* hppa-tdep.c (_initialize_hppa_tdep): Add declaration.
[binutils-gdb.git] / gdb / ia64-linux-nat.c
blobe8ffc89eb566558816c6e019b61a7e176536dd2f
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
4 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "ia64-tdep.h"
29 #include "linux-nat.h"
31 #include <signal.h>
32 #include <sys/ptrace.h>
33 #include "gdb_wait.h"
34 #ifdef HAVE_SYS_REG_H
35 #include <sys/reg.h>
36 #endif
37 #include <sys/syscall.h>
38 #include <sys/user.h>
40 #include <asm/ptrace_offsets.h>
41 #include <sys/procfs.h>
43 /* Prototypes for supply_gregset etc. */
44 #include "gregset.h"
46 /* These must match the order of the register names.
48 Some sort of lookup table is needed because the offsets associated
49 with the registers are all over the board. */
51 static int u_offsets[] =
53 /* general registers */
54 -1, /* gr0 not available; i.e, it's always zero */
55 PT_R1,
56 PT_R2,
57 PT_R3,
58 PT_R4,
59 PT_R5,
60 PT_R6,
61 PT_R7,
62 PT_R8,
63 PT_R9,
64 PT_R10,
65 PT_R11,
66 PT_R12,
67 PT_R13,
68 PT_R14,
69 PT_R15,
70 PT_R16,
71 PT_R17,
72 PT_R18,
73 PT_R19,
74 PT_R20,
75 PT_R21,
76 PT_R22,
77 PT_R23,
78 PT_R24,
79 PT_R25,
80 PT_R26,
81 PT_R27,
82 PT_R28,
83 PT_R29,
84 PT_R30,
85 PT_R31,
86 /* gr32 through gr127 not directly available via the ptrace interface */
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
93 /* Floating point registers */
94 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
95 PT_F2,
96 PT_F3,
97 PT_F4,
98 PT_F5,
99 PT_F6,
100 PT_F7,
101 PT_F8,
102 PT_F9,
103 PT_F10,
104 PT_F11,
105 PT_F12,
106 PT_F13,
107 PT_F14,
108 PT_F15,
109 PT_F16,
110 PT_F17,
111 PT_F18,
112 PT_F19,
113 PT_F20,
114 PT_F21,
115 PT_F22,
116 PT_F23,
117 PT_F24,
118 PT_F25,
119 PT_F26,
120 PT_F27,
121 PT_F28,
122 PT_F29,
123 PT_F30,
124 PT_F31,
125 PT_F32,
126 PT_F33,
127 PT_F34,
128 PT_F35,
129 PT_F36,
130 PT_F37,
131 PT_F38,
132 PT_F39,
133 PT_F40,
134 PT_F41,
135 PT_F42,
136 PT_F43,
137 PT_F44,
138 PT_F45,
139 PT_F46,
140 PT_F47,
141 PT_F48,
142 PT_F49,
143 PT_F50,
144 PT_F51,
145 PT_F52,
146 PT_F53,
147 PT_F54,
148 PT_F55,
149 PT_F56,
150 PT_F57,
151 PT_F58,
152 PT_F59,
153 PT_F60,
154 PT_F61,
155 PT_F62,
156 PT_F63,
157 PT_F64,
158 PT_F65,
159 PT_F66,
160 PT_F67,
161 PT_F68,
162 PT_F69,
163 PT_F70,
164 PT_F71,
165 PT_F72,
166 PT_F73,
167 PT_F74,
168 PT_F75,
169 PT_F76,
170 PT_F77,
171 PT_F78,
172 PT_F79,
173 PT_F80,
174 PT_F81,
175 PT_F82,
176 PT_F83,
177 PT_F84,
178 PT_F85,
179 PT_F86,
180 PT_F87,
181 PT_F88,
182 PT_F89,
183 PT_F90,
184 PT_F91,
185 PT_F92,
186 PT_F93,
187 PT_F94,
188 PT_F95,
189 PT_F96,
190 PT_F97,
191 PT_F98,
192 PT_F99,
193 PT_F100,
194 PT_F101,
195 PT_F102,
196 PT_F103,
197 PT_F104,
198 PT_F105,
199 PT_F106,
200 PT_F107,
201 PT_F108,
202 PT_F109,
203 PT_F110,
204 PT_F111,
205 PT_F112,
206 PT_F113,
207 PT_F114,
208 PT_F115,
209 PT_F116,
210 PT_F117,
211 PT_F118,
212 PT_F119,
213 PT_F120,
214 PT_F121,
215 PT_F122,
216 PT_F123,
217 PT_F124,
218 PT_F125,
219 PT_F126,
220 PT_F127,
221 /* predicate registers - we don't fetch these individually */
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 -1, -1, -1, -1, -1, -1, -1, -1,
230 /* branch registers */
231 PT_B0,
232 PT_B1,
233 PT_B2,
234 PT_B3,
235 PT_B4,
236 PT_B5,
237 PT_B6,
238 PT_B7,
239 /* virtual frame pointer and virtual return address pointer */
240 -1, -1,
241 /* other registers */
242 PT_PR,
243 PT_CR_IIP, /* ip */
244 PT_CR_IPSR, /* psr */
245 PT_CFM, /* cfm */
246 /* kernel registers not visible via ptrace interface (?) */
247 -1, -1, -1, -1, -1, -1, -1, -1,
248 /* hole */
249 -1, -1, -1, -1, -1, -1, -1, -1,
250 PT_AR_RSC,
251 PT_AR_BSP,
252 PT_AR_BSPSTORE,
253 PT_AR_RNAT,
255 -1, /* Not available: FCR, IA32 floating control register */
256 -1, -1,
257 -1, /* Not available: EFLAG */
258 -1, /* Not available: CSD */
259 -1, /* Not available: SSD */
260 -1, /* Not available: CFLG */
261 -1, /* Not available: FSR */
262 -1, /* Not available: FIR */
263 -1, /* Not available: FDR */
265 PT_AR_CCV,
266 -1, -1, -1,
267 PT_AR_UNAT,
268 -1, -1, -1,
269 PT_AR_FPSR,
270 -1, -1, -1,
271 -1, /* Not available: ITC */
272 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 -1, -1, -1, -1, -1, -1, -1, -1, -1,
274 PT_AR_PFS,
275 PT_AR_LC,
276 -1, /* Not available: EC, the Epilog Count register */
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
284 /* nat bits - not fetched directly; instead we obtain these bits from
285 either rnat or unat or from memory. */
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 -1, -1, -1, -1, -1, -1, -1, -1,
304 static CORE_ADDR
305 ia64_register_addr (struct gdbarch *gdbarch, int regno)
307 CORE_ADDR addr;
309 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
310 error (_("Invalid register number %d."), regno);
312 if (u_offsets[regno] == -1)
313 addr = 0;
314 else
315 addr = (CORE_ADDR) u_offsets[regno];
317 return addr;
320 static int
321 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
323 return regno < 0
324 || regno >= gdbarch_num_regs (gdbarch)
325 || u_offsets[regno] == -1;
328 static int
329 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
331 /* Rationale behind not permitting stores to bspstore...
333 The IA-64 architecture provides bspstore and bsp which refer
334 memory locations in the RSE's backing store. bspstore is the
335 next location which will be written when the RSE needs to write
336 to memory. bsp is the address at which r32 in the current frame
337 would be found if it were written to the backing store.
339 The IA-64 architecture provides read-only access to bsp and
340 read/write access to bspstore (but only when the RSE is in
341 the enforced lazy mode). It should be noted that stores
342 to bspstore also affect the value of bsp. Changing bspstore
343 does not affect the number of dirty entries between bspstore
344 and bsp, so changing bspstore by N words will also cause bsp
345 to be changed by (roughly) N as well. (It could be N-1 or N+1
346 depending upon where the NaT collection bits fall.)
348 OTOH, the Linux kernel provides read/write access to bsp (and
349 currently read/write access to bspstore as well). But it
350 is definitely the case that if you change one, the other
351 will change at the same time. It is more useful to gdb to
352 be able to change bsp. So in order to prevent strange and
353 undesirable things from happening when a dummy stack frame
354 is popped (after calling an inferior function), we allow
355 bspstore to be read, but not written. (Note that popping
356 a (generic) dummy stack frame causes all registers that
357 were previously read from the inferior process to be written
358 back.) */
360 return regno < 0
361 || regno >= gdbarch_num_regs (gdbarch)
362 || u_offsets[regno] == -1
363 || regno == IA64_BSPSTORE_REGNUM;
366 void
367 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
369 int regi;
370 const greg_t *regp = (const greg_t *) gregsetp;
372 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
374 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
377 /* FIXME: NAT collection bits are at index 32; gotta deal with these
378 somehow... */
380 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
382 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
384 regcache_raw_supply (regcache, regi,
385 regp + 34 + (regi - IA64_BR0_REGNUM));
388 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
389 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
390 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
391 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
392 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
393 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
394 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
395 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
396 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
397 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
398 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
399 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
400 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
403 void
404 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
406 int regi;
407 greg_t *regp = (greg_t *) gregsetp;
409 #define COPY_REG(_idx_,_regi_) \
410 if ((regno == -1) || regno == _regi_) \
411 regcache_raw_collect (regcache, _regi_, regp + _idx_)
413 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
415 COPY_REG (regi - IA64_GR0_REGNUM, regi);
418 /* FIXME: NAT collection bits at index 32? */
420 COPY_REG (33, IA64_PR_REGNUM);
422 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
424 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
427 COPY_REG (42, IA64_IP_REGNUM);
428 COPY_REG (43, IA64_CFM_REGNUM);
429 COPY_REG (44, IA64_PSR_REGNUM);
430 COPY_REG (45, IA64_RSC_REGNUM);
431 COPY_REG (46, IA64_BSP_REGNUM);
432 COPY_REG (47, IA64_BSPSTORE_REGNUM);
433 COPY_REG (48, IA64_RNAT_REGNUM);
434 COPY_REG (49, IA64_CCV_REGNUM);
435 COPY_REG (50, IA64_UNAT_REGNUM);
436 COPY_REG (51, IA64_FPSR_REGNUM);
437 COPY_REG (52, IA64_PFS_REGNUM);
438 COPY_REG (53, IA64_LC_REGNUM);
439 COPY_REG (54, IA64_EC_REGNUM);
442 /* Given a pointer to a floating point register set in /proc format
443 (fpregset_t *), unpack the register contents and supply them as gdb's
444 idea of the current floating point register values. */
446 void
447 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
449 int regi;
450 const char *from;
452 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
454 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
455 regcache_raw_supply (regcache, regi, from);
459 /* Given a pointer to a floating point register set in /proc format
460 (fpregset_t *), update the register specified by REGNO from gdb's idea
461 of the current floating point register set. If REGNO is -1, update
462 them all. */
464 void
465 fill_fpregset (const struct regcache *regcache,
466 fpregset_t *fpregsetp, int regno)
468 int regi;
470 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
472 if ((regno == -1) || (regno == regi))
473 regcache_raw_collect (regcache, regi,
474 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
478 #define IA64_PSR_DB (1UL << 24)
479 #define IA64_PSR_DD (1UL << 39)
481 static void
482 enable_watchpoints_in_psr (ptid_t ptid)
484 struct regcache *regcache = get_thread_regcache (ptid);
485 ULONGEST psr;
487 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
488 if (!(psr & IA64_PSR_DB))
490 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
491 watchpoints and breakpoints. */
492 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
496 static long debug_registers[8];
498 static void
499 store_debug_register (ptid_t ptid, int idx, long val)
501 int tid;
503 tid = TIDGET (ptid);
504 if (tid == 0)
505 tid = PIDGET (ptid);
507 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
510 static void
511 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr, long *dbr_mask)
513 if (dbr_addr)
514 store_debug_register (ptid, 2 * idx, *dbr_addr);
515 if (dbr_mask)
516 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
519 static int
520 is_power_of_2 (int val)
522 int i, onecount;
524 onecount = 0;
525 for (i = 0; i < 8 * sizeof (val); i++)
526 if (val & (1 << i))
527 onecount++;
529 return onecount <= 1;
532 static int
533 ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
535 struct lwp_info *lp;
536 ptid_t ptid;
537 int idx;
538 long dbr_addr, dbr_mask;
539 int max_watchpoints = 4;
541 if (len <= 0 || !is_power_of_2 (len))
542 return -1;
544 for (idx = 0; idx < max_watchpoints; idx++)
546 dbr_mask = debug_registers[idx * 2 + 1];
547 if ((dbr_mask & (0x3UL << 62)) == 0)
549 /* Exit loop if both r and w bits clear */
550 break;
554 if (idx == max_watchpoints)
555 return -1;
557 dbr_addr = (long) addr;
558 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
559 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
560 switch (rw)
562 case hw_write:
563 dbr_mask |= (1L << 62); /* Set w bit */
564 break;
565 case hw_read:
566 dbr_mask |= (1L << 63); /* Set r bit */
567 break;
568 case hw_access:
569 dbr_mask |= (3L << 62); /* Set both r and w bits */
570 break;
571 default:
572 return -1;
575 debug_registers[2 * idx] = dbr_addr;
576 debug_registers[2 * idx + 1] = dbr_mask;
577 ALL_LWPS (lp, ptid)
579 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
580 enable_watchpoints_in_psr (ptid);
583 return 0;
586 static int
587 ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type)
589 int idx;
590 long dbr_addr, dbr_mask;
591 int max_watchpoints = 4;
593 if (len <= 0 || !is_power_of_2 (len))
594 return -1;
596 for (idx = 0; idx < max_watchpoints; idx++)
598 dbr_addr = debug_registers[2 * idx];
599 dbr_mask = debug_registers[2 * idx + 1];
600 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
602 struct lwp_info *lp;
603 ptid_t ptid;
605 debug_registers[2 * idx] = 0;
606 debug_registers[2 * idx + 1] = 0;
607 dbr_addr = 0;
608 dbr_mask = 0;
610 ALL_LWPS (lp, ptid)
611 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
613 return 0;
616 return -1;
619 static void
620 ia64_linux_new_thread (ptid_t ptid)
622 int i, any;
624 any = 0;
625 for (i = 0; i < 8; i++)
627 if (debug_registers[i] != 0)
628 any = 1;
629 store_debug_register (ptid, i, debug_registers[i]);
632 if (any)
633 enable_watchpoints_in_psr (ptid);
636 static int
637 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
639 CORE_ADDR psr;
640 struct siginfo *siginfo_p;
641 struct regcache *regcache = get_current_regcache ();
643 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
645 if (siginfo_p->si_signo != SIGTRAP
646 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
647 return 0;
649 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
650 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
651 for the next instruction */
652 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
654 *addr_p = (CORE_ADDR)siginfo_p->si_addr;
655 return 1;
658 static int
659 ia64_linux_stopped_by_watchpoint (void)
661 CORE_ADDR addr;
662 return ia64_linux_stopped_data_address (&current_target, &addr);
665 static int
666 ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
668 return 1;
672 /* Fetch register REGNUM from the inferior. */
674 static void
675 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
677 struct gdbarch *gdbarch = get_regcache_arch (regcache);
678 CORE_ADDR addr;
679 size_t size;
680 PTRACE_TYPE_RET *buf;
681 int pid, i;
683 if (ia64_cannot_fetch_register (gdbarch, regnum))
685 regcache_raw_supply (regcache, regnum, NULL);
686 return;
689 /* Cater for systems like GNU/Linux, that implement threads as
690 separate processes. */
691 pid = ptid_get_lwp (inferior_ptid);
692 if (pid == 0)
693 pid = ptid_get_pid (inferior_ptid);
695 /* This isn't really an address, but ptrace thinks of it as one. */
696 addr = ia64_register_addr (gdbarch, regnum);
697 size = register_size (gdbarch, regnum);
699 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
700 buf = alloca (size);
702 /* Read the register contents from the inferior a chunk at a time. */
703 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
705 errno = 0;
706 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
707 if (errno != 0)
708 error (_("Couldn't read register %s (#%d): %s."),
709 gdbarch_register_name (gdbarch, regnum),
710 regnum, safe_strerror (errno));
712 addr += sizeof (PTRACE_TYPE_RET);
714 regcache_raw_supply (regcache, regnum, buf);
717 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
718 for all registers. */
720 static void
721 ia64_linux_fetch_registers (struct target_ops *ops,
722 struct regcache *regcache, int regnum)
724 if (regnum == -1)
725 for (regnum = 0;
726 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
727 regnum++)
728 ia64_linux_fetch_register (regcache, regnum);
729 else
730 ia64_linux_fetch_register (regcache, regnum);
733 /* Store register REGNUM into the inferior. */
735 static void
736 ia64_linux_store_register (const struct regcache *regcache, int regnum)
738 struct gdbarch *gdbarch = get_regcache_arch (regcache);
739 CORE_ADDR addr;
740 size_t size;
741 PTRACE_TYPE_RET *buf;
742 int pid, i;
744 if (ia64_cannot_store_register (gdbarch, regnum))
745 return;
747 /* Cater for systems like GNU/Linux, that implement threads as
748 separate processes. */
749 pid = ptid_get_lwp (inferior_ptid);
750 if (pid == 0)
751 pid = ptid_get_pid (inferior_ptid);
753 /* This isn't really an address, but ptrace thinks of it as one. */
754 addr = ia64_register_addr (gdbarch, regnum);
755 size = register_size (gdbarch, regnum);
757 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
758 buf = alloca (size);
760 /* Write the register contents into the inferior a chunk at a time. */
761 regcache_raw_collect (regcache, regnum, buf);
762 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
764 errno = 0;
765 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
766 if (errno != 0)
767 error (_("Couldn't write register %s (#%d): %s."),
768 gdbarch_register_name (gdbarch, regnum),
769 regnum, safe_strerror (errno));
771 addr += sizeof (PTRACE_TYPE_RET);
775 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
776 this for all registers. */
778 static void
779 ia64_linux_store_registers (struct target_ops *ops,
780 struct regcache *regcache, int regnum)
782 if (regnum == -1)
783 for (regnum = 0;
784 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
785 regnum++)
786 ia64_linux_store_register (regcache, regnum);
787 else
788 ia64_linux_store_register (regcache, regnum);
792 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
793 const char *, gdb_byte *, const gdb_byte *,
794 ULONGEST, LONGEST);
796 static LONGEST
797 ia64_linux_xfer_partial (struct target_ops *ops,
798 enum target_object object,
799 const char *annex,
800 gdb_byte *readbuf, const gdb_byte *writebuf,
801 ULONGEST offset, LONGEST len)
803 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
804 return syscall (__NR_getunwind, readbuf, len);
806 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
807 offset, len);
810 void _initialize_ia64_linux_nat (void);
812 void
813 _initialize_ia64_linux_nat (void)
815 struct target_ops *t;
817 /* Fill in the generic GNU/Linux methods. */
818 t = linux_target ();
820 /* Override the default fetch/store register routines. */
821 t->to_fetch_registers = ia64_linux_fetch_registers;
822 t->to_store_registers = ia64_linux_store_registers;
824 /* Override the default to_xfer_partial. */
825 super_xfer_partial = t->to_xfer_partial;
826 t->to_xfer_partial = ia64_linux_xfer_partial;
828 /* Override watchpoint routines. */
830 /* The IA-64 architecture can step over a watch point (without triggering
831 it again) if the "dd" (data debug fault disable) bit in the processor
832 status word is set.
834 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
835 code there has determined that a hardware watchpoint has indeed
836 been hit. The CPU will then be able to execute one instruction
837 without triggering a watchpoint. */
839 t->to_have_steppable_watchpoint = 1;
840 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
841 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
842 t->to_stopped_data_address = ia64_linux_stopped_data_address;
843 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
844 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
846 /* Register the target. */
847 linux_nat_add_target (t);
848 linux_nat_set_new_thread (t, ia64_linux_new_thread);