string
);
2807 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2808 bed
= get_elf_backend_data (dynobj
);
2810 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2819 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2823 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info
*info
,
2824 struct elf_link_hash_entry
*h
,
2827 unsigned int power_of_two
;
2829 asection
*sec
= h
->root
.u
.def
.section
;
2831 /* The section aligment of definition is the maximum alignment
2832 requirement of symbols defined in the section. Since we don't
2833 know the symbol alignment requirement, we start with the
2834 maximum alignment and check low bits of the symbol address
2835 for the minimum alignment. */
2836 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2837 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2838 while ((h
->root
.u
.def
.value
& mask
) != 0)
2844 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2847 /* Adjust the section alignment if needed. */
2848 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2853 /* We make sure that the symbol will be aligned properly. */
2854 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2856 /* Define the symbol as being at this point in DYNBSS. */
2857 h
->root
.u
.def
.section
= dynbss
;
2858 h
->root
.u
.def
.value
= dynbss
->size
;
2860 /* Increment the size of DYNBSS to make room for the symbol. */
2861 dynbss
->size
+= h
->size
;
2863 /* No error if extern_protected_data is true. */
2864 if (h
->protected_def
2865 && (!info
->extern_protected_data
2866 || (info
->extern_protected_data
< 0
2867 && !get_elf_backend_data (dynbss
->owner
)->extern_protected_data
)))
2868 info
->callbacks
->einfo
2869 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2870 h
->root
.root
.string
);
2875 /* Adjust all external symbols pointing into SEC_MERGE sections
2876 to reflect the object merging within the sections. */
2879 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2883 if ((h
->root
.type
== bfd_link_hash_defined
2884 || h
->root
.type
== bfd_link_hash_defweak
)
2885 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2886 && sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
)
2888 bfd
*output_bfd
= (bfd
*) data
;
2890 h
->root
.u
.def
.value
=
2891 _bfd_merged_section_offset (output_bfd
,
2892 &h
->root
.u
.def
.section
,
2893 elf_section_data (sec
)->sec_info
,
2894 h
->root
.u
.def
.value
);
2900 /* Returns false if the symbol referred to by H should be considered
2901 to resolve local to the current module, and true if it should be
2902 considered to bind dynamically. */
2905 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2906 struct bfd_link_info
*info
,
2907 bfd_boolean not_local_protected
)
2909 bfd_boolean binding_stays_local_p
;
2910 const struct elf_backend_data
*bed
;
2911 struct elf_link_hash_table
*hash_table
;
2916 while (h
->root
.type
== bfd_link_hash_indirect
2917 || h
->root
.type
== bfd_link_hash_warning
)
2918 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2920 /* If it was forced local, then clearly it's not dynamic. */
2921 if (h
->dynindx
== -1)
2923 if (h
->forced_local
)
2926 /* Identify the cases where name binding rules say that a
2927 visible symbol resolves locally. */
2928 binding_stays_local_p
= (bfd_link_executable (info
)
2929 || SYMBOLIC_BIND (info
, h
));
2931 switch (ELF_ST_VISIBILITY (h
->other
))
2938 hash_table
= elf_hash_table (info
);
2939 if (!is_elf_hash_table (hash_table
))
2942 bed
= get_elf_backend_data (hash_table
->dynobj
);
2944 /* Proper resolution for function pointer equality may require
2945 that these symbols perhaps be resolved dynamically, even though
2946 we should be resolving them to the current module. */
2947 if (!not_local_protected
|| !bed
->is_function_type (h
->type
))
2948 binding_stays_local_p
= TRUE
;
2955 /* If it isn't defined locally, then clearly it's dynamic. */
2956 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2959 /* Otherwise, the symbol is dynamic if binding rules don't tell
2960 us that it remains local. */
2961 return !binding_stays_local_p
;
2964 /* Return true if the symbol referred to by H should be considered
2965 to resolve local to the current module, and false otherwise. Differs
2966 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2967 undefined symbols. The two functions are virtually identical except
2968 for the place where forced_local and dynindx == -1 are tested. If
2969 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2970 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2971 the symbol is local only for defined symbols.
2972 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2973 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2974 treatment of undefined weak symbols. For those that do not make
2975 undefined weak symbols dynamic, both functions may return false. */
2978 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2979 struct bfd_link_info
*info
,
2980 bfd_boolean local_protected
)
2982 const struct elf_backend_data
*bed
;
2983 struct elf_link_hash_table
*hash_table
;
2985 /* If it's a local sym, of course we resolve locally. */
2989 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2990 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2991 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2994 /* Common symbols that become definitions don't get the DEF_REGULAR
2995 flag set, so test it first, and don't bail out. */
2996 if (ELF_COMMON_DEF_P (h
))
2998 /* If we don't have a definition in a regular file, then we can't
2999 resolve locally. The sym is either undefined or dynamic. */
3000 else if (!h
->def_regular
)
3003 /* Forced local symbols resolve locally. */
3004 if (h
->forced_local
)
3007 /* As do non-dynamic symbols. */
3008 if (h
->dynindx
== -1)
3011 /* At this point, we know the symbol is defined and dynamic. In an
3012 executable it must resolve locally, likewise when building symbolic
3013 shared libraries. */
3014 if (bfd_link_executable (info
) || SYMBOLIC_BIND (info
, h
))
3017 /* Now deal with defined dynamic symbols in shared libraries. Ones
3018 with default visibility might not resolve locally. */
3019 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
3022 hash_table
= elf_hash_table (info
);
3023 if (!is_elf_hash_table (hash_table
))
3026 bed
= get_elf_backend_data (hash_table
->dynobj
);
3028 /* If extern_protected_data is false, STV_PROTECTED non-function
3029 symbols are local. */
3030 if ((!info
->extern_protected_data
3031 || (info
->extern_protected_data
< 0
3032 && !bed
->extern_protected_data
))
3033 && !bed
->is_function_type (h
->type
))
3036 /* Function pointer equality tests may require that STV_PROTECTED
3037 symbols be treated as dynamic symbols. If the address of a
3038 function not defined in an executable is set to that function's
3039 plt entry in the executable, then the address of the function in
3040 a shared library must also be the plt entry in the executable. */
3041 return local_protected
;
3044 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3045 aligned. Returns the first TLS output section. */
3047 struct bfd_section
*
3048 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
3050 struct bfd_section
*sec
, *tls
;
3051 unsigned int align
= 0;
3053 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
3054 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
3058 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
3059 if (sec
->alignment_power
> align
)
3060 align
= sec
->alignment_power
;
3062 elf_hash_table (info
)->tls_sec
= tls
;
3064 /* Ensure the alignment of the first section is the largest alignment,
3065 so that the tls segment starts aligned. */
3067 tls
->alignment_power
= align
;
3072 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3074 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
3075 Elf_Internal_Sym
*sym
)
3077 const struct elf_backend_data
*bed
;
3079 /* Local symbols do not count, but target specific ones might. */
3080 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
3081 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
3084 bed
= get_elf_backend_data (abfd
);
3085 /* Function symbols do not count. */
3086 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
3089 /* If the section is undefined, then so is the symbol. */
3090 if (sym
->st_shndx
== SHN_UNDEF
)
3093 /* If the symbol is defined in the common section, then
3094 it is a common definition and so does not count. */
3095 if (bed
->common_definition (sym
))
3098 /* If the symbol is in a target specific section then we
3099 must rely upon the backend to tell us what it is. */
3100 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
3101 /* FIXME - this function is not coded yet:
3103 return _bfd_is_global_symbol_definition (abfd, sym);
3105 Instead for now assume that the definition is not global,
3106 Even if this is wrong, at least the linker will behave
3107 in the same way that it used to do. */
3113 /* Search the symbol table of the archive element of the archive ABFD
3114 whose archive map contains a mention of SYMDEF, and determine if
3115 the symbol is defined in this element. */
3117 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
3119 Elf_Internal_Shdr
* hdr
;
3123 Elf_Internal_Sym
*isymbuf
;
3124 Elf_Internal_Sym
*isym
;
3125 Elf_Internal_Sym
*isymend
;
3128 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
3132 if (! bfd_check_format (abfd
, bfd_object
))
3135 /* Select the appropriate symbol table. If we don't know if the
3136 object file is an IR object, give linker LTO plugin a chance to
3137 get the correct symbol table. */
3138 if (abfd
->plugin_format
== bfd_plugin_yes
3139 #if BFD_SUPPORTS_PLUGINS
3140 || (abfd
->plugin_format
== bfd_plugin_unknown
3141 && bfd_link_plugin_object_p (abfd
))
3145 /* Use the IR symbol table if the object has been claimed by
3147 abfd
= abfd
->plugin_dummy_bfd
;
3148 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3150 else if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
3151 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3153 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3155 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
3157 /* The sh_info field of the symtab header tells us where the
3158 external symbols start. We don't care about the local symbols. */
3159 if (elf_bad_symtab (abfd
))
3161 extsymcount
= symcount
;
3166 extsymcount
= symcount
- hdr
->sh_info
;
3167 extsymoff
= hdr
->sh_info
;
3170 if (extsymcount
== 0)
3173 /* Read in the symbol table. */
3174 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3176 if (isymbuf
== NULL
)
3179 /* Scan the symbol table looking for SYMDEF. */
3181 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
3185 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3190 if (strcmp (name
, symdef
->name
) == 0)
3192 result
= is_global_data_symbol_definition (abfd
, isym
);
3202 /* Add an entry to the .dynamic table. */
3205 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3209 struct elf_link_hash_table
*hash_table
;
3210 const struct elf_backend_data
*bed
;
3212 bfd_size_type newsize
;
3213 bfd_byte
*newcontents
;
3214 Elf_Internal_Dyn dyn
;
3216 hash_table
= elf_hash_table (info
);
3217 if (! is_elf_hash_table (hash_table
))
3220 bed
= get_elf_backend_data (hash_table
->dynobj
);
3221 s
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3222 BFD_ASSERT (s
!= NULL
);
3224 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3225 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3226 if (newcontents
== NULL
)
3230 dyn
.d_un
.d_val
= val
;
3231 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3234 s
->contents
= newcontents
;
3239 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3240 otherwise just check whether one already exists. Returns -1 on error,
3241 1 if a DT_NEEDED tag already exists, and 0 on success. */
3244 elf_add_dt_needed_tag (bfd
*abfd
,
3245 struct bfd_link_info
*info
,
3249 struct elf_link_hash_table
*hash_table
;
3252 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3255 hash_table
= elf_hash_table (info
);
3256 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3257 if (strindex
== (size_t) -1)
3260 if (_bfd_elf_strtab_refcount (hash_table
->dynstr
, strindex
) != 1)
3263 const struct elf_backend_data
*bed
;
3266 bed
= get_elf_backend_data (hash_table
->dynobj
);
3267 sdyn
= bfd_get_linker_section (hash_table
->dynobj
, ".dynamic");
3269 for (extdyn
= sdyn
->contents
;
3270 extdyn
< sdyn
->contents
+ sdyn
->size
;
3271 extdyn
+= bed
->s
->sizeof_dyn
)
3273 Elf_Internal_Dyn dyn
;
3275 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3276 if (dyn
.d_tag
== DT_NEEDED
3277 && dyn
.d_un
.d_val
== strindex
)
3279 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3287 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3290 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3294 /* We were just checking for existence of the tag. */
3295 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3300 /* Return true if SONAME is on the needed list between NEEDED and STOP
3301 (or the end of list if STOP is NULL), and needed by a library that
3305 on_needed_list (const char *soname
,
3306 struct bfd_link_needed_list
*needed
,
3307 struct bfd_link_needed_list
*stop
)
3309 struct bfd_link_needed_list
*look
;
3310 for (look
= needed
; look
!= stop
; look
= look
->next
)
3311 if (strcmp (soname
, look
->name
) == 0
3312 && ((elf_dyn_lib_class (look
->by
) & DYN_AS_NEEDED
) == 0
3313 /* If needed by a library that itself is not directly
3314 needed, recursively check whether that library is
3315 indirectly needed. Since we add DT_NEEDED entries to
3316 the end of the list, library dependencies appear after
3317 the library. Therefore search prior to the current
3318 LOOK, preventing possible infinite recursion. */
3319 || on_needed_list (elf_dt_name (look
->by
), needed
, look
)))
3325 /* Sort symbol by value, section, and size. */
3327 elf_sort_symbol (const void *arg1
, const void *arg2
)
3329 const struct elf_link_hash_entry
*h1
;
3330 const struct elf_link_hash_entry
*h2
;
3331 bfd_signed_vma vdiff
;
3333 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3334 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3335 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3337 return vdiff
> 0 ? 1 : -1;
3340 int sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3342 return sdiff
> 0 ? 1 : -1;
3344 vdiff
= h1
->size
- h2
->size
;
3345 return vdiff
== 0 ? 0 : vdiff
> 0 ? 1 : -1;
3348 /* This function is used to adjust offsets into .dynstr for
3349 dynamic symbols. This is called via elf_link_hash_traverse. */
3352 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3354 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3356 if (h
->dynindx
!= -1)
3357 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3361 /* Assign string offsets in .dynstr, update all structures referencing
3365 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3367 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3368 struct elf_link_local_dynamic_entry
*entry
;
3369 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3370 bfd
*dynobj
= hash_table
->dynobj
;
3373 const struct elf_backend_data
*bed
;
3376 _bfd_elf_strtab_finalize (dynstr
);
3377 size
= _bfd_elf_strtab_size (dynstr
);
3379 bed
= get_elf_backend_data (dynobj
);
3380 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
3381 BFD_ASSERT (sdyn
!= NULL
);
3383 /* Update all .dynamic entries referencing .dynstr strings. */
3384 for (extdyn
= sdyn
->contents
;
3385 extdyn
< sdyn
->contents
+ sdyn
->size
;
3386 extdyn
+= bed
->s
->sizeof_dyn
)
3388 Elf_Internal_Dyn dyn
;
3390 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3394 dyn
.d_un
.d_val
= size
;
3404 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3409 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3412 /* Now update local dynamic symbols. */
3413 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3414 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3415 entry
->isym
.st_name
);
3417 /* And the rest of dynamic symbols. */
3418 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3420 /* Adjust version definitions. */
3421 if (elf_tdata (output_bfd
)->cverdefs
)
3426 Elf_Internal_Verdef def
;
3427 Elf_Internal_Verdaux defaux
;
3429 s
= bfd_get_linker_section (dynobj
, ".gnu.version_d");
3433 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3435 p
+= sizeof (Elf_External_Verdef
);
3436 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3438 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3440 _bfd_elf_swap_verdaux_in (output_bfd
,
3441 (Elf_External_Verdaux
*) p
, &defaux
);
3442 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3444 _bfd_elf_swap_verdaux_out (output_bfd
,
3445 &defaux
, (Elf_External_Verdaux
*) p
);
3446 p
+= sizeof (Elf_External_Verdaux
);
3449 while (def
.vd_next
);
3452 /* Adjust version references. */
3453 if (elf_tdata (output_bfd
)->verref
)
3458 Elf_Internal_Verneed need
;
3459 Elf_Internal_Vernaux needaux
;
3461 s
= bfd_get_linker_section (dynobj
, ".gnu.version_r");
3465 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3467 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3468 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3469 (Elf_External_Verneed
*) p
);
3470 p
+= sizeof (Elf_External_Verneed
);
3471 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3473 _bfd_elf_swap_vernaux_in (output_bfd
,
3474 (Elf_External_Vernaux
*) p
, &needaux
);
3475 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3477 _bfd_elf_swap_vernaux_out (output_bfd
,
3479 (Elf_External_Vernaux
*) p
);
3480 p
+= sizeof (Elf_External_Vernaux
);
3483 while (need
.vn_next
);
3489 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3490 The default is to only match when the INPUT and OUTPUT are exactly
3494 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3495 const bfd_target
*output
)
3497 return input
== output
;
3500 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3501 This version is used when different targets for the same architecture
3502 are virtually identical. */
3505 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3506 const bfd_target
*output
)
3508 const struct elf_backend_data
*obed
, *ibed
;
3510 if (input
== output
)
3513 ibed
= xvec_get_elf_backend_data (input
);
3514 obed
= xvec_get_elf_backend_data (output
);
3516 if (ibed
->arch
!= obed
->arch
)
3519 /* If both backends are using this function, deem them compatible. */
3520 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3523 /* Make a special call to the linker "notice" function to tell it that
3524 we are about to handle an as-needed lib, or have finished
3525 processing the lib. */
3528 _bfd_elf_notice_as_needed (bfd
*ibfd
,
3529 struct bfd_link_info
*info
,
3530 enum notice_asneeded_action act
)
3532 return (*info
->callbacks
->notice
) (info
, NULL
, NULL
, ibfd
, NULL
, act
, 0);
3535 /* Check relocations an ELF object file. */
3538 _bfd_elf_link_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
)
3540 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3541 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3543 /* If this object is the same format as the output object, and it is
3544 not a shared library, then let the backend look through the
3547 This is required to build global offset table entries and to
3548 arrange for dynamic relocs. It is not required for the
3549 particular common case of linking non PIC code, even when linking
3550 against shared libraries, but unfortunately there is no way of
3551 knowing whether an object file has been compiled PIC or not.
3552 Looking through the relocs is not particularly time consuming.
3553 The problem is that we must either (1) keep the relocs in memory,
3554 which causes the linker to require additional runtime memory or
3555 (2) read the relocs twice from the input file, which wastes time.
3556 This would be a good case for using mmap.
3558 I have no idea how to handle linking PIC code into a file of a
3559 different format. It probably can't be done. */
3560 if ((abfd
->flags
& DYNAMIC
) == 0
3561 && is_elf_hash_table (htab
)
3562 && bed
->check_relocs
!= NULL
3563 && elf_object_id (abfd
) == elf_hash_table_id (htab
)
3564 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
3568 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
3570 Elf_Internal_Rela
*internal_relocs
;
3573 /* Don't check relocations in excluded sections. */
3574 if ((o
->flags
& SEC_RELOC
) == 0
3575 || (o
->flags
& SEC_EXCLUDE
) != 0
3576 || o
->reloc_count
== 0
3577 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
3578 && (o
->flags
& SEC_DEBUGGING
) != 0)
3579 || bfd_is_abs_section (o
->output_section
))
3582 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
3584 if (internal_relocs
== NULL
)
3587 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
3589 if (elf_section_data (o
)->relocs
!= internal_relocs
)
3590 free (internal_relocs
);
3600 /* Add symbols from an ELF object file to the linker hash table. */
3603 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3605 Elf_Internal_Ehdr
*ehdr
;
3606 Elf_Internal_Shdr
*hdr
;
3610 struct elf_link_hash_entry
**sym_hash
;
3611 bfd_boolean dynamic
;
3612 Elf_External_Versym
*extversym
= NULL
;
3613 Elf_External_Versym
*ever
;
3614 struct elf_link_hash_entry
*weaks
;
3615 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3616 size_t nondeflt_vers_cnt
= 0;
3617 Elf_Internal_Sym
*isymbuf
= NULL
;
3618 Elf_Internal_Sym
*isym
;
3619 Elf_Internal_Sym
*isymend
;
3620 const struct elf_backend_data
*bed
;
3621 bfd_boolean add_needed
;
3622 struct elf_link_hash_table
*htab
;
3624 void *alloc_mark
= NULL
;
3625 struct bfd_hash_entry
**old_table
= NULL
;
3626 unsigned int old_size
= 0;
3627 unsigned int old_count
= 0;
3628 void *old_tab
= NULL
;
3630 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3631 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3632 void *old_strtab
= NULL
;
3635 bfd_boolean just_syms
;
3637 htab
= elf_hash_table (info
);
3638 bed
= get_elf_backend_data (abfd
);
3640 if ((abfd
->flags
& DYNAMIC
) == 0)
3646 /* You can't use -r against a dynamic object. Also, there's no
3647 hope of using a dynamic object which does not exactly match
3648 the format of the output file. */
3649 if (bfd_link_relocatable (info
)
3650 || !is_elf_hash_table (htab
)
3651 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3653 if (bfd_link_relocatable (info
))
3654 bfd_set_error (bfd_error_invalid_operation
);
3656 bfd_set_error (bfd_error_wrong_format
);
3661 ehdr
= elf_elfheader (abfd
);
3662 if (info
->warn_alternate_em
3663 && bed
->elf_machine_code
!= ehdr
->e_machine
3664 && ((bed
->elf_machine_alt1
!= 0
3665 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3666 || (bed
->elf_machine_alt2
!= 0
3667 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3668 info
->callbacks
->einfo
3669 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3670 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3672 /* As a GNU extension, any input sections which are named
3673 .gnu.warning.SYMBOL are treated as warning symbols for the given
3674 symbol. This differs from .gnu.warning sections, which generate
3675 warnings when they are included in an output file. */
3676 /* PR 12761: Also generate this warning when building shared libraries. */
3677 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3681 name
= bfd_get_section_name (abfd
, s
);
3682 if (CONST_STRNEQ (name
, ".gnu.warning."))
3687 name
+= sizeof ".gnu.warning." - 1;
3689 /* If this is a shared object, then look up the symbol
3690 in the hash table. If it is there, and it is already
3691 been defined, then we will not be using the entry
3692 from this shared object, so we don't need to warn.
3693 FIXME: If we see the definition in a regular object
3694 later on, we will warn, but we shouldn't. The only
3695 fix is to keep track of what warnings we are supposed
3696 to emit, and then handle them all at the end of the
3700 struct elf_link_hash_entry
*h
;
3702 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3704 /* FIXME: What about bfd_link_hash_common? */
3706 && (h
->root
.type
== bfd_link_hash_defined
3707 || h
->root
.type
== bfd_link_hash_defweak
))
3712 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3716 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3721 if (! (_bfd_generic_link_add_one_symbol
3722 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3723 FALSE
, bed
->collect
, NULL
)))
3726 if (bfd_link_executable (info
))
3728 /* Clobber the section size so that the warning does
3729 not get copied into the output file. */
3732 /* Also set SEC_EXCLUDE, so that symbols defined in
3733 the warning section don't get copied to the output. */
3734 s
->flags
|= SEC_EXCLUDE
;
3739 just_syms
= ((s
= abfd
->sections
) != NULL
3740 && s
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
);
3745 /* If we are creating a shared library, create all the dynamic
3746 sections immediately. We need to attach them to something,
3747 so we attach them to this BFD, provided it is the right
3748 format and is not from ld --just-symbols. Always create the
3749 dynamic sections for -E/--dynamic-list. FIXME: If there
3750 are no input BFD's of the same format as the output, we can't
3751 make a shared library. */
3753 && (bfd_link_pic (info
)
3754 || (!bfd_link_relocatable (info
)
3755 && (info
->export_dynamic
|| info
->dynamic
)))
3756 && is_elf_hash_table (htab
)
3757 && info
->output_bfd
->xvec
== abfd
->xvec
3758 && !htab
->dynamic_sections_created
)
3760 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3764 else if (!is_elf_hash_table (htab
))
3768 const char *soname
= NULL
;
3770 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3773 /* ld --just-symbols and dynamic objects don't mix very well.
3774 ld shouldn't allow it. */
3778 /* If this dynamic lib was specified on the command line with
3779 --as-needed in effect, then we don't want to add a DT_NEEDED
3780 tag unless the lib is actually used. Similary for libs brought
3781 in by another lib's DT_NEEDED. When --no-add-needed is used
3782 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3783 any dynamic library in DT_NEEDED tags in the dynamic lib at
3785 add_needed
= (elf_dyn_lib_class (abfd
)
3786 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3787 | DYN_NO_NEEDED
)) == 0;
3789 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3794 unsigned int elfsec
;
3795 unsigned long shlink
;
3797 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3804 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3805 if (elfsec
== SHN_BAD
)
3806 goto error_free_dyn
;
3807 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3809 for (extdyn
= dynbuf
;
3810 extdyn
< dynbuf
+ s
->size
;
3811 extdyn
+= bed
->s
->sizeof_dyn
)
3813 Elf_Internal_Dyn dyn
;
3815 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3816 if (dyn
.d_tag
== DT_SONAME
)
3818 unsigned int tagv
= dyn
.d_un
.d_val
;
3819 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3821 goto error_free_dyn
;
3823 if (dyn
.d_tag
== DT_NEEDED
)
3825 struct bfd_link_needed_list
*n
, **pn
;
3827 unsigned int tagv
= dyn
.d_un
.d_val
;
3829 amt
= sizeof (struct bfd_link_needed_list
);
3830 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3831 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3832 if (n
== NULL
|| fnm
== NULL
)
3833 goto error_free_dyn
;
3834 amt
= strlen (fnm
) + 1;
3835 anm
= (char *) bfd_alloc (abfd
, amt
);
3837 goto error_free_dyn
;
3838 memcpy (anm
, fnm
, amt
);
3842 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3846 if (dyn
.d_tag
== DT_RUNPATH
)
3848 struct bfd_link_needed_list
*n
, **pn
;
3850 unsigned int tagv
= dyn
.d_un
.d_val
;
3852 amt
= sizeof (struct bfd_link_needed_list
);
3853 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3854 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3855 if (n
== NULL
|| fnm
== NULL
)
3856 goto error_free_dyn
;
3857 amt
= strlen (fnm
) + 1;
3858 anm
= (char *) bfd_alloc (abfd
, amt
);
3860 goto error_free_dyn
;
3861 memcpy (anm
, fnm
, amt
);
3865 for (pn
= & runpath
;
3871 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3872 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3874 struct bfd_link_needed_list
*n
, **pn
;
3876 unsigned int tagv
= dyn
.d_un
.d_val
;
3878 amt
= sizeof (struct bfd_link_needed_list
);
3879 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3880 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3881 if (n
== NULL
|| fnm
== NULL
)
3882 goto error_free_dyn
;
3883 amt
= strlen (fnm
) + 1;
3884 anm
= (char *) bfd_alloc (abfd
, amt
);
3886 goto error_free_dyn
;
3887 memcpy (anm
, fnm
, amt
);
3897 if (dyn
.d_tag
== DT_AUDIT
)
3899 unsigned int tagv
= dyn
.d_un
.d_val
;
3900 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3907 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3908 frees all more recently bfd_alloc'd blocks as well. */
3914 struct bfd_link_needed_list
**pn
;
3915 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3920 /* We do not want to include any of the sections in a dynamic
3921 object in the output file. We hack by simply clobbering the
3922 list of sections in the BFD. This could be handled more
3923 cleanly by, say, a new section flag; the existing
3924 SEC_NEVER_LOAD flag is not the one we want, because that one
3925 still implies that the section takes up space in the output
3927 bfd_section_list_clear (abfd
);
3929 /* Find the name to use in a DT_NEEDED entry that refers to this
3930 object. If the object has a DT_SONAME entry, we use it.
3931 Otherwise, if the generic linker stuck something in
3932 elf_dt_name, we use that. Otherwise, we just use the file
3934 if (soname
== NULL
|| *soname
== '\0')
3936 soname
= elf_dt_name (abfd
);
3937 if (soname
== NULL
|| *soname
== '\0')
3938 soname
= bfd_get_filename (abfd
);
3941 /* Save the SONAME because sometimes the linker emulation code
3942 will need to know it. */
3943 elf_dt_name (abfd
) = soname
;
3945 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3949 /* If we have already included this dynamic object in the
3950 link, just ignore it. There is no reason to include a
3951 particular dynamic object more than once. */
3955 /* Save the DT_AUDIT entry for the linker emulation code. */
3956 elf_dt_audit (abfd
) = audit
;
3959 /* If this is a dynamic object, we always link against the .dynsym
3960 symbol table, not the .symtab symbol table. The dynamic linker
3961 will only see the .dynsym symbol table, so there is no reason to
3962 look at .symtab for a dynamic object. */
3964 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3965 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3967 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3969 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3971 /* The sh_info field of the symtab header tells us where the
3972 external symbols start. We don't care about the local symbols at
3974 if (elf_bad_symtab (abfd
))
3976 extsymcount
= symcount
;
3981 extsymcount
= symcount
- hdr
->sh_info
;
3982 extsymoff
= hdr
->sh_info
;
3985 sym_hash
= elf_sym_hashes (abfd
);
3986 if (extsymcount
!= 0)
3988 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3990 if (isymbuf
== NULL
)
3993 if (sym_hash
== NULL
)
3995 /* We store a pointer to the hash table entry for each
3998 amt
*= sizeof (struct elf_link_hash_entry
*);
3999 sym_hash
= (struct elf_link_hash_entry
**) bfd_zalloc (abfd
, amt
);
4000 if (sym_hash
== NULL
)
4001 goto error_free_sym
;
4002 elf_sym_hashes (abfd
) = sym_hash
;
4008 /* Read in any version definitions. */
4009 if (!_bfd_elf_slurp_version_tables (abfd
,
4010 info
->default_imported_symver
))
4011 goto error_free_sym
;
4013 /* Read in the symbol versions, but don't bother to convert them
4014 to internal format. */
4015 if (elf_dynversym (abfd
) != 0)
4017 Elf_Internal_Shdr
*versymhdr
;
4019 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
4020 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
4021 if (extversym
== NULL
)
4022 goto error_free_sym
;
4023 amt
= versymhdr
->sh_size
;
4024 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
4025 || bfd_bread (extversym
, amt
, abfd
) != amt
)
4026 goto error_free_vers
;
4030 /* If we are loading an as-needed shared lib, save the symbol table
4031 state before we start adding symbols. If the lib turns out
4032 to be unneeded, restore the state. */
4033 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4038 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
4040 struct bfd_hash_entry
*p
;
4041 struct elf_link_hash_entry
*h
;
4043 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4045 h
= (struct elf_link_hash_entry
*) p
;
4046 entsize
+= htab
->root
.table
.entsize
;
4047 if (h
->root
.type
== bfd_link_hash_warning
)
4048 entsize
+= htab
->root
.table
.entsize
;
4052 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
4053 old_tab
= bfd_malloc (tabsize
+ entsize
);
4054 if (old_tab
== NULL
)
4055 goto error_free_vers
;
4057 /* Remember the current objalloc pointer, so that all mem for
4058 symbols added can later be reclaimed. */
4059 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
4060 if (alloc_mark
== NULL
)
4061 goto error_free_vers
;
4063 /* Make a special call to the linker "notice" function to
4064 tell it that we are about to handle an as-needed lib. */
4065 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_as_needed
))
4066 goto error_free_vers
;
4068 /* Clone the symbol table. Remember some pointers into the
4069 symbol table, and dynamic symbol count. */
4070 old_ent
= (char *) old_tab
+ tabsize
;
4071 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
4072 old_undefs
= htab
->root
.undefs
;
4073 old_undefs_tail
= htab
->root
.undefs_tail
;
4074 old_table
= htab
->root
.table
.table
;
4075 old_size
= htab
->root
.table
.size
;
4076 old_count
= htab
->root
.table
.count
;
4077 old_strtab
= _bfd_elf_strtab_save (htab
->dynstr
);
4078 if (old_strtab
== NULL
)
4079 goto error_free_vers
;
4081 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4083 struct bfd_hash_entry
*p
;
4084 struct elf_link_hash_entry
*h
;
4086 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4088 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
4089 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4090 h
= (struct elf_link_hash_entry
*) p
;
4091 if (h
->root
.type
== bfd_link_hash_warning
)
4093 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
4094 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4101 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
4102 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
4104 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
4108 asection
*sec
, *new_sec
;
4111 struct elf_link_hash_entry
*h
;
4112 struct elf_link_hash_entry
*hi
;
4113 bfd_boolean definition
;
4114 bfd_boolean size_change_ok
;
4115 bfd_boolean type_change_ok
;
4116 bfd_boolean new_weakdef
;
4117 bfd_boolean new_weak
;
4118 bfd_boolean old_weak
;
4119 bfd_boolean override
;
4121 bfd_boolean discarded
;
4122 unsigned int old_alignment
;
4124 bfd_boolean matched
;
4128 flags
= BSF_NO_FLAGS
;
4130 value
= isym
->st_value
;
4131 common
= bed
->common_definition (isym
);
4134 bind
= ELF_ST_BIND (isym
->st_info
);
4138 /* This should be impossible, since ELF requires that all
4139 global symbols follow all local symbols, and that sh_info
4140 point to the first global symbol. Unfortunately, Irix 5
4145 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
4153 case STB_GNU_UNIQUE
:
4154 flags
= BSF_GNU_UNIQUE
;
4158 /* Leave it up to the processor backend. */
4162 if (isym
->st_shndx
== SHN_UNDEF
)
4163 sec
= bfd_und_section_ptr
;
4164 else if (isym
->st_shndx
== SHN_ABS
)
4165 sec
= bfd_abs_section_ptr
;
4166 else if (isym
->st_shndx
== SHN_COMMON
)
4168 sec
= bfd_com_section_ptr
;
4169 /* What ELF calls the size we call the value. What ELF
4170 calls the value we call the alignment. */
4171 value
= isym
->st_size
;
4175 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
4177 sec
= bfd_abs_section_ptr
;
4178 else if (discarded_section (sec
))
4180 /* Symbols from discarded section are undefined. We keep
4182 sec
= bfd_und_section_ptr
;
4184 isym
->st_shndx
= SHN_UNDEF
;
4186 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
4190 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
4193 goto error_free_vers
;
4195 if (isym
->st_shndx
== SHN_COMMON
4196 && (abfd
->flags
& BFD_PLUGIN
) != 0)
4198 asection
*xc
= bfd_get_section_by_name (abfd
, "COMMON");
4202 flagword sflags
= (SEC_ALLOC
| SEC_IS_COMMON
| SEC_KEEP
4204 xc
= bfd_make_section_with_flags (abfd
, "COMMON", sflags
);
4206 goto error_free_vers
;
4210 else if (isym
->st_shndx
== SHN_COMMON
4211 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
4212 && !bfd_link_relocatable (info
))
4214 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
4218 flagword sflags
= (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_IS_COMMON
4219 | SEC_LINKER_CREATED
);
4220 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon", sflags
);
4222 goto error_free_vers
;
4226 else if (bed
->elf_add_symbol_hook
)
4228 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
4230 goto error_free_vers
;
4232 /* The hook function sets the name to NULL if this symbol
4233 should be skipped for some reason. */
4238 /* Sanity check that all possibilities were handled. */
4241 bfd_set_error (bfd_error_bad_value
);
4242 goto error_free_vers
;
4245 /* Silently discard TLS symbols from --just-syms. There's
4246 no way to combine a static TLS block with a new TLS block
4247 for this executable. */
4248 if (ELF_ST_TYPE (isym
->st_info
) == STT_TLS
4249 && sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
4252 if (bfd_is_und_section (sec
)
4253 || bfd_is_com_section (sec
))
4258 size_change_ok
= FALSE
;
4259 type_change_ok
= bed
->type_change_ok
;
4266 if (is_elf_hash_table (htab
))
4268 Elf_Internal_Versym iver
;
4269 unsigned int vernum
= 0;
4274 if (info
->default_imported_symver
)
4275 /* Use the default symbol version created earlier. */
4276 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4281 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4283 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4285 /* If this is a hidden symbol, or if it is not version
4286 1, we append the version name to the symbol name.
4287 However, we do not modify a non-hidden absolute symbol
4288 if it is not a function, because it might be the version
4289 symbol itself. FIXME: What if it isn't? */
4290 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4292 && (!bfd_is_abs_section (sec
)
4293 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4296 size_t namelen
, verlen
, newlen
;
4299 if (isym
->st_shndx
!= SHN_UNDEF
)
4301 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4303 else if (vernum
> 1)
4305 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4311 (*_bfd_error_handler
)
4312 (_("%B: %s: invalid version %u (max %d)"),
4314 elf_tdata (abfd
)->cverdefs
);
4315 bfd_set_error (bfd_error_bad_value
);
4316 goto error_free_vers
;
4321 /* We cannot simply test for the number of
4322 entries in the VERNEED section since the
4323 numbers for the needed versions do not start
4325 Elf_Internal_Verneed
*t
;
4328 for (t
= elf_tdata (abfd
)->verref
;
4332 Elf_Internal_Vernaux
*a
;
4334 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4336 if (a
->vna_other
== vernum
)
4338 verstr
= a
->vna_nodename
;
4347 (*_bfd_error_handler
)
4348 (_("%B: %s: invalid needed version %d"),
4349 abfd
, name
, vernum
);
4350 bfd_set_error (bfd_error_bad_value
);
4351 goto error_free_vers
;
4355 namelen
= strlen (name
);
4356 verlen
= strlen (verstr
);
4357 newlen
= namelen
+ verlen
+ 2;
4358 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4359 && isym
->st_shndx
!= SHN_UNDEF
)
4362 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4363 if (newname
== NULL
)
4364 goto error_free_vers
;
4365 memcpy (newname
, name
, namelen
);
4366 p
= newname
+ namelen
;
4368 /* If this is a defined non-hidden version symbol,
4369 we add another @ to the name. This indicates the
4370 default version of the symbol. */
4371 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4372 && isym
->st_shndx
!= SHN_UNDEF
)
4374 memcpy (p
, verstr
, verlen
+ 1);
4379 /* If this symbol has default visibility and the user has
4380 requested we not re-export it, then mark it as hidden. */
4381 if (!bfd_is_und_section (sec
)
4384 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
4385 isym
->st_other
= (STV_HIDDEN
4386 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
4388 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
, &value
,
4389 sym_hash
, &old_bfd
, &old_weak
,
4390 &old_alignment
, &skip
, &override
,
4391 &type_change_ok
, &size_change_ok
,
4393 goto error_free_vers
;
4398 /* Override a definition only if the new symbol matches the
4400 if (override
&& matched
)
4404 while (h
->root
.type
== bfd_link_hash_indirect
4405 || h
->root
.type
== bfd_link_hash_warning
)
4406 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4408 if (elf_tdata (abfd
)->verdef
!= NULL
4411 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4414 if (! (_bfd_generic_link_add_one_symbol
4415 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4416 (struct bfd_link_hash_entry
**) sym_hash
)))
4417 goto error_free_vers
;
4419 if ((flags
& BSF_GNU_UNIQUE
)
4420 && (abfd
->flags
& DYNAMIC
) == 0
4421 && bfd_get_flavour (info
->output_bfd
) == bfd_target_elf_flavour
)
4422 elf_tdata (info
->output_bfd
)->has_gnu_symbols
|= elf_gnu_symbol_unique
;
4425 /* We need to make sure that indirect symbol dynamic flags are
4428 while (h
->root
.type
== bfd_link_hash_indirect
4429 || h
->root
.type
== bfd_link_hash_warning
)
4430 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4432 /* Setting the index to -3 tells elf_link_output_extsym that
4433 this symbol is defined in a discarded section. */
4439 new_weak
= (flags
& BSF_WEAK
) != 0;
4440 new_weakdef
= FALSE
;
4444 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4445 && is_elf_hash_table (htab
)
4446 && h
->u
.weakdef
== NULL
)
4448 /* Keep a list of all weak defined non function symbols from
4449 a dynamic object, using the weakdef field. Later in this
4450 function we will set the weakdef field to the correct
4451 value. We only put non-function symbols from dynamic
4452 objects on this list, because that happens to be the only
4453 time we need to know the normal symbol corresponding to a
4454 weak symbol, and the information is time consuming to
4455 figure out. If the weakdef field is not already NULL,
4456 then this symbol was already defined by some previous
4457 dynamic object, and we will be using that previous
4458 definition anyhow. */
4460 h
->u
.weakdef
= weaks
;
4465 /* Set the alignment of a common symbol. */
4466 if ((common
|| bfd_is_com_section (sec
))
4467 && h
->root
.type
== bfd_link_hash_common
)
4472 align
= bfd_log2 (isym
->st_value
);
4475 /* The new symbol is a common symbol in a shared object.
4476 We need to get the alignment from the section. */
4477 align
= new_sec
->alignment_power
;
4479 if (align
> old_alignment
)
4480 h
->root
.u
.c
.p
->alignment_power
= align
;
4482 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4485 if (is_elf_hash_table (htab
))
4487 /* Set a flag in the hash table entry indicating the type of
4488 reference or definition we just found. A dynamic symbol
4489 is one which is referenced or defined by both a regular
4490 object and a shared object. */
4491 bfd_boolean dynsym
= FALSE
;
4493 /* Plugin symbols aren't normal. Don't set def_regular or
4494 ref_regular for them, or make them dynamic. */
4495 if ((abfd
->flags
& BFD_PLUGIN
) != 0)
4502 if (bind
!= STB_WEAK
)
4503 h
->ref_regular_nonweak
= 1;
4515 /* If the indirect symbol has been forced local, don't
4516 make the real symbol dynamic. */
4517 if ((h
== hi
|| !hi
->forced_local
)
4518 && (bfd_link_dll (info
)
4528 hi
->ref_dynamic
= 1;
4533 hi
->def_dynamic
= 1;
4536 /* If the indirect symbol has been forced local, don't
4537 make the real symbol dynamic. */
4538 if ((h
== hi
|| !hi
->forced_local
)
4541 || (h
->u
.weakdef
!= NULL
4543 && h
->u
.weakdef
->dynindx
!= -1)))
4547 /* Check to see if we need to add an indirect symbol for
4548 the default name. */
4550 || (!override
&& h
->root
.type
== bfd_link_hash_common
))
4551 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4552 sec
, value
, &old_bfd
, &dynsym
))
4553 goto error_free_vers
;
4555 /* Check the alignment when a common symbol is involved. This
4556 can change when a common symbol is overridden by a normal
4557 definition or a common symbol is ignored due to the old
4558 normal definition. We need to make sure the maximum
4559 alignment is maintained. */
4560 if ((old_alignment
|| common
)
4561 && h
->root
.type
!= bfd_link_hash_common
)
4563 unsigned int common_align
;
4564 unsigned int normal_align
;
4565 unsigned int symbol_align
;
4569 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
4570 || h
->root
.type
== bfd_link_hash_defweak
);
4572 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4573 if (h
->root
.u
.def
.section
->owner
!= NULL
4574 && (h
->root
.u
.def
.section
->owner
->flags
4575 & (DYNAMIC
| BFD_PLUGIN
)) == 0)
4577 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4578 if (normal_align
> symbol_align
)
4579 normal_align
= symbol_align
;
4582 normal_align
= symbol_align
;
4586 common_align
= old_alignment
;
4587 common_bfd
= old_bfd
;
4592 common_align
= bfd_log2 (isym
->st_value
);
4594 normal_bfd
= old_bfd
;
4597 if (normal_align
< common_align
)
4599 /* PR binutils/2735 */
4600 if (normal_bfd
== NULL
)
4601 (*_bfd_error_handler
)
4602 (_("Warning: alignment %u of common symbol `%s' in %B is"
4603 " greater than the alignment (%u) of its section %A"),
4604 common_bfd
, h
->root
.u
.def
.section
,
4605 1 << common_align
, name
, 1 << normal_align
);
4607 (*_bfd_error_handler
)
4608 (_("Warning: alignment %u of symbol `%s' in %B"
4609 " is smaller than %u in %B"),
4610 normal_bfd
, common_bfd
,
4611 1 << normal_align
, name
, 1 << common_align
);
4615 /* Remember the symbol size if it isn't undefined. */
4616 if (isym
->st_size
!= 0
4617 && isym
->st_shndx
!= SHN_UNDEF
4618 && (definition
|| h
->size
== 0))
4621 && h
->size
!= isym
->st_size
4622 && ! size_change_ok
)
4623 (*_bfd_error_handler
)
4624 (_("Warning: size of symbol `%s' changed"
4625 " from %lu in %B to %lu in %B"),
4627 name
, (unsigned long) h
->size
,
4628 (unsigned long) isym
->st_size
);
4630 h
->size
= isym
->st_size
;
4633 /* If this is a common symbol, then we always want H->SIZE
4634 to be the size of the common symbol. The code just above
4635 won't fix the size if a common symbol becomes larger. We
4636 don't warn about a size change here, because that is
4637 covered by --warn-common. Allow changes between different
4639 if (h
->root
.type
== bfd_link_hash_common
)
4640 h
->size
= h
->root
.u
.c
.size
;
4642 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4643 && ((definition
&& !new_weak
)
4644 || (old_weak
&& h
->root
.type
== bfd_link_hash_common
)
4645 || h
->type
== STT_NOTYPE
))
4647 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4649 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4651 if (type
== STT_GNU_IFUNC
4652 && (abfd
->flags
& DYNAMIC
) != 0)
4655 if (h
->type
!= type
)
4657 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4658 (*_bfd_error_handler
)
4659 (_("Warning: type of symbol `%s' changed"
4660 " from %d to %d in %B"),
4661 abfd
, name
, h
->type
, type
);
4667 /* Merge st_other field. */
4668 elf_merge_st_other (abfd
, h
, isym
, sec
, definition
, dynamic
);
4670 /* We don't want to make debug symbol dynamic. */
4672 && (sec
->flags
& SEC_DEBUGGING
)
4673 && !bfd_link_relocatable (info
))
4676 /* Nor should we make plugin symbols dynamic. */
4677 if ((abfd
->flags
& BFD_PLUGIN
) != 0)
4682 h
->target_internal
= isym
->st_target_internal
;
4683 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4686 if (definition
&& !dynamic
)
4688 char *p
= strchr (name
, ELF_VER_CHR
);
4689 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4691 /* Queue non-default versions so that .symver x, x@FOO
4692 aliases can be checked. */
4695 amt
= ((isymend
- isym
+ 1)
4696 * sizeof (struct elf_link_hash_entry
*));
4698 = (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4700 goto error_free_vers
;
4702 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4706 if (dynsym
&& h
->dynindx
== -1)
4708 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4709 goto error_free_vers
;
4710 if (h
->u
.weakdef
!= NULL
4712 && h
->u
.weakdef
->dynindx
== -1)
4714 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4715 goto error_free_vers
;
4718 else if (h
->dynindx
!= -1)
4719 /* If the symbol already has a dynamic index, but
4720 visibility says it should not be visible, turn it into
4722 switch (ELF_ST_VISIBILITY (h
->other
))
4726 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4731 /* Don't add DT_NEEDED for references from the dummy bfd nor
4732 for unmatched symbol. */
4737 && h
->ref_regular_nonweak
4739 || (old_bfd
->flags
& BFD_PLUGIN
) == 0))
4740 || (h
->ref_dynamic_nonweak
4741 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4742 && !on_needed_list (elf_dt_name (abfd
),
4743 htab
->needed
, NULL
))))
4746 const char *soname
= elf_dt_name (abfd
);
4748 info
->callbacks
->minfo ("%!", soname
, old_bfd
,
4749 h
->root
.root
.string
);
4751 /* A symbol from a library loaded via DT_NEEDED of some
4752 other library is referenced by a regular object.
4753 Add a DT_NEEDED entry for it. Issue an error if
4754 --no-add-needed is used and the reference was not
4757 && (elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4759 (*_bfd_error_handler
)
4760 (_("%B: undefined reference to symbol '%s'"),
4762 bfd_set_error (bfd_error_missing_dso
);
4763 goto error_free_vers
;
4766 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4767 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4770 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4772 goto error_free_vers
;
4774 BFD_ASSERT (ret
== 0);
4779 if (extversym
!= NULL
)
4785 if (isymbuf
!= NULL
)
4791 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4795 /* Restore the symbol table. */
4796 old_ent
= (char *) old_tab
+ tabsize
;
4797 memset (elf_sym_hashes (abfd
), 0,
4798 extsymcount
* sizeof (struct elf_link_hash_entry
*));
4799 htab
->root
.table
.table
= old_table
;
4800 htab
->root
.table
.size
= old_size
;
4801 htab
->root
.table
.count
= old_count
;
4802 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4803 htab
->root
.undefs
= old_undefs
;
4804 htab
->root
.undefs_tail
= old_undefs_tail
;
4805 _bfd_elf_strtab_restore (htab
->dynstr
, old_strtab
);
4808 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4810 struct bfd_hash_entry
*p
;
4811 struct elf_link_hash_entry
*h
;
4813 unsigned int alignment_power
;
4815 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4817 h
= (struct elf_link_hash_entry
*) p
;
4818 if (h
->root
.type
== bfd_link_hash_warning
)
4819 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4821 /* Preserve the maximum alignment and size for common
4822 symbols even if this dynamic lib isn't on DT_NEEDED
4823 since it can still be loaded at run time by another
4825 if (h
->root
.type
== bfd_link_hash_common
)
4827 size
= h
->root
.u
.c
.size
;
4828 alignment_power
= h
->root
.u
.c
.p
->alignment_power
;
4833 alignment_power
= 0;
4835 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4836 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4837 h
= (struct elf_link_hash_entry
*) p
;
4838 if (h
->root
.type
== bfd_link_hash_warning
)
4840 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4841 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4842 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4844 if (h
->root
.type
== bfd_link_hash_common
)
4846 if (size
> h
->root
.u
.c
.size
)
4847 h
->root
.u
.c
.size
= size
;
4848 if (alignment_power
> h
->root
.u
.c
.p
->alignment_power
)
4849 h
->root
.u
.c
.p
->alignment_power
= alignment_power
;
4854 /* Make a special call to the linker "notice" function to
4855 tell it that symbols added for crefs may need to be removed. */
4856 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_not_needed
))
4857 goto error_free_vers
;
4860 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4862 if (nondeflt_vers
!= NULL
)
4863 free (nondeflt_vers
);
4867 if (old_tab
!= NULL
)
4869 if (!(*bed
->notice_as_needed
) (abfd
, info
, notice_needed
))
4870 goto error_free_vers
;
4875 /* Now that all the symbols from this input file are created, if
4876 not performing a relocatable link, handle .symver foo, foo@BAR
4877 such that any relocs against foo become foo@BAR. */
4878 if (!bfd_link_relocatable (info
) && nondeflt_vers
!= NULL
)
4882 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4884 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4885 char *shortname
, *p
;
4887 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4889 || (h
->root
.type
!= bfd_link_hash_defined
4890 && h
->root
.type
!= bfd_link_hash_defweak
))
4893 amt
= p
- h
->root
.root
.string
;
4894 shortname
= (char *) bfd_malloc (amt
+ 1);
4896 goto error_free_vers
;
4897 memcpy (shortname
, h
->root
.root
.string
, amt
);
4898 shortname
[amt
] = '\0';
4900 hi
= (struct elf_link_hash_entry
*)
4901 bfd_link_hash_lookup (&htab
->root
, shortname
,
4902 FALSE
, FALSE
, FALSE
);
4904 && hi
->root
.type
== h
->root
.type
4905 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4906 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4908 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4909 hi
->root
.type
= bfd_link_hash_indirect
;
4910 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4911 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4912 sym_hash
= elf_sym_hashes (abfd
);
4914 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4915 if (sym_hash
[symidx
] == hi
)
4917 sym_hash
[symidx
] = h
;
4923 free (nondeflt_vers
);
4924 nondeflt_vers
= NULL
;
4927 /* Now set the weakdefs field correctly for all the weak defined
4928 symbols we found. The only way to do this is to search all the
4929 symbols. Since we only need the information for non functions in
4930 dynamic objects, that's the only time we actually put anything on
4931 the list WEAKS. We need this information so that if a regular
4932 object refers to a symbol defined weakly in a dynamic object, the
4933 real symbol in the dynamic object is also put in the dynamic
4934 symbols; we also must arrange for both symbols to point to the
4935 same memory location. We could handle the general case of symbol
4936 aliasing, but a general symbol alias can only be generated in
4937 assembler code, handling it correctly would be very time
4938 consuming, and other ELF linkers don't handle general aliasing
4942 struct elf_link_hash_entry
**hpp
;
4943 struct elf_link_hash_entry
**hppend
;
4944 struct elf_link_hash_entry
**sorted_sym_hash
;
4945 struct elf_link_hash_entry
*h
;
4948 /* Since we have to search the whole symbol list for each weak
4949 defined symbol, search time for N weak defined symbols will be
4950 O(N^2). Binary search will cut it down to O(NlogN). */
4952 amt
*= sizeof (struct elf_link_hash_entry
*);
4953 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4954 if (sorted_sym_hash
== NULL
)
4956 sym_hash
= sorted_sym_hash
;
4957 hpp
= elf_sym_hashes (abfd
);
4958 hppend
= hpp
+ extsymcount
;
4960 for (; hpp
< hppend
; hpp
++)
4964 && h
->root
.type
== bfd_link_hash_defined
4965 && !bed
->is_function_type (h
->type
))
4973 qsort (sorted_sym_hash
, sym_count
,
4974 sizeof (struct elf_link_hash_entry
*),
4977 while (weaks
!= NULL
)
4979 struct elf_link_hash_entry
*hlook
;
4982 size_t i
, j
, idx
= 0;
4985 weaks
= hlook
->u
.weakdef
;
4986 hlook
->u
.weakdef
= NULL
;
4988 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4989 || hlook
->root
.type
== bfd_link_hash_defweak
4990 || hlook
->root
.type
== bfd_link_hash_common
4991 || hlook
->root
.type
== bfd_link_hash_indirect
);
4992 slook
= hlook
->root
.u
.def
.section
;
4993 vlook
= hlook
->root
.u
.def
.value
;
4999 bfd_signed_vma vdiff
;
5001 h
= sorted_sym_hash
[idx
];
5002 vdiff
= vlook
- h
->root
.u
.def
.value
;
5009 int sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
5019 /* We didn't find a value/section match. */
5023 /* With multiple aliases, or when the weak symbol is already
5024 strongly defined, we have multiple matching symbols and
5025 the binary search above may land on any of them. Step
5026 one past the matching symbol(s). */
5029 h
= sorted_sym_hash
[idx
];
5030 if (h
->root
.u
.def
.section
!= slook
5031 || h
->root
.u
.def
.value
!= vlook
)
5035 /* Now look back over the aliases. Since we sorted by size
5036 as well as value and section, we'll choose the one with
5037 the largest size. */
5040 h
= sorted_sym_hash
[idx
];
5042 /* Stop if value or section doesn't match. */
5043 if (h
->root
.u
.def
.section
!= slook
5044 || h
->root
.u
.def
.value
!= vlook
)
5046 else if (h
!= hlook
)
5048 hlook
->u
.weakdef
= h
;
5050 /* If the weak definition is in the list of dynamic
5051 symbols, make sure the real definition is put
5053 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
5055 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5058 free (sorted_sym_hash
);
5063 /* If the real definition is in the list of dynamic
5064 symbols, make sure the weak definition is put
5065 there as well. If we don't do this, then the
5066 dynamic loader might not merge the entries for the
5067 real definition and the weak definition. */
5068 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
5070 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
5071 goto err_free_sym_hash
;
5078 free (sorted_sym_hash
);
5081 if (bed
->check_directives
5082 && !(*bed
->check_directives
) (abfd
, info
))
5085 if (!info
->check_relocs_after_open_input
5086 && !_bfd_elf_link_check_relocs (abfd
, info
))
5089 /* If this is a non-traditional link, try to optimize the handling
5090 of the .stab/.stabstr sections. */
5092 && ! info
->traditional_format
5093 && is_elf_hash_table (htab
)
5094 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
5098 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
5099 if (stabstr
!= NULL
)
5101 bfd_size_type string_offset
= 0;
5104 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
5105 if (CONST_STRNEQ (stab
->name
, ".stab")
5106 && (!stab
->name
[5] ||
5107 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
5108 && (stab
->flags
& SEC_MERGE
) == 0
5109 && !bfd_is_abs_section (stab
->output_section
))
5111 struct bfd_elf_section_data
*secdata
;
5113 secdata
= elf_section_data (stab
);
5114 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
5115 stabstr
, &secdata
->sec_info
,
5118 if (secdata
->sec_info
)
5119 stab
->sec_info_type
= SEC_INFO_TYPE_STABS
;
5124 if (is_elf_hash_table (htab
) && add_needed
)
5126 /* Add this bfd to the loaded list. */
5127 struct elf_link_loaded_list
*n
;
5129 n
= (struct elf_link_loaded_list
*) bfd_alloc (abfd
, sizeof (*n
));
5133 n
->next
= htab
->loaded
;
5140 if (old_tab
!= NULL
)
5142 if (old_strtab
!= NULL
)
5144 if (nondeflt_vers
!= NULL
)
5145 free (nondeflt_vers
);
5146 if (extversym
!= NULL
)
5149 if (isymbuf
!= NULL
)
5155 /* Return the linker hash table entry of a symbol that might be
5156 satisfied by an archive symbol. Return -1 on error. */
5158 struct elf_link_hash_entry
*
5159 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
5160 struct bfd_link_info
*info
,
5163 struct elf_link_hash_entry
*h
;
5167 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, TRUE
);
5171 /* If this is a default version (the name contains @@), look up the
5172 symbol again with only one `@' as well as without the version.
5173 The effect is that references to the symbol with and without the
5174 version will be matched by the default symbol in the archive. */
5176 p
= strchr (name
, ELF_VER_CHR
);
5177 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
5180 /* First check with only one `@'. */
5181 len
= strlen (name
);
5182 copy
= (char *) bfd_alloc (abfd
, len
);
5184 return (struct elf_link_hash_entry
*) 0 - 1;
5186 first
= p
- name
+ 1;
5187 memcpy (copy
, name
, first
);
5188 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
5190 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, TRUE
);
5193 /* We also need to check references to the symbol without the
5195 copy
[first
- 1] = '\0';
5196 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
5197 FALSE
, FALSE
, TRUE
);
5200 bfd_release (abfd
, copy
);
5204 /* Add symbols from an ELF archive file to the linker hash table. We
5205 don't use _bfd_generic_link_add_archive_symbols because we need to
5206 handle versioned symbols.
5208 Fortunately, ELF archive handling is simpler than that done by
5209 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5210 oddities. In ELF, if we find a symbol in the archive map, and the
5211 symbol is currently undefined, we know that we must pull in that
5214 Unfortunately, we do have to make multiple passes over the symbol
5215 table until nothing further is resolved. */
5218 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5221 unsigned char *included
= NULL
;
5225 const struct elf_backend_data
*bed
;
5226 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
5227 (bfd
*, struct bfd_link_info
*, const char *);
5229 if (! bfd_has_map (abfd
))
5231 /* An empty archive is a special case. */
5232 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
5234 bfd_set_error (bfd_error_no_armap
);
5238 /* Keep track of all symbols we know to be already defined, and all
5239 files we know to be already included. This is to speed up the
5240 second and subsequent passes. */
5241 c
= bfd_ardata (abfd
)->symdef_count
;
5245 amt
*= sizeof (*included
);
5246 included
= (unsigned char *) bfd_zmalloc (amt
);
5247 if (included
== NULL
)
5250 symdefs
= bfd_ardata (abfd
)->symdefs
;
5251 bed
= get_elf_backend_data (abfd
);
5252 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5265 symdefend
= symdef
+ c
;
5266 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5268 struct elf_link_hash_entry
*h
;
5270 struct bfd_link_hash_entry
*undefs_tail
;
5275 if (symdef
->file_offset
== last
)
5281 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5282 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5288 if (h
->root
.type
== bfd_link_hash_common
)
5290 /* We currently have a common symbol. The archive map contains
5291 a reference to this symbol, so we may want to include it. We
5292 only want to include it however, if this archive element
5293 contains a definition of the symbol, not just another common
5296 Unfortunately some archivers (including GNU ar) will put
5297 declarations of common symbols into their archive maps, as
5298 well as real definitions, so we cannot just go by the archive
5299 map alone. Instead we must read in the element's symbol
5300 table and check that to see what kind of symbol definition
5302 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5305 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5307 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5308 /* Symbol must be defined. Don't check it again. */
5313 /* We need to include this archive member. */
5314 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5315 if (element
== NULL
)
5318 if (! bfd_check_format (element
, bfd_object
))
5321 undefs_tail
= info
->hash
->undefs_tail
;
5323 if (!(*info
->callbacks
5324 ->add_archive_element
) (info
, element
, symdef
->name
, &element
))
5326 if (!bfd_link_add_symbols (element
, info
))
5329 /* If there are any new undefined symbols, we need to make
5330 another pass through the archive in order to see whether
5331 they can be defined. FIXME: This isn't perfect, because
5332 common symbols wind up on undefs_tail and because an
5333 undefined symbol which is defined later on in this pass
5334 does not require another pass. This isn't a bug, but it
5335 does make the code less efficient than it could be. */
5336 if (undefs_tail
!= info
->hash
->undefs_tail
)
5339 /* Look backward to mark all symbols from this object file
5340 which we have already seen in this pass. */
5344 included
[mark
] = TRUE
;
5349 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5351 /* We mark subsequent symbols from this object file as we go
5352 on through the loop. */
5353 last
= symdef
->file_offset
;
5363 if (included
!= NULL
)
5368 /* Given an ELF BFD, add symbols to the global hash table as
5372 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5374 switch (bfd_get_format (abfd
))
5377 return elf_link_add_object_symbols (abfd
, info
);
5379 return elf_link_add_archive_symbols (abfd
, info
);
5381 bfd_set_error (bfd_error_wrong_format
);
5386 struct hash_codes_info
5388 unsigned long *hashcodes
;
5392 /* This function will be called though elf_link_hash_traverse to store
5393 all hash value of the exported symbols in an array. */
5396 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5398 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5403 /* Ignore indirect symbols. These are added by the versioning code. */
5404 if (h
->dynindx
== -1)
5407 name
= h
->root
.root
.string
;
5408 if (h
->versioned
>= versioned
)
5410 char *p
= strchr (name
, ELF_VER_CHR
);
5413 alc
= (char *) bfd_malloc (p
- name
+ 1);
5419 memcpy (alc
, name
, p
- name
);
5420 alc
[p
- name
] = '\0';
5425 /* Compute the hash value. */
5426 ha
= bfd_elf_hash (name
);
5428 /* Store the found hash value in the array given as the argument. */
5429 *(inf
->hashcodes
)++ = ha
;
5431 /* And store it in the struct so that we can put it in the hash table
5433 h
->u
.elf_hash_value
= ha
;
5441 struct collect_gnu_hash_codes
5444 const struct elf_backend_data
*bed
;
5445 unsigned long int nsyms
;
5446 unsigned long int maskbits
;
5447 unsigned long int *hashcodes
;
5448 unsigned long int *hashval
;
5449 unsigned long int *indx
;
5450 unsigned long int *counts
;
5453 long int min_dynindx
;
5454 unsigned long int bucketcount
;
5455 unsigned long int symindx
;
5456 long int local_indx
;
5457 long int shift1
, shift2
;
5458 unsigned long int mask
;
5462 /* This function will be called though elf_link_hash_traverse to store
5463 all hash value of the exported symbols in an array. */
5466 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5468 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5473 /* Ignore indirect symbols. These are added by the versioning code. */
5474 if (h
->dynindx
== -1)
5477 /* Ignore also local symbols and undefined symbols. */
5478 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5481 name
= h
->root
.root
.string
;
5482 if (h
->versioned
>= versioned
)
5484 char *p
= strchr (name
, ELF_VER_CHR
);
5487 alc
= (char *) bfd_malloc (p
- name
+ 1);
5493 memcpy (alc
, name
, p
- name
);
5494 alc
[p
- name
] = '\0';
5499 /* Compute the hash value. */
5500 ha
= bfd_elf_gnu_hash (name
);
5502 /* Store the found hash value in the array for compute_bucket_count,
5503 and also for .dynsym reordering purposes. */
5504 s
->hashcodes
[s
->nsyms
] = ha
;
5505 s
->hashval
[h
->dynindx
] = ha
;
5507 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5508 s
->min_dynindx
= h
->dynindx
;
5516 /* This function will be called though elf_link_hash_traverse to do
5517 final dynaminc symbol renumbering. */
5520 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5522 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5523 unsigned long int bucket
;
5524 unsigned long int val
;
5526 /* Ignore indirect symbols. */
5527 if (h
->dynindx
== -1)
5530 /* Ignore also local symbols and undefined symbols. */
5531 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5533 if (h
->dynindx
>= s
->min_dynindx
)
5534 h
->dynindx
= s
->local_indx
++;
5538 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5539 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5540 & ((s
->maskbits
>> s
->shift1
) - 1);
5541 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5543 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5544 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5545 if (s
->counts
[bucket
] == 1)
5546 /* Last element terminates the chain. */
5548 bfd_put_32 (s
->output_bfd
, val
,
5549 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5550 --s
->counts
[bucket
];
5551 h
->dynindx
= s
->indx
[bucket
]++;
5555 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5558 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5560 return !(h
->forced_local
5561 || h
->root
.type
== bfd_link_hash_undefined
5562 || h
->root
.type
== bfd_link_hash_undefweak
5563 || ((h
->root
.type
== bfd_link_hash_defined
5564 || h
->root
.type
== bfd_link_hash_defweak
)
5565 && h
->root
.u
.def
.section
->output_section
== NULL
));
5568 /* Array used to determine the number of hash table buckets to use
5569 based on the number of symbols there are. If there are fewer than
5570 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5571 fewer than 37 we use 17 buckets, and so forth. We never use more
5572 than 32771 buckets. */
5574 static const size_t elf_buckets
[] =
5576 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5580 /* Compute bucket count for hashing table. We do not use a static set
5581 of possible tables sizes anymore. Instead we determine for all
5582 possible reasonable sizes of the table the outcome (i.e., the
5583 number of collisions etc) and choose the best solution. The
5584 weighting functions are not too simple to allow the table to grow
5585 without bounds. Instead one of the weighting factors is the size.
5586 Therefore the result is always a good payoff between few collisions
5587 (= short chain lengths) and table size. */
5589 compute_bucket_count (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5590 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5591 unsigned long int nsyms
,
5594 size_t best_size
= 0;
5595 unsigned long int i
;
5597 /* We have a problem here. The following code to optimize the table
5598 size requires an integer type with more the 32 bits. If
5599 BFD_HOST_U_64_BIT is set we know about such a type. */
5600 #ifdef BFD_HOST_U_64_BIT
5605 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5606 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5607 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5608 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5609 unsigned long int *counts
;
5611 unsigned int no_improvement_count
= 0;
5613 /* Possible optimization parameters: if we have NSYMS symbols we say
5614 that the hashing table must at least have NSYMS/4 and at most
5616 minsize
= nsyms
/ 4;
5619 best_size
= maxsize
= nsyms
* 2;
5624 if ((best_size
& 31) == 0)
5628 /* Create array where we count the collisions in. We must use bfd_malloc
5629 since the size could be large. */
5631 amt
*= sizeof (unsigned long int);
5632 counts
= (unsigned long int *) bfd_malloc (amt
);
5636 /* Compute the "optimal" size for the hash table. The criteria is a
5637 minimal chain length. The minor criteria is (of course) the size
5639 for (i
= minsize
; i
< maxsize
; ++i
)
5641 /* Walk through the array of hashcodes and count the collisions. */
5642 BFD_HOST_U_64_BIT max
;
5643 unsigned long int j
;
5644 unsigned long int fact
;
5646 if (gnu_hash
&& (i
& 31) == 0)
5649 memset (counts
, '\0', i
* sizeof (unsigned long int));
5651 /* Determine how often each hash bucket is used. */
5652 for (j
= 0; j
< nsyms
; ++j
)
5653 ++counts
[hashcodes
[j
] % i
];
5655 /* For the weight function we need some information about the
5656 pagesize on the target. This is information need not be 100%
5657 accurate. Since this information is not available (so far) we
5658 define it here to a reasonable default value. If it is crucial
5659 to have a better value some day simply define this value. */
5660 # ifndef BFD_TARGET_PAGESIZE
5661 # define BFD_TARGET_PAGESIZE (4096)
5664 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5666 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5669 /* Variant 1: optimize for short chains. We add the squares
5670 of all the chain lengths (which favors many small chain
5671 over a few long chains). */
5672 for (j
= 0; j
< i
; ++j
)
5673 max
+= counts
[j
] * counts
[j
];
5675 /* This adds penalties for the overall size of the table. */
5676 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5679 /* Variant 2: Optimize a lot more for small table. Here we
5680 also add squares of the size but we also add penalties for
5681 empty slots (the +1 term). */
5682 for (j
= 0; j
< i
; ++j
)
5683 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5685 /* The overall size of the table is considered, but not as
5686 strong as in variant 1, where it is squared. */
5687 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5691 /* Compare with current best results. */
5692 if (max
< best_chlen
)
5696 no_improvement_count
= 0;
5698 /* PR 11843: Avoid futile long searches for the best bucket size
5699 when there are a large number of symbols. */
5700 else if (++no_improvement_count
== 100)
5707 #endif /* defined (BFD_HOST_U_64_BIT) */
5709 /* This is the fallback solution if no 64bit type is available or if we
5710 are not supposed to spend much time on optimizations. We select the
5711 bucket count using a fixed set of numbers. */
5712 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5714 best_size
= elf_buckets
[i
];
5715 if (nsyms
< elf_buckets
[i
+ 1])
5718 if (gnu_hash
&& best_size
< 2)
5725 /* Size any SHT_GROUP section for ld -r. */
5728 _bfd_elf_size_group_sections (struct bfd_link_info
*info
)
5732 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
5733 if (bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
5734 && !_bfd_elf_fixup_group_sections (ibfd
, bfd_abs_section_ptr
))
5739 /* Set a default stack segment size. The value in INFO wins. If it
5740 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5741 undefined it is initialized. */
5744 bfd_elf_stack_segment_size (bfd
*output_bfd
,
5745 struct bfd_link_info
*info
,
5746 const char *legacy_symbol
,
5747 bfd_vma default_size
)
5749 struct elf_link_hash_entry
*h
= NULL
;
5751 /* Look for legacy symbol. */
5753 h
= elf_link_hash_lookup (elf_hash_table (info
), legacy_symbol
,
5754 FALSE
, FALSE
, FALSE
);
5755 if (h
&& (h
->root
.type
== bfd_link_hash_defined
5756 || h
->root
.type
== bfd_link_hash_defweak
)
5758 && (h
->type
== STT_NOTYPE
|| h
->type
== STT_OBJECT
))
5760 /* The symbol has no type if specified on the command line. */
5761 h
->type
= STT_OBJECT
;
5762 if (info
->stacksize
)
5763 (*_bfd_error_handler
) (_("%B: stack size specified and %s set"),
5764 output_bfd
, legacy_symbol
);
5765 else if (h
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
5766 (*_bfd_error_handler
) (_("%B: %s not absolute"),
5767 output_bfd
, legacy_symbol
);
5769 info
->stacksize
= h
->root
.u
.def
.value
;
5772 if (!info
->stacksize
)
5773 /* If the user didn't set a size, or explicitly inhibit the
5774 size, set it now. */
5775 info
->stacksize
= default_size
;
5777 /* Provide the legacy symbol, if it is referenced. */
5778 if (h
&& (h
->root
.type
== bfd_link_hash_undefined
5779 || h
->root
.type
== bfd_link_hash_undefweak
))
5781 struct bfd_link_hash_entry
*bh
= NULL
;
5783 if (!(_bfd_generic_link_add_one_symbol
5784 (info
, output_bfd
, legacy_symbol
,
5785 BSF_GLOBAL
, bfd_abs_section_ptr
,
5786 info
->stacksize
>= 0 ? info
->stacksize
: 0,
5787 NULL
, FALSE
, get_elf_backend_data (output_bfd
)->collect
, &bh
)))
5790 h
= (struct elf_link_hash_entry
*) bh
;
5792 h
->type
= STT_OBJECT
;
5798 /* Set up the sizes and contents of the ELF dynamic sections. This is
5799 called by the ELF linker emulation before_allocation routine. We
5800 must set the sizes of the sections before the linker sets the
5801 addresses of the various sections. */
5804 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5807 const char *filter_shlib
,
5809 const char *depaudit
,
5810 const char * const *auxiliary_filters
,
5811 struct bfd_link_info
*info
,
5812 asection
**sinterpptr
)
5816 const struct elf_backend_data
*bed
;
5817 struct elf_info_failed asvinfo
;
5821 soname_indx
= (size_t) -1;
5823 if (!is_elf_hash_table (info
->hash
))
5826 bed
= get_elf_backend_data (output_bfd
);
5828 /* Any syms created from now on start with -1 in
5829 got.refcount/offset and plt.refcount/offset. */
5830 elf_hash_table (info
)->init_got_refcount
5831 = elf_hash_table (info
)->init_got_offset
;
5832 elf_hash_table (info
)->init_plt_refcount
5833 = elf_hash_table (info
)->init_plt_offset
;
5835 if (bfd_link_relocatable (info
)
5836 && !_bfd_elf_size_group_sections (info
))
5839 /* The backend may have to create some sections regardless of whether
5840 we're dynamic or not. */
5841 if (bed
->elf_backend_always_size_sections
5842 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5845 /* Determine any GNU_STACK segment requirements, after the backend
5846 has had a chance to set a default segment size. */
5847 if (info
->execstack
)
5848 elf_stack_flags (output_bfd
) = PF_R
| PF_W
| PF_X
;
5849 else if (info
->noexecstack
)
5850 elf_stack_flags (output_bfd
) = PF_R
| PF_W
;
5854 asection
*notesec
= NULL
;
5857 for (inputobj
= info
->input_bfds
;
5859 inputobj
= inputobj
->link
.next
)
5864 & (DYNAMIC
| EXEC_P
| BFD_PLUGIN
| BFD_LINKER_CREATED
))
5866 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5869 if (s
->flags
& SEC_CODE
)
5873 else if (bed
->default_execstack
)
5876 if (notesec
|| info
->stacksize
> 0)
5877 elf_stack_flags (output_bfd
) = PF_R
| PF_W
| exec
;
5878 if (notesec
&& exec
&& bfd_link_relocatable (info
)
5879 && notesec
->output_section
!= bfd_abs_section_ptr
)
5880 notesec
->output_section
->flags
|= SEC_CODE
;
5883 dynobj
= elf_hash_table (info
)->dynobj
;
5885 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
5887 struct elf_info_failed eif
;
5888 struct elf_link_hash_entry
*h
;
5890 struct bfd_elf_version_tree
*t
;
5891 struct bfd_elf_version_expr
*d
;
5893 bfd_boolean all_defined
;
5895 *sinterpptr
= bfd_get_linker_section (dynobj
, ".interp");
5896 BFD_ASSERT (*sinterpptr
!= NULL
|| !bfd_link_executable (info
) || info
->nointerp
);
5900 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5902 if (soname_indx
== (size_t) -1
5903 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5909 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5911 info
->flags
|= DF_SYMBOLIC
;
5919 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5921 if (indx
== (size_t) -1)
5924 tag
= info
->new_dtags
? DT_RUNPATH
: DT_RPATH
;
5925 if (!_bfd_elf_add_dynamic_entry (info
, tag
, indx
))
5929 if (filter_shlib
!= NULL
)
5933 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5934 filter_shlib
, TRUE
);
5935 if (indx
== (size_t) -1
5936 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5940 if (auxiliary_filters
!= NULL
)
5942 const char * const *p
;
5944 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5948 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5950 if (indx
== (size_t) -1
5951 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5960 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
5962 if (indx
== (size_t) -1
5963 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
5967 if (depaudit
!= NULL
)
5971 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
5973 if (indx
== (size_t) -1
5974 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
5981 /* If we are supposed to export all symbols into the dynamic symbol
5982 table (this is not the normal case), then do so. */
5983 if (info
->export_dynamic
5984 || (bfd_link_executable (info
) && info
->dynamic
))
5986 elf_link_hash_traverse (elf_hash_table (info
),
5987 _bfd_elf_export_symbol
,
5993 /* Make all global versions with definition. */
5994 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
5995 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5996 if (!d
->symver
&& d
->literal
)
5998 const char *verstr
, *name
;
5999 size_t namelen
, verlen
, newlen
;
6000 char *newname
, *p
, leading_char
;
6001 struct elf_link_hash_entry
*newh
;
6003 leading_char
= bfd_get_symbol_leading_char (output_bfd
);
6005 namelen
= strlen (name
) + (leading_char
!= '\0');
6007 verlen
= strlen (verstr
);
6008 newlen
= namelen
+ verlen
+ 3;
6010 newname
= (char *) bfd_malloc (newlen
);
6011 if (newname
== NULL
)
6013 newname
[0] = leading_char
;
6014 memcpy (newname
+ (leading_char
!= '\0'), name
, namelen
);
6016 /* Check the hidden versioned definition. */
6017 p
= newname
+ namelen
;
6019 memcpy (p
, verstr
, verlen
+ 1);
6020 newh
= elf_link_hash_lookup (elf_hash_table (info
),
6021 newname
, FALSE
, FALSE
,
6024 || (newh
->root
.type
!= bfd_link_hash_defined
6025 && newh
->root
.type
!= bfd_link_hash_defweak
))
6027 /* Check the default versioned definition. */
6029 memcpy (p
, verstr
, verlen
+ 1);
6030 newh
= elf_link_hash_lookup (elf_hash_table (info
),
6031 newname
, FALSE
, FALSE
,
6036 /* Mark this version if there is a definition and it is
6037 not defined in a shared object. */
6039 && !newh
->def_dynamic
6040 && (newh
->root
.type
== bfd_link_hash_defined
6041 || newh
->root
.type
== bfd_link_hash_defweak
))
6045 /* Attach all the symbols to their version information. */
6046 asvinfo
.info
= info
;
6047 asvinfo
.failed
= FALSE
;
6049 elf_link_hash_traverse (elf_hash_table (info
),
6050 _bfd_elf_link_assign_sym_version
,
6055 if (!info
->allow_undefined_version
)
6057 /* Check if all global versions have a definition. */
6059 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
6060 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
6061 if (d
->literal
&& !d
->symver
&& !d
->script
)
6063 (*_bfd_error_handler
)
6064 (_("%s: undefined version: %s"),
6065 d
->pattern
, t
->name
);
6066 all_defined
= FALSE
;
6071 bfd_set_error (bfd_error_bad_value
);
6076 /* Find all symbols which were defined in a dynamic object and make
6077 the backend pick a reasonable value for them. */
6078 elf_link_hash_traverse (elf_hash_table (info
),
6079 _bfd_elf_adjust_dynamic_symbol
,
6084 /* Add some entries to the .dynamic section. We fill in some of the
6085 values later, in bfd_elf_final_link, but we must add the entries
6086 now so that we know the final size of the .dynamic section. */
6088 /* If there are initialization and/or finalization functions to
6089 call then add the corresponding DT_INIT/DT_FINI entries. */
6090 h
= (info
->init_function
6091 ? elf_link_hash_lookup (elf_hash_table (info
),
6092 info
->init_function
, FALSE
,
6099 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
6102 h
= (info
->fini_function
6103 ? elf_link_hash_lookup (elf_hash_table (info
),
6104 info
->fini_function
, FALSE
,
6111 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
6115 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
6116 if (s
!= NULL
&& s
->linker_has_input
)
6118 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6119 if (! bfd_link_executable (info
))
6124 for (sub
= info
->input_bfds
; sub
!= NULL
;
6125 sub
= sub
->link
.next
)
6126 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
6127 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
6128 if (elf_section_data (o
)->this_hdr
.sh_type
6129 == SHT_PREINIT_ARRAY
)
6131 (*_bfd_error_handler
)
6132 (_("%B: .preinit_array section is not allowed in DSO"),
6137 bfd_set_error (bfd_error_nonrepresentable_section
);
6141 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
6142 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
6145 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
6146 if (s
!= NULL
&& s
->linker_has_input
)
6148 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
6149 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
6152 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
6153 if (s
!= NULL
&& s
->linker_has_input
)
6155 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
6156 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
6160 dynstr
= bfd_get_linker_section (dynobj
, ".dynstr");
6161 /* If .dynstr is excluded from the link, we don't want any of
6162 these tags. Strictly, we should be checking each section
6163 individually; This quick check covers for the case where
6164 someone does a /DISCARD/ : { *(*) }. */
6165 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
6167 bfd_size_type strsize
;
6169 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6170 if ((info
->emit_hash
6171 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
6172 || (info
->emit_gnu_hash
6173 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
6174 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
6175 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
6176 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
6177 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
6178 bed
->s
->sizeof_sym
))
6183 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
6186 /* The backend must work out the sizes of all the other dynamic
6189 && bed
->elf_backend_size_dynamic_sections
!= NULL
6190 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
6193 if (dynobj
!= NULL
&& elf_hash_table (info
)->dynamic_sections_created
)
6195 unsigned long section_sym_count
;
6196 struct bfd_elf_version_tree
*verdefs
;
6199 /* Set up the version definition section. */
6200 s
= bfd_get_linker_section (dynobj
, ".gnu.version_d");
6201 BFD_ASSERT (s
!= NULL
);
6203 /* We may have created additional version definitions if we are
6204 just linking a regular application. */
6205 verdefs
= info
->version_info
;
6207 /* Skip anonymous version tag. */
6208 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
6209 verdefs
= verdefs
->next
;
6211 if (verdefs
== NULL
&& !info
->create_default_symver
)
6212 s
->flags
|= SEC_EXCLUDE
;
6217 struct bfd_elf_version_tree
*t
;
6219 Elf_Internal_Verdef def
;
6220 Elf_Internal_Verdaux defaux
;
6221 struct bfd_link_hash_entry
*bh
;
6222 struct elf_link_hash_entry
*h
;
6228 /* Make space for the base version. */
6229 size
+= sizeof (Elf_External_Verdef
);
6230 size
+= sizeof (Elf_External_Verdaux
);
6233 /* Make space for the default version. */
6234 if (info
->create_default_symver
)
6236 size
+= sizeof (Elf_External_Verdef
);
6240 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6242 struct bfd_elf_version_deps
*n
;
6244 /* Don't emit base version twice. */
6248 size
+= sizeof (Elf_External_Verdef
);
6249 size
+= sizeof (Elf_External_Verdaux
);
6252 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6253 size
+= sizeof (Elf_External_Verdaux
);
6257 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6258 if (s
->contents
== NULL
&& s
->size
!= 0)
6261 /* Fill in the version definition section. */
6265 def
.vd_version
= VER_DEF_CURRENT
;
6266 def
.vd_flags
= VER_FLG_BASE
;
6269 if (info
->create_default_symver
)
6271 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
6272 def
.vd_next
= sizeof (Elf_External_Verdef
);
6276 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6277 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6278 + sizeof (Elf_External_Verdaux
));
6281 if (soname_indx
!= (size_t) -1)
6283 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6285 def
.vd_hash
= bfd_elf_hash (soname
);
6286 defaux
.vda_name
= soname_indx
;
6293 name
= lbasename (output_bfd
->filename
);
6294 def
.vd_hash
= bfd_elf_hash (name
);
6295 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6297 if (indx
== (size_t) -1)
6299 defaux
.vda_name
= indx
;
6301 defaux
.vda_next
= 0;
6303 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6304 (Elf_External_Verdef
*) p
);
6305 p
+= sizeof (Elf_External_Verdef
);
6306 if (info
->create_default_symver
)
6308 /* Add a symbol representing this version. */
6310 if (! (_bfd_generic_link_add_one_symbol
6311 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6313 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6315 h
= (struct elf_link_hash_entry
*) bh
;
6318 h
->type
= STT_OBJECT
;
6319 h
->verinfo
.vertree
= NULL
;
6321 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6324 /* Create a duplicate of the base version with the same
6325 aux block, but different flags. */
6328 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6330 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6331 + sizeof (Elf_External_Verdaux
));
6334 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6335 (Elf_External_Verdef
*) p
);
6336 p
+= sizeof (Elf_External_Verdef
);
6338 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6339 (Elf_External_Verdaux
*) p
);
6340 p
+= sizeof (Elf_External_Verdaux
);
6342 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6345 struct bfd_elf_version_deps
*n
;
6347 /* Don't emit the base version twice. */
6352 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6355 /* Add a symbol representing this version. */
6357 if (! (_bfd_generic_link_add_one_symbol
6358 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6360 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6362 h
= (struct elf_link_hash_entry
*) bh
;
6365 h
->type
= STT_OBJECT
;
6366 h
->verinfo
.vertree
= t
;
6368 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6371 def
.vd_version
= VER_DEF_CURRENT
;
6373 if (t
->globals
.list
== NULL
6374 && t
->locals
.list
== NULL
6376 def
.vd_flags
|= VER_FLG_WEAK
;
6377 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6378 def
.vd_cnt
= cdeps
+ 1;
6379 def
.vd_hash
= bfd_elf_hash (t
->name
);
6380 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6383 /* If a basever node is next, it *must* be the last node in
6384 the chain, otherwise Verdef construction breaks. */
6385 if (t
->next
!= NULL
&& t
->next
->vernum
== 0)
6386 BFD_ASSERT (t
->next
->next
== NULL
);
6388 if (t
->next
!= NULL
&& t
->next
->vernum
!= 0)
6389 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6390 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6392 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6393 (Elf_External_Verdef
*) p
);
6394 p
+= sizeof (Elf_External_Verdef
);
6396 defaux
.vda_name
= h
->dynstr_index
;
6397 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6399 defaux
.vda_next
= 0;
6400 if (t
->deps
!= NULL
)
6401 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6402 t
->name_indx
= defaux
.vda_name
;
6404 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6405 (Elf_External_Verdaux
*) p
);
6406 p
+= sizeof (Elf_External_Verdaux
);
6408 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6410 if (n
->version_needed
== NULL
)
6412 /* This can happen if there was an error in the
6414 defaux
.vda_name
= 0;
6418 defaux
.vda_name
= n
->version_needed
->name_indx
;
6419 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6422 if (n
->next
== NULL
)
6423 defaux
.vda_next
= 0;
6425 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6427 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6428 (Elf_External_Verdaux
*) p
);
6429 p
+= sizeof (Elf_External_Verdaux
);
6433 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6434 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6437 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6440 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6442 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6445 else if (info
->flags
& DF_BIND_NOW
)
6447 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6453 if (bfd_link_executable (info
))
6454 info
->flags_1
&= ~ (DF_1_INITFIRST
6457 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6461 /* Work out the size of the version reference section. */
6463 s
= bfd_get_linker_section (dynobj
, ".gnu.version_r");
6464 BFD_ASSERT (s
!= NULL
);
6466 struct elf_find_verdep_info sinfo
;
6469 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6470 if (sinfo
.vers
== 0)
6472 sinfo
.failed
= FALSE
;
6474 elf_link_hash_traverse (elf_hash_table (info
),
6475 _bfd_elf_link_find_version_dependencies
,
6480 if (elf_tdata (output_bfd
)->verref
== NULL
)
6481 s
->flags
|= SEC_EXCLUDE
;
6484 Elf_Internal_Verneed
*t
;
6489 /* Build the version dependency section. */
6492 for (t
= elf_tdata (output_bfd
)->verref
;
6496 Elf_Internal_Vernaux
*a
;
6498 size
+= sizeof (Elf_External_Verneed
);
6500 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6501 size
+= sizeof (Elf_External_Vernaux
);
6505 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6506 if (s
->contents
== NULL
)
6510 for (t
= elf_tdata (output_bfd
)->verref
;
6515 Elf_Internal_Vernaux
*a
;
6519 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6522 t
->vn_version
= VER_NEED_CURRENT
;
6524 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6525 elf_dt_name (t
->vn_bfd
) != NULL
6526 ? elf_dt_name (t
->vn_bfd
)
6527 : lbasename (t
->vn_bfd
->filename
),
6529 if (indx
== (size_t) -1)
6532 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6533 if (t
->vn_nextref
== NULL
)
6536 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6537 + caux
* sizeof (Elf_External_Vernaux
));
6539 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6540 (Elf_External_Verneed
*) p
);
6541 p
+= sizeof (Elf_External_Verneed
);
6543 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6545 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6546 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6547 a
->vna_nodename
, FALSE
);
6548 if (indx
== (size_t) -1)
6551 if (a
->vna_nextptr
== NULL
)
6554 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6556 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6557 (Elf_External_Vernaux
*) p
);
6558 p
+= sizeof (Elf_External_Vernaux
);
6562 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6563 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6566 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6570 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6571 && elf_tdata (output_bfd
)->cverdefs
== 0)
6572 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6573 §ion_sym_count
) == 0)
6575 s
= bfd_get_linker_section (dynobj
, ".gnu.version");
6576 s
->flags
|= SEC_EXCLUDE
;
6582 /* Find the first non-excluded output section. We'll use its
6583 section symbol for some emitted relocs. */
6585 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6589 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6590 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6591 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6593 elf_hash_table (info
)->text_index_section
= s
;
6598 /* Find two non-excluded output sections, one for code, one for data.
6599 We'll use their section symbols for some emitted relocs. */
6601 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6605 /* Data first, since setting text_index_section changes
6606 _bfd_elf_link_omit_section_dynsym. */
6607 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6608 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6609 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6611 elf_hash_table (info
)->data_index_section
= s
;
6615 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6616 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6617 == (SEC_ALLOC
| SEC_READONLY
))
6618 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6620 elf_hash_table (info
)->text_index_section
= s
;
6624 if (elf_hash_table (info
)->text_index_section
== NULL
)
6625 elf_hash_table (info
)->text_index_section
6626 = elf_hash_table (info
)->data_index_section
;
6630 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6632 const struct elf_backend_data
*bed
;
6634 if (!is_elf_hash_table (info
->hash
))
6637 bed
= get_elf_backend_data (output_bfd
);
6638 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6640 if (elf_hash_table (info
)->dynamic_sections_created
)
6644 bfd_size_type dynsymcount
;
6645 unsigned long section_sym_count
;
6646 unsigned int dtagcount
;
6648 dynobj
= elf_hash_table (info
)->dynobj
;
6650 /* Assign dynsym indicies. In a shared library we generate a
6651 section symbol for each output section, which come first.
6652 Next come all of the back-end allocated local dynamic syms,
6653 followed by the rest of the global symbols. */
6655 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6656 §ion_sym_count
);
6658 /* Work out the size of the symbol version section. */
6659 s
= bfd_get_linker_section (dynobj
, ".gnu.version");
6660 BFD_ASSERT (s
!= NULL
);
6661 if ((s
->flags
& SEC_EXCLUDE
) == 0)
6663 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6664 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6665 if (s
->contents
== NULL
)
6668 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6672 /* Set the size of the .dynsym and .hash sections. We counted
6673 the number of dynamic symbols in elf_link_add_object_symbols.
6674 We will build the contents of .dynsym and .hash when we build
6675 the final symbol table, because until then we do not know the
6676 correct value to give the symbols. We built the .dynstr
6677 section as we went along in elf_link_add_object_symbols. */
6678 s
= elf_hash_table (info
)->dynsym
;
6679 BFD_ASSERT (s
!= NULL
);
6680 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6682 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6683 if (s
->contents
== NULL
)
6686 /* The first entry in .dynsym is a dummy symbol. Clear all the
6687 section syms, in case we don't output them all. */
6688 ++section_sym_count
;
6689 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6691 elf_hash_table (info
)->bucketcount
= 0;
6693 /* Compute the size of the hashing table. As a side effect this
6694 computes the hash values for all the names we export. */
6695 if (info
->emit_hash
)
6697 unsigned long int *hashcodes
;
6698 struct hash_codes_info hashinf
;
6700 unsigned long int nsyms
;
6702 size_t hash_entry_size
;
6704 /* Compute the hash values for all exported symbols. At the same
6705 time store the values in an array so that we could use them for
6707 amt
= dynsymcount
* sizeof (unsigned long int);
6708 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6709 if (hashcodes
== NULL
)
6711 hashinf
.hashcodes
= hashcodes
;
6712 hashinf
.error
= FALSE
;
6714 /* Put all hash values in HASHCODES. */
6715 elf_link_hash_traverse (elf_hash_table (info
),
6716 elf_collect_hash_codes
, &hashinf
);
6723 nsyms
= hashinf
.hashcodes
- hashcodes
;
6725 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6728 if (bucketcount
== 0)
6731 elf_hash_table (info
)->bucketcount
= bucketcount
;
6733 s
= bfd_get_linker_section (dynobj
, ".hash");
6734 BFD_ASSERT (s
!= NULL
);
6735 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6736 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6737 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6738 if (s
->contents
== NULL
)
6741 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6742 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6743 s
->contents
+ hash_entry_size
);
6746 if (info
->emit_gnu_hash
)
6749 unsigned char *contents
;
6750 struct collect_gnu_hash_codes cinfo
;
6754 memset (&cinfo
, 0, sizeof (cinfo
));
6756 /* Compute the hash values for all exported symbols. At the same
6757 time store the values in an array so that we could use them for
6759 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6760 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6761 if (cinfo
.hashcodes
== NULL
)
6764 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6765 cinfo
.min_dynindx
= -1;
6766 cinfo
.output_bfd
= output_bfd
;
6769 /* Put all hash values in HASHCODES. */
6770 elf_link_hash_traverse (elf_hash_table (info
),
6771 elf_collect_gnu_hash_codes
, &cinfo
);
6774 free (cinfo
.hashcodes
);
6779 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6781 if (bucketcount
== 0)
6783 free (cinfo
.hashcodes
);
6787 s
= bfd_get_linker_section (dynobj
, ".gnu.hash");
6788 BFD_ASSERT (s
!= NULL
);
6790 if (cinfo
.nsyms
== 0)
6792 /* Empty .gnu.hash section is special. */
6793 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6794 free (cinfo
.hashcodes
);
6795 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6796 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6797 if (contents
== NULL
)
6799 s
->contents
= contents
;
6800 /* 1 empty bucket. */
6801 bfd_put_32 (output_bfd
, 1, contents
);
6802 /* SYMIDX above the special symbol 0. */
6803 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6804 /* Just one word for bitmask. */
6805 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6806 /* Only hash fn bloom filter. */
6807 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6808 /* No hashes are valid - empty bitmask. */
6809 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6810 /* No hashes in the only bucket. */
6811 bfd_put_32 (output_bfd
, 0,
6812 contents
+ 16 + bed
->s
->arch_size
/ 8);
6816 unsigned long int maskwords
, maskbitslog2
, x
;
6817 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6821 while ((x
>>= 1) != 0)
6823 if (maskbitslog2
< 3)
6825 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6826 maskbitslog2
= maskbitslog2
+ 3;
6828 maskbitslog2
= maskbitslog2
+ 2;
6829 if (bed
->s
->arch_size
== 64)
6831 if (maskbitslog2
== 5)
6837 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6838 cinfo
.shift2
= maskbitslog2
;
6839 cinfo
.maskbits
= 1 << maskbitslog2
;
6840 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6841 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6842 amt
+= maskwords
* sizeof (bfd_vma
);
6843 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6844 if (cinfo
.bitmask
== NULL
)
6846 free (cinfo
.hashcodes
);
6850 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6851 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6852 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6853 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6855 /* Determine how often each hash bucket is used. */
6856 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6857 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6858 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6860 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6861 if (cinfo
.counts
[i
] != 0)
6863 cinfo
.indx
[i
] = cnt
;
6864 cnt
+= cinfo
.counts
[i
];
6866 BFD_ASSERT (cnt
== dynsymcount
);
6867 cinfo
.bucketcount
= bucketcount
;
6868 cinfo
.local_indx
= cinfo
.min_dynindx
;
6870 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6871 s
->size
+= cinfo
.maskbits
/ 8;
6872 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6873 if (contents
== NULL
)
6875 free (cinfo
.bitmask
);
6876 free (cinfo
.hashcodes
);
6880 s
->contents
= contents
;
6881 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6882 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6883 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6884 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6885 contents
+= 16 + cinfo
.maskbits
/ 8;
6887 for (i
= 0; i
< bucketcount
; ++i
)
6889 if (cinfo
.counts
[i
] == 0)
6890 bfd_put_32 (output_bfd
, 0, contents
);
6892 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6896 cinfo
.contents
= contents
;
6898 /* Renumber dynamic symbols, populate .gnu.hash section. */
6899 elf_link_hash_traverse (elf_hash_table (info
),
6900 elf_renumber_gnu_hash_syms
, &cinfo
);
6902 contents
= s
->contents
+ 16;
6903 for (i
= 0; i
< maskwords
; ++i
)
6905 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6907 contents
+= bed
->s
->arch_size
/ 8;
6910 free (cinfo
.bitmask
);
6911 free (cinfo
.hashcodes
);
6915 s
= bfd_get_linker_section (dynobj
, ".dynstr");
6916 BFD_ASSERT (s
!= NULL
);
6918 elf_finalize_dynstr (output_bfd
, info
);
6920 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6922 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6923 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6930 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6933 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6936 BFD_ASSERT (sec
->sec_info_type
== SEC_INFO_TYPE_MERGE
);
6937 sec
->sec_info_type
= SEC_INFO_TYPE_NONE
;
6940 /* Finish SHF_MERGE section merging. */
6943 _bfd_elf_merge_sections (bfd
*obfd
, struct bfd_link_info
*info
)
6948 if (!is_elf_hash_table (info
->hash
))
6951 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
6952 if ((ibfd
->flags
& DYNAMIC
) == 0
6953 && bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
6954 && (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
6955 == get_elf_backend_data (obfd
)->s
->elfclass
))
6956 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6957 if ((sec
->flags
& SEC_MERGE
) != 0
6958 && !bfd_is_abs_section (sec
->output_section
))
6960 struct bfd_elf_section_data
*secdata
;
6962 secdata
= elf_section_data (sec
);
6963 if (! _bfd_add_merge_section (obfd
,
6964 &elf_hash_table (info
)->merge_info
,
6965 sec
, &secdata
->sec_info
))
6967 else if (secdata
->sec_info
)
6968 sec
->sec_info_type
= SEC_INFO_TYPE_MERGE
;
6971 if (elf_hash_table (info
)->merge_info
!= NULL
)
6972 _bfd_merge_sections (obfd
, info
, elf_hash_table (info
)->merge_info
,
6973 merge_sections_remove_hook
);
6977 /* Create an entry in an ELF linker hash table. */
6979 struct bfd_hash_entry
*
6980 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6981 struct bfd_hash_table
*table
,
6984 /* Allocate the structure if it has not already been allocated by a
6988 entry
= (struct bfd_hash_entry
*)
6989 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6994 /* Call the allocation method of the superclass. */
6995 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6998 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6999 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
7001 /* Set local fields. */
7004 ret
->got
= htab
->init_got_refcount
;
7005 ret
->plt
= htab
->init_plt_refcount
;
7006 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
7007 - offsetof (struct elf_link_hash_entry
, size
)));
7008 /* Assume that we have been called by a non-ELF symbol reader.
7009 This flag is then reset by the code which reads an ELF input
7010 file. This ensures that a symbol created by a non-ELF symbol
7011 reader will have the flag set correctly. */
7018 /* Copy data from an indirect symbol to its direct symbol, hiding the
7019 old indirect symbol. Also used for copying flags to a weakdef. */
7022 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
7023 struct elf_link_hash_entry
*dir
,
7024 struct elf_link_hash_entry
*ind
)
7026 struct elf_link_hash_table
*htab
;
7028 /* Copy down any references that we may have already seen to the
7029 symbol which just became indirect if DIR isn't a hidden versioned
7032 if (dir
->versioned
!= versioned_hidden
)
7034 dir
->ref_dynamic
|= ind
->ref_dynamic
;
7035 dir
->ref_regular
|= ind
->ref_regular
;
7036 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
7037 dir
->non_got_ref
|= ind
->non_got_ref
;
7038 dir
->needs_plt
|= ind
->needs_plt
;
7039 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
7042 if (ind
->root
.type
!= bfd_link_hash_indirect
)
7045 /* Copy over the global and procedure linkage table refcount entries.
7046 These may have been already set up by a check_relocs routine. */
7047 htab
= elf_hash_table (info
);
7048 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
7050 if (dir
->got
.refcount
< 0)
7051 dir
->got
.refcount
= 0;
7052 dir
->got
.refcount
+= ind
->got
.refcount
;
7053 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
7056 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
7058 if (dir
->plt
.refcount
< 0)
7059 dir
->plt
.refcount
= 0;
7060 dir
->plt
.refcount
+= ind
->plt
.refcount
;
7061 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
7064 if (ind
->dynindx
!= -1)
7066 if (dir
->dynindx
!= -1)
7067 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
7068 dir
->dynindx
= ind
->dynindx
;
7069 dir
->dynstr_index
= ind
->dynstr_index
;
7071 ind
->dynstr_index
= 0;
7076 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
7077 struct elf_link_hash_entry
*h
,
7078 bfd_boolean force_local
)
7080 /* STT_GNU_IFUNC symbol must go through PLT. */
7081 if (h
->type
!= STT_GNU_IFUNC
)
7083 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
7088 h
->forced_local
= 1;
7089 if (h
->dynindx
!= -1)
7092 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
7098 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7102 _bfd_elf_link_hash_table_init
7103 (struct elf_link_hash_table
*table
,
7105 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
7106 struct bfd_hash_table
*,
7108 unsigned int entsize
,
7109 enum elf_target_id target_id
)
7112 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
7114 table
->init_got_refcount
.refcount
= can_refcount
- 1;
7115 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
7116 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
7117 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
7118 /* The first dynamic symbol is a dummy. */
7119 table
->dynsymcount
= 1;
7121 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
7123 table
->root
.type
= bfd_link_elf_hash_table
;
7124 table
->hash_table_id
= target_id
;
7129 /* Create an ELF linker hash table. */
7131 struct bfd_link_hash_table
*
7132 _bfd_elf_link_hash_table_create (bfd
*abfd
)
7134 struct elf_link_hash_table
*ret
;
7135 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
7137 ret
= (struct elf_link_hash_table
*) bfd_zmalloc (amt
);
7141 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
7142 sizeof (struct elf_link_hash_entry
),
7148 ret
->root
.hash_table_free
= _bfd_elf_link_hash_table_free
;
7153 /* Destroy an ELF linker hash table. */
7156 _bfd_elf_link_hash_table_free (bfd
*obfd
)
7158 struct elf_link_hash_table
*htab
;
7160 htab
= (struct elf_link_hash_table
*) obfd
->link
.hash
;
7161 if (htab
->dynstr
!= NULL
)
7162 _bfd_elf_strtab_free (htab
->dynstr
);
7163 _bfd_merge_sections_free (htab
->merge_info
);
7164 _bfd_generic_link_hash_table_free (obfd
);
7167 /* This is a hook for the ELF emulation code in the generic linker to
7168 tell the backend linker what file name to use for the DT_NEEDED
7169 entry for a dynamic object. */
7172 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
7174 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7175 && bfd_get_format (abfd
) == bfd_object
)
7176 elf_dt_name (abfd
) = name
;
7180 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
7183 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7184 && bfd_get_format (abfd
) == bfd_object
)
7185 lib_class
= elf_dyn_lib_class (abfd
);
7192 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
7194 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7195 && bfd_get_format (abfd
) == bfd_object
)
7196 elf_dyn_lib_class (abfd
) = lib_class
;
7199 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7200 the linker ELF emulation code. */
7202 struct bfd_link_needed_list
*
7203 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
7204 struct bfd_link_info
*info
)
7206 if (! is_elf_hash_table (info
->hash
))
7208 return elf_hash_table (info
)->needed
;
7211 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7212 hook for the linker ELF emulation code. */
7214 struct bfd_link_needed_list
*
7215 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
7216 struct bfd_link_info
*info
)
7218 if (! is_elf_hash_table (info
->hash
))
7220 return elf_hash_table (info
)->runpath
;
7223 /* Get the name actually used for a dynamic object for a link. This
7224 is the SONAME entry if there is one. Otherwise, it is the string
7225 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7228 bfd_elf_get_dt_soname (bfd
*abfd
)
7230 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
7231 && bfd_get_format (abfd
) == bfd_object
)
7232 return elf_dt_name (abfd
);
7236 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7237 the ELF linker emulation code. */
7240 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
7241 struct bfd_link_needed_list
**pneeded
)
7244 bfd_byte
*dynbuf
= NULL
;
7245 unsigned int elfsec
;
7246 unsigned long shlink
;
7247 bfd_byte
*extdyn
, *extdynend
;
7249 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
7253 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
7254 || bfd_get_format (abfd
) != bfd_object
)
7257 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7258 if (s
== NULL
|| s
->size
== 0)
7261 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
7264 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
7265 if (elfsec
== SHN_BAD
)
7268 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
7270 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
7271 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
7274 extdynend
= extdyn
+ s
->size
;
7275 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
7277 Elf_Internal_Dyn dyn
;
7279 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
7281 if (dyn
.d_tag
== DT_NULL
)
7284 if (dyn
.d_tag
== DT_NEEDED
)
7287 struct bfd_link_needed_list
*l
;
7288 unsigned int tagv
= dyn
.d_un
.d_val
;
7291 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
7296 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
7317 struct elf_symbuf_symbol
7319 unsigned long st_name
; /* Symbol name, index in string tbl */
7320 unsigned char st_info
; /* Type and binding attributes */
7321 unsigned char st_other
; /* Visibilty, and target specific */
7324 struct elf_symbuf_head
7326 struct elf_symbuf_symbol
*ssym
;
7328 unsigned int st_shndx
;
7335 Elf_Internal_Sym
*isym
;
7336 struct elf_symbuf_symbol
*ssym
;
7341 /* Sort references to symbols by ascending section number. */
7344 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7346 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
7347 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
7349 return s1
->st_shndx
- s2
->st_shndx
;
7353 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7355 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7356 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7357 return strcmp (s1
->name
, s2
->name
);
7360 static struct elf_symbuf_head
*
7361 elf_create_symbuf (size_t symcount
, Elf_Internal_Sym
*isymbuf
)
7363 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7364 struct elf_symbuf_symbol
*ssym
;
7365 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7366 size_t i
, shndx_count
, total_size
;
7368 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7372 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7373 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7374 *ind
++ = &isymbuf
[i
];
7377 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7378 elf_sort_elf_symbol
);
7381 if (indbufend
> indbuf
)
7382 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7383 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7386 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7387 + (indbufend
- indbuf
) * sizeof (*ssym
));
7388 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7389 if (ssymbuf
== NULL
)
7395 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7396 ssymbuf
->ssym
= NULL
;
7397 ssymbuf
->count
= shndx_count
;
7398 ssymbuf
->st_shndx
= 0;
7399 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7401 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7404 ssymhead
->ssym
= ssym
;
7405 ssymhead
->count
= 0;
7406 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7408 ssym
->st_name
= (*ind
)->st_name
;
7409 ssym
->st_info
= (*ind
)->st_info
;
7410 ssym
->st_other
= (*ind
)->st_other
;
7413 BFD_ASSERT ((size_t) (ssymhead
- ssymbuf
) == shndx_count
7414 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7421 /* Check if 2 sections define the same set of local and global
7425 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7426 struct bfd_link_info
*info
)
7429 const struct elf_backend_data
*bed1
, *bed2
;
7430 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7431 size_t symcount1
, symcount2
;
7432 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7433 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7434 Elf_Internal_Sym
*isym
, *isymend
;
7435 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7436 size_t count1
, count2
, i
;
7437 unsigned int shndx1
, shndx2
;
7443 /* Both sections have to be in ELF. */
7444 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7445 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7448 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7451 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7452 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7453 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7456 bed1
= get_elf_backend_data (bfd1
);
7457 bed2
= get_elf_backend_data (bfd2
);
7458 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7459 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7460 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7461 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7463 if (symcount1
== 0 || symcount2
== 0)
7469 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7470 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7472 if (ssymbuf1
== NULL
)
7474 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7476 if (isymbuf1
== NULL
)
7479 if (!info
->reduce_memory_overheads
)
7480 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7481 = elf_create_symbuf (symcount1
, isymbuf1
);
7484 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7486 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7488 if (isymbuf2
== NULL
)
7491 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7492 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7493 = elf_create_symbuf (symcount2
, isymbuf2
);
7496 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7498 /* Optimized faster version. */
7500 struct elf_symbol
*symp
;
7501 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7504 hi
= ssymbuf1
->count
;
7509 mid
= (lo
+ hi
) / 2;
7510 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7512 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7516 count1
= ssymbuf1
[mid
].count
;
7523 hi
= ssymbuf2
->count
;
7528 mid
= (lo
+ hi
) / 2;
7529 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7531 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7535 count2
= ssymbuf2
[mid
].count
;
7541 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7545 = (struct elf_symbol
*) bfd_malloc (count1
* sizeof (*symtable1
));
7547 = (struct elf_symbol
*) bfd_malloc (count2
* sizeof (*symtable2
));
7548 if (symtable1
== NULL
|| symtable2
== NULL
)
7552 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7553 ssym
< ssymend
; ssym
++, symp
++)
7555 symp
->u
.ssym
= ssym
;
7556 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7562 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7563 ssym
< ssymend
; ssym
++, symp
++)
7565 symp
->u
.ssym
= ssym
;
7566 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7571 /* Sort symbol by name. */
7572 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7573 elf_sym_name_compare
);
7574 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7575 elf_sym_name_compare
);
7577 for (i
= 0; i
< count1
; i
++)
7578 /* Two symbols must have the same binding, type and name. */
7579 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7580 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7581 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7588 symtable1
= (struct elf_symbol
*)
7589 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7590 symtable2
= (struct elf_symbol
*)
7591 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7592 if (symtable1
== NULL
|| symtable2
== NULL
)
7595 /* Count definitions in the section. */
7597 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7598 if (isym
->st_shndx
== shndx1
)
7599 symtable1
[count1
++].u
.isym
= isym
;
7602 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7603 if (isym
->st_shndx
== shndx2
)
7604 symtable2
[count2
++].u
.isym
= isym
;
7606 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7609 for (i
= 0; i
< count1
; i
++)
7611 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7612 symtable1
[i
].u
.isym
->st_name
);
7614 for (i
= 0; i
< count2
; i
++)
7616 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7617 symtable2
[i
].u
.isym
->st_name
);
7619 /* Sort symbol by name. */
7620 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7621 elf_sym_name_compare
);
7622 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7623 elf_sym_name_compare
);
7625 for (i
= 0; i
< count1
; i
++)
7626 /* Two symbols must have the same binding, type and name. */
7627 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7628 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7629 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7647 /* Return TRUE if 2 section types are compatible. */
7650 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7651 bfd
*bbfd
, const asection
*bsec
)
7655 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7656 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7659 return elf_section_type (asec
) == elf_section_type (bsec
);
7662 /* Final phase of ELF linker. */
7664 /* A structure we use to avoid passing large numbers of arguments. */
7666 struct elf_final_link_info
7668 /* General link information. */
7669 struct bfd_link_info
*info
;
7672 /* Symbol string table. */
7673 struct elf_strtab_hash
*symstrtab
;
7674 /* .hash section. */
7676 /* symbol version section (.gnu.version). */
7677 asection
*symver_sec
;
7678 /* Buffer large enough to hold contents of any section. */
7680 /* Buffer large enough to hold external relocs of any section. */
7681 void *external_relocs
;
7682 /* Buffer large enough to hold internal relocs of any section. */
7683 Elf_Internal_Rela
*internal_relocs
;
7684 /* Buffer large enough to hold external local symbols of any input
7686 bfd_byte
*external_syms
;
7687 /* And a buffer for symbol section indices. */
7688 Elf_External_Sym_Shndx
*locsym_shndx
;
7689 /* Buffer large enough to hold internal local symbols of any input
7691 Elf_Internal_Sym
*internal_syms
;
7692 /* Array large enough to hold a symbol index for each local symbol
7693 of any input BFD. */
7695 /* Array large enough to hold a section pointer for each local
7696 symbol of any input BFD. */
7697 asection
**sections
;
7698 /* Buffer for SHT_SYMTAB_SHNDX section. */
7699 Elf_External_Sym_Shndx
*symshndxbuf
;
7700 /* Number of STT_FILE syms seen. */
7701 size_t filesym_count
;
7704 /* This struct is used to pass information to elf_link_output_extsym. */
7706 struct elf_outext_info
7709 bfd_boolean localsyms
;
7710 bfd_boolean file_sym_done
;
7711 struct elf_final_link_info
*flinfo
;
7715 /* Support for evaluating a complex relocation.
7717 Complex relocations are generalized, self-describing relocations. The
7718 implementation of them consists of two parts: complex symbols, and the
7719 relocations themselves.
7721 The relocations are use a reserved elf-wide relocation type code (R_RELC
7722 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7723 information (start bit, end bit, word width, etc) into the addend. This
7724 information is extracted from CGEN-generated operand tables within gas.
7726 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7727 internal) representing prefix-notation expressions, including but not
7728 limited to those sorts of expressions normally encoded as addends in the
7729 addend field. The symbol mangling format is:
7732 | <unary-operator> ':' <node>
7733 | <binary-operator> ':' <node> ':' <node>
7736 <literal> := 's' <digits=N> ':' <N character symbol name>
7737 | 'S' <digits=N> ':' <N character section name>
7741 <binary-operator> := as in C
7742 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7745 set_symbol_value (bfd
*bfd_with_globals
,
7746 Elf_Internal_Sym
*isymbuf
,
7751 struct elf_link_hash_entry
**sym_hashes
;
7752 struct elf_link_hash_entry
*h
;
7753 size_t extsymoff
= locsymcount
;
7755 if (symidx
< locsymcount
)
7757 Elf_Internal_Sym
*sym
;
7759 sym
= isymbuf
+ symidx
;
7760 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7762 /* It is a local symbol: move it to the
7763 "absolute" section and give it a value. */
7764 sym
->st_shndx
= SHN_ABS
;
7765 sym
->st_value
= val
;
7768 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7772 /* It is a global symbol: set its link type
7773 to "defined" and give it a value. */
7775 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7776 h
= sym_hashes
[symidx
- extsymoff
];
7777 while (h
->root
.type
== bfd_link_hash_indirect
7778 || h
->root
.type
== bfd_link_hash_warning
)
7779 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7780 h
->root
.type
= bfd_link_hash_defined
;
7781 h
->root
.u
.def
.value
= val
;
7782 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7786 resolve_symbol (const char *name
,
7788 struct elf_final_link_info
*flinfo
,
7790 Elf_Internal_Sym
*isymbuf
,
7793 Elf_Internal_Sym
*sym
;
7794 struct bfd_link_hash_entry
*global_entry
;
7795 const char *candidate
= NULL
;
7796 Elf_Internal_Shdr
*symtab_hdr
;
7799 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7801 for (i
= 0; i
< locsymcount
; ++ i
)
7805 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7808 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7809 symtab_hdr
->sh_link
,
7812 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7813 name
, candidate
, (unsigned long) sym
->st_value
);
7815 if (candidate
&& strcmp (candidate
, name
) == 0)
7817 asection
*sec
= flinfo
->sections
[i
];
7819 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7820 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7822 printf ("Found symbol with value %8.8lx\n",
7823 (unsigned long) *result
);
7829 /* Hmm, haven't found it yet. perhaps it is a global. */
7830 global_entry
= bfd_link_hash_lookup (flinfo
->info
->hash
, name
,
7831 FALSE
, FALSE
, TRUE
);
7835 if (global_entry
->type
== bfd_link_hash_defined
7836 || global_entry
->type
== bfd_link_hash_defweak
)
7838 *result
= (global_entry
->u
.def
.value
7839 + global_entry
->u
.def
.section
->output_section
->vma
7840 + global_entry
->u
.def
.section
->output_offset
);
7842 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7843 global_entry
->root
.string
, (unsigned long) *result
);
7851 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7852 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7853 names like "foo.end" which is the end address of section "foo". */
7856 resolve_section (const char *name
,
7864 for (curr
= sections
; curr
; curr
= curr
->next
)
7865 if (strcmp (curr
->name
, name
) == 0)
7867 *result
= curr
->vma
;
7871 /* Hmm. still haven't found it. try pseudo-section names. */
7872 /* FIXME: This could be coded more efficiently... */
7873 for (curr
= sections
; curr
; curr
= curr
->next
)
7875 len
= strlen (curr
->name
);
7876 if (len
> strlen (name
))
7879 if (strncmp (curr
->name
, name
, len
) == 0)
7881 if (strncmp (".end", name
+ len
, 4) == 0)
7883 *result
= curr
->vma
+ curr
->size
/ bfd_octets_per_byte (abfd
);
7887 /* Insert more pseudo-section names here, if you like. */
7895 undefined_reference (const char *reftype
, const char *name
)
7897 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7902 eval_symbol (bfd_vma
*result
,
7905 struct elf_final_link_info
*flinfo
,
7907 Elf_Internal_Sym
*isymbuf
,
7916 const char *sym
= *symp
;
7918 bfd_boolean symbol_is_section
= FALSE
;
7923 if (len
< 1 || len
> sizeof (symbuf
))
7925 bfd_set_error (bfd_error_invalid_operation
);
7938 *result
= strtoul (sym
, (char **) symp
, 16);
7942 symbol_is_section
= TRUE
;
7945 symlen
= strtol (sym
, (char **) symp
, 10);
7946 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7948 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7950 bfd_set_error (bfd_error_invalid_operation
);
7954 memcpy (symbuf
, sym
, symlen
);
7955 symbuf
[symlen
] = '\0';
7956 *symp
= sym
+ symlen
;
7958 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7959 the symbol as a section, or vice-versa. so we're pretty liberal in our
7960 interpretation here; section means "try section first", not "must be a
7961 section", and likewise with symbol. */
7963 if (symbol_is_section
)
7965 if (!resolve_section (symbuf
, flinfo
->output_bfd
->sections
, result
, input_bfd
)
7966 && !resolve_symbol (symbuf
, input_bfd
, flinfo
, result
,
7967 isymbuf
, locsymcount
))
7969 undefined_reference ("section", symbuf
);
7975 if (!resolve_symbol (symbuf
, input_bfd
, flinfo
, result
,
7976 isymbuf
, locsymcount
)
7977 && !resolve_section (symbuf
, flinfo
->output_bfd
->sections
,
7980 undefined_reference ("symbol", symbuf
);
7987 /* All that remains are operators. */
7989 #define UNARY_OP(op) \
7990 if (strncmp (sym, #op, strlen (#op)) == 0) \
7992 sym += strlen (#op); \
7996 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7997 isymbuf, locsymcount, signed_p)) \
8000 *result = op ((bfd_signed_vma) a); \
8006 #define BINARY_OP(op) \
8007 if (strncmp (sym, #op, strlen (#op)) == 0) \
8009 sym += strlen (#op); \
8013 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8014 isymbuf, locsymcount, signed_p)) \
8017 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8018 isymbuf, locsymcount, signed_p)) \
8021 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8051 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
8052 bfd_set_error (bfd_error_invalid_operation
);
8058 put_value (bfd_vma size
,
8059 unsigned long chunksz
,
8064 location
+= (size
- chunksz
);
8066 for (; size
; size
-= chunksz
, location
-= chunksz
)
8071 bfd_put_8 (input_bfd
, x
, location
);
8075 bfd_put_16 (input_bfd
, x
, location
);
8079 bfd_put_32 (input_bfd
, x
, location
);
8080 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8086 bfd_put_64 (input_bfd
, x
, location
);
8087 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8100 get_value (bfd_vma size
,
8101 unsigned long chunksz
,
8108 /* Sanity checks. */
8109 BFD_ASSERT (chunksz
<= sizeof (x
)
8112 && (size
% chunksz
) == 0
8113 && input_bfd
!= NULL
8114 && location
!= NULL
);
8116 if (chunksz
== sizeof (x
))
8118 BFD_ASSERT (size
== chunksz
);
8120 /* Make sure that we do not perform an undefined shift operation.
8121 We know that size == chunksz so there will only be one iteration
8122 of the loop below. */
8126 shift
= 8 * chunksz
;
8128 for (; size
; size
-= chunksz
, location
+= chunksz
)
8133 x
= (x
<< shift
) | bfd_get_8 (input_bfd
, location
);
8136 x
= (x
<< shift
) | bfd_get_16 (input_bfd
, location
);
8139 x
= (x
<< shift
) | bfd_get_32 (input_bfd
, location
);
8143 x
= (x
<< shift
) | bfd_get_64 (input_bfd
, location
);
8154 decode_complex_addend (unsigned long *start
, /* in bits */
8155 unsigned long *oplen
, /* in bits */
8156 unsigned long *len
, /* in bits */
8157 unsigned long *wordsz
, /* in bytes */
8158 unsigned long *chunksz
, /* in bytes */
8159 unsigned long *lsb0_p
,
8160 unsigned long *signed_p
,
8161 unsigned long *trunc_p
,
8162 unsigned long encoded
)
8164 * start
= encoded
& 0x3F;
8165 * len
= (encoded
>> 6) & 0x3F;
8166 * oplen
= (encoded
>> 12) & 0x3F;
8167 * wordsz
= (encoded
>> 18) & 0xF;
8168 * chunksz
= (encoded
>> 22) & 0xF;
8169 * lsb0_p
= (encoded
>> 27) & 1;
8170 * signed_p
= (encoded
>> 28) & 1;
8171 * trunc_p
= (encoded
>> 29) & 1;
8174 bfd_reloc_status_type
8175 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
8176 asection
*input_section ATTRIBUTE_UNUSED
,
8178 Elf_Internal_Rela
*rel
,
8181 bfd_vma shift
, x
, mask
;
8182 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
8183 bfd_reloc_status_type r
;
8185 /* Perform this reloc, since it is complex.
8186 (this is not to say that it necessarily refers to a complex
8187 symbol; merely that it is a self-describing CGEN based reloc.
8188 i.e. the addend has the complete reloc information (bit start, end,
8189 word size, etc) encoded within it.). */
8191 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
8192 &chunksz
, &lsb0_p
, &signed_p
,
8193 &trunc_p
, rel
->r_addend
);
8195 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
8198 shift
= (start
+ 1) - len
;
8200 shift
= (8 * wordsz
) - (start
+ len
);
8202 x
= get_value (wordsz
, chunksz
, input_bfd
,
8203 contents
+ rel
->r_offset
* bfd_octets_per_byte (input_bfd
));
8206 printf ("Doing complex reloc: "
8207 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8208 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8209 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8210 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
8211 oplen
, (unsigned long) x
, (unsigned long) mask
,
8212 (unsigned long) relocation
);
8217 /* Now do an overflow check. */
8218 r
= bfd_check_overflow ((signed_p
8219 ? complain_overflow_signed
8220 : complain_overflow_unsigned
),
8221 len
, 0, (8 * wordsz
),
8225 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
8228 printf (" relocation: %8.8lx\n"
8229 " shifted mask: %8.8lx\n"
8230 " shifted/masked reloc: %8.8lx\n"
8231 " result: %8.8lx\n",
8232 (unsigned long) relocation
, (unsigned long) (mask
<< shift
),
8233 (unsigned long) ((relocation
& mask
) << shift
), (unsigned long) x
);
8235 put_value (wordsz
, chunksz
, input_bfd
, x
,
8236 contents
+ rel
->r_offset
* bfd_octets_per_byte (input_bfd
));
8240 /* Functions to read r_offset from external (target order) reloc
8241 entry. Faster than bfd_getl32 et al, because we let the compiler
8242 know the value is aligned. */
8245 ext32l_r_offset (const void *p
)
8252 const union aligned32
*a
8253 = (const union aligned32
*) &((const Elf32_External_Rel
*) p
)->r_offset
;
8255 uint32_t aval
= ( (uint32_t) a
->c
[0]
8256 | (uint32_t) a
->c
[1] << 8
8257 | (uint32_t) a
->c
[2] << 16
8258 | (uint32_t) a
->c
[3] << 24);
8263 ext32b_r_offset (const void *p
)
8270 const union aligned32
*a
8271 = (const union aligned32
*) &((const Elf32_External_Rel
*) p
)->r_offset
;
8273 uint32_t aval
= ( (uint32_t) a
->c
[0] << 24
8274 | (uint32_t) a
->c
[1] << 16
8275 | (uint32_t) a
->c
[2] << 8
8276 | (uint32_t) a
->c
[3]);
8280 #ifdef BFD_HOST_64_BIT
8282 ext64l_r_offset (const void *p
)
8289 const union aligned64
*a
8290 = (const union aligned64
*) &((const Elf64_External_Rel
*) p
)->r_offset
;
8292 uint64_t aval
= ( (uint64_t) a
->c
[0]
8293 | (uint64_t) a
->c
[1] << 8
8294 | (uint64_t) a
->c
[2] << 16
8295 | (uint64_t) a
->c
[3] << 24
8296 | (uint64_t) a
->c
[4] << 32
8297 | (uint64_t) a
->c
[5] << 40
8298 | (uint64_t) a
->c
[6] << 48
8299 | (uint64_t) a
->c
[7] << 56);
8304 ext64b_r_offset (const void *p
)
8311 const union aligned64
*a
8312 = (const union aligned64
*) &((const Elf64_External_Rel
*) p
)->r_offset
;
8314 uint64_t aval
= ( (uint64_t) a
->c
[0] << 56
8315 | (uint64_t) a
->c
[1] << 48
8316 | (uint64_t) a
->c
[2] << 40
8317 | (uint64_t) a
->c
[3] << 32
8318 | (uint64_t) a
->c
[4] << 24
8319 | (uint64_t) a
->c
[5] << 16
8320 | (uint64_t) a
->c
[6] << 8
8321 | (uint64_t) a
->c
[7]);
8326 /* When performing a relocatable link, the input relocations are
8327 preserved. But, if they reference global symbols, the indices
8328 referenced must be updated. Update all the relocations found in
8332 elf_link_adjust_relocs (bfd
*abfd
,
8333 struct bfd_elf_section_reloc_data
*reldata
,
8337 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8339 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8340 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8341 bfd_vma r_type_mask
;
8343 unsigned int count
= reldata
->count
;
8344 struct elf_link_hash_entry
**rel_hash
= reldata
->hashes
;
8346 if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
8348 swap_in
= bed
->s
->swap_reloc_in
;
8349 swap_out
= bed
->s
->swap_reloc_out
;
8351 else if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
8353 swap_in
= bed
->s
->swap_reloca_in
;
8354 swap_out
= bed
->s
->swap_reloca_out
;
8359 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
8362 if (bed
->s
->arch_size
== 32)
8369 r_type_mask
= 0xffffffff;
8373 erela
= reldata
->hdr
->contents
;
8374 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= reldata
->hdr
->sh_entsize
)
8376 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
8379 if (*rel_hash
== NULL
)
8382 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
8384 (*swap_in
) (abfd
, erela
, irela
);
8385 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
8386 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
8387 | (irela
[j
].r_info
& r_type_mask
));
8388 (*swap_out
) (abfd
, irela
, erela
);
8391 if (sort
&& count
!= 0)
8393 bfd_vma (*ext_r_off
) (const void *);
8396 bfd_byte
*base
, *end
, *p
, *loc
;
8397 bfd_byte
*buf
= NULL
;
8399 if (bed
->s
->arch_size
== 32)
8401 if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_LITTLE
)
8402 ext_r_off
= ext32l_r_offset
;
8403 else if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_BIG
)
8404 ext_r_off
= ext32b_r_offset
;
8410 #ifdef BFD_HOST_64_BIT
8411 if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_LITTLE
)
8412 ext_r_off
= ext64l_r_offset
;
8413 else if (abfd
->xvec
->header_byteorder
== BFD_ENDIAN_BIG
)
8414 ext_r_off
= ext64b_r_offset
;
8420 /* Must use a stable sort here. A modified insertion sort,
8421 since the relocs are mostly sorted already. */
8422 elt_size
= reldata
->hdr
->sh_entsize
;
8423 base
= reldata
->hdr
->contents
;
8424 end
= base
+ count
* elt_size
;
8425 if (elt_size
> sizeof (Elf64_External_Rela
))
8428 /* Ensure the first element is lowest. This acts as a sentinel,
8429 speeding the main loop below. */
8430 r_off
= (*ext_r_off
) (base
);
8431 for (p
= loc
= base
; (p
+= elt_size
) < end
; )
8433 bfd_vma r_off2
= (*ext_r_off
) (p
);
8442 /* Don't just swap *base and *loc as that changes the order
8443 of the original base[0] and base[1] if they happen to
8444 have the same r_offset. */
8445 bfd_byte onebuf
[sizeof (Elf64_External_Rela
)];
8446 memcpy (onebuf
, loc
, elt_size
);
8447 memmove (base
+ elt_size
, base
, loc
- base
);
8448 memcpy (base
, onebuf
, elt_size
);
8451 for (p
= base
+ elt_size
; (p
+= elt_size
) < end
; )
8453 /* base to p is sorted, *p is next to insert. */
8454 r_off
= (*ext_r_off
) (p
);
8455 /* Search the sorted region for location to insert. */
8457 while (r_off
< (*ext_r_off
) (loc
))
8462 /* Chances are there is a run of relocs to insert here,
8463 from one of more input files. Files are not always
8464 linked in order due to the way elf_link_input_bfd is
8465 called. See pr17666. */
8466 size_t sortlen
= p
- loc
;
8467 bfd_vma r_off2
= (*ext_r_off
) (loc
);
8468 size_t runlen
= elt_size
;
8469 size_t buf_size
= 96 * 1024;
8470 while (p
+ runlen
< end
8471 && (sortlen
<= buf_size
8472 || runlen
+ elt_size
<= buf_size
)
8473 && r_off2
> (*ext_r_off
) (p
+ runlen
))
8477 buf
= bfd_malloc (buf_size
);
8481 if (runlen
< sortlen
)
8483 memcpy (buf
, p
, runlen
);
8484 memmove (loc
+ runlen
, loc
, sortlen
);
8485 memcpy (loc
, buf
, runlen
);
8489 memcpy (buf
, loc
, sortlen
);
8490 memmove (loc
, p
, runlen
);
8491 memcpy (loc
+ runlen
, buf
, sortlen
);
8493 p
+= runlen
- elt_size
;
8496 /* Hashes are no longer valid. */
8497 free (reldata
->hashes
);
8498 reldata
->hashes
= NULL
;
8504 struct elf_link_sort_rela
8510 enum elf_reloc_type_class type
;
8511 /* We use this as an array of size int_rels_per_ext_rel. */
8512 Elf_Internal_Rela rela
[1];
8516 elf_link_sort_cmp1 (const void *A
, const void *B
)
8518 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8519 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8520 int relativea
, relativeb
;
8522 relativea
= a
->type
== reloc_class_relative
;
8523 relativeb
= b
->type
== reloc_class_relative
;
8525 if (relativea
< relativeb
)
8527 if (relativea
> relativeb
)
8529 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
8531 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
8533 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8535 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8541 elf_link_sort_cmp2 (const void *A
, const void *B
)
8543 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8544 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8546 if (a
->type
< b
->type
)
8548 if (a
->type
> b
->type
)
8550 if (a
->u
.offset
< b
->u
.offset
)
8552 if (a
->u
.offset
> b
->u
.offset
)
8554 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8556 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8562 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
8564 asection
*dynamic_relocs
;
8567 bfd_size_type count
, size
;
8568 size_t i
, ret
, sort_elt
, ext_size
;
8569 bfd_byte
*sort
, *s_non_relative
, *p
;
8570 struct elf_link_sort_rela
*sq
;
8571 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8572 int i2e
= bed
->s
->int_rels_per_ext_rel
;
8573 unsigned int opb
= bfd_octets_per_byte (abfd
);
8574 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8575 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8576 struct bfd_link_order
*lo
;
8578 bfd_boolean use_rela
;
8580 /* Find a dynamic reloc section. */
8581 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
8582 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
8583 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
8584 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8586 bfd_boolean use_rela_initialised
= FALSE
;
8588 /* This is just here to stop gcc from complaining.
8589 Its initialization checking code is not perfect. */
8592 /* Both sections are present. Examine the sizes
8593 of the indirect sections to help us choose. */
8594 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8595 if (lo
->type
== bfd_indirect_link_order
)
8597 asection
*o
= lo
->u
.indirect
.section
;
8599 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8601 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8602 /* Section size is divisible by both rel and rela sizes.
8603 It is of no help to us. */
8607 /* Section size is only divisible by rela. */
8608 if (use_rela_initialised
&& (use_rela
== FALSE
))
8610 _bfd_error_handler (_("%B: Unable to sort relocs - "
8611 "they are in more than one size"),
8613 bfd_set_error (bfd_error_invalid_operation
);
8619 use_rela_initialised
= TRUE
;
8623 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8625 /* Section size is only divisible by rel. */
8626 if (use_rela_initialised
&& (use_rela
== TRUE
))
8628 _bfd_error_handler (_("%B: Unable to sort relocs - "
8629 "they are in more than one size"),
8631 bfd_set_error (bfd_error_invalid_operation
);
8637 use_rela_initialised
= TRUE
;
8642 /* The section size is not divisible by either -
8643 something is wrong. */
8644 _bfd_error_handler (_("%B: Unable to sort relocs - "
8645 "they are of an unknown size"), abfd
);
8646 bfd_set_error (bfd_error_invalid_operation
);
8651 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8652 if (lo
->type
== bfd_indirect_link_order
)
8654 asection
*o
= lo
->u
.indirect
.section
;
8656 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8658 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8659 /* Section size is divisible by both rel and rela sizes.
8660 It is of no help to us. */
8664 /* Section size is only divisible by rela. */
8665 if (use_rela_initialised
&& (use_rela
== FALSE
))
8667 _bfd_error_handler (_("%B: Unable to sort relocs - "
8668 "they are in more than one size"),
8670 bfd_set_error (bfd_error_invalid_operation
);
8676 use_rela_initialised
= TRUE
;
8680 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8682 /* Section size is only divisible by rel. */
8683 if (use_rela_initialised
&& (use_rela
== TRUE
))
8685 _bfd_error_handler (_("%B: Unable to sort relocs - "
8686 "they are in more than one size"),
8688 bfd_set_error (bfd_error_invalid_operation
);
8694 use_rela_initialised
= TRUE
;
8699 /* The section size is not divisible by either -
8700 something is wrong. */
8701 _bfd_error_handler (_("%B: Unable to sort relocs - "
8702 "they are of an unknown size"), abfd
);
8703 bfd_set_error (bfd_error_invalid_operation
);
8708 if (! use_rela_initialised
)
8712 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8714 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8721 dynamic_relocs
= rela_dyn
;
8722 ext_size
= bed
->s
->sizeof_rela
;
8723 swap_in
= bed
->s
->swap_reloca_in
;
8724 swap_out
= bed
->s
->swap_reloca_out
;
8728 dynamic_relocs
= rel_dyn
;
8729 ext_size
= bed
->s
->sizeof_rel
;
8730 swap_in
= bed
->s
->swap_reloc_in
;
8731 swap_out
= bed
->s
->swap_reloc_out
;
8735 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8736 if (lo
->type
== bfd_indirect_link_order
)
8737 size
+= lo
->u
.indirect
.section
->size
;
8739 if (size
!= dynamic_relocs
->size
)
8742 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8743 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8745 count
= dynamic_relocs
->size
/ ext_size
;
8748 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8752 (*info
->callbacks
->warning
)
8753 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8757 if (bed
->s
->arch_size
== 32)
8758 r_sym_mask
= ~(bfd_vma
) 0xff;
8760 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8762 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8763 if (lo
->type
== bfd_indirect_link_order
)
8765 bfd_byte
*erel
, *erelend
;
8766 asection
*o
= lo
->u
.indirect
.section
;
8768 if (o
->contents
== NULL
&& o
->size
!= 0)
8770 /* This is a reloc section that is being handled as a normal
8771 section. See bfd_section_from_shdr. We can't combine
8772 relocs in this case. */
8777 erelend
= o
->contents
+ o
->size
;
8778 p
= sort
+ o
->output_offset
* opb
/ ext_size
* sort_elt
;
8780 while (erel
< erelend
)
8782 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8784 (*swap_in
) (abfd
, erel
, s
->rela
);
8785 s
->type
= (*bed
->elf_backend_reloc_type_class
) (info
, o
, s
->rela
);
8786 s
->u
.sym_mask
= r_sym_mask
;
8792 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8794 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8796 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8797 if (s
->type
!= reloc_class_relative
)
8803 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8804 for (; i
< count
; i
++, p
+= sort_elt
)
8806 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8807 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8809 sp
->u
.offset
= sq
->rela
->r_offset
;
8812 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8814 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
8815 if (htab
->srelplt
&& htab
->srelplt
->output_section
== dynamic_relocs
)
8817 /* We have plt relocs in .rela.dyn. */
8818 sq
= (struct elf_link_sort_rela
*) sort
;
8819 for (i
= 0; i
< count
; i
++)
8820 if (sq
[count
- i
- 1].type
!= reloc_class_plt
)
8822 if (i
!= 0 && htab
->srelplt
->size
== i
* ext_size
)
8824 struct bfd_link_order
**plo
;
8825 /* Put srelplt link_order last. This is so the output_offset
8826 set in the next loop is correct for DT_JMPREL. */
8827 for (plo
= &dynamic_relocs
->map_head
.link_order
; *plo
!= NULL
; )
8828 if ((*plo
)->type
== bfd_indirect_link_order
8829 && (*plo
)->u
.indirect
.section
== htab
->srelplt
)
8835 plo
= &(*plo
)->next
;
8838 dynamic_relocs
->map_tail
.link_order
= lo
;
8843 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8844 if (lo
->type
== bfd_indirect_link_order
)
8846 bfd_byte
*erel
, *erelend
;
8847 asection
*o
= lo
->u
.indirect
.section
;
8850 erelend
= o
->contents
+ o
->size
;
8851 o
->output_offset
= (p
- sort
) / sort_elt
* ext_size
/ opb
;
8852 while (erel
< erelend
)
8854 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8855 (*swap_out
) (abfd
, s
->rela
, erel
);
8862 *psec
= dynamic_relocs
;
8866 /* Add a symbol to the output symbol string table. */
8869 elf_link_output_symstrtab (struct elf_final_link_info
*flinfo
,
8871 Elf_Internal_Sym
*elfsym
,
8872 asection
*input_sec
,
8873 struct elf_link_hash_entry
*h
)
8875 int (*output_symbol_hook
)
8876 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8877 struct elf_link_hash_entry
*);
8878 struct elf_link_hash_table
*hash_table
;
8879 const struct elf_backend_data
*bed
;
8880 bfd_size_type strtabsize
;
8882 BFD_ASSERT (elf_onesymtab (flinfo
->output_bfd
));
8884 bed
= get_elf_backend_data (flinfo
->output_bfd
);
8885 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8886 if (output_symbol_hook
!= NULL
)
8888 int ret
= (*output_symbol_hook
) (flinfo
->info
, name
, elfsym
, input_sec
, h
);
8895 || (input_sec
->flags
& SEC_EXCLUDE
))
8896 elfsym
->st_name
= (unsigned long) -1;
8899 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8900 to get the final offset for st_name. */
8902 = (unsigned long) _bfd_elf_strtab_add (flinfo
->symstrtab
,
8904 if (elfsym
->st_name
== (unsigned long) -1)
8908 hash_table
= elf_hash_table (flinfo
->info
);
8909 strtabsize
= hash_table
->strtabsize
;
8910 if (strtabsize
<= hash_table
->strtabcount
)
8912 strtabsize
+= strtabsize
;
8913 hash_table
->strtabsize
= strtabsize
;
8914 strtabsize
*= sizeof (*hash_table
->strtab
);
8916 = (struct elf_sym_strtab
*) bfd_realloc (hash_table
->strtab
,
8918 if (hash_table
->strtab
== NULL
)
8921 hash_table
->strtab
[hash_table
->strtabcount
].sym
= *elfsym
;
8922 hash_table
->strtab
[hash_table
->strtabcount
].dest_index
8923 = hash_table
->strtabcount
;
8924 hash_table
->strtab
[hash_table
->strtabcount
].destshndx_index
8925 = flinfo
->symshndxbuf
? bfd_get_symcount (flinfo
->output_bfd
) : 0;
8927 bfd_get_symcount (flinfo
->output_bfd
) += 1;
8928 hash_table
->strtabcount
+= 1;
8933 /* Swap symbols out to the symbol table and flush the output symbols to
8937 elf_link_swap_symbols_out (struct elf_final_link_info
*flinfo
)
8939 struct elf_link_hash_table
*hash_table
= elf_hash_table (flinfo
->info
);
8942 const struct elf_backend_data
*bed
;
8944 Elf_Internal_Shdr
*hdr
;
8948 if (!hash_table
->strtabcount
)
8951 BFD_ASSERT (elf_onesymtab (flinfo
->output_bfd
));
8953 bed
= get_elf_backend_data (flinfo
->output_bfd
);
8955 amt
= bed
->s
->sizeof_sym
* hash_table
->strtabcount
;
8956 symbuf
= (bfd_byte
*) bfd_malloc (amt
);
8960 if (flinfo
->symshndxbuf
)
8962 amt
= sizeof (Elf_External_Sym_Shndx
);
8963 amt
*= bfd_get_symcount (flinfo
->output_bfd
);
8964 flinfo
->symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
8965 if (flinfo
->symshndxbuf
== NULL
)
8972 for (i
= 0; i
< hash_table
->strtabcount
; i
++)
8974 struct elf_sym_strtab
*elfsym
= &hash_table
->strtab
[i
];
8975 if (elfsym
->sym
.st_name
== (unsigned long) -1)
8976 elfsym
->sym
.st_name
= 0;
8979 = (unsigned long) _bfd_elf_strtab_offset (flinfo
->symstrtab
,
8980 elfsym
->sym
.st_name
);
8981 bed
->s
->swap_symbol_out (flinfo
->output_bfd
, &elfsym
->sym
,
8982 ((bfd_byte
*) symbuf
8983 + (elfsym
->dest_index
8984 * bed
->s
->sizeof_sym
)),
8985 (flinfo
->symshndxbuf
8986 + elfsym
->destshndx_index
));
8989 hdr
= &elf_tdata (flinfo
->output_bfd
)->symtab_hdr
;
8990 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8991 amt
= hash_table
->strtabcount
* bed
->s
->sizeof_sym
;
8992 if (bfd_seek (flinfo
->output_bfd
, pos
, SEEK_SET
) == 0
8993 && bfd_bwrite (symbuf
, amt
, flinfo
->output_bfd
) == amt
)
8995 hdr
->sh_size
+= amt
;
9003 free (hash_table
->strtab
);
9004 hash_table
->strtab
= NULL
;
9009 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9012 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
9014 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
9015 && sym
->st_shndx
< SHN_LORESERVE
)
9017 /* The gABI doesn't support dynamic symbols in output sections
9019 (*_bfd_error_handler
)
9020 (_("%B: Too many sections: %d (>= %d)"),
9021 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
9022 bfd_set_error (bfd_error_nonrepresentable_section
);
9028 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9029 allowing an unsatisfied unversioned symbol in the DSO to match a
9030 versioned symbol that would normally require an explicit version.
9031 We also handle the case that a DSO references a hidden symbol
9032 which may be satisfied by a versioned symbol in another DSO. */
9035 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
9036 const struct elf_backend_data
*bed
,
9037 struct elf_link_hash_entry
*h
)
9040 struct elf_link_loaded_list
*loaded
;
9042 if (!is_elf_hash_table (info
->hash
))
9045 /* Check indirect symbol. */
9046 while (h
->root
.type
== bfd_link_hash_indirect
)
9047 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9049 switch (h
->root
.type
)
9055 case bfd_link_hash_undefined
:
9056 case bfd_link_hash_undefweak
:
9057 abfd
= h
->root
.u
.undef
.abfd
;
9059 || (abfd
->flags
& DYNAMIC
) == 0
9060 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
9064 case bfd_link_hash_defined
:
9065 case bfd_link_hash_defweak
:
9066 abfd
= h
->root
.u
.def
.section
->owner
;
9069 case bfd_link_hash_common
:
9070 abfd
= h
->root
.u
.c
.p
->section
->owner
;
9073 BFD_ASSERT (abfd
!= NULL
);
9075 for (loaded
= elf_hash_table (info
)->loaded
;
9077 loaded
= loaded
->next
)
9080 Elf_Internal_Shdr
*hdr
;
9084 Elf_Internal_Shdr
*versymhdr
;
9085 Elf_Internal_Sym
*isym
;
9086 Elf_Internal_Sym
*isymend
;
9087 Elf_Internal_Sym
*isymbuf
;
9088 Elf_External_Versym
*ever
;
9089 Elf_External_Versym
*extversym
;
9091 input
= loaded
->abfd
;
9093 /* We check each DSO for a possible hidden versioned definition. */
9095 || (input
->flags
& DYNAMIC
) == 0
9096 || elf_dynversym (input
) == 0)
9099 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
9101 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9102 if (elf_bad_symtab (input
))
9104 extsymcount
= symcount
;
9109 extsymcount
= symcount
- hdr
->sh_info
;
9110 extsymoff
= hdr
->sh_info
;
9113 if (extsymcount
== 0)
9116 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
9118 if (isymbuf
== NULL
)
9121 /* Read in any version definitions. */
9122 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
9123 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
9124 if (extversym
== NULL
)
9127 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
9128 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
9129 != versymhdr
->sh_size
))
9137 ever
= extversym
+ extsymoff
;
9138 isymend
= isymbuf
+ extsymcount
;
9139 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
9142 Elf_Internal_Versym iver
;
9143 unsigned short version_index
;
9145 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
9146 || isym
->st_shndx
== SHN_UNDEF
)
9149 name
= bfd_elf_string_from_elf_section (input
,
9152 if (strcmp (name
, h
->root
.root
.string
) != 0)
9155 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
9157 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
9159 && h
->forced_local
))
9161 /* If we have a non-hidden versioned sym, then it should
9162 have provided a definition for the undefined sym unless
9163 it is defined in a non-shared object and forced local.
9168 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
9169 if (version_index
== 1 || version_index
== 2)
9171 /* This is the base or first version. We can use it. */
9185 /* Convert ELF common symbol TYPE. */
9188 elf_link_convert_common_type (struct bfd_link_info
*info
, int type
)
9190 /* Commom symbol can only appear in relocatable link. */
9191 if (!bfd_link_relocatable (info
))
9193 switch (info
->elf_stt_common
)
9197 case elf_stt_common
:
9200 case no_elf_stt_common
:
9207 /* Add an external symbol to the symbol table. This is called from
9208 the hash table traversal routine. When generating a shared object,
9209 we go through the symbol table twice. The first time we output
9210 anything that might have been forced to local scope in a version
9211 script. The second time we output the symbols that are still
9215 elf_link_output_extsym (struct bfd_hash_entry
*bh
, void *data
)
9217 struct elf_link_hash_entry
*h
= (struct elf_link_hash_entry
*) bh
;
9218 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
9219 struct elf_final_link_info
*flinfo
= eoinfo
->flinfo
;
9221 Elf_Internal_Sym sym
;
9222 asection
*input_sec
;
9223 const struct elf_backend_data
*bed
;
9227 /* A symbol is bound locally if it is forced local or it is locally
9228 defined, hidden versioned, not referenced by shared library and
9229 not exported when linking executable. */
9230 bfd_boolean local_bind
= (h
->forced_local
9231 || (bfd_link_executable (flinfo
->info
)
9232 && !flinfo
->info
->export_dynamic
9236 && h
->versioned
== versioned_hidden
));
9238 if (h
->root
.type
== bfd_link_hash_warning
)
9240 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9241 if (h
->root
.type
== bfd_link_hash_new
)
9245 /* Decide whether to output this symbol in this pass. */
9246 if (eoinfo
->localsyms
)
9257 bed
= get_elf_backend_data (flinfo
->output_bfd
);
9259 if (h
->root
.type
== bfd_link_hash_undefined
)
9261 /* If we have an undefined symbol reference here then it must have
9262 come from a shared library that is being linked in. (Undefined
9263 references in regular files have already been handled unless
9264 they are in unreferenced sections which are removed by garbage
9266 bfd_boolean ignore_undef
= FALSE
;
9268 /* Some symbols may be special in that the fact that they're
9269 undefined can be safely ignored - let backend determine that. */
9270 if (bed
->elf_backend_ignore_undef_symbol
)
9271 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
9273 /* If we are reporting errors for this situation then do so now. */
9276 && (!h
->ref_regular
|| flinfo
->info
->gc_sections
)
9277 && !elf_link_check_versioned_symbol (flinfo
->info
, bed
, h
)
9278 && flinfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
9279 (*flinfo
->info
->callbacks
->undefined_symbol
)
9280 (flinfo
->info
, h
->root
.root
.string
,
9281 h
->ref_regular
? NULL
: h
->root
.u
.undef
.abfd
,
9283 flinfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
);
9285 /* Strip a global symbol defined in a discarded section. */
9290 /* We should also warn if a forced local symbol is referenced from
9291 shared libraries. */
9292 if (bfd_link_executable (flinfo
->info
)
9297 && h
->ref_dynamic_nonweak
9298 && !elf_link_check_versioned_symbol (flinfo
->info
, bed
, h
))
9302 struct elf_link_hash_entry
*hi
= h
;
9304 /* Check indirect symbol. */
9305 while (hi
->root
.type
== bfd_link_hash_indirect
)
9306 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
9308 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
9309 msg
= _("%B: internal symbol `%s' in %B is referenced by DSO");
9310 else if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
9311 msg
= _("%B: hidden symbol `%s' in %B is referenced by DSO");
9313 msg
= _("%B: local symbol `%s' in %B is referenced by DSO");
9314 def_bfd
= flinfo
->output_bfd
;
9315 if (hi
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
9316 def_bfd
= hi
->root
.u
.def
.section
->owner
;
9317 (*_bfd_error_handler
) (msg
, flinfo
->output_bfd
, def_bfd
,
9318 h
->root
.root
.string
);
9319 bfd_set_error (bfd_error_bad_value
);
9320 eoinfo
->failed
= TRUE
;
9324 /* We don't want to output symbols that have never been mentioned by
9325 a regular file, or that we have been told to strip. However, if
9326 h->indx is set to -2, the symbol is used by a reloc and we must
9331 else if ((h
->def_dynamic
9333 || h
->root
.type
== bfd_link_hash_new
)
9337 else if (flinfo
->info
->strip
== strip_all
)
9339 else if (flinfo
->info
->strip
== strip_some
9340 && bfd_hash_lookup (flinfo
->info
->keep_hash
,
9341 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
9343 else if ((h
->root
.type
== bfd_link_hash_defined
9344 || h
->root
.type
== bfd_link_hash_defweak
)
9345 && ((flinfo
->info
->strip_discarded
9346 && discarded_section (h
->root
.u
.def
.section
))
9347 || ((h
->root
.u
.def
.section
->flags
& SEC_LINKER_CREATED
) == 0
9348 && h
->root
.u
.def
.section
->owner
!= NULL
9349 && (h
->root
.u
.def
.section
->owner
->flags
& BFD_PLUGIN
) != 0)))
9351 else if ((h
->root
.type
== bfd_link_hash_undefined
9352 || h
->root
.type
== bfd_link_hash_undefweak
)
9353 && h
->root
.u
.undef
.abfd
!= NULL
9354 && (h
->root
.u
.undef
.abfd
->flags
& BFD_PLUGIN
) != 0)
9359 /* If we're stripping it, and it's not a dynamic symbol, there's
9360 nothing else to do. However, if it is a forced local symbol or
9361 an ifunc symbol we need to give the backend finish_dynamic_symbol
9362 function a chance to make it dynamic. */
9365 && type
!= STT_GNU_IFUNC
9366 && !h
->forced_local
)
9370 sym
.st_size
= h
->size
;
9371 sym
.st_other
= h
->other
;
9372 switch (h
->root
.type
)
9375 case bfd_link_hash_new
:
9376 case bfd_link_hash_warning
:
9380 case bfd_link_hash_undefined
:
9381 case bfd_link_hash_undefweak
:
9382 input_sec
= bfd_und_section_ptr
;
9383 sym
.st_shndx
= SHN_UNDEF
;
9386 case bfd_link_hash_defined
:
9387 case bfd_link_hash_defweak
:
9389 input_sec
= h
->root
.u
.def
.section
;
9390 if (input_sec
->output_section
!= NULL
)
9393 _bfd_elf_section_from_bfd_section (flinfo
->output_bfd
,
9394 input_sec
->output_section
);
9395 if (sym
.st_shndx
== SHN_BAD
)
9397 (*_bfd_error_handler
)
9398 (_("%B: could not find output section %A for input section %A"),
9399 flinfo
->output_bfd
, input_sec
->output_section
, input_sec
);
9400 bfd_set_error (bfd_error_nonrepresentable_section
);
9401 eoinfo
->failed
= TRUE
;
9405 /* ELF symbols in relocatable files are section relative,
9406 but in nonrelocatable files they are virtual
9408 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
9409 if (!bfd_link_relocatable (flinfo
->info
))
9411 sym
.st_value
+= input_sec
->output_section
->vma
;
9412 if (h
->type
== STT_TLS
)
9414 asection
*tls_sec
= elf_hash_table (flinfo
->info
)->tls_sec
;
9415 if (tls_sec
!= NULL
)
9416 sym
.st_value
-= tls_sec
->vma
;
9422 BFD_ASSERT (input_sec
->owner
== NULL
9423 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
9424 sym
.st_shndx
= SHN_UNDEF
;
9425 input_sec
= bfd_und_section_ptr
;
9430 case bfd_link_hash_common
:
9431 input_sec
= h
->root
.u
.c
.p
->section
;
9432 sym
.st_shndx
= bed
->common_section_index (input_sec
);
9433 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
9436 case bfd_link_hash_indirect
:
9437 /* These symbols are created by symbol versioning. They point
9438 to the decorated version of the name. For example, if the
9439 symbol foo@@GNU_1.2 is the default, which should be used when
9440 foo is used with no version, then we add an indirect symbol
9441 foo which points to foo@@GNU_1.2. We ignore these symbols,
9442 since the indirected symbol is already in the hash table. */
9446 if (type
== STT_COMMON
|| type
== STT_OBJECT
)
9447 switch (h
->root
.type
)
9449 case bfd_link_hash_common
:
9450 type
= elf_link_convert_common_type (flinfo
->info
, type
);
9452 case bfd_link_hash_defined
:
9453 case bfd_link_hash_defweak
:
9454 if (bed
->common_definition (&sym
))
9455 type
= elf_link_convert_common_type (flinfo
->info
, type
);
9459 case bfd_link_hash_undefined
:
9460 case bfd_link_hash_undefweak
:
9468 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, type
);
9469 /* Turn off visibility on local symbol. */
9470 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
9472 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9473 else if (h
->unique_global
&& h
->def_regular
)
9474 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, type
);
9475 else if (h
->root
.type
== bfd_link_hash_undefweak
9476 || h
->root
.type
== bfd_link_hash_defweak
)
9477 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, type
);
9479 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
9480 sym
.st_target_internal
= h
->target_internal
;
9482 /* Give the processor backend a chance to tweak the symbol value,
9483 and also to finish up anything that needs to be done for this
9484 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9485 forced local syms when non-shared is due to a historical quirk.
9486 STT_GNU_IFUNC symbol must go through PLT. */
9487 if ((h
->type
== STT_GNU_IFUNC
9489 && !bfd_link_relocatable (flinfo
->info
))
9490 || ((h
->dynindx
!= -1
9492 && ((bfd_link_pic (flinfo
->info
)
9493 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9494 || h
->root
.type
!= bfd_link_hash_undefweak
))
9495 || !h
->forced_local
)
9496 && elf_hash_table (flinfo
->info
)->dynamic_sections_created
))
9498 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
9499 (flinfo
->output_bfd
, flinfo
->info
, h
, &sym
)))
9501 eoinfo
->failed
= TRUE
;
9506 /* If we are marking the symbol as undefined, and there are no
9507 non-weak references to this symbol from a regular object, then
9508 mark the symbol as weak undefined; if there are non-weak
9509 references, mark the symbol as strong. We can't do this earlier,
9510 because it might not be marked as undefined until the
9511 finish_dynamic_symbol routine gets through with it. */
9512 if (sym
.st_shndx
== SHN_UNDEF
9514 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
9515 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
9518 type
= ELF_ST_TYPE (sym
.st_info
);
9520 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9521 if (type
== STT_GNU_IFUNC
)
9524 if (h
->ref_regular_nonweak
)
9525 bindtype
= STB_GLOBAL
;
9527 bindtype
= STB_WEAK
;
9528 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
9531 /* If this is a symbol defined in a dynamic library, don't use the
9532 symbol size from the dynamic library. Relinking an executable
9533 against a new library may introduce gratuitous changes in the
9534 executable's symbols if we keep the size. */
9535 if (sym
.st_shndx
== SHN_UNDEF
9540 /* If a non-weak symbol with non-default visibility is not defined
9541 locally, it is a fatal error. */
9542 if (!bfd_link_relocatable (flinfo
->info
)
9543 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
9544 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
9545 && h
->root
.type
== bfd_link_hash_undefined
9550 if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
)
9551 msg
= _("%B: protected symbol `%s' isn't defined");
9552 else if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
)
9553 msg
= _("%B: internal symbol `%s' isn't defined");
9555 msg
= _("%B: hidden symbol `%s' isn't defined");
9556 (*_bfd_error_handler
) (msg
, flinfo
->output_bfd
, h
->root
.root
.string
);
9557 bfd_set_error (bfd_error_bad_value
);
9558 eoinfo
->failed
= TRUE
;
9562 /* If this symbol should be put in the .dynsym section, then put it
9563 there now. We already know the symbol index. We also fill in
9564 the entry in the .hash section. */
9565 if (elf_hash_table (flinfo
->info
)->dynsym
!= NULL
9567 && elf_hash_table (flinfo
->info
)->dynamic_sections_created
)
9571 /* Since there is no version information in the dynamic string,
9572 if there is no version info in symbol version section, we will
9573 have a run-time problem if not linking executable, referenced
9574 by shared library, not locally defined, or not bound locally.
9576 if (h
->verinfo
.verdef
== NULL
9578 && (!bfd_link_executable (flinfo
->info
)
9580 || !h
->def_regular
))
9582 char *p
= strrchr (h
->root
.root
.string
, ELF_VER_CHR
);
9584 if (p
&& p
[1] != '\0')
9586 (*_bfd_error_handler
)
9587 (_("%B: No symbol version section for versioned symbol `%s'"),
9588 flinfo
->output_bfd
, h
->root
.root
.string
);
9589 eoinfo
->failed
= TRUE
;
9594 sym
.st_name
= h
->dynstr_index
;
9595 esym
= (elf_hash_table (flinfo
->info
)->dynsym
->contents
9596 + h
->dynindx
* bed
->s
->sizeof_sym
);
9597 if (!check_dynsym (flinfo
->output_bfd
, &sym
))
9599 eoinfo
->failed
= TRUE
;
9602 bed
->s
->swap_symbol_out (flinfo
->output_bfd
, &sym
, esym
, 0);
9604 if (flinfo
->hash_sec
!= NULL
)
9606 size_t hash_entry_size
;
9607 bfd_byte
*bucketpos
;
9612 bucketcount
= elf_hash_table (flinfo
->info
)->bucketcount
;
9613 bucket
= h
->u
.elf_hash_value
% bucketcount
;
9616 = elf_section_data (flinfo
->hash_sec
)->this_hdr
.sh_entsize
;
9617 bucketpos
= ((bfd_byte
*) flinfo
->hash_sec
->contents
9618 + (bucket
+ 2) * hash_entry_size
);
9619 chain
= bfd_get (8 * hash_entry_size
, flinfo
->output_bfd
, bucketpos
);
9620 bfd_put (8 * hash_entry_size
, flinfo
->output_bfd
, h
->dynindx
,
9622 bfd_put (8 * hash_entry_size
, flinfo
->output_bfd
, chain
,
9623 ((bfd_byte
*) flinfo
->hash_sec
->contents
9624 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
9627 if (flinfo
->symver_sec
!= NULL
&& flinfo
->symver_sec
->contents
!= NULL
)
9629 Elf_Internal_Versym iversym
;
9630 Elf_External_Versym
*eversym
;
9632 if (!h
->def_regular
)
9634 if (h
->verinfo
.verdef
== NULL
9635 || (elf_dyn_lib_class (h
->verinfo
.verdef
->vd_bfd
)
9636 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
| DYN_NO_NEEDED
)))
9637 iversym
.vs_vers
= 0;
9639 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
9643 if (h
->verinfo
.vertree
== NULL
)
9644 iversym
.vs_vers
= 1;
9646 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
9647 if (flinfo
->info
->create_default_symver
)
9651 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9653 if (h
->versioned
== versioned_hidden
&& h
->def_regular
)
9654 iversym
.vs_vers
|= VERSYM_HIDDEN
;
9656 eversym
= (Elf_External_Versym
*) flinfo
->symver_sec
->contents
;
9657 eversym
+= h
->dynindx
;
9658 _bfd_elf_swap_versym_out (flinfo
->output_bfd
, &iversym
, eversym
);
9662 /* If the symbol is undefined, and we didn't output it to .dynsym,
9663 strip it from .symtab too. Obviously we can't do this for
9664 relocatable output or when needed for --emit-relocs. */
9665 else if (input_sec
== bfd_und_section_ptr
9667 && !bfd_link_relocatable (flinfo
->info
))
9669 /* Also strip others that we couldn't earlier due to dynamic symbol
9673 if ((input_sec
->flags
& SEC_EXCLUDE
) != 0)
9676 /* Output a FILE symbol so that following locals are not associated
9677 with the wrong input file. We need one for forced local symbols
9678 if we've seen more than one FILE symbol or when we have exactly
9679 one FILE symbol but global symbols are present in a file other
9680 than the one with the FILE symbol. We also need one if linker
9681 defined symbols are present. In practice these conditions are
9682 always met, so just emit the FILE symbol unconditionally. */
9683 if (eoinfo
->localsyms
9684 && !eoinfo
->file_sym_done
9685 && eoinfo
->flinfo
->filesym_count
!= 0)
9687 Elf_Internal_Sym fsym
;
9689 memset (&fsym
, 0, sizeof (fsym
));
9690 fsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
9691 fsym
.st_shndx
= SHN_ABS
;
9692 if (!elf_link_output_symstrtab (eoinfo
->flinfo
, NULL
, &fsym
,
9693 bfd_und_section_ptr
, NULL
))
9696 eoinfo
->file_sym_done
= TRUE
;
9699 indx
= bfd_get_symcount (flinfo
->output_bfd
);
9700 ret
= elf_link_output_symstrtab (flinfo
, h
->root
.root
.string
, &sym
,
9704 eoinfo
->failed
= TRUE
;
9709 else if (h
->indx
== -2)
9715 /* Return TRUE if special handling is done for relocs in SEC against
9716 symbols defined in discarded sections. */
9719 elf_section_ignore_discarded_relocs (asection
*sec
)
9721 const struct elf_backend_data
*bed
;
9723 switch (sec
->sec_info_type
)
9725 case SEC_INFO_TYPE_STABS
:
9726 case SEC_INFO_TYPE_EH_FRAME
:
9727 case SEC_INFO_TYPE_EH_FRAME_ENTRY
:
9733 bed
= get_elf_backend_data (sec
->owner
);
9734 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
9735 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
9741 /* Return a mask saying how ld should treat relocations in SEC against
9742 symbols defined in discarded sections. If this function returns
9743 COMPLAIN set, ld will issue a warning message. If this function
9744 returns PRETEND set, and the discarded section was link-once and the
9745 same size as the kept link-once section, ld will pretend that the
9746 symbol was actually defined in the kept section. Otherwise ld will
9747 zero the reloc (at least that is the intent, but some cooperation by
9748 the target dependent code is needed, particularly for REL targets). */
9751 _bfd_elf_default_action_discarded (asection
*sec
)
9753 if (sec
->flags
& SEC_DEBUGGING
)
9756 if (strcmp (".eh_frame", sec
->name
) == 0)
9759 if (strcmp (".gcc_except_table", sec
->name
) == 0)
9762 return COMPLAIN
| PRETEND
;
9765 /* Find a match between a section and a member of a section group. */
9768 match_group_member (asection
*sec
, asection
*group
,
9769 struct bfd_link_info
*info
)
9771 asection
*first
= elf_next_in_group (group
);
9772 asection
*s
= first
;
9776 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
9779 s
= elf_next_in_group (s
);
9787 /* Check if the kept section of a discarded section SEC can be used
9788 to replace it. Return the replacement if it is OK. Otherwise return
9792 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
9796 kept
= sec
->kept_section
;
9799 if ((kept
->flags
& SEC_GROUP
) != 0)
9800 kept
= match_group_member (sec
, kept
, info
);
9802 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
9803 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9805 sec
->kept_section
= kept
;
9810 /* Link an input file into the linker output file. This function
9811 handles all the sections and relocations of the input file at once.
9812 This is so that we only have to read the local symbols once, and
9813 don't have to keep them in memory. */
9816 elf_link_input_bfd (struct elf_final_link_info
*flinfo
, bfd
*input_bfd
)
9818 int (*relocate_section
)
9819 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
9820 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
9822 Elf_Internal_Shdr
*symtab_hdr
;
9825 Elf_Internal_Sym
*isymbuf
;
9826 Elf_Internal_Sym
*isym
;
9827 Elf_Internal_Sym
*isymend
;
9829 asection
**ppsection
;
9831 const struct elf_backend_data
*bed
;
9832 struct elf_link_hash_entry
**sym_hashes
;
9833 bfd_size_type address_size
;
9834 bfd_vma r_type_mask
;
9836 bfd_boolean have_file_sym
= FALSE
;
9838 output_bfd
= flinfo
->output_bfd
;
9839 bed
= get_elf_backend_data (output_bfd
);
9840 relocate_section
= bed
->elf_backend_relocate_section
;
9842 /* If this is a dynamic object, we don't want to do anything here:
9843 we don't want the local symbols, and we don't want the section
9845 if ((input_bfd
->flags
& DYNAMIC
) != 0)
9848 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9849 if (elf_bad_symtab (input_bfd
))
9851 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9856 locsymcount
= symtab_hdr
->sh_info
;
9857 extsymoff
= symtab_hdr
->sh_info
;
9860 /* Read the local symbols. */
9861 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9862 if (isymbuf
== NULL
&& locsymcount
!= 0)
9864 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9865 flinfo
->internal_syms
,
9866 flinfo
->external_syms
,
9867 flinfo
->locsym_shndx
);
9868 if (isymbuf
== NULL
)
9872 /* Find local symbol sections and adjust values of symbols in
9873 SEC_MERGE sections. Write out those local symbols we know are
9874 going into the output file. */
9875 isymend
= isymbuf
+ locsymcount
;
9876 for (isym
= isymbuf
, pindex
= flinfo
->indices
, ppsection
= flinfo
->sections
;
9878 isym
++, pindex
++, ppsection
++)
9882 Elf_Internal_Sym osym
;
9888 if (elf_bad_symtab (input_bfd
))
9890 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9897 if (isym
->st_shndx
== SHN_UNDEF
)
9898 isec
= bfd_und_section_ptr
;
9899 else if (isym
->st_shndx
== SHN_ABS
)
9900 isec
= bfd_abs_section_ptr
;
9901 else if (isym
->st_shndx
== SHN_COMMON
)
9902 isec
= bfd_com_section_ptr
;
9905 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9908 /* Don't attempt to output symbols with st_shnx in the
9909 reserved range other than SHN_ABS and SHN_COMMON. */
9913 else if (isec
->sec_info_type
== SEC_INFO_TYPE_MERGE
9914 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9916 _bfd_merged_section_offset (output_bfd
, &isec
,
9917 elf_section_data (isec
)->sec_info
,
9923 /* Don't output the first, undefined, symbol. In fact, don't
9924 output any undefined local symbol. */
9925 if (isec
== bfd_und_section_ptr
)
9928 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9930 /* We never output section symbols. Instead, we use the
9931 section symbol of the corresponding section in the output
9936 /* If we are stripping all symbols, we don't want to output this
9938 if (flinfo
->info
->strip
== strip_all
)
9941 /* If we are discarding all local symbols, we don't want to
9942 output this one. If we are generating a relocatable output
9943 file, then some of the local symbols may be required by
9944 relocs; we output them below as we discover that they are
9946 if (flinfo
->info
->discard
== discard_all
)
9949 /* If this symbol is defined in a section which we are
9950 discarding, we don't need to keep it. */
9951 if (isym
->st_shndx
!= SHN_UNDEF
9952 && isym
->st_shndx
< SHN_LORESERVE
9953 && bfd_section_removed_from_list (output_bfd
,
9954 isec
->output_section
))
9957 /* Get the name of the symbol. */
9958 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9963 /* See if we are discarding symbols with this name. */
9964 if ((flinfo
->info
->strip
== strip_some
9965 && (bfd_hash_lookup (flinfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9967 || (((flinfo
->info
->discard
== discard_sec_merge
9968 && (isec
->flags
& SEC_MERGE
)
9969 && !bfd_link_relocatable (flinfo
->info
))
9970 || flinfo
->info
->discard
== discard_l
)
9971 && bfd_is_local_label_name (input_bfd
, name
)))
9974 if (ELF_ST_TYPE (isym
->st_info
) == STT_FILE
)
9976 if (input_bfd
->lto_output
)
9977 /* -flto puts a temp file name here. This means builds
9978 are not reproducible. Discard the symbol. */
9980 have_file_sym
= TRUE
;
9981 flinfo
->filesym_count
+= 1;
9985 /* In the absence of debug info, bfd_find_nearest_line uses
9986 FILE symbols to determine the source file for local
9987 function symbols. Provide a FILE symbol here if input
9988 files lack such, so that their symbols won't be
9989 associated with a previous input file. It's not the
9990 source file, but the best we can do. */
9991 have_file_sym
= TRUE
;
9992 flinfo
->filesym_count
+= 1;
9993 memset (&osym
, 0, sizeof (osym
));
9994 osym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
9995 osym
.st_shndx
= SHN_ABS
;
9996 if (!elf_link_output_symstrtab (flinfo
,
9997 (input_bfd
->lto_output
? NULL
9998 : input_bfd
->filename
),
9999 &osym
, bfd_abs_section_ptr
,
10006 /* Adjust the section index for the output file. */
10007 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
10008 isec
->output_section
);
10009 if (osym
.st_shndx
== SHN_BAD
)
10012 /* ELF symbols in relocatable files are section relative, but
10013 in executable files they are virtual addresses. Note that
10014 this code assumes that all ELF sections have an associated
10015 BFD section with a reasonable value for output_offset; below
10016 we assume that they also have a reasonable value for
10017 output_section. Any special sections must be set up to meet
10018 these requirements. */
10019 osym
.st_value
+= isec
->output_offset
;
10020 if (!bfd_link_relocatable (flinfo
->info
))
10022 osym
.st_value
+= isec
->output_section
->vma
;
10023 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
10025 /* STT_TLS symbols are relative to PT_TLS segment base. */
10026 BFD_ASSERT (elf_hash_table (flinfo
->info
)->tls_sec
!= NULL
);
10027 osym
.st_value
-= elf_hash_table (flinfo
->info
)->tls_sec
->vma
;
10031 indx
= bfd_get_symcount (output_bfd
);
10032 ret
= elf_link_output_symstrtab (flinfo
, name
, &osym
, isec
, NULL
);
10039 if (bed
->s
->arch_size
== 32)
10041 r_type_mask
= 0xff;
10047 r_type_mask
= 0xffffffff;
10052 /* Relocate the contents of each section. */
10053 sym_hashes
= elf_sym_hashes (input_bfd
);
10054 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
10056 bfd_byte
*contents
;
10058 if (! o
->linker_mark
)
10060 /* This section was omitted from the link. */
10064 if (bfd_link_relocatable (flinfo
->info
)
10065 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
10067 /* Deal with the group signature symbol. */
10068 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
10069 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
10070 asection
*osec
= o
->output_section
;
10072 if (symndx
>= locsymcount
10073 || (elf_bad_symtab (input_bfd
)
10074 && flinfo
->sections
[symndx
] == NULL
))
10076 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
10077 while (h
->root
.type
== bfd_link_hash_indirect
10078 || h
->root
.type
== bfd_link_hash_warning
)
10079 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10080 /* Arrange for symbol to be output. */
10082 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
10084 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
10086 /* We'll use the output section target_index. */
10087 asection
*sec
= flinfo
->sections
[symndx
]->output_section
;
10088 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
10092 if (flinfo
->indices
[symndx
] == -1)
10094 /* Otherwise output the local symbol now. */
10095 Elf_Internal_Sym sym
= isymbuf
[symndx
];
10096 asection
*sec
= flinfo
->sections
[symndx
]->output_section
;
10101 name
= bfd_elf_string_from_elf_section (input_bfd
,
10102 symtab_hdr
->sh_link
,
10107 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
10109 if (sym
.st_shndx
== SHN_BAD
)
10112 sym
.st_value
+= o
->output_offset
;
10114 indx
= bfd_get_symcount (output_bfd
);
10115 ret
= elf_link_output_symstrtab (flinfo
, name
, &sym
, o
,
10120 flinfo
->indices
[symndx
] = indx
;
10124 elf_section_data (osec
)->this_hdr
.sh_info
10125 = flinfo
->indices
[symndx
];
10129 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
10130 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
10133 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
10135 /* Section was created by _bfd_elf_link_create_dynamic_sections
10140 /* Get the contents of the section. They have been cached by a
10141 relaxation routine. Note that o is a section in an input
10142 file, so the contents field will not have been set by any of
10143 the routines which work on output files. */
10144 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
10146 contents
= elf_section_data (o
)->this_hdr
.contents
;
10147 if (bed
->caches_rawsize
10149 && o
->rawsize
< o
->size
)
10151 memcpy (flinfo
->contents
, contents
, o
->rawsize
);
10152 contents
= flinfo
->contents
;
10157 contents
= flinfo
->contents
;
10158 if (! bfd_get_full_section_contents (input_bfd
, o
, &contents
))
10162 if ((o
->flags
& SEC_RELOC
) != 0)
10164 Elf_Internal_Rela
*internal_relocs
;
10165 Elf_Internal_Rela
*rel
, *relend
;
10166 int action_discarded
;
10169 /* Get the swapped relocs. */
10171 = _bfd_elf_link_read_relocs (input_bfd
, o
, flinfo
->external_relocs
,
10172 flinfo
->internal_relocs
, FALSE
);
10173 if (internal_relocs
== NULL
10174 && o
->reloc_count
> 0)
10177 /* We need to reverse-copy input .ctors/.dtors sections if
10178 they are placed in .init_array/.finit_array for output. */
10179 if (o
->size
> address_size
10180 && ((strncmp (o
->name
, ".ctors", 6) == 0
10181 && strcmp (o
->output_section
->name
,
10182 ".init_array") == 0)
10183 || (strncmp (o
->name
, ".dtors", 6) == 0
10184 && strcmp (o
->output_section
->name
,
10185 ".fini_array") == 0))
10186 && (o
->name
[6] == 0 || o
->name
[6] == '.'))
10188 if (o
->size
!= o
->reloc_count
* address_size
)
10190 (*_bfd_error_handler
)
10191 (_("error: %B: size of section %A is not "
10192 "multiple of address size"),
10194 bfd_set_error (bfd_error_on_input
);
10197 o
->flags
|= SEC_ELF_REVERSE_COPY
;
10200 action_discarded
= -1;
10201 if (!elf_section_ignore_discarded_relocs (o
))
10202 action_discarded
= (*bed
->action_discarded
) (o
);
10204 /* Run through the relocs evaluating complex reloc symbols and
10205 looking for relocs against symbols from discarded sections
10206 or section symbols from removed link-once sections.
10207 Complain about relocs against discarded sections. Zero
10208 relocs against removed link-once sections. */
10210 rel
= internal_relocs
;
10211 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10212 for ( ; rel
< relend
; rel
++)
10214 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
10215 unsigned int s_type
;
10216 asection
**ps
, *sec
;
10217 struct elf_link_hash_entry
*h
= NULL
;
10218 const char *sym_name
;
10220 if (r_symndx
== STN_UNDEF
)
10223 if (r_symndx
>= locsymcount
10224 || (elf_bad_symtab (input_bfd
)
10225 && flinfo
->sections
[r_symndx
] == NULL
))
10227 h
= sym_hashes
[r_symndx
- extsymoff
];
10229 /* Badly formatted input files can contain relocs that
10230 reference non-existant symbols. Check here so that
10231 we do not seg fault. */
10236 sprintf_vma (buffer
, rel
->r_info
);
10237 (*_bfd_error_handler
)
10238 (_("error: %B contains a reloc (0x%s) for section %A "
10239 "that references a non-existent global symbol"),
10240 input_bfd
, o
, buffer
);
10241 bfd_set_error (bfd_error_bad_value
);
10245 while (h
->root
.type
== bfd_link_hash_indirect
10246 || h
->root
.type
== bfd_link_hash_warning
)
10247 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
10251 /* If a plugin symbol is referenced from a non-IR file,
10252 mark the symbol as undefined. Note that the
10253 linker may attach linker created dynamic sections
10254 to the plugin bfd. Symbols defined in linker
10255 created sections are not plugin symbols. */
10256 if (h
->root
.non_ir_ref
10257 && (h
->root
.type
== bfd_link_hash_defined
10258 || h
->root
.type
== bfd_link_hash_defweak
)
10259 && (h
->root
.u
.def
.section
->flags
10260 & SEC_LINKER_CREATED
) == 0
10261 && h
->root
.u
.def
.section
->owner
!= NULL
10262 && (h
->root
.u
.def
.section
->owner
->flags
10263 & BFD_PLUGIN
) != 0)
10265 h
->root
.type
= bfd_link_hash_undefined
;
10266 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
10270 if (h
->root
.type
== bfd_link_hash_defined
10271 || h
->root
.type
== bfd_link_hash_defweak
)
10272 ps
= &h
->root
.u
.def
.section
;
10274 sym_name
= h
->root
.root
.string
;
10278 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
10280 s_type
= ELF_ST_TYPE (sym
->st_info
);
10281 ps
= &flinfo
->sections
[r_symndx
];
10282 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
10286 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
10287 && !bfd_link_relocatable (flinfo
->info
))
10290 bfd_vma dot
= (rel
->r_offset
10291 + o
->output_offset
+ o
->output_section
->vma
);
10293 printf ("Encountered a complex symbol!");
10294 printf (" (input_bfd %s, section %s, reloc %ld\n",
10295 input_bfd
->filename
, o
->name
,
10296 (long) (rel
- internal_relocs
));
10297 printf (" symbol: idx %8.8lx, name %s\n",
10298 r_symndx
, sym_name
);
10299 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10300 (unsigned long) rel
->r_info
,
10301 (unsigned long) rel
->r_offset
);
10303 if (!eval_symbol (&val
, &sym_name
, input_bfd
, flinfo
, dot
,
10304 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
10307 /* Symbol evaluated OK. Update to absolute value. */
10308 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
10313 if (action_discarded
!= -1 && ps
!= NULL
)
10315 /* Complain if the definition comes from a
10316 discarded section. */
10317 if ((sec
= *ps
) != NULL
&& discarded_section (sec
))
10319 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
10320 if (action_discarded
& COMPLAIN
)
10321 (*flinfo
->info
->callbacks
->einfo
)
10322 (_("%X`%s' referenced in section `%A' of %B: "
10323 "defined in discarded section `%A' of %B\n"),
10324 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
10326 /* Try to do the best we can to support buggy old
10327 versions of gcc. Pretend that the symbol is
10328 really defined in the kept linkonce section.
10329 FIXME: This is quite broken. Modifying the
10330 symbol here means we will be changing all later
10331 uses of the symbol, not just in this section. */
10332 if (action_discarded
& PRETEND
)
10336 kept
= _bfd_elf_check_kept_section (sec
,
10348 /* Relocate the section by invoking a back end routine.
10350 The back end routine is responsible for adjusting the
10351 section contents as necessary, and (if using Rela relocs
10352 and generating a relocatable output file) adjusting the
10353 reloc addend as necessary.
10355 The back end routine does not have to worry about setting
10356 the reloc address or the reloc symbol index.
10358 The back end routine is given a pointer to the swapped in
10359 internal symbols, and can access the hash table entries
10360 for the external symbols via elf_sym_hashes (input_bfd).
10362 When generating relocatable output, the back end routine
10363 must handle STB_LOCAL/STT_SECTION symbols specially. The
10364 output symbol is going to be a section symbol
10365 corresponding to the output section, which will require
10366 the addend to be adjusted. */
10368 ret
= (*relocate_section
) (output_bfd
, flinfo
->info
,
10369 input_bfd
, o
, contents
,
10377 || bfd_link_relocatable (flinfo
->info
)
10378 || flinfo
->info
->emitrelocations
)
10380 Elf_Internal_Rela
*irela
;
10381 Elf_Internal_Rela
*irelaend
, *irelamid
;
10382 bfd_vma last_offset
;
10383 struct elf_link_hash_entry
**rel_hash
;
10384 struct elf_link_hash_entry
**rel_hash_list
, **rela_hash_list
;
10385 Elf_Internal_Shdr
*input_rel_hdr
, *input_rela_hdr
;
10386 unsigned int next_erel
;
10387 bfd_boolean rela_normal
;
10388 struct bfd_elf_section_data
*esdi
, *esdo
;
10390 esdi
= elf_section_data (o
);
10391 esdo
= elf_section_data (o
->output_section
);
10392 rela_normal
= FALSE
;
10394 /* Adjust the reloc addresses and symbol indices. */
10396 irela
= internal_relocs
;
10397 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10398 rel_hash
= esdo
->rel
.hashes
+ esdo
->rel
.count
;
10399 /* We start processing the REL relocs, if any. When we reach
10400 IRELAMID in the loop, we switch to the RELA relocs. */
10402 if (esdi
->rel
.hdr
!= NULL
)
10403 irelamid
+= (NUM_SHDR_ENTRIES (esdi
->rel
.hdr
)
10404 * bed
->s
->int_rels_per_ext_rel
);
10405 rel_hash_list
= rel_hash
;
10406 rela_hash_list
= NULL
;
10407 last_offset
= o
->output_offset
;
10408 if (!bfd_link_relocatable (flinfo
->info
))
10409 last_offset
+= o
->output_section
->vma
;
10410 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
10412 unsigned long r_symndx
;
10414 Elf_Internal_Sym sym
;
10416 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
10422 if (irela
== irelamid
)
10424 rel_hash
= esdo
->rela
.hashes
+ esdo
->rela
.count
;
10425 rela_hash_list
= rel_hash
;
10426 rela_normal
= bed
->rela_normal
;
10429 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
10432 if (irela
->r_offset
>= (bfd_vma
) -2)
10434 /* This is a reloc for a deleted entry or somesuch.
10435 Turn it into an R_*_NONE reloc, at the same
10436 offset as the last reloc. elf_eh_frame.c and
10437 bfd_elf_discard_info rely on reloc offsets
10439 irela
->r_offset
= last_offset
;
10441 irela
->r_addend
= 0;
10445 irela
->r_offset
+= o
->output_offset
;
10447 /* Relocs in an executable have to be virtual addresses. */
10448 if (!bfd_link_relocatable (flinfo
->info
))
10449 irela
->r_offset
+= o
->output_section
->vma
;
10451 last_offset
= irela
->r_offset
;
10453 r_symndx
= irela
->r_info
>> r_sym_shift
;
10454 if (r_symndx
== STN_UNDEF
)
10457 if (r_symndx
>= locsymcount
10458 || (elf_bad_symtab (input_bfd
)
10459 && flinfo
->sections
[r_symndx
] == NULL
))
10461 struct elf_link_hash_entry
*rh
;
10462 unsigned long indx
;
10464 /* This is a reloc against a global symbol. We
10465 have not yet output all the local symbols, so
10466 we do not know the symbol index of any global
10467 symbol. We set the rel_hash entry for this
10468 reloc to point to the global hash table entry
10469 for this symbol. The symbol index is then
10470 set at the end of bfd_elf_final_link. */
10471 indx
= r_symndx
- extsymoff
;
10472 rh
= elf_sym_hashes (input_bfd
)[indx
];
10473 while (rh
->root
.type
== bfd_link_hash_indirect
10474 || rh
->root
.type
== bfd_link_hash_warning
)
10475 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
10477 /* Setting the index to -2 tells
10478 elf_link_output_extsym that this symbol is
10479 used by a reloc. */
10480 BFD_ASSERT (rh
->indx
< 0);
10488 /* This is a reloc against a local symbol. */
10491 sym
= isymbuf
[r_symndx
];
10492 sec
= flinfo
->sections
[r_symndx
];
10493 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
10495 /* I suppose the backend ought to fill in the
10496 section of any STT_SECTION symbol against a
10497 processor specific section. */
10498 r_symndx
= STN_UNDEF
;
10499 if (bfd_is_abs_section (sec
))
10501 else if (sec
== NULL
|| sec
->owner
== NULL
)
10503 bfd_set_error (bfd_error_bad_value
);
10508 asection
*osec
= sec
->output_section
;
10510 /* If we have discarded a section, the output
10511 section will be the absolute section. In
10512 case of discarded SEC_MERGE sections, use
10513 the kept section. relocate_section should
10514 have already handled discarded linkonce
10516 if (bfd_is_abs_section (osec
)
10517 && sec
->kept_section
!= NULL
10518 && sec
->kept_section
->output_section
!= NULL
)
10520 osec
= sec
->kept_section
->output_section
;
10521 irela
->r_addend
-= osec
->vma
;
10524 if (!bfd_is_abs_section (osec
))
10526 r_symndx
= osec
->target_index
;
10527 if (r_symndx
== STN_UNDEF
)
10529 irela
->r_addend
+= osec
->vma
;
10530 osec
= _bfd_nearby_section (output_bfd
, osec
,
10532 irela
->r_addend
-= osec
->vma
;
10533 r_symndx
= osec
->target_index
;
10538 /* Adjust the addend according to where the
10539 section winds up in the output section. */
10541 irela
->r_addend
+= sec
->output_offset
;
10545 if (flinfo
->indices
[r_symndx
] == -1)
10547 unsigned long shlink
;
10552 if (flinfo
->info
->strip
== strip_all
)
10554 /* You can't do ld -r -s. */
10555 bfd_set_error (bfd_error_invalid_operation
);
10559 /* This symbol was skipped earlier, but
10560 since it is needed by a reloc, we
10561 must output it now. */
10562 shlink
= symtab_hdr
->sh_link
;
10563 name
= (bfd_elf_string_from_elf_section
10564 (input_bfd
, shlink
, sym
.st_name
));
10568 osec
= sec
->output_section
;
10570 _bfd_elf_section_from_bfd_section (output_bfd
,
10572 if (sym
.st_shndx
== SHN_BAD
)
10575 sym
.st_value
+= sec
->output_offset
;
10576 if (!bfd_link_relocatable (flinfo
->info
))
10578 sym
.st_value
+= osec
->vma
;
10579 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
10581 /* STT_TLS symbols are relative to PT_TLS
10583 BFD_ASSERT (elf_hash_table (flinfo
->info
)
10584 ->tls_sec
!= NULL
);
10585 sym
.st_value
-= (elf_hash_table (flinfo
->info
)
10590 indx
= bfd_get_symcount (output_bfd
);
10591 ret
= elf_link_output_symstrtab (flinfo
, name
,
10597 flinfo
->indices
[r_symndx
] = indx
;
10602 r_symndx
= flinfo
->indices
[r_symndx
];
10605 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
10606 | (irela
->r_info
& r_type_mask
));
10609 /* Swap out the relocs. */
10610 input_rel_hdr
= esdi
->rel
.hdr
;
10611 if (input_rel_hdr
&& input_rel_hdr
->sh_size
!= 0)
10613 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
10618 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
10619 * bed
->s
->int_rels_per_ext_rel
);
10620 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
10623 input_rela_hdr
= esdi
->rela
.hdr
;
10624 if (input_rela_hdr
&& input_rela_hdr
->sh_size
!= 0)
10626 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
10635 /* Write out the modified section contents. */
10636 if (bed
->elf_backend_write_section
10637 && (*bed
->elf_backend_write_section
) (output_bfd
, flinfo
->info
, o
,
10640 /* Section written out. */
10642 else switch (o
->sec_info_type
)
10644 case SEC_INFO_TYPE_STABS
:
10645 if (! (_bfd_write_section_stabs
10647 &elf_hash_table (flinfo
->info
)->stab_info
,
10648 o
, &elf_section_data (o
)->sec_info
, contents
)))
10651 case SEC_INFO_TYPE_MERGE
:
10652 if (! _bfd_write_merged_section (output_bfd
, o
,
10653 elf_section_data (o
)->sec_info
))
10656 case SEC_INFO_TYPE_EH_FRAME
:
10658 if (! _bfd_elf_write_section_eh_frame (output_bfd
, flinfo
->info
,
10663 case SEC_INFO_TYPE_EH_FRAME_ENTRY
:
10665 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd
,
10673 if (! (o
->flags
& SEC_EXCLUDE
))
10675 file_ptr offset
= (file_ptr
) o
->output_offset
;
10676 bfd_size_type todo
= o
->size
;
10678 offset
*= bfd_octets_per_byte (output_bfd
);
10680 if ((o
->flags
& SEC_ELF_REVERSE_COPY
))
10682 /* Reverse-copy input section to output. */
10685 todo
-= address_size
;
10686 if (! bfd_set_section_contents (output_bfd
,
10694 offset
+= address_size
;
10698 else if (! bfd_set_section_contents (output_bfd
,
10712 /* Generate a reloc when linking an ELF file. This is a reloc
10713 requested by the linker, and does not come from any input file. This
10714 is used to build constructor and destructor tables when linking
10718 elf_reloc_link_order (bfd
*output_bfd
,
10719 struct bfd_link_info
*info
,
10720 asection
*output_section
,
10721 struct bfd_link_order
*link_order
)
10723 reloc_howto_type
*howto
;
10727 struct bfd_elf_section_reloc_data
*reldata
;
10728 struct elf_link_hash_entry
**rel_hash_ptr
;
10729 Elf_Internal_Shdr
*rel_hdr
;
10730 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
10731 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
10734 struct bfd_elf_section_data
*esdo
= elf_section_data (output_section
);
10736 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
10739 bfd_set_error (bfd_error_bad_value
);
10743 addend
= link_order
->u
.reloc
.p
->addend
;
10746 reldata
= &esdo
->rel
;
10747 else if (esdo
->rela
.hdr
)
10748 reldata
= &esdo
->rela
;
10755 /* Figure out the symbol index. */
10756 rel_hash_ptr
= reldata
->hashes
+ reldata
->count
;
10757 if (link_order
->type
== bfd_section_reloc_link_order
)
10759 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
10760 BFD_ASSERT (indx
!= 0);
10761 *rel_hash_ptr
= NULL
;
10765 struct elf_link_hash_entry
*h
;
10767 /* Treat a reloc against a defined symbol as though it were
10768 actually against the section. */
10769 h
= ((struct elf_link_hash_entry
*)
10770 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
10771 link_order
->u
.reloc
.p
->u
.name
,
10772 FALSE
, FALSE
, TRUE
));
10774 && (h
->root
.type
== bfd_link_hash_defined
10775 || h
->root
.type
== bfd_link_hash_defweak
))
10779 section
= h
->root
.u
.def
.section
;
10780 indx
= section
->output_section
->target_index
;
10781 *rel_hash_ptr
= NULL
;
10782 /* It seems that we ought to add the symbol value to the
10783 addend here, but in practice it has already been added
10784 because it was passed to constructor_callback. */
10785 addend
+= section
->output_section
->vma
+ section
->output_offset
;
10787 else if (h
!= NULL
)
10789 /* Setting the index to -2 tells elf_link_output_extsym that
10790 this symbol is used by a reloc. */
10797 (*info
->callbacks
->unattached_reloc
)
10798 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0);
10803 /* If this is an inplace reloc, we must write the addend into the
10805 if (howto
->partial_inplace
&& addend
!= 0)
10807 bfd_size_type size
;
10808 bfd_reloc_status_type rstat
;
10811 const char *sym_name
;
10813 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
10814 buf
= (bfd_byte
*) bfd_zmalloc (size
);
10815 if (buf
== NULL
&& size
!= 0)
10817 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
10824 case bfd_reloc_outofrange
:
10827 case bfd_reloc_overflow
:
10828 if (link_order
->type
== bfd_section_reloc_link_order
)
10829 sym_name
= bfd_section_name (output_bfd
,
10830 link_order
->u
.reloc
.p
->u
.section
);
10832 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
10833 (*info
->callbacks
->reloc_overflow
) (info
, NULL
, sym_name
,
10834 howto
->name
, addend
, NULL
, NULL
,
10839 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
10841 * bfd_octets_per_byte (output_bfd
),
10848 /* The address of a reloc is relative to the section in a
10849 relocatable file, and is a virtual address in an executable
10851 offset
= link_order
->offset
;
10852 if (! bfd_link_relocatable (info
))
10853 offset
+= output_section
->vma
;
10855 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
10857 irel
[i
].r_offset
= offset
;
10858 irel
[i
].r_info
= 0;
10859 irel
[i
].r_addend
= 0;
10861 if (bed
->s
->arch_size
== 32)
10862 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
10864 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
10866 rel_hdr
= reldata
->hdr
;
10867 erel
= rel_hdr
->contents
;
10868 if (rel_hdr
->sh_type
== SHT_REL
)
10870 erel
+= reldata
->count
* bed
->s
->sizeof_rel
;
10871 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
10875 irel
[0].r_addend
= addend
;
10876 erel
+= reldata
->count
* bed
->s
->sizeof_rela
;
10877 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
10886 /* Get the output vma of the section pointed to by the sh_link field. */
10889 elf_get_linked_section_vma (struct bfd_link_order
*p
)
10891 Elf_Internal_Shdr
**elf_shdrp
;
10895 s
= p
->u
.indirect
.section
;
10896 elf_shdrp
= elf_elfsections (s
->owner
);
10897 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
10898 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
10900 The Intel C compiler generates SHT_IA_64_UNWIND with
10901 SHF_LINK_ORDER. But it doesn't set the sh_link or
10902 sh_info fields. Hence we could get the situation
10903 where elfsec is 0. */
10906 const struct elf_backend_data
*bed
10907 = get_elf_backend_data (s
->owner
);
10908 if (bed
->link_order_error_handler
)
10909 bed
->link_order_error_handler
10910 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
10915 s
= elf_shdrp
[elfsec
]->bfd_section
;
10916 return s
->output_section
->vma
+ s
->output_offset
;
10921 /* Compare two sections based on the locations of the sections they are
10922 linked to. Used by elf_fixup_link_order. */
10925 compare_link_order (const void * a
, const void * b
)
10930 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
10931 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
10934 return apos
> bpos
;
10938 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10939 order as their linked sections. Returns false if this could not be done
10940 because an output section includes both ordered and unordered
10941 sections. Ideally we'd do this in the linker proper. */
10944 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
10946 int seen_linkorder
;
10949 struct bfd_link_order
*p
;
10951 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10953 struct bfd_link_order
**sections
;
10954 asection
*s
, *other_sec
, *linkorder_sec
;
10958 linkorder_sec
= NULL
;
10960 seen_linkorder
= 0;
10961 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10963 if (p
->type
== bfd_indirect_link_order
)
10965 s
= p
->u
.indirect
.section
;
10967 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10968 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
10969 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
10970 && elfsec
< elf_numsections (sub
)
10971 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
10972 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
10986 if (seen_other
&& seen_linkorder
)
10988 if (other_sec
&& linkorder_sec
)
10989 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10991 linkorder_sec
->owner
, other_sec
,
10994 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10996 bfd_set_error (bfd_error_bad_value
);
11001 if (!seen_linkorder
)
11004 sections
= (struct bfd_link_order
**)
11005 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
11006 if (sections
== NULL
)
11008 seen_linkorder
= 0;
11010 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11012 sections
[seen_linkorder
++] = p
;
11014 /* Sort the input sections in the order of their linked section. */
11015 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
11016 compare_link_order
);
11018 /* Change the offsets of the sections. */
11020 for (n
= 0; n
< seen_linkorder
; n
++)
11022 s
= sections
[n
]->u
.indirect
.section
;
11023 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
11024 s
->output_offset
= offset
/ bfd_octets_per_byte (abfd
);
11025 sections
[n
]->offset
= offset
;
11026 offset
+= sections
[n
]->size
;
11033 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11034 Returns TRUE upon success, FALSE otherwise. */
11037 elf_output_implib (bfd
*abfd
, struct bfd_link_info
*info
)
11039 bfd_boolean ret
= FALSE
;
11041 const struct elf_backend_data
*bed
;
11043 enum bfd_architecture arch
;
11045 asymbol
**sympp
= NULL
;
11049 elf_symbol_type
*osymbuf
;
11051 implib_bfd
= info
->out_implib_bfd
;
11052 bed
= get_elf_backend_data (abfd
);
11054 if (!bfd_set_format (implib_bfd
, bfd_object
))
11057 flags
= bfd_get_file_flags (abfd
);
11058 flags
&= ~HAS_RELOC
;
11059 if (!bfd_set_start_address (implib_bfd
, 0)
11060 || !bfd_set_file_flags (implib_bfd
, flags
))
11063 /* Copy architecture of output file to import library file. */
11064 arch
= bfd_get_arch (abfd
);
11065 mach
= bfd_get_mach (abfd
);
11066 if (!bfd_set_arch_mach (implib_bfd
, arch
, mach
)
11067 && (abfd
->target_defaulted
11068 || bfd_get_arch (abfd
) != bfd_get_arch (implib_bfd
)))
11071 /* Get symbol table size. */
11072 symsize
= bfd_get_symtab_upper_bound (abfd
);
11076 /* Read in the symbol table. */
11077 sympp
= (asymbol
**) xmalloc (symsize
);
11078 symcount
= bfd_canonicalize_symtab (abfd
, sympp
);
11082 /* Allow the BFD backend to copy any private header data it
11083 understands from the output BFD to the import library BFD. */
11084 if (! bfd_copy_private_header_data (abfd
, implib_bfd
))
11087 /* Filter symbols to appear in the import library. */
11088 if (bed
->elf_backend_filter_implib_symbols
)
11089 symcount
= bed
->elf_backend_filter_implib_symbols (abfd
, info
, sympp
,
11092 symcount
= _bfd_elf_filter_global_symbols (abfd
, info
, sympp
, symcount
);
11095 bfd_set_error (bfd_error_no_symbols
);
11096 (*_bfd_error_handler
) (_("%B: no symbol found for import library"),
11102 /* Make symbols absolute. */
11103 osymbuf
= (elf_symbol_type
*) bfd_alloc2 (implib_bfd
, symcount
,
11104 sizeof (*osymbuf
));
11105 for (src_count
= 0; src_count
< symcount
; src_count
++)
11107 memcpy (&osymbuf
[src_count
], (elf_symbol_type
*) sympp
[src_count
],
11108 sizeof (*osymbuf
));
11109 osymbuf
[src_count
].symbol
.section
= bfd_abs_section_ptr
;
11110 osymbuf
[src_count
].internal_elf_sym
.st_shndx
= SHN_ABS
;
11111 osymbuf
[src_count
].symbol
.value
+= sympp
[src_count
]->section
->vma
;
11112 osymbuf
[src_count
].internal_elf_sym
.st_value
=
11113 osymbuf
[src_count
].symbol
.value
;
11114 sympp
[src_count
] = &osymbuf
[src_count
].symbol
;
11117 bfd_set_symtab (implib_bfd
, sympp
, symcount
);
11119 /* Allow the BFD backend to copy any private data it understands
11120 from the output BFD to the import library BFD. This is done last
11121 to permit the routine to look at the filtered symbol table. */
11122 if (! bfd_copy_private_bfd_data (abfd
, implib_bfd
))
11125 if (!bfd_close (implib_bfd
))
11136 elf_final_link_free (bfd
*obfd
, struct elf_final_link_info
*flinfo
)
11140 if (flinfo
->symstrtab
!= NULL
)
11141 _bfd_elf_strtab_free (flinfo
->symstrtab
);
11142 if (flinfo
->contents
!= NULL
)
11143 free (flinfo
->contents
);
11144 if (flinfo
->external_relocs
!= NULL
)
11145 free (flinfo
->external_relocs
);
11146 if (flinfo
->internal_relocs
!= NULL
)
11147 free (flinfo
->internal_relocs
);
11148 if (flinfo
->external_syms
!= NULL
)
11149 free (flinfo
->external_syms
);
11150 if (flinfo
->locsym_shndx
!= NULL
)
11151 free (flinfo
->locsym_shndx
);
11152 if (flinfo
->internal_syms
!= NULL
)
11153 free (flinfo
->internal_syms
);
11154 if (flinfo
->indices
!= NULL
)
11155 free (flinfo
->indices
);
11156 if (flinfo
->sections
!= NULL
)
11157 free (flinfo
->sections
);
11158 if (flinfo
->symshndxbuf
!= NULL
)
11159 free (flinfo
->symshndxbuf
);
11160 for (o
= obfd
->sections
; o
!= NULL
; o
= o
->next
)
11162 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11163 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11164 free (esdo
->rel
.hashes
);
11165 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11166 free (esdo
->rela
.hashes
);
11170 /* Do the final step of an ELF link. */
11173 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
11175 bfd_boolean dynamic
;
11176 bfd_boolean emit_relocs
;
11178 struct elf_final_link_info flinfo
;
11180 struct bfd_link_order
*p
;
11182 bfd_size_type max_contents_size
;
11183 bfd_size_type max_external_reloc_size
;
11184 bfd_size_type max_internal_reloc_count
;
11185 bfd_size_type max_sym_count
;
11186 bfd_size_type max_sym_shndx_count
;
11187 Elf_Internal_Sym elfsym
;
11189 Elf_Internal_Shdr
*symtab_hdr
;
11190 Elf_Internal_Shdr
*symtab_shndx_hdr
;
11191 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11192 struct elf_outext_info eoinfo
;
11193 bfd_boolean merged
;
11194 size_t relativecount
= 0;
11195 asection
*reldyn
= 0;
11197 asection
*attr_section
= NULL
;
11198 bfd_vma attr_size
= 0;
11199 const char *std_attrs_section
;
11201 if (! is_elf_hash_table (info
->hash
))
11204 if (bfd_link_pic (info
))
11205 abfd
->flags
|= DYNAMIC
;
11207 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
11208 dynobj
= elf_hash_table (info
)->dynobj
;
11210 emit_relocs
= (bfd_link_relocatable (info
)
11211 || info
->emitrelocations
);
11213 flinfo
.info
= info
;
11214 flinfo
.output_bfd
= abfd
;
11215 flinfo
.symstrtab
= _bfd_elf_strtab_init ();
11216 if (flinfo
.symstrtab
== NULL
)
11221 flinfo
.hash_sec
= NULL
;
11222 flinfo
.symver_sec
= NULL
;
11226 flinfo
.hash_sec
= bfd_get_linker_section (dynobj
, ".hash");
11227 /* Note that dynsym_sec can be NULL (on VMS). */
11228 flinfo
.symver_sec
= bfd_get_linker_section (dynobj
, ".gnu.version");
11229 /* Note that it is OK if symver_sec is NULL. */
11232 flinfo
.contents
= NULL
;
11233 flinfo
.external_relocs
= NULL
;
11234 flinfo
.internal_relocs
= NULL
;
11235 flinfo
.external_syms
= NULL
;
11236 flinfo
.locsym_shndx
= NULL
;
11237 flinfo
.internal_syms
= NULL
;
11238 flinfo
.indices
= NULL
;
11239 flinfo
.sections
= NULL
;
11240 flinfo
.symshndxbuf
= NULL
;
11241 flinfo
.filesym_count
= 0;
11243 /* The object attributes have been merged. Remove the input
11244 sections from the link, and set the contents of the output
11246 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
11247 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11249 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
11250 || strcmp (o
->name
, ".gnu.attributes") == 0)
11252 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11254 asection
*input_section
;
11256 if (p
->type
!= bfd_indirect_link_order
)
11258 input_section
= p
->u
.indirect
.section
;
11259 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11260 elf_link_input_bfd ignores this section. */
11261 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
11264 attr_size
= bfd_elf_obj_attr_size (abfd
);
11267 bfd_set_section_size (abfd
, o
, attr_size
);
11269 /* Skip this section later on. */
11270 o
->map_head
.link_order
= NULL
;
11273 o
->flags
|= SEC_EXCLUDE
;
11277 /* Count up the number of relocations we will output for each output
11278 section, so that we know the sizes of the reloc sections. We
11279 also figure out some maximum sizes. */
11280 max_contents_size
= 0;
11281 max_external_reloc_size
= 0;
11282 max_internal_reloc_count
= 0;
11284 max_sym_shndx_count
= 0;
11286 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11288 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11289 o
->reloc_count
= 0;
11291 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11293 unsigned int reloc_count
= 0;
11294 unsigned int additional_reloc_count
= 0;
11295 struct bfd_elf_section_data
*esdi
= NULL
;
11297 if (p
->type
== bfd_section_reloc_link_order
11298 || p
->type
== bfd_symbol_reloc_link_order
)
11300 else if (p
->type
== bfd_indirect_link_order
)
11304 sec
= p
->u
.indirect
.section
;
11305 esdi
= elf_section_data (sec
);
11307 /* Mark all sections which are to be included in the
11308 link. This will normally be every section. We need
11309 to do this so that we can identify any sections which
11310 the linker has decided to not include. */
11311 sec
->linker_mark
= TRUE
;
11313 if (sec
->flags
& SEC_MERGE
)
11316 if (esdo
->this_hdr
.sh_type
== SHT_REL
11317 || esdo
->this_hdr
.sh_type
== SHT_RELA
)
11318 /* Some backends use reloc_count in relocation sections
11319 to count particular types of relocs. Of course,
11320 reloc sections themselves can't have relocations. */
11322 else if (emit_relocs
)
11324 reloc_count
= sec
->reloc_count
;
11325 if (bed
->elf_backend_count_additional_relocs
)
11328 c
= (*bed
->elf_backend_count_additional_relocs
) (sec
);
11329 additional_reloc_count
+= c
;
11332 else if (bed
->elf_backend_count_relocs
)
11333 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
11335 if (sec
->rawsize
> max_contents_size
)
11336 max_contents_size
= sec
->rawsize
;
11337 if (sec
->size
> max_contents_size
)
11338 max_contents_size
= sec
->size
;
11340 /* We are interested in just local symbols, not all
11342 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
11343 && (sec
->owner
->flags
& DYNAMIC
) == 0)
11347 if (elf_bad_symtab (sec
->owner
))
11348 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
11349 / bed
->s
->sizeof_sym
);
11351 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
11353 if (sym_count
> max_sym_count
)
11354 max_sym_count
= sym_count
;
11356 if (sym_count
> max_sym_shndx_count
11357 && elf_symtab_shndx_list (sec
->owner
) != NULL
)
11358 max_sym_shndx_count
= sym_count
;
11360 if ((sec
->flags
& SEC_RELOC
) != 0)
11362 size_t ext_size
= 0;
11364 if (esdi
->rel
.hdr
!= NULL
)
11365 ext_size
= esdi
->rel
.hdr
->sh_size
;
11366 if (esdi
->rela
.hdr
!= NULL
)
11367 ext_size
+= esdi
->rela
.hdr
->sh_size
;
11369 if (ext_size
> max_external_reloc_size
)
11370 max_external_reloc_size
= ext_size
;
11371 if (sec
->reloc_count
> max_internal_reloc_count
)
11372 max_internal_reloc_count
= sec
->reloc_count
;
11377 if (reloc_count
== 0)
11380 reloc_count
+= additional_reloc_count
;
11381 o
->reloc_count
+= reloc_count
;
11383 if (p
->type
== bfd_indirect_link_order
&& emit_relocs
)
11387 esdo
->rel
.count
+= NUM_SHDR_ENTRIES (esdi
->rel
.hdr
);
11388 esdo
->rel
.count
+= additional_reloc_count
;
11390 if (esdi
->rela
.hdr
)
11392 esdo
->rela
.count
+= NUM_SHDR_ENTRIES (esdi
->rela
.hdr
);
11393 esdo
->rela
.count
+= additional_reloc_count
;
11399 esdo
->rela
.count
+= reloc_count
;
11401 esdo
->rel
.count
+= reloc_count
;
11405 if (o
->reloc_count
> 0)
11406 o
->flags
|= SEC_RELOC
;
11409 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11410 set it (this is probably a bug) and if it is set
11411 assign_section_numbers will create a reloc section. */
11412 o
->flags
&=~ SEC_RELOC
;
11415 /* If the SEC_ALLOC flag is not set, force the section VMA to
11416 zero. This is done in elf_fake_sections as well, but forcing
11417 the VMA to 0 here will ensure that relocs against these
11418 sections are handled correctly. */
11419 if ((o
->flags
& SEC_ALLOC
) == 0
11420 && ! o
->user_set_vma
)
11424 if (! bfd_link_relocatable (info
) && merged
)
11425 elf_link_hash_traverse (elf_hash_table (info
),
11426 _bfd_elf_link_sec_merge_syms
, abfd
);
11428 /* Figure out the file positions for everything but the symbol table
11429 and the relocs. We set symcount to force assign_section_numbers
11430 to create a symbol table. */
11431 bfd_get_symcount (abfd
) = info
->strip
!= strip_all
|| emit_relocs
;
11432 BFD_ASSERT (! abfd
->output_has_begun
);
11433 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
11436 /* Set sizes, and assign file positions for reloc sections. */
11437 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11439 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11440 if ((o
->flags
& SEC_RELOC
) != 0)
11443 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rel
)))
11447 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rela
)))
11451 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11452 to count upwards while actually outputting the relocations. */
11453 esdo
->rel
.count
= 0;
11454 esdo
->rela
.count
= 0;
11456 if (esdo
->this_hdr
.sh_offset
== (file_ptr
) -1)
11458 /* Cache the section contents so that they can be compressed
11459 later. Use bfd_malloc since it will be freed by
11460 bfd_compress_section_contents. */
11461 unsigned char *contents
= esdo
->this_hdr
.contents
;
11462 if ((o
->flags
& SEC_ELF_COMPRESS
) == 0 || contents
!= NULL
)
11465 = (unsigned char *) bfd_malloc (esdo
->this_hdr
.sh_size
);
11466 if (contents
== NULL
)
11468 esdo
->this_hdr
.contents
= contents
;
11472 /* We have now assigned file positions for all the sections except
11473 .symtab, .strtab, and non-loaded reloc sections. We start the
11474 .symtab section at the current file position, and write directly
11475 to it. We build the .strtab section in memory. */
11476 bfd_get_symcount (abfd
) = 0;
11477 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11478 /* sh_name is set in prep_headers. */
11479 symtab_hdr
->sh_type
= SHT_SYMTAB
;
11480 /* sh_flags, sh_addr and sh_size all start off zero. */
11481 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
11482 /* sh_link is set in assign_section_numbers. */
11483 /* sh_info is set below. */
11484 /* sh_offset is set just below. */
11485 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
11487 if (max_sym_count
< 20)
11488 max_sym_count
= 20;
11489 elf_hash_table (info
)->strtabsize
= max_sym_count
;
11490 amt
= max_sym_count
* sizeof (struct elf_sym_strtab
);
11491 elf_hash_table (info
)->strtab
11492 = (struct elf_sym_strtab
*) bfd_malloc (amt
);
11493 if (elf_hash_table (info
)->strtab
== NULL
)
11495 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11497 = (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF)
11498 ? (Elf_External_Sym_Shndx
*) -1 : NULL
);
11500 if (info
->strip
!= strip_all
|| emit_relocs
)
11502 file_ptr off
= elf_next_file_pos (abfd
);
11504 _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
11506 /* Note that at this point elf_next_file_pos (abfd) is
11507 incorrect. We do not yet know the size of the .symtab section.
11508 We correct next_file_pos below, after we do know the size. */
11510 /* Start writing out the symbol table. The first symbol is always a
11512 elfsym
.st_value
= 0;
11513 elfsym
.st_size
= 0;
11514 elfsym
.st_info
= 0;
11515 elfsym
.st_other
= 0;
11516 elfsym
.st_shndx
= SHN_UNDEF
;
11517 elfsym
.st_target_internal
= 0;
11518 if (elf_link_output_symstrtab (&flinfo
, NULL
, &elfsym
,
11519 bfd_und_section_ptr
, NULL
) != 1)
11522 /* Output a symbol for each section. We output these even if we are
11523 discarding local symbols, since they are used for relocs. These
11524 symbols have no names. We store the index of each one in the
11525 index field of the section, so that we can find it again when
11526 outputting relocs. */
11528 elfsym
.st_size
= 0;
11529 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
11530 elfsym
.st_other
= 0;
11531 elfsym
.st_value
= 0;
11532 elfsym
.st_target_internal
= 0;
11533 for (i
= 1; i
< elf_numsections (abfd
); i
++)
11535 o
= bfd_section_from_elf_index (abfd
, i
);
11538 o
->target_index
= bfd_get_symcount (abfd
);
11539 elfsym
.st_shndx
= i
;
11540 if (!bfd_link_relocatable (info
))
11541 elfsym
.st_value
= o
->vma
;
11542 if (elf_link_output_symstrtab (&flinfo
, NULL
, &elfsym
, o
,
11549 /* Allocate some memory to hold information read in from the input
11551 if (max_contents_size
!= 0)
11553 flinfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
11554 if (flinfo
.contents
== NULL
)
11558 if (max_external_reloc_size
!= 0)
11560 flinfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
11561 if (flinfo
.external_relocs
== NULL
)
11565 if (max_internal_reloc_count
!= 0)
11567 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11568 amt
*= sizeof (Elf_Internal_Rela
);
11569 flinfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
11570 if (flinfo
.internal_relocs
== NULL
)
11574 if (max_sym_count
!= 0)
11576 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
11577 flinfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
11578 if (flinfo
.external_syms
== NULL
)
11581 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
11582 flinfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
11583 if (flinfo
.internal_syms
== NULL
)
11586 amt
= max_sym_count
* sizeof (long);
11587 flinfo
.indices
= (long int *) bfd_malloc (amt
);
11588 if (flinfo
.indices
== NULL
)
11591 amt
= max_sym_count
* sizeof (asection
*);
11592 flinfo
.sections
= (asection
**) bfd_malloc (amt
);
11593 if (flinfo
.sections
== NULL
)
11597 if (max_sym_shndx_count
!= 0)
11599 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
11600 flinfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
11601 if (flinfo
.locsym_shndx
== NULL
)
11605 if (elf_hash_table (info
)->tls_sec
)
11607 bfd_vma base
, end
= 0;
11610 for (sec
= elf_hash_table (info
)->tls_sec
;
11611 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
11614 bfd_size_type size
= sec
->size
;
11617 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
11619 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
11622 size
= ord
->offset
+ ord
->size
;
11624 end
= sec
->vma
+ size
;
11626 base
= elf_hash_table (info
)->tls_sec
->vma
;
11627 /* Only align end of TLS section if static TLS doesn't have special
11628 alignment requirements. */
11629 if (bed
->static_tls_alignment
== 1)
11630 end
= align_power (end
,
11631 elf_hash_table (info
)->tls_sec
->alignment_power
);
11632 elf_hash_table (info
)->tls_size
= end
- base
;
11635 /* Reorder SHF_LINK_ORDER sections. */
11636 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11638 if (!elf_fixup_link_order (abfd
, o
))
11642 if (!_bfd_elf_fixup_eh_frame_hdr (info
))
11645 /* Since ELF permits relocations to be against local symbols, we
11646 must have the local symbols available when we do the relocations.
11647 Since we would rather only read the local symbols once, and we
11648 would rather not keep them in memory, we handle all the
11649 relocations for a single input file at the same time.
11651 Unfortunately, there is no way to know the total number of local
11652 symbols until we have seen all of them, and the local symbol
11653 indices precede the global symbol indices. This means that when
11654 we are generating relocatable output, and we see a reloc against
11655 a global symbol, we can not know the symbol index until we have
11656 finished examining all the local symbols to see which ones we are
11657 going to output. To deal with this, we keep the relocations in
11658 memory, and don't output them until the end of the link. This is
11659 an unfortunate waste of memory, but I don't see a good way around
11660 it. Fortunately, it only happens when performing a relocatable
11661 link, which is not the common case. FIXME: If keep_memory is set
11662 we could write the relocs out and then read them again; I don't
11663 know how bad the memory loss will be. */
11665 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
11666 sub
->output_has_begun
= FALSE
;
11667 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11669 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
11671 if (p
->type
== bfd_indirect_link_order
11672 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
11673 == bfd_target_elf_flavour
)
11674 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
11676 if (! sub
->output_has_begun
)
11678 if (! elf_link_input_bfd (&flinfo
, sub
))
11680 sub
->output_has_begun
= TRUE
;
11683 else if (p
->type
== bfd_section_reloc_link_order
11684 || p
->type
== bfd_symbol_reloc_link_order
)
11686 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
11691 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
11693 if (p
->type
== bfd_indirect_link_order
11694 && (bfd_get_flavour (sub
)
11695 == bfd_target_elf_flavour
)
11696 && (elf_elfheader (sub
)->e_ident
[EI_CLASS
]
11697 != bed
->s
->elfclass
))
11699 const char *iclass
, *oclass
;
11701 switch (bed
->s
->elfclass
)
11703 case ELFCLASS64
: oclass
= "ELFCLASS64"; break;
11704 case ELFCLASS32
: oclass
= "ELFCLASS32"; break;
11705 case ELFCLASSNONE
: oclass
= "ELFCLASSNONE"; break;
11709 switch (elf_elfheader (sub
)->e_ident
[EI_CLASS
])
11711 case ELFCLASS64
: iclass
= "ELFCLASS64"; break;
11712 case ELFCLASS32
: iclass
= "ELFCLASS32"; break;
11713 case ELFCLASSNONE
: iclass
= "ELFCLASSNONE"; break;
11717 bfd_set_error (bfd_error_wrong_format
);
11718 (*_bfd_error_handler
)
11719 (_("%B: file class %s incompatible with %s"),
11720 sub
, iclass
, oclass
);
11729 /* Free symbol buffer if needed. */
11730 if (!info
->reduce_memory_overheads
)
11732 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
11733 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
11734 && elf_tdata (sub
)->symbuf
)
11736 free (elf_tdata (sub
)->symbuf
);
11737 elf_tdata (sub
)->symbuf
= NULL
;
11741 /* Output any global symbols that got converted to local in a
11742 version script or due to symbol visibility. We do this in a
11743 separate step since ELF requires all local symbols to appear
11744 prior to any global symbols. FIXME: We should only do this if
11745 some global symbols were, in fact, converted to become local.
11746 FIXME: Will this work correctly with the Irix 5 linker? */
11747 eoinfo
.failed
= FALSE
;
11748 eoinfo
.flinfo
= &flinfo
;
11749 eoinfo
.localsyms
= TRUE
;
11750 eoinfo
.file_sym_done
= FALSE
;
11751 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
11755 /* If backend needs to output some local symbols not present in the hash
11756 table, do it now. */
11757 if (bed
->elf_backend_output_arch_local_syms
11758 && (info
->strip
!= strip_all
|| emit_relocs
))
11760 typedef int (*out_sym_func
)
11761 (void *, const char *, Elf_Internal_Sym
*, asection
*,
11762 struct elf_link_hash_entry
*);
11764 if (! ((*bed
->elf_backend_output_arch_local_syms
)
11765 (abfd
, info
, &flinfo
,
11766 (out_sym_func
) elf_link_output_symstrtab
)))
11770 /* That wrote out all the local symbols. Finish up the symbol table
11771 with the global symbols. Even if we want to strip everything we
11772 can, we still need to deal with those global symbols that got
11773 converted to local in a version script. */
11775 /* The sh_info field records the index of the first non local symbol. */
11776 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
11779 && elf_hash_table (info
)->dynsym
!= NULL
11780 && (elf_hash_table (info
)->dynsym
->output_section
11781 != bfd_abs_section_ptr
))
11783 Elf_Internal_Sym sym
;
11784 bfd_byte
*dynsym
= elf_hash_table (info
)->dynsym
->contents
;
11786 o
= elf_hash_table (info
)->dynsym
->output_section
;
11787 elf_section_data (o
)->this_hdr
.sh_info
11788 = elf_hash_table (info
)->local_dynsymcount
+ 1;
11790 /* Write out the section symbols for the output sections. */
11791 if (bfd_link_pic (info
)
11792 || elf_hash_table (info
)->is_relocatable_executable
)
11798 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
11800 sym
.st_target_internal
= 0;
11802 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
11808 dynindx
= elf_section_data (s
)->dynindx
;
11811 indx
= elf_section_data (s
)->this_idx
;
11812 BFD_ASSERT (indx
> 0);
11813 sym
.st_shndx
= indx
;
11814 if (! check_dynsym (abfd
, &sym
))
11816 sym
.st_value
= s
->vma
;
11817 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
11818 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
11822 /* Write out the local dynsyms. */
11823 if (elf_hash_table (info
)->dynlocal
)
11825 struct elf_link_local_dynamic_entry
*e
;
11826 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
11831 /* Copy the internal symbol and turn off visibility.
11832 Note that we saved a word of storage and overwrote
11833 the original st_name with the dynstr_index. */
11835 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
11837 s
= bfd_section_from_elf_index (e
->input_bfd
,
11842 elf_section_data (s
->output_section
)->this_idx
;
11843 if (! check_dynsym (abfd
, &sym
))
11845 sym
.st_value
= (s
->output_section
->vma
11847 + e
->isym
.st_value
);
11850 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
11851 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
11856 /* We get the global symbols from the hash table. */
11857 eoinfo
.failed
= FALSE
;
11858 eoinfo
.localsyms
= FALSE
;
11859 eoinfo
.flinfo
= &flinfo
;
11860 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
11864 /* If backend needs to output some symbols not present in the hash
11865 table, do it now. */
11866 if (bed
->elf_backend_output_arch_syms
11867 && (info
->strip
!= strip_all
|| emit_relocs
))
11869 typedef int (*out_sym_func
)
11870 (void *, const char *, Elf_Internal_Sym
*, asection
*,
11871 struct elf_link_hash_entry
*);
11873 if (! ((*bed
->elf_backend_output_arch_syms
)
11874 (abfd
, info
, &flinfo
,
11875 (out_sym_func
) elf_link_output_symstrtab
)))
11879 /* Finalize the .strtab section. */
11880 _bfd_elf_strtab_finalize (flinfo
.symstrtab
);
11882 /* Swap out the .strtab section. */
11883 if (!elf_link_swap_symbols_out (&flinfo
))
11886 /* Now we know the size of the symtab section. */
11887 if (bfd_get_symcount (abfd
) > 0)
11889 /* Finish up and write out the symbol string table (.strtab)
11891 Elf_Internal_Shdr
*symstrtab_hdr
;
11892 file_ptr off
= symtab_hdr
->sh_offset
+ symtab_hdr
->sh_size
;
11894 symtab_shndx_hdr
= & elf_symtab_shndx_list (abfd
)->hdr
;
11895 if (symtab_shndx_hdr
!= NULL
&& symtab_shndx_hdr
->sh_name
!= 0)
11897 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
11898 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
11899 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
11900 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
11901 symtab_shndx_hdr
->sh_size
= amt
;
11903 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
11906 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
11907 || (bfd_bwrite (flinfo
.symshndxbuf
, amt
, abfd
) != amt
))
11911 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
11912 /* sh_name was set in prep_headers. */
11913 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
11914 symstrtab_hdr
->sh_flags
= bed
->elf_strtab_flags
;
11915 symstrtab_hdr
->sh_addr
= 0;
11916 symstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (flinfo
.symstrtab
);
11917 symstrtab_hdr
->sh_entsize
= 0;
11918 symstrtab_hdr
->sh_link
= 0;
11919 symstrtab_hdr
->sh_info
= 0;
11920 /* sh_offset is set just below. */
11921 symstrtab_hdr
->sh_addralign
= 1;
11923 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
,
11925 elf_next_file_pos (abfd
) = off
;
11927 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
11928 || ! _bfd_elf_strtab_emit (abfd
, flinfo
.symstrtab
))
11932 if (info
->out_implib_bfd
&& !elf_output_implib (abfd
, info
))
11934 (*_bfd_error_handler
) (_("%B: failed to generate import library"),
11935 info
->out_implib_bfd
);
11939 /* Adjust the relocs to have the correct symbol indices. */
11940 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11942 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11944 if ((o
->flags
& SEC_RELOC
) == 0)
11947 sort
= bed
->sort_relocs_p
== NULL
|| (*bed
->sort_relocs_p
) (o
);
11948 if (esdo
->rel
.hdr
!= NULL
11949 && !elf_link_adjust_relocs (abfd
, &esdo
->rel
, sort
))
11951 if (esdo
->rela
.hdr
!= NULL
11952 && !elf_link_adjust_relocs (abfd
, &esdo
->rela
, sort
))
11955 /* Set the reloc_count field to 0 to prevent write_relocs from
11956 trying to swap the relocs out itself. */
11957 o
->reloc_count
= 0;
11960 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
11961 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
11963 /* If we are linking against a dynamic object, or generating a
11964 shared library, finish up the dynamic linking information. */
11967 bfd_byte
*dyncon
, *dynconend
;
11969 /* Fix up .dynamic entries. */
11970 o
= bfd_get_linker_section (dynobj
, ".dynamic");
11971 BFD_ASSERT (o
!= NULL
);
11973 dyncon
= o
->contents
;
11974 dynconend
= o
->contents
+ o
->size
;
11975 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11977 Elf_Internal_Dyn dyn
;
11981 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11988 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
11990 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
11992 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
11993 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
11996 dyn
.d_un
.d_val
= relativecount
;
12003 name
= info
->init_function
;
12006 name
= info
->fini_function
;
12009 struct elf_link_hash_entry
*h
;
12011 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
12012 FALSE
, FALSE
, TRUE
);
12014 && (h
->root
.type
== bfd_link_hash_defined
12015 || h
->root
.type
== bfd_link_hash_defweak
))
12017 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
12018 o
= h
->root
.u
.def
.section
;
12019 if (o
->output_section
!= NULL
)
12020 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
12021 + o
->output_offset
);
12024 /* The symbol is imported from another shared
12025 library and does not apply to this one. */
12026 dyn
.d_un
.d_ptr
= 0;
12033 case DT_PREINIT_ARRAYSZ
:
12034 name
= ".preinit_array";
12036 case DT_INIT_ARRAYSZ
:
12037 name
= ".init_array";
12039 case DT_FINI_ARRAYSZ
:
12040 name
= ".fini_array";
12042 o
= bfd_get_section_by_name (abfd
, name
);
12045 (*_bfd_error_handler
)
12046 (_("could not find section %s"), name
);
12050 (*_bfd_error_handler
)
12051 (_("warning: %s section has zero size"), name
);
12052 dyn
.d_un
.d_val
= o
->size
;
12055 case DT_PREINIT_ARRAY
:
12056 name
= ".preinit_array";
12058 case DT_INIT_ARRAY
:
12059 name
= ".init_array";
12061 case DT_FINI_ARRAY
:
12062 name
= ".fini_array";
12064 o
= bfd_get_section_by_name (abfd
, name
);
12071 name
= ".gnu.hash";
12080 name
= ".gnu.version_d";
12083 name
= ".gnu.version_r";
12086 name
= ".gnu.version";
12088 o
= bfd_get_linker_section (dynobj
, name
);
12092 (*_bfd_error_handler
)
12093 (_("could not find section %s"), name
);
12096 if (elf_section_data (o
->output_section
)->this_hdr
.sh_type
== SHT_NOTE
)
12098 (*_bfd_error_handler
)
12099 (_("warning: section '%s' is being made into a note"), name
);
12100 bfd_set_error (bfd_error_nonrepresentable_section
);
12103 dyn
.d_un
.d_ptr
= o
->output_section
->vma
+ o
->output_offset
;
12110 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
12114 dyn
.d_un
.d_val
= 0;
12115 dyn
.d_un
.d_ptr
= 0;
12116 for (i
= 1; i
< elf_numsections (abfd
); i
++)
12118 Elf_Internal_Shdr
*hdr
;
12120 hdr
= elf_elfsections (abfd
)[i
];
12121 if (hdr
->sh_type
== type
12122 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
12124 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
12125 dyn
.d_un
.d_val
+= hdr
->sh_size
;
12128 if (dyn
.d_un
.d_ptr
== 0
12129 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
12130 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
12136 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
12140 /* If we have created any dynamic sections, then output them. */
12141 if (dynobj
!= NULL
)
12143 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
12146 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12147 if (((info
->warn_shared_textrel
&& bfd_link_pic (info
))
12148 || info
->error_textrel
)
12149 && (o
= bfd_get_linker_section (dynobj
, ".dynamic")) != NULL
)
12151 bfd_byte
*dyncon
, *dynconend
;
12153 dyncon
= o
->contents
;
12154 dynconend
= o
->contents
+ o
->size
;
12155 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
12157 Elf_Internal_Dyn dyn
;
12159 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
12161 if (dyn
.d_tag
== DT_TEXTREL
)
12163 if (info
->error_textrel
)
12164 info
->callbacks
->einfo
12165 (_("%P%X: read-only segment has dynamic relocations.\n"));
12167 info
->callbacks
->einfo
12168 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12174 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
12176 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
12178 || o
->output_section
== bfd_abs_section_ptr
)
12180 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
12182 /* At this point, we are only interested in sections
12183 created by _bfd_elf_link_create_dynamic_sections. */
12186 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
12188 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
12190 if (strcmp (o
->name
, ".dynstr") != 0)
12192 if (! bfd_set_section_contents (abfd
, o
->output_section
,
12194 (file_ptr
) o
->output_offset
12195 * bfd_octets_per_byte (abfd
),
12201 /* The contents of the .dynstr section are actually in a
12205 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
12206 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
12207 || ! _bfd_elf_strtab_emit (abfd
,
12208 elf_hash_table (info
)->dynstr
))
12214 if (bfd_link_relocatable (info
))
12216 bfd_boolean failed
= FALSE
;
12218 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
12223 /* If we have optimized stabs strings, output them. */
12224 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
12226 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
12230 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
12233 elf_final_link_free (abfd
, &flinfo
);
12235 elf_linker (abfd
) = TRUE
;
12239 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
12240 if (contents
== NULL
)
12241 return FALSE
; /* Bail out and fail. */
12242 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
12243 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
12250 elf_final_link_free (abfd
, &flinfo
);
12254 /* Initialize COOKIE for input bfd ABFD. */
12257 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
12258 struct bfd_link_info
*info
, bfd
*abfd
)
12260 Elf_Internal_Shdr
*symtab_hdr
;
12261 const struct elf_backend_data
*bed
;
12263 bed
= get_elf_backend_data (abfd
);
12264 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
12266 cookie
->abfd
= abfd
;
12267 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
12268 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
12269 if (cookie
->bad_symtab
)
12271 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12272 cookie
->extsymoff
= 0;
12276 cookie
->locsymcount
= symtab_hdr
->sh_info
;
12277 cookie
->extsymoff
= symtab_hdr
->sh_info
;
12280 if (bed
->s
->arch_size
== 32)
12281 cookie
->r_sym_shift
= 8;
12283 cookie
->r_sym_shift
= 32;
12285 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
12286 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
12288 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
12289 cookie
->locsymcount
, 0,
12291 if (cookie
->locsyms
== NULL
)
12293 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
12296 if (info
->keep_memory
)
12297 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
12302 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12305 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
12307 Elf_Internal_Shdr
*symtab_hdr
;
12309 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
12310 if (cookie
->locsyms
!= NULL
12311 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
12312 free (cookie
->locsyms
);
12315 /* Initialize the relocation information in COOKIE for input section SEC
12316 of input bfd ABFD. */
12319 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
12320 struct bfd_link_info
*info
, bfd
*abfd
,
12323 const struct elf_backend_data
*bed
;
12325 if (sec
->reloc_count
== 0)
12327 cookie
->rels
= NULL
;
12328 cookie
->relend
= NULL
;
12332 bed
= get_elf_backend_data (abfd
);
12334 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
12335 info
->keep_memory
);
12336 if (cookie
->rels
== NULL
)
12338 cookie
->rel
= cookie
->rels
;
12339 cookie
->relend
= (cookie
->rels
12340 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
12342 cookie
->rel
= cookie
->rels
;
12346 /* Free the memory allocated by init_reloc_cookie_rels,
12350 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
12353 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
12354 free (cookie
->rels
);
12357 /* Initialize the whole of COOKIE for input section SEC. */
12360 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
12361 struct bfd_link_info
*info
,
12364 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
12366 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
12371 fini_reloc_cookie (cookie
, sec
->owner
);
12376 /* Free the memory allocated by init_reloc_cookie_for_section,
12380 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
12383 fini_reloc_cookie_rels (cookie
, sec
);
12384 fini_reloc_cookie (cookie
, sec
->owner
);
12387 /* Garbage collect unused sections. */
12389 /* Default gc_mark_hook. */
12392 _bfd_elf_gc_mark_hook (asection
*sec
,
12393 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12394 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
12395 struct elf_link_hash_entry
*h
,
12396 Elf_Internal_Sym
*sym
)
12400 switch (h
->root
.type
)
12402 case bfd_link_hash_defined
:
12403 case bfd_link_hash_defweak
:
12404 return h
->root
.u
.def
.section
;
12406 case bfd_link_hash_common
:
12407 return h
->root
.u
.c
.p
->section
;
12414 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
12419 /* For undefined __start_<name> and __stop_<name> symbols, return the
12420 first input section matching <name>. Return NULL otherwise. */
12423 _bfd_elf_is_start_stop (const struct bfd_link_info
*info
,
12424 struct elf_link_hash_entry
*h
)
12427 const char *sec_name
;
12429 if (h
->root
.type
!= bfd_link_hash_undefined
12430 && h
->root
.type
!= bfd_link_hash_undefweak
)
12433 s
= h
->root
.u
.undef
.section
;
12436 if (s
== (asection
*) 0 - 1)
12442 if (strncmp (h
->root
.root
.string
, "__start_", 8) == 0)
12443 sec_name
= h
->root
.root
.string
+ 8;
12444 else if (strncmp (h
->root
.root
.string
, "__stop_", 7) == 0)
12445 sec_name
= h
->root
.root
.string
+ 7;
12447 if (sec_name
!= NULL
&& *sec_name
!= '\0')
12451 for (i
= info
->input_bfds
; i
!= NULL
; i
= i
->link
.next
)
12453 s
= bfd_get_section_by_name (i
, sec_name
);
12456 h
->root
.u
.undef
.section
= s
;
12463 h
->root
.u
.undef
.section
= (asection
*) 0 - 1;
12468 /* COOKIE->rel describes a relocation against section SEC, which is
12469 a section we've decided to keep. Return the section that contains
12470 the relocation symbol, or NULL if no section contains it. */
12473 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
12474 elf_gc_mark_hook_fn gc_mark_hook
,
12475 struct elf_reloc_cookie
*cookie
,
12476 bfd_boolean
*start_stop
)
12478 unsigned long r_symndx
;
12479 struct elf_link_hash_entry
*h
;
12481 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
12482 if (r_symndx
== STN_UNDEF
)
12485 if (r_symndx
>= cookie
->locsymcount
12486 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12488 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
12491 info
->callbacks
->einfo (_("%F%P: corrupt input: %B\n"),
12495 while (h
->root
.type
== bfd_link_hash_indirect
12496 || h
->root
.type
== bfd_link_hash_warning
)
12497 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12499 /* If this symbol is weak and there is a non-weak definition, we
12500 keep the non-weak definition because many backends put
12501 dynamic reloc info on the non-weak definition for code
12502 handling copy relocs. */
12503 if (h
->u
.weakdef
!= NULL
)
12504 h
->u
.weakdef
->mark
= 1;
12506 if (start_stop
!= NULL
)
12508 /* To work around a glibc bug, mark all XXX input sections
12509 when there is an as yet undefined reference to __start_XXX
12510 or __stop_XXX symbols. The linker will later define such
12511 symbols for orphan input sections that have a name
12512 representable as a C identifier. */
12513 asection
*s
= _bfd_elf_is_start_stop (info
, h
);
12517 *start_stop
= !s
->gc_mark
;
12522 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
12525 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
12526 &cookie
->locsyms
[r_symndx
]);
12529 /* COOKIE->rel describes a relocation against section SEC, which is
12530 a section we've decided to keep. Mark the section that contains
12531 the relocation symbol. */
12534 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
12536 elf_gc_mark_hook_fn gc_mark_hook
,
12537 struct elf_reloc_cookie
*cookie
)
12540 bfd_boolean start_stop
= FALSE
;
12542 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
, &start_stop
);
12543 while (rsec
!= NULL
)
12545 if (!rsec
->gc_mark
)
12547 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
12548 || (rsec
->owner
->flags
& DYNAMIC
) != 0)
12550 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
12555 rsec
= bfd_get_next_section_by_name (rsec
->owner
, rsec
);
12560 /* The mark phase of garbage collection. For a given section, mark
12561 it and any sections in this section's group, and all the sections
12562 which define symbols to which it refers. */
12565 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
12567 elf_gc_mark_hook_fn gc_mark_hook
)
12570 asection
*group_sec
, *eh_frame
;
12574 /* Mark all the sections in the group. */
12575 group_sec
= elf_section_data (sec
)->next_in_group
;
12576 if (group_sec
&& !group_sec
->gc_mark
)
12577 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
12580 /* Look through the section relocs. */
12582 eh_frame
= elf_eh_frame_section (sec
->owner
);
12583 if ((sec
->flags
& SEC_RELOC
) != 0
12584 && sec
->reloc_count
> 0
12585 && sec
!= eh_frame
)
12587 struct elf_reloc_cookie cookie
;
12589 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
12593 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
12594 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
12599 fini_reloc_cookie_for_section (&cookie
, sec
);
12603 if (ret
&& eh_frame
&& elf_fde_list (sec
))
12605 struct elf_reloc_cookie cookie
;
12607 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
12611 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
12612 gc_mark_hook
, &cookie
))
12614 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
12618 eh_frame
= elf_section_eh_frame_entry (sec
);
12619 if (ret
&& eh_frame
&& !eh_frame
->gc_mark
)
12620 if (!_bfd_elf_gc_mark (info
, eh_frame
, gc_mark_hook
))
12626 /* Scan and mark sections in a special or debug section group. */
12629 _bfd_elf_gc_mark_debug_special_section_group (asection
*grp
)
12631 /* Point to first section of section group. */
12633 /* Used to iterate the section group. */
12636 bfd_boolean is_special_grp
= TRUE
;
12637 bfd_boolean is_debug_grp
= TRUE
;
12639 /* First scan to see if group contains any section other than debug
12640 and special section. */
12641 ssec
= msec
= elf_next_in_group (grp
);
12644 if ((msec
->flags
& SEC_DEBUGGING
) == 0)
12645 is_debug_grp
= FALSE
;
12647 if ((msec
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) != 0)
12648 is_special_grp
= FALSE
;
12650 msec
= elf_next_in_group (msec
);
12652 while (msec
!= ssec
);
12654 /* If this is a pure debug section group or pure special section group,
12655 keep all sections in this group. */
12656 if (is_debug_grp
|| is_special_grp
)
12661 msec
= elf_next_in_group (msec
);
12663 while (msec
!= ssec
);
12667 /* Keep debug and special sections. */
12670 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
12671 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED
)
12675 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
12678 bfd_boolean some_kept
;
12679 bfd_boolean debug_frag_seen
;
12681 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
12684 /* Ensure all linker created sections are kept,
12685 see if any other section is already marked,
12686 and note if we have any fragmented debug sections. */
12687 debug_frag_seen
= some_kept
= FALSE
;
12688 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
12690 if ((isec
->flags
& SEC_LINKER_CREATED
) != 0)
12692 else if (isec
->gc_mark
)
12695 if (debug_frag_seen
== FALSE
12696 && (isec
->flags
& SEC_DEBUGGING
)
12697 && CONST_STRNEQ (isec
->name
, ".debug_line."))
12698 debug_frag_seen
= TRUE
;
12701 /* If no section in this file will be kept, then we can
12702 toss out the debug and special sections. */
12706 /* Keep debug and special sections like .comment when they are
12707 not part of a group. Also keep section groups that contain
12708 just debug sections or special sections. */
12709 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
12711 if ((isec
->flags
& SEC_GROUP
) != 0)
12712 _bfd_elf_gc_mark_debug_special_section_group (isec
);
12713 else if (((isec
->flags
& SEC_DEBUGGING
) != 0
12714 || (isec
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0)
12715 && elf_next_in_group (isec
) == NULL
)
12719 if (! debug_frag_seen
)
12722 /* Look for CODE sections which are going to be discarded,
12723 and find and discard any fragmented debug sections which
12724 are associated with that code section. */
12725 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
12726 if ((isec
->flags
& SEC_CODE
) != 0
12727 && isec
->gc_mark
== 0)
12732 ilen
= strlen (isec
->name
);
12734 /* Association is determined by the name of the debug section
12735 containing the name of the code section as a suffix. For
12736 example .debug_line.text.foo is a debug section associated
12738 for (dsec
= ibfd
->sections
; dsec
!= NULL
; dsec
= dsec
->next
)
12742 if (dsec
->gc_mark
== 0
12743 || (dsec
->flags
& SEC_DEBUGGING
) == 0)
12746 dlen
= strlen (dsec
->name
);
12749 && strncmp (dsec
->name
+ (dlen
- ilen
),
12750 isec
->name
, ilen
) == 0)
12760 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12762 struct elf_gc_sweep_symbol_info
12764 struct bfd_link_info
*info
;
12765 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
12770 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
12773 && (((h
->root
.type
== bfd_link_hash_defined
12774 || h
->root
.type
== bfd_link_hash_defweak
)
12775 && !((h
->def_regular
|| ELF_COMMON_DEF_P (h
))
12776 && h
->root
.u
.def
.section
->gc_mark
))
12777 || h
->root
.type
== bfd_link_hash_undefined
12778 || h
->root
.type
== bfd_link_hash_undefweak
))
12780 struct elf_gc_sweep_symbol_info
*inf
;
12782 inf
= (struct elf_gc_sweep_symbol_info
*) data
;
12783 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
12784 h
->def_regular
= 0;
12785 h
->ref_regular
= 0;
12786 h
->ref_regular_nonweak
= 0;
12792 /* The sweep phase of garbage collection. Remove all garbage sections. */
12794 typedef bfd_boolean (*gc_sweep_hook_fn
)
12795 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
12798 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
12801 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12802 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
12803 unsigned long section_sym_count
;
12804 struct elf_gc_sweep_symbol_info sweep_info
;
12806 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
12810 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
12811 || !(*bed
->relocs_compatible
) (sub
->xvec
, abfd
->xvec
))
12814 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12816 /* When any section in a section group is kept, we keep all
12817 sections in the section group. If the first member of
12818 the section group is excluded, we will also exclude the
12820 if (o
->flags
& SEC_GROUP
)
12822 asection
*first
= elf_next_in_group (o
);
12823 o
->gc_mark
= first
->gc_mark
;
12829 /* Skip sweeping sections already excluded. */
12830 if (o
->flags
& SEC_EXCLUDE
)
12833 /* Since this is early in the link process, it is simple
12834 to remove a section from the output. */
12835 o
->flags
|= SEC_EXCLUDE
;
12837 if (info
->print_gc_sections
&& o
->size
!= 0)
12838 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
12840 /* But we also have to update some of the relocation
12841 info we collected before. */
12843 && (o
->flags
& SEC_RELOC
) != 0
12844 && o
->reloc_count
!= 0
12845 && !((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
12846 && (o
->flags
& SEC_DEBUGGING
) != 0)
12847 && !bfd_is_abs_section (o
->output_section
))
12849 Elf_Internal_Rela
*internal_relocs
;
12853 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
12854 info
->keep_memory
);
12855 if (internal_relocs
== NULL
)
12858 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
12860 if (elf_section_data (o
)->relocs
!= internal_relocs
)
12861 free (internal_relocs
);
12869 /* Remove the symbols that were in the swept sections from the dynamic
12870 symbol table. GCFIXME: Anyone know how to get them out of the
12871 static symbol table as well? */
12872 sweep_info
.info
= info
;
12873 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
12874 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
12877 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
12881 /* Propagate collected vtable information. This is called through
12882 elf_link_hash_traverse. */
12885 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
12887 /* Those that are not vtables. */
12888 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
12891 /* Those vtables that do not have parents, we cannot merge. */
12892 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
12895 /* If we've already been done, exit. */
12896 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
12899 /* Make sure the parent's table is up to date. */
12900 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
12902 if (h
->vtable
->used
== NULL
)
12904 /* None of this table's entries were referenced. Re-use the
12906 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
12907 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
12912 bfd_boolean
*cu
, *pu
;
12914 /* Or the parent's entries into ours. */
12915 cu
= h
->vtable
->used
;
12917 pu
= h
->vtable
->parent
->vtable
->used
;
12920 const struct elf_backend_data
*bed
;
12921 unsigned int log_file_align
;
12923 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
12924 log_file_align
= bed
->s
->log_file_align
;
12925 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
12940 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
12943 bfd_vma hstart
, hend
;
12944 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
12945 const struct elf_backend_data
*bed
;
12946 unsigned int log_file_align
;
12948 /* Take care of both those symbols that do not describe vtables as
12949 well as those that are not loaded. */
12950 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
12953 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
12954 || h
->root
.type
== bfd_link_hash_defweak
);
12956 sec
= h
->root
.u
.def
.section
;
12957 hstart
= h
->root
.u
.def
.value
;
12958 hend
= hstart
+ h
->size
;
12960 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
12962 return *(bfd_boolean
*) okp
= FALSE
;
12963 bed
= get_elf_backend_data (sec
->owner
);
12964 log_file_align
= bed
->s
->log_file_align
;
12966 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
12968 for (rel
= relstart
; rel
< relend
; ++rel
)
12969 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
12971 /* If the entry is in use, do nothing. */
12972 if (h
->vtable
->used
12973 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
12975 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
12976 if (h
->vtable
->used
[entry
])
12979 /* Otherwise, kill it. */
12980 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
12986 /* Mark sections containing dynamically referenced symbols. When
12987 building shared libraries, we must assume that any visible symbol is
12991 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
12993 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
12994 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
12996 if ((h
->root
.type
== bfd_link_hash_defined
12997 || h
->root
.type
== bfd_link_hash_defweak
)
12999 || ((h
->def_regular
|| ELF_COMMON_DEF_P (h
))
13000 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
13001 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
13002 && (!bfd_link_executable (info
)
13003 || info
->export_dynamic
13006 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
13007 && (h
->versioned
>= versioned
13008 || !bfd_hide_sym_by_version (info
->version_info
,
13009 h
->root
.root
.string
)))))
13010 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
13015 /* Keep all sections containing symbols undefined on the command-line,
13016 and the section containing the entry symbol. */
13019 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
13021 struct bfd_sym_chain
*sym
;
13023 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
13025 struct elf_link_hash_entry
*h
;
13027 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
13028 FALSE
, FALSE
, FALSE
);
13031 && (h
->root
.type
== bfd_link_hash_defined
13032 || h
->root
.type
== bfd_link_hash_defweak
)
13033 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
13034 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
13039 bfd_elf_parse_eh_frame_entries (bfd
*abfd ATTRIBUTE_UNUSED
,
13040 struct bfd_link_info
*info
)
13042 bfd
*ibfd
= info
->input_bfds
;
13044 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
13047 struct elf_reloc_cookie cookie
;
13049 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
13052 if (!init_reloc_cookie (&cookie
, info
, ibfd
))
13055 for (sec
= ibfd
->sections
; sec
; sec
= sec
->next
)
13057 if (CONST_STRNEQ (bfd_section_name (ibfd
, sec
), ".eh_frame_entry")
13058 && init_reloc_cookie_rels (&cookie
, info
, ibfd
, sec
))
13060 _bfd_elf_parse_eh_frame_entry (info
, sec
, &cookie
);
13061 fini_reloc_cookie_rels (&cookie
, sec
);
13068 /* Do mark and sweep of unused sections. */
13071 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
13073 bfd_boolean ok
= TRUE
;
13075 elf_gc_mark_hook_fn gc_mark_hook
;
13076 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13077 struct elf_link_hash_table
*htab
;
13079 if (!bed
->can_gc_sections
13080 || !is_elf_hash_table (info
->hash
))
13082 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
13086 bed
->gc_keep (info
);
13087 htab
= elf_hash_table (info
);
13089 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13090 at the .eh_frame section if we can mark the FDEs individually. */
13091 for (sub
= info
->input_bfds
;
13092 info
->eh_frame_hdr_type
!= COMPACT_EH_HDR
&& sub
!= NULL
;
13093 sub
= sub
->link
.next
)
13096 struct elf_reloc_cookie cookie
;
13098 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
13099 while (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
13101 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
13102 if (elf_section_data (sec
)->sec_info
13103 && (sec
->flags
& SEC_LINKER_CREATED
) == 0)
13104 elf_eh_frame_section (sub
) = sec
;
13105 fini_reloc_cookie_for_section (&cookie
, sec
);
13106 sec
= bfd_get_next_section_by_name (NULL
, sec
);
13110 /* Apply transitive closure to the vtable entry usage info. */
13111 elf_link_hash_traverse (htab
, elf_gc_propagate_vtable_entries_used
, &ok
);
13115 /* Kill the vtable relocations that were not used. */
13116 elf_link_hash_traverse (htab
, elf_gc_smash_unused_vtentry_relocs
, &ok
);
13120 /* Mark dynamically referenced symbols. */
13121 if (htab
->dynamic_sections_created
)
13122 elf_link_hash_traverse (htab
, bed
->gc_mark_dynamic_ref
, info
);
13124 /* Grovel through relocs to find out who stays ... */
13125 gc_mark_hook
= bed
->gc_mark_hook
;
13126 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
13130 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
13131 || !(*bed
->relocs_compatible
) (sub
->xvec
, abfd
->xvec
))
13134 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13135 Also treat note sections as a root, if the section is not part
13137 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
13139 && (o
->flags
& SEC_EXCLUDE
) == 0
13140 && ((o
->flags
& SEC_KEEP
) != 0
13141 || (elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
13142 && elf_next_in_group (o
) == NULL
)))
13144 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
13149 /* Allow the backend to mark additional target specific sections. */
13150 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
13152 /* ... and mark SEC_EXCLUDE for those that go. */
13153 return elf_gc_sweep (abfd
, info
);
13156 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13159 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
13161 struct elf_link_hash_entry
*h
,
13164 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
13165 struct elf_link_hash_entry
**search
, *child
;
13166 size_t extsymcount
;
13167 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13169 /* The sh_info field of the symtab header tells us where the
13170 external symbols start. We don't care about the local symbols at
13172 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
13173 if (!elf_bad_symtab (abfd
))
13174 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
13176 sym_hashes
= elf_sym_hashes (abfd
);
13177 sym_hashes_end
= sym_hashes
+ extsymcount
;
13179 /* Hunt down the child symbol, which is in this section at the same
13180 offset as the relocation. */
13181 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
13183 if ((child
= *search
) != NULL
13184 && (child
->root
.type
== bfd_link_hash_defined
13185 || child
->root
.type
== bfd_link_hash_defweak
)
13186 && child
->root
.u
.def
.section
== sec
13187 && child
->root
.u
.def
.value
== offset
)
13191 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
13192 abfd
, sec
, (unsigned long) offset
);
13193 bfd_set_error (bfd_error_invalid_operation
);
13197 if (!child
->vtable
)
13199 child
->vtable
= ((struct elf_link_virtual_table_entry
*)
13200 bfd_zalloc (abfd
, sizeof (*child
->vtable
)));
13201 if (!child
->vtable
)
13206 /* This *should* only be the absolute section. It could potentially
13207 be that someone has defined a non-global vtable though, which
13208 would be bad. It isn't worth paging in the local symbols to be
13209 sure though; that case should simply be handled by the assembler. */
13211 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
13214 child
->vtable
->parent
= h
;
13219 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13222 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
13223 asection
*sec ATTRIBUTE_UNUSED
,
13224 struct elf_link_hash_entry
*h
,
13227 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13228 unsigned int log_file_align
= bed
->s
->log_file_align
;
13232 h
->vtable
= ((struct elf_link_virtual_table_entry
*)
13233 bfd_zalloc (abfd
, sizeof (*h
->vtable
)));
13238 if (addend
>= h
->vtable
->size
)
13240 size_t size
, bytes
, file_align
;
13241 bfd_boolean
*ptr
= h
->vtable
->used
;
13243 /* While the symbol is undefined, we have to be prepared to handle
13245 file_align
= 1 << log_file_align
;
13246 if (h
->root
.type
== bfd_link_hash_undefined
)
13247 size
= addend
+ file_align
;
13251 if (addend
>= size
)
13253 /* Oops! We've got a reference past the defined end of
13254 the table. This is probably a bug -- shall we warn? */
13255 size
= addend
+ file_align
;
13258 size
= (size
+ file_align
- 1) & -file_align
;
13260 /* Allocate one extra entry for use as a "done" flag for the
13261 consolidation pass. */
13262 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
13266 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
13272 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
13273 * sizeof (bfd_boolean
));
13274 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
13278 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
13283 /* And arrange for that done flag to be at index -1. */
13284 h
->vtable
->used
= ptr
+ 1;
13285 h
->vtable
->size
= size
;
13288 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
13293 /* Map an ELF section header flag to its corresponding string. */
13297 flagword flag_value
;
13298 } elf_flags_to_name_table
;
13300 static elf_flags_to_name_table elf_flags_to_names
[] =
13302 { "SHF_WRITE", SHF_WRITE
},
13303 { "SHF_ALLOC", SHF_ALLOC
},
13304 { "SHF_EXECINSTR", SHF_EXECINSTR
},
13305 { "SHF_MERGE", SHF_MERGE
},
13306 { "SHF_STRINGS", SHF_STRINGS
},
13307 { "SHF_INFO_LINK", SHF_INFO_LINK
},
13308 { "SHF_LINK_ORDER", SHF_LINK_ORDER
},
13309 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING
},
13310 { "SHF_GROUP", SHF_GROUP
},
13311 { "SHF_TLS", SHF_TLS
},
13312 { "SHF_MASKOS", SHF_MASKOS
},
13313 { "SHF_EXCLUDE", SHF_EXCLUDE
},
13316 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13318 bfd_elf_lookup_section_flags (struct bfd_link_info
*info
,
13319 struct flag_info
*flaginfo
,
13322 const bfd_vma sh_flags
= elf_section_flags (section
);
13324 if (!flaginfo
->flags_initialized
)
13326 bfd
*obfd
= info
->output_bfd
;
13327 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
13328 struct flag_info_list
*tf
= flaginfo
->flag_list
;
13330 int without_hex
= 0;
13332 for (tf
= flaginfo
->flag_list
; tf
!= NULL
; tf
= tf
->next
)
13335 flagword (*lookup
) (char *);
13337 lookup
= bed
->elf_backend_lookup_section_flags_hook
;
13338 if (lookup
!= NULL
)
13340 flagword hexval
= (*lookup
) ((char *) tf
->name
);
13344 if (tf
->with
== with_flags
)
13345 with_hex
|= hexval
;
13346 else if (tf
->with
== without_flags
)
13347 without_hex
|= hexval
;
13352 for (i
= 0; i
< ARRAY_SIZE (elf_flags_to_names
); ++i
)
13354 if (strcmp (tf
->name
, elf_flags_to_names
[i
].flag_name
) == 0)
13356 if (tf
->with
== with_flags
)
13357 with_hex
|= elf_flags_to_names
[i
].flag_value
;
13358 else if (tf
->with
== without_flags
)
13359 without_hex
|= elf_flags_to_names
[i
].flag_value
;
13366 info
->callbacks
->einfo
13367 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf
->name
);
13371 flaginfo
->flags_initialized
= TRUE
;
13372 flaginfo
->only_with_flags
|= with_hex
;
13373 flaginfo
->not_with_flags
|= without_hex
;
13376 if ((flaginfo
->only_with_flags
& sh_flags
) != flaginfo
->only_with_flags
)
13379 if ((flaginfo
->not_with_flags
& sh_flags
) != 0)
13385 struct alloc_got_off_arg
{
13387 struct bfd_link_info
*info
;
13390 /* We need a special top-level link routine to convert got reference counts
13391 to real got offsets. */
13394 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
13396 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
13397 bfd
*obfd
= gofarg
->info
->output_bfd
;
13398 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
13400 if (h
->got
.refcount
> 0)
13402 h
->got
.offset
= gofarg
->gotoff
;
13403 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
13406 h
->got
.offset
= (bfd_vma
) -1;
13411 /* And an accompanying bit to work out final got entry offsets once
13412 we're done. Should be called from final_link. */
13415 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
13416 struct bfd_link_info
*info
)
13419 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13421 struct alloc_got_off_arg gofarg
;
13423 BFD_ASSERT (abfd
== info
->output_bfd
);
13425 if (! is_elf_hash_table (info
->hash
))
13428 /* The GOT offset is relative to the .got section, but the GOT header is
13429 put into the .got.plt section, if the backend uses it. */
13430 if (bed
->want_got_plt
)
13433 gotoff
= bed
->got_header_size
;
13435 /* Do the local .got entries first. */
13436 for (i
= info
->input_bfds
; i
; i
= i
->link
.next
)
13438 bfd_signed_vma
*local_got
;
13439 size_t j
, locsymcount
;
13440 Elf_Internal_Shdr
*symtab_hdr
;
13442 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
13445 local_got
= elf_local_got_refcounts (i
);
13449 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
13450 if (elf_bad_symtab (i
))
13451 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
13453 locsymcount
= symtab_hdr
->sh_info
;
13455 for (j
= 0; j
< locsymcount
; ++j
)
13457 if (local_got
[j
] > 0)
13459 local_got
[j
] = gotoff
;
13460 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
13463 local_got
[j
] = (bfd_vma
) -1;
13467 /* Then the global .got entries. .plt refcounts are handled by
13468 adjust_dynamic_symbol */
13469 gofarg
.gotoff
= gotoff
;
13470 gofarg
.info
= info
;
13471 elf_link_hash_traverse (elf_hash_table (info
),
13472 elf_gc_allocate_got_offsets
,
13477 /* Many folk need no more in the way of final link than this, once
13478 got entry reference counting is enabled. */
13481 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
13483 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
13486 /* Invoke the regular ELF backend linker to do all the work. */
13487 return bfd_elf_final_link (abfd
, info
);
13491 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
13493 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
13495 if (rcookie
->bad_symtab
)
13496 rcookie
->rel
= rcookie
->rels
;
13498 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
13500 unsigned long r_symndx
;
13502 if (! rcookie
->bad_symtab
)
13503 if (rcookie
->rel
->r_offset
> offset
)
13505 if (rcookie
->rel
->r_offset
!= offset
)
13508 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
13509 if (r_symndx
== STN_UNDEF
)
13512 if (r_symndx
>= rcookie
->locsymcount
13513 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
13515 struct elf_link_hash_entry
*h
;
13517 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
13519 while (h
->root
.type
== bfd_link_hash_indirect
13520 || h
->root
.type
== bfd_link_hash_warning
)
13521 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
13523 if ((h
->root
.type
== bfd_link_hash_defined
13524 || h
->root
.type
== bfd_link_hash_defweak
)
13525 && (h
->root
.u
.def
.section
->owner
!= rcookie
->abfd
13526 || h
->root
.u
.def
.section
->kept_section
!= NULL
13527 || discarded_section (h
->root
.u
.def
.section
)))
13532 /* It's not a relocation against a global symbol,
13533 but it could be a relocation against a local
13534 symbol for a discarded section. */
13536 Elf_Internal_Sym
*isym
;
13538 /* Need to: get the symbol; get the section. */
13539 isym
= &rcookie
->locsyms
[r_symndx
];
13540 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
13542 && (isec
->kept_section
!= NULL
13543 || discarded_section (isec
)))
13551 /* Discard unneeded references to discarded sections.
13552 Returns -1 on error, 1 if any section's size was changed, 0 if
13553 nothing changed. This function assumes that the relocations are in
13554 sorted order, which is true for all known assemblers. */
13557 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
13559 struct elf_reloc_cookie cookie
;
13564 if (info
->traditional_format
13565 || !is_elf_hash_table (info
->hash
))
13568 o
= bfd_get_section_by_name (output_bfd
, ".stab");
13573 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
13576 || i
->reloc_count
== 0
13577 || i
->sec_info_type
!= SEC_INFO_TYPE_STABS
)
13581 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
13584 if (!init_reloc_cookie_for_section (&cookie
, info
, i
))
13587 if (_bfd_discard_section_stabs (abfd
, i
,
13588 elf_section_data (i
)->sec_info
,
13589 bfd_elf_reloc_symbol_deleted_p
,
13593 fini_reloc_cookie_for_section (&cookie
, i
);
13598 if (info
->eh_frame_hdr_type
!= COMPACT_EH_HDR
)
13599 o
= bfd_get_section_by_name (output_bfd
, ".eh_frame");
13604 for (i
= o
->map_head
.s
; i
!= NULL
; i
= i
->map_head
.s
)
13610 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
13613 if (!init_reloc_cookie_for_section (&cookie
, info
, i
))
13616 _bfd_elf_parse_eh_frame (abfd
, info
, i
, &cookie
);
13617 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, i
,
13618 bfd_elf_reloc_symbol_deleted_p
,
13622 fini_reloc_cookie_for_section (&cookie
, i
);
13626 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link
.next
)
13628 const struct elf_backend_data
*bed
;
13630 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
13633 bed
= get_elf_backend_data (abfd
);
13635 if (bed
->elf_backend_discard_info
!= NULL
)
13637 if (!init_reloc_cookie (&cookie
, info
, abfd
))
13640 if ((*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
13643 fini_reloc_cookie (&cookie
, abfd
);
13647 if (info
->eh_frame_hdr_type
== COMPACT_EH_HDR
)
13648 _bfd_elf_end_eh_frame_parsing (info
);
13650 if (info
->eh_frame_hdr_type
13651 && !bfd_link_relocatable (info
)
13652 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
13659 _bfd_elf_section_already_linked (bfd
*abfd
,
13661 struct bfd_link_info
*info
)
13664 const char *name
, *key
;
13665 struct bfd_section_already_linked
*l
;
13666 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
13668 if (sec
->output_section
== bfd_abs_section_ptr
)
13671 flags
= sec
->flags
;
13673 /* Return if it isn't a linkonce section. A comdat group section
13674 also has SEC_LINK_ONCE set. */
13675 if ((flags
& SEC_LINK_ONCE
) == 0)
13678 /* Don't put group member sections on our list of already linked
13679 sections. They are handled as a group via their group section. */
13680 if (elf_sec_group (sec
) != NULL
)
13683 /* For a SHT_GROUP section, use the group signature as the key. */
13685 if ((flags
& SEC_GROUP
) != 0
13686 && elf_next_in_group (sec
) != NULL
13687 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
13688 key
= elf_group_name (elf_next_in_group (sec
));
13691 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13692 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
13693 && (key
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
13696 /* Must be a user linkonce section that doesn't follow gcc's
13697 naming convention. In this case we won't be matching
13698 single member groups. */
13702 already_linked_list
= bfd_section_already_linked_table_lookup (key
);
13704 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
13706 /* We may have 2 different types of sections on the list: group
13707 sections with a signature of <key> (<key> is some string),
13708 and linkonce sections named .gnu.linkonce.<type>.<key>.
13709 Match like sections. LTO plugin sections are an exception.
13710 They are always named .gnu.linkonce.t.<key> and match either
13711 type of section. */
13712 if (((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
13713 && ((flags
& SEC_GROUP
) != 0
13714 || strcmp (name
, l
->sec
->name
) == 0))
13715 || (l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
13717 /* The section has already been linked. See if we should
13718 issue a warning. */
13719 if (!_bfd_handle_already_linked (sec
, l
, info
))
13722 if (flags
& SEC_GROUP
)
13724 asection
*first
= elf_next_in_group (sec
);
13725 asection
*s
= first
;
13729 s
->output_section
= bfd_abs_section_ptr
;
13730 /* Record which group discards it. */
13731 s
->kept_section
= l
->sec
;
13732 s
= elf_next_in_group (s
);
13733 /* These lists are circular. */
13743 /* A single member comdat group section may be discarded by a
13744 linkonce section and vice versa. */
13745 if ((flags
& SEC_GROUP
) != 0)
13747 asection
*first
= elf_next_in_group (sec
);
13749 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
13750 /* Check this single member group against linkonce sections. */
13751 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
13752 if ((l
->sec
->flags
& SEC_GROUP
) == 0
13753 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
13755 first
->output_section
= bfd_abs_section_ptr
;
13756 first
->kept_section
= l
->sec
;
13757 sec
->output_section
= bfd_abs_section_ptr
;
13762 /* Check this linkonce section against single member groups. */
13763 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
13764 if (l
->sec
->flags
& SEC_GROUP
)
13766 asection
*first
= elf_next_in_group (l
->sec
);
13769 && elf_next_in_group (first
) == first
13770 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
13772 sec
->output_section
= bfd_abs_section_ptr
;
13773 sec
->kept_section
= first
;
13778 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13779 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13780 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13781 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13782 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13783 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13784 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13785 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13786 The reverse order cannot happen as there is never a bfd with only the
13787 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13788 matter as here were are looking only for cross-bfd sections. */
13790 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
13791 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
13792 if ((l
->sec
->flags
& SEC_GROUP
) == 0
13793 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
13795 if (abfd
!= l
->sec
->owner
)
13796 sec
->output_section
= bfd_abs_section_ptr
;
13800 /* This is the first section with this name. Record it. */
13801 if (!bfd_section_already_linked_table_insert (already_linked_list
, sec
))
13802 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
13803 return sec
->output_section
== bfd_abs_section_ptr
;
13807 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
13809 return sym
->st_shndx
== SHN_COMMON
;
13813 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
13819 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
13821 return bfd_com_section_ptr
;
13825 _bfd_elf_default_got_elt_size (bfd
*abfd
,
13826 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
13827 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
13828 bfd
*ibfd ATTRIBUTE_UNUSED
,
13829 unsigned long symndx ATTRIBUTE_UNUSED
)
13831 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13832 return bed
->s
->arch_size
/ 8;
13835 /* Routines to support the creation of dynamic relocs. */
13837 /* Returns the name of the dynamic reloc section associated with SEC. */
13839 static const char *
13840 get_dynamic_reloc_section_name (bfd
* abfd
,
13842 bfd_boolean is_rela
)
13845 const char *old_name
= bfd_get_section_name (NULL
, sec
);
13846 const char *prefix
= is_rela
? ".rela" : ".rel";
13848 if (old_name
== NULL
)
13851 name
= bfd_alloc (abfd
, strlen (prefix
) + strlen (old_name
) + 1);
13852 sprintf (name
, "%s%s", prefix
, old_name
);
13857 /* Returns the dynamic reloc section associated with SEC.
13858 If necessary compute the name of the dynamic reloc section based
13859 on SEC's name (looked up in ABFD's string table) and the setting
13863 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
13865 bfd_boolean is_rela
)
13867 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
13869 if (reloc_sec
== NULL
)
13871 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
13875 reloc_sec
= bfd_get_linker_section (abfd
, name
);
13877 if (reloc_sec
!= NULL
)
13878 elf_section_data (sec
)->sreloc
= reloc_sec
;
13885 /* Returns the dynamic reloc section associated with SEC. If the
13886 section does not exist it is created and attached to the DYNOBJ
13887 bfd and stored in the SRELOC field of SEC's elf_section_data
13890 ALIGNMENT is the alignment for the newly created section and
13891 IS_RELA defines whether the name should be .rela.<SEC's name>
13892 or .rel.<SEC's name>. The section name is looked up in the
13893 string table associated with ABFD. */
13896 _bfd_elf_make_dynamic_reloc_section (asection
*sec
,
13898 unsigned int alignment
,
13900 bfd_boolean is_rela
)
13902 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
13904 if (reloc_sec
== NULL
)
13906 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
13911 reloc_sec
= bfd_get_linker_section (dynobj
, name
);
13913 if (reloc_sec
== NULL
)
13915 flagword flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
13916 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
13917 if ((sec
->flags
& SEC_ALLOC
) != 0)
13918 flags
|= SEC_ALLOC
| SEC_LOAD
;
13920 reloc_sec
= bfd_make_section_anyway_with_flags (dynobj
, name
, flags
);
13921 if (reloc_sec
!= NULL
)
13923 /* _bfd_elf_get_sec_type_attr chooses a section type by
13924 name. Override as it may be wrong, eg. for a user
13925 section named "auto" we'll get ".relauto" which is
13926 seen to be a .rela section. */
13927 elf_section_type (reloc_sec
) = is_rela
? SHT_RELA
: SHT_REL
;
13928 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
13933 elf_section_data (sec
)->sreloc
= reloc_sec
;
13939 /* Copy the ELF symbol type and other attributes for a linker script
13940 assignment from HSRC to HDEST. Generally this should be treated as
13941 if we found a strong non-dynamic definition for HDEST (except that
13942 ld ignores multiple definition errors). */
13944 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd
,
13945 struct bfd_link_hash_entry
*hdest
,
13946 struct bfd_link_hash_entry
*hsrc
)
13948 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*) hdest
;
13949 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*) hsrc
;
13950 Elf_Internal_Sym isym
;
13952 ehdest
->type
= ehsrc
->type
;
13953 ehdest
->target_internal
= ehsrc
->target_internal
;
13955 isym
.st_other
= ehsrc
->other
;
13956 elf_merge_st_other (abfd
, ehdest
, &isym
, NULL
, TRUE
, FALSE
);
13959 /* Append a RELA relocation REL to section S in BFD. */
13962 elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
13964 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13965 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
13966 BFD_ASSERT (loc
+ bed
->s
->sizeof_rela
<= s
->contents
+ s
->size
);
13967 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
13970 /* Append a REL relocation REL to section S in BFD. */
13973 elf_append_rel (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
13975 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
13976 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rel
);
13977 BFD_ASSERT (loc
+ bed
->s
->sizeof_rel
<= s
->contents
+ s
->size
);
13978 bed
->s
->swap_reloc_out (abfd
, rel
, loc
);