Automatic date update in version.in
[binutils-gdb.git] / gdb / value.h
blob3921d5df8fb3f73c6d5b3e29002b8d252aa4e25b
1 /* Definitions for values of C expressions, for GDB.
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
23 #include "frame.h"
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
59 - Any other similar scenario.
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
85 extern bool overload_resolution;
87 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
89 struct range
91 /* Lowest offset in the range. */
92 LONGEST offset;
94 /* Length of the range. */
95 ULONGEST length;
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
102 bool operator< (const range &other) const
104 return offset < other.offset;
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
110 return offset == other.offset && length == other.length;
114 /* A policy class to interface gdb::ref_ptr with struct value. */
116 struct value_ref_policy
118 static void incref (struct value *ptr);
119 static void decref (struct value *ptr);
122 /* A gdb:;ref_ptr pointer to a struct value. */
124 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
126 /* Note that the fields in this structure are arranged to save a bit
127 of memory. */
129 struct value
131 private:
133 /* Values can only be created via "static constructors". */
134 explicit value (struct type *type_)
135 : m_modifiable (true),
136 m_lazy (true),
137 m_initialized (true),
138 m_stack (false),
139 m_is_zero (false),
140 m_in_history (false),
141 m_type (type_),
142 m_enclosing_type (type_)
146 /* Values can only be destroyed via the reference-counting
147 mechanism. */
148 ~value ();
150 DISABLE_COPY_AND_ASSIGN (value);
152 public:
154 /* Allocate a lazy value for type TYPE. Its actual content is
155 "lazily" allocated too: the content field of the return value is
156 NULL; it will be allocated when it is fetched from the target. */
157 static struct value *allocate_lazy (struct type *type);
159 /* Allocate a value and its contents for type TYPE. */
160 static struct value *allocate (struct type *type);
162 /* Allocate a lazy value representing register REGNUM in the frame previous
163 to NEXT_FRAME. If TYPE is non-nullptr, use it as the value type.
164 Otherwise, use `register_type` to obtain the type. */
165 static struct value *allocate_register_lazy (frame_info_ptr next_frame,
166 int regnum, type *type = nullptr);
168 /* Same as `allocate_register_lazy`, but make the value non-lazy.
170 The caller is responsible for filling the value's contents. */
171 static struct value *allocate_register (frame_info_ptr next_frame,
172 int regnum, type *type = nullptr);
174 /* Create a computed lvalue, with type TYPE, function pointers
175 FUNCS, and closure CLOSURE. */
176 static struct value *allocate_computed (struct type *type,
177 const struct lval_funcs *funcs,
178 void *closure);
180 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
181 static struct value *allocate_optimized_out (struct type *type);
183 /* Create a value of type TYPE that is zero, and return it. */
184 static struct value *zero (struct type *type, enum lval_type lv);
186 /* Return a copy of the value. It contains the same contents, for
187 the same memory address, but it's a different block of
188 storage. */
189 struct value *copy () const;
191 /* Type of the value. */
192 struct type *type () const
193 { return m_type; }
195 /* This is being used to change the type of an existing value, that
196 code should instead be creating a new value with the changed type
197 (but possibly shared content). */
198 void deprecated_set_type (struct type *type)
199 { m_type = type; }
201 /* Return the gdbarch associated with the value. */
202 struct gdbarch *arch () const;
204 /* Only used for bitfields; number of bits contained in them. */
205 LONGEST bitsize () const
206 { return m_bitsize; }
208 void set_bitsize (LONGEST bit)
209 { m_bitsize = bit; }
211 /* Only used for bitfields; position of start of field. For
212 little-endian targets, it is the position of the LSB. For
213 big-endian targets, it is the position of the MSB. */
214 LONGEST bitpos () const
215 { return m_bitpos; }
217 void set_bitpos (LONGEST bit)
218 { m_bitpos = bit; }
220 /* Only used for bitfields; the containing value. This allows a
221 single read from the target when displaying multiple
222 bitfields. */
223 value *parent () const
224 { return m_parent.get (); }
226 void set_parent (struct value *parent)
227 { m_parent = value_ref_ptr::new_reference (parent); }
229 /* Describes offset of a value within lval of a structure in bytes.
230 If lval == lval_memory, this is an offset to the address. If
231 lval == lval_register, this is a further offset from
232 location.address within the registers structure. Note also the
233 member embedded_offset below. */
234 LONGEST offset () const
235 { return m_offset; }
237 void set_offset (LONGEST offset)
238 { m_offset = offset; }
240 /* The comment from "struct value" reads: ``Is it modifiable? Only
241 relevant if lval != not_lval.''. Shouldn't the value instead be
242 not_lval and be done with it? */
243 bool deprecated_modifiable () const
244 { return m_modifiable; }
246 /* Set or clear the modifiable flag. */
247 void set_modifiable (bool val)
248 { m_modifiable = val; }
250 LONGEST pointed_to_offset () const
251 { return m_pointed_to_offset; }
253 void set_pointed_to_offset (LONGEST val)
254 { m_pointed_to_offset = val; }
256 LONGEST embedded_offset () const
257 { return m_embedded_offset; }
259 void set_embedded_offset (LONGEST val)
260 { m_embedded_offset = val; }
262 /* If false, contents of this value are in the contents field. If
263 true, contents are in inferior. If the lval field is lval_memory,
264 the contents are in inferior memory at location.address plus offset.
265 The lval field may also be lval_register.
267 WARNING: This field is used by the code which handles watchpoints
268 (see breakpoint.c) to decide whether a particular value can be
269 watched by hardware watchpoints. If the lazy flag is set for some
270 member of a value chain, it is assumed that this member of the
271 chain doesn't need to be watched as part of watching the value
272 itself. This is how GDB avoids watching the entire struct or array
273 when the user wants to watch a single struct member or array
274 element. If you ever change the way lazy flag is set and reset, be
275 sure to consider this use as well! */
277 bool lazy () const
278 { return m_lazy; }
280 void set_lazy (bool val)
281 { m_lazy = val; }
283 /* If a value represents a C++ object, then the `type' field gives the
284 object's compile-time type. If the object actually belongs to some
285 class derived from `type', perhaps with other base classes and
286 additional members, then `type' is just a subobject of the real
287 thing, and the full object is probably larger than `type' would
288 suggest.
290 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
291 actually determine the object's run-time type by looking at the
292 run-time type information in the vtable. When this information is
293 available, we may elect to read in the entire object, for several
294 reasons:
296 - When printing the value, the user would probably rather see the
297 full object, not just the limited portion apparent from the
298 compile-time type.
300 - If `type' has virtual base classes, then even printing `type'
301 alone may require reaching outside the `type' portion of the
302 object to wherever the virtual base class has been stored.
304 When we store the entire object, `enclosing_type' is the run-time
305 type -- the complete object -- and `embedded_offset' is the offset
306 of `type' within that larger type, in bytes. The contents()
307 method takes `embedded_offset' into account, so most GDB code
308 continues to see the `type' portion of the value, just as the
309 inferior would.
311 If `type' is a pointer to an object, then `enclosing_type' is a
312 pointer to the object's run-time type, and `pointed_to_offset' is
313 the offset in bytes from the full object to the pointed-to object
314 -- that is, the value `embedded_offset' would have if we followed
315 the pointer and fetched the complete object. (I don't really see
316 the point. Why not just determine the run-time type when you
317 indirect, and avoid the special case? The contents don't matter
318 until you indirect anyway.)
320 If we're not doing anything fancy, `enclosing_type' is equal to
321 `type', and `embedded_offset' is zero, so everything works
322 normally. */
324 struct type *enclosing_type () const
325 { return m_enclosing_type; }
327 void set_enclosing_type (struct type *new_type);
329 bool stack () const
330 { return m_stack; }
332 void set_stack (bool val)
333 { m_stack = val; }
335 /* If this value is lval_computed, return its lval_funcs
336 structure. */
337 const struct lval_funcs *computed_funcs () const;
339 /* If this value is lval_computed, return its closure. The meaning
340 of the returned value depends on the functions this value
341 uses. */
342 void *computed_closure () const;
344 enum lval_type lval () const
345 { return m_lval; }
347 /* Set the 'lval' of this value. */
348 void set_lval (lval_type val)
349 { m_lval = val; }
351 /* Set or return field indicating whether a variable is initialized or
352 not, based on debugging information supplied by the compiler.
353 true = initialized; false = uninitialized. */
354 bool initialized () const
355 { return m_initialized; }
357 void set_initialized (bool value)
358 { m_initialized = value; }
360 /* If lval == lval_memory, return the address in the inferior. If
361 lval == lval_register, return the byte offset into the registers
362 structure. Otherwise, return 0. The returned address
363 includes the offset, if any. */
364 CORE_ADDR address () const;
366 /* Like address, except the result does not include value's
367 offset. */
368 CORE_ADDR raw_address () const;
370 /* Set the address of a value. */
371 void set_address (CORE_ADDR);
373 struct internalvar **deprecated_internalvar_hack ()
374 { return &m_location.internalvar; }
376 /* Return this value's next frame id.
378 The value must be of lval == lval_register. */
379 frame_id next_frame_id ()
381 gdb_assert (m_lval == lval_register);
383 return m_location.reg.next_frame_id;
386 /* Return this value's register number.
388 The value must be of lval == lval_register. */
389 int regnum ()
391 gdb_assert (m_lval == lval_register);
393 return m_location.reg.regnum;
397 /* contents() and contents_raw() both return the address of the gdb
398 buffer used to hold a copy of the contents of the lval.
399 contents() is used when the contents of the buffer are needed --
400 it uses fetch_lazy() to load the buffer from the process being
401 debugged if it hasn't already been loaded (contents_writeable()
402 is used when a writeable but fetched buffer is required)..
403 contents_raw() is used when data is being stored into the buffer,
404 or when it is certain that the contents of the buffer are valid.
406 Note: The contents pointer is adjusted by the offset required to
407 get to the real subobject, if the value happens to represent
408 something embedded in a larger run-time object. */
409 gdb::array_view<gdb_byte> contents_raw ();
411 /* Actual contents of the value. For use of this value; setting it
412 uses the stuff above. Not valid if lazy is nonzero. Target
413 byte-order. We force it to be aligned properly for any possible
414 value. Note that a value therefore extends beyond what is
415 declared here. */
416 gdb::array_view<const gdb_byte> contents ();
418 /* The ALL variants of the above two methods do not adjust the
419 returned pointer by the embedded_offset value. */
420 gdb::array_view<const gdb_byte> contents_all ();
421 gdb::array_view<gdb_byte> contents_all_raw ();
423 gdb::array_view<gdb_byte> contents_writeable ();
425 /* Like contents_all, but does not require that the returned bits be
426 valid. This should only be used in situations where you plan to
427 check the validity manually. */
428 gdb::array_view<const gdb_byte> contents_for_printing ();
430 /* Like contents_for_printing, but accepts a constant value pointer.
431 Unlike contents_for_printing however, the pointed value must
432 _not_ be lazy. */
433 gdb::array_view<const gdb_byte> contents_for_printing () const;
435 /* Load the actual content of a lazy value. Fetch the data from the
436 user's process and clear the lazy flag to indicate that the data in
437 the buffer is valid.
439 If the value is zero-length, we avoid calling read_memory, which
440 would abort. We mark the value as fetched anyway -- all 0 bytes of
441 it. */
442 void fetch_lazy ();
444 /* Compare LENGTH bytes of this value's contents starting at OFFSET1
445 with LENGTH bytes of VAL2's contents starting at OFFSET2.
447 Note that "contents" refers to the whole value's contents
448 (value_contents_all), without any embedded offset adjustment. For
449 example, to compare a complete object value with itself, including
450 its enclosing type chunk, you'd do:
452 int len = check_typedef (val->enclosing_type ())->length ();
453 val->contents_eq (0, val, 0, len);
455 Returns true iff the set of available/valid contents match.
457 Optimized-out contents are equal to optimized-out contents, and are
458 not equal to non-optimized-out contents.
460 Unavailable contents are equal to unavailable contents, and are not
461 equal to non-unavailable contents.
463 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
464 represent different available/valid bytes, in a value with length
467 offset: 0 4 8 12 16
468 contents: xxxxVVVVxxxxVVZZ
470 then:
472 val->contents_eq(0, val, 8, 6) => true
473 val->contents_eq(0, val, 4, 4) => false
474 val->contents_eq(0, val, 8, 8) => false
475 val->contents_eq(4, val, 12, 2) => true
476 val->contents_eq(4, val, 12, 4) => true
477 val->contents_eq(3, val, 4, 4) => true
479 If 'x's represent an unavailable byte, 'o' represents an optimized
480 out byte, in a value with length 8:
482 offset: 0 4 8
483 contents: xxxxoooo
485 then:
487 val->contents_eq(0, val, 2, 2) => true
488 val->contents_eq(4, val, 6, 2) => true
489 val->contents_eq(0, val, 4, 4) => true
491 We only know whether a value chunk is unavailable or optimized out
492 if we've tried to read it. As this routine is used by printing
493 routines, which may be printing values in the value history, long
494 after the inferior is gone, it works with const values. Therefore,
495 this routine must not be called with lazy values. */
497 bool contents_eq (LONGEST offset1, const struct value *val2, LONGEST offset2,
498 LONGEST length) const;
500 /* An overload of contents_eq that compares the entirety of both
501 values. */
502 bool contents_eq (const struct value *val2) const;
504 /* Given a value, determine whether the bits starting at OFFSET and
505 extending for LENGTH bits are a synthetic pointer. */
507 bool bits_synthetic_pointer (LONGEST offset, LONGEST length) const;
509 /* Increase this value's reference count. */
510 void incref ()
511 { ++m_reference_count; }
513 /* Decrease this value's reference count. When the reference count
514 drops to 0, it will be freed. */
515 void decref ();
517 /* Given a value, determine whether the contents bytes starting at
518 OFFSET and extending for LENGTH bytes are available. This returns
519 true if all bytes in the given range are available, false if any
520 byte is unavailable. */
521 bool bytes_available (LONGEST offset, ULONGEST length) const;
523 /* Given a value, determine whether the contents bits starting at
524 OFFSET and extending for LENGTH bits are available. This returns
525 true if all bits in the given range are available, false if any
526 bit is unavailable. */
527 bool bits_available (LONGEST offset, ULONGEST length) const;
529 /* Like bytes_available, but return false if any byte in the
530 whole object is unavailable. */
531 bool entirely_available ();
533 /* Like entirely_available, but return false if any byte in the
534 whole object is available. */
535 bool entirely_unavailable ()
536 { return entirely_covered_by_range_vector (m_unavailable); }
538 /* Mark this value's content bytes starting at OFFSET and extending
539 for LENGTH bytes as unavailable. */
540 void mark_bytes_unavailable (LONGEST offset, ULONGEST length);
542 /* Mark this value's content bits starting at OFFSET and extending
543 for LENGTH bits as unavailable. */
544 void mark_bits_unavailable (LONGEST offset, ULONGEST length);
546 /* If true, this is the value of a variable which does not actually
547 exist in the program, at least partially. If the value is lazy,
548 this may fetch it now. */
549 bool optimized_out ();
551 /* Given a value, return true if any of the contents bits starting at
552 OFFSET and extending for LENGTH bits is optimized out, false
553 otherwise. */
554 bool bits_any_optimized_out (int bit_offset, int bit_length) const;
556 /* Like optimized_out, but return true iff the whole value is
557 optimized out. */
558 bool entirely_optimized_out ()
560 return entirely_covered_by_range_vector (m_optimized_out);
563 /* Mark this value's content bytes starting at OFFSET and extending
564 for LENGTH bytes as optimized out. */
565 void mark_bytes_optimized_out (int offset, int length);
567 /* Mark this value's content bits starting at OFFSET and extending
568 for LENGTH bits as optimized out. */
569 void mark_bits_optimized_out (LONGEST offset, LONGEST length);
571 /* Return a version of this that is non-lvalue. */
572 struct value *non_lval ();
574 /* Write contents of this value at ADDR and set its lval type to be
575 LVAL_MEMORY. */
576 void force_lval (CORE_ADDR);
578 /* Set this values's location as appropriate for a component of
579 WHOLE --- regardless of what kind of lvalue WHOLE is. */
580 void set_component_location (const struct value *whole);
582 /* Build a value wrapping and representing WORKER. The value takes
583 ownership of the xmethod_worker object. */
584 static struct value *from_xmethod (xmethod_worker_up &&worker);
586 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
587 struct type *result_type_of_xmethod (gdb::array_view<value *> argv);
589 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value
590 METHOD. */
591 struct value *call_xmethod (gdb::array_view<value *> argv);
593 /* Update this value before discarding OBJFILE. COPIED_TYPES is
594 used to prevent cycles / duplicates. */
595 void preserve (struct objfile *objfile, htab_t copied_types);
597 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object
598 at VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and
599 store the contents in DEST_VAL, zero or sign extending if the
600 type of DEST_VAL is wider than BITSIZE. VALADDR points to the
601 contents of this value. If this value's contents required to
602 extract the bitfield from are unavailable/optimized out, DEST_VAL
603 is correspondingly marked unavailable/optimized out. */
604 void unpack_bitfield (struct value *dest_val,
605 LONGEST bitpos, LONGEST bitsize,
606 const gdb_byte *valaddr, LONGEST embedded_offset)
607 const;
609 /* Copy LENGTH bytes of this value's (all) contents
610 (value_contents_all) starting at SRC_OFFSET byte, into DST
611 value's (all) contents, starting at DST_OFFSET. If unavailable
612 contents are being copied from this value, the corresponding DST
613 contents are marked unavailable accordingly. DST must not be
614 lazy. If this value is lazy, it will be fetched now.
616 It is assumed the contents of DST in the [DST_OFFSET,
617 DST_OFFSET+LENGTH) range are wholly available. */
618 void contents_copy (struct value *dst, LONGEST dst_offset,
619 LONGEST src_offset, LONGEST length);
621 /* Given a value (offset by OFFSET bytes)
622 of a struct or union type ARG_TYPE,
623 extract and return the value of one of its (non-static) fields.
624 FIELDNO says which field. */
625 struct value *primitive_field (LONGEST offset, int fieldno,
626 struct type *arg_type);
628 /* Create a new value by extracting it from this value. TYPE is the
629 type of the new value. BIT_OFFSET and BIT_LENGTH describe the
630 offset and field width of the value to extract from this value --
631 BIT_LENGTH may differ from TYPE's length in the case where this
632 value's type is packed.
634 When the value does come from a non-byte-aligned offset or field
635 width, it will be marked non_lval. */
636 struct value *from_component_bitsize (struct type *type,
637 LONGEST bit_offset,
638 LONGEST bit_length);
640 /* Record this value on the value history, and return its location
641 in the history. The value is removed from the value chain. */
642 int record_latest ();
644 private:
646 /* Type of value; either not an lval, or one of the various
647 different possible kinds of lval. */
648 enum lval_type m_lval = not_lval;
650 /* Is it modifiable? Only relevant if lval != not_lval. */
651 bool m_modifiable : 1;
653 /* If false, contents of this value are in the contents field. If
654 true, contents are in inferior. If the lval field is lval_memory,
655 the contents are in inferior memory at location.address plus offset.
656 The lval field may also be lval_register.
658 WARNING: This field is used by the code which handles watchpoints
659 (see breakpoint.c) to decide whether a particular value can be
660 watched by hardware watchpoints. If the lazy flag is set for
661 some member of a value chain, it is assumed that this member of
662 the chain doesn't need to be watched as part of watching the
663 value itself. This is how GDB avoids watching the entire struct
664 or array when the user wants to watch a single struct member or
665 array element. If you ever change the way lazy flag is set and
666 reset, be sure to consider this use as well! */
667 bool m_lazy : 1;
669 /* If value is a variable, is it initialized or not. */
670 bool m_initialized : 1;
672 /* If value is from the stack. If this is set, read_stack will be
673 used instead of read_memory to enable extra caching. */
674 bool m_stack : 1;
676 /* True if this is a zero value, created by 'value::zero'; false
677 otherwise. */
678 bool m_is_zero : 1;
680 /* True if this a value recorded in value history; false otherwise. */
681 bool m_in_history : 1;
683 /* Location of value (if lval). */
684 union
686 /* If lval == lval_memory, this is the address in the inferior */
687 CORE_ADDR address;
689 /*If lval == lval_register, the value is from a register. */
690 struct
692 /* Register number. */
693 int regnum;
695 /* Frame ID of the next physical (non-inline) frame to which a register
696 value is relative. */
697 frame_id next_frame_id;
698 } reg;
700 /* Pointer to internal variable. */
701 struct internalvar *internalvar;
703 /* Pointer to xmethod worker. */
704 struct xmethod_worker *xm_worker;
706 /* If lval == lval_computed, this is a set of function pointers
707 to use to access and describe the value, and a closure pointer
708 for them to use. */
709 struct
711 /* Functions to call. */
712 const struct lval_funcs *funcs;
714 /* Closure for those functions to use. */
715 void *closure;
716 } computed;
717 } m_location {};
719 /* Describes offset of a value within lval of a structure in target
720 addressable memory units. Note also the member embedded_offset
721 below. */
722 LONGEST m_offset = 0;
724 /* Only used for bitfields; number of bits contained in them. */
725 LONGEST m_bitsize = 0;
727 /* Only used for bitfields; position of start of field. For
728 little-endian targets, it is the position of the LSB. For
729 big-endian targets, it is the position of the MSB. */
730 LONGEST m_bitpos = 0;
732 /* The number of references to this value. When a value is created,
733 the value chain holds a reference, so REFERENCE_COUNT is 1. If
734 release_value is called, this value is removed from the chain but
735 the caller of release_value now has a reference to this value.
736 The caller must arrange for a call to value_free later. */
737 int m_reference_count = 1;
739 /* Only used for bitfields; the containing value. This allows a
740 single read from the target when displaying multiple
741 bitfields. */
742 value_ref_ptr m_parent;
744 /* Type of the value. */
745 struct type *m_type;
747 /* If a value represents a C++ object, then the `type' field gives
748 the object's compile-time type. If the object actually belongs
749 to some class derived from `type', perhaps with other base
750 classes and additional members, then `type' is just a subobject
751 of the real thing, and the full object is probably larger than
752 `type' would suggest.
754 If `type' is a dynamic class (i.e. one with a vtable), then GDB
755 can actually determine the object's run-time type by looking at
756 the run-time type information in the vtable. When this
757 information is available, we may elect to read in the entire
758 object, for several reasons:
760 - When printing the value, the user would probably rather see the
761 full object, not just the limited portion apparent from the
762 compile-time type.
764 - If `type' has virtual base classes, then even printing `type'
765 alone may require reaching outside the `type' portion of the
766 object to wherever the virtual base class has been stored.
768 When we store the entire object, `enclosing_type' is the run-time
769 type -- the complete object -- and `embedded_offset' is the
770 offset of `type' within that larger type, in target addressable memory
771 units. The contents() method takes `embedded_offset' into account,
772 so most GDB code continues to see the `type' portion of the value, just
773 as the inferior would.
775 If `type' is a pointer to an object, then `enclosing_type' is a
776 pointer to the object's run-time type, and `pointed_to_offset' is
777 the offset in target addressable memory units from the full object
778 to the pointed-to object -- that is, the value `embedded_offset' would
779 have if we followed the pointer and fetched the complete object.
780 (I don't really see the point. Why not just determine the
781 run-time type when you indirect, and avoid the special case? The
782 contents don't matter until you indirect anyway.)
784 If we're not doing anything fancy, `enclosing_type' is equal to
785 `type', and `embedded_offset' is zero, so everything works
786 normally. */
787 struct type *m_enclosing_type;
788 LONGEST m_embedded_offset = 0;
789 LONGEST m_pointed_to_offset = 0;
791 /* Actual contents of the value. Target byte-order.
793 May be nullptr if the value is lazy or is entirely optimized out.
794 Guaranteed to be non-nullptr otherwise. */
795 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
797 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
798 rather than available, since the common and default case is for a
799 value to be available. This is filled in at value read time.
800 The unavailable ranges are tracked in bits. Note that a contents
801 bit that has been optimized out doesn't really exist in the
802 program, so it can't be marked unavailable either. */
803 std::vector<range> m_unavailable;
805 /* Likewise, but for optimized out contents (a chunk of the value of
806 a variable that does not actually exist in the program). If LVAL
807 is lval_register, this is a register ($pc, $sp, etc., never a
808 program variable) that has not been saved in the frame. Not
809 saved registers and optimized-out program variables values are
810 treated pretty much the same, except not-saved registers have a
811 different string representation and related error strings. */
812 std::vector<range> m_optimized_out;
814 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
815 the array in inferior memory is greater than max_value_size. If these
816 conditions are met then, when the value is loaded from the inferior
817 GDB will only load a portion of the array into memory, and
818 limited_length will be set to indicate the length in octets that were
819 loaded from the inferior. */
820 ULONGEST m_limited_length = 0;
822 /* Allocate a value and its contents for type TYPE. If CHECK_SIZE
823 is true, then apply the usual max-value-size checks. */
824 static struct value *allocate (struct type *type, bool check_size);
826 /* Helper for fetch_lazy when the value is a bitfield. */
827 void fetch_lazy_bitfield ();
829 /* Helper for fetch_lazy when the value is in memory. */
830 void fetch_lazy_memory ();
832 /* Helper for fetch_lazy when the value is in a register. */
833 void fetch_lazy_register ();
835 /* Try to limit ourselves to only fetching the limited number of
836 elements. However, if this limited number of elements still
837 puts us over max_value_size, then we still refuse it and
838 return failure here, which will ultimately throw an error. */
839 bool set_limited_array_length ();
841 /* Allocate the contents of this value if it has not been allocated
842 yet. If CHECK_SIZE is true, then apply the usual max-value-size
843 checks. */
844 void allocate_contents (bool check_size);
846 /* Helper function for value_contents_eq. The only difference is that
847 this function is bit rather than byte based.
849 Compare LENGTH bits of this value's contents starting at OFFSET1
850 bits with LENGTH bits of VAL2's contents starting at OFFSET2
851 bits. Return true if the available bits match. */
852 bool contents_bits_eq (int offset1, const struct value *val2, int offset2,
853 int length) const;
855 void require_not_optimized_out () const;
856 void require_available () const;
858 /* Returns true if this value is entirely covered by RANGES. If the
859 value is lazy, it'll be read now. Note that RANGE is a pointer
860 to pointer because reading the value might change *RANGE. */
861 bool entirely_covered_by_range_vector (const std::vector<range> &ranges);
863 /* Copy the ranges metadata from this value that overlaps
864 [SRC_BIT_OFFSET, SRC_BIT_OFFSET+BIT_LENGTH) into DST,
865 adjusted. */
866 void ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
867 int src_bit_offset, int bit_length) const;
869 /* Copy LENGTH target addressable memory units of this value's (all)
870 contents (value_contents_all) starting at SRC_OFFSET, into DST
871 value's (all) contents, starting at DST_OFFSET. If unavailable
872 contents are being copied from this, the corresponding DST
873 contents are marked unavailable accordingly. Neither DST nor
874 this value may be lazy values.
876 It is assumed the contents of DST in the [DST_OFFSET,
877 DST_OFFSET+LENGTH) range are wholly available. */
878 void contents_copy_raw (struct value *dst, LONGEST dst_offset,
879 LONGEST src_offset, LONGEST length);
881 /* A helper for value_from_component_bitsize that copies bits from
882 this value to DEST. */
883 void contents_copy_raw_bitwise (struct value *dst, LONGEST dst_bit_offset,
884 LONGEST src_bit_offset, LONGEST bit_length);
887 inline void
888 value_ref_policy::incref (struct value *ptr)
890 ptr->incref ();
893 inline void
894 value_ref_policy::decref (struct value *ptr)
896 ptr->decref ();
899 /* Returns value_type or value_enclosing_type depending on
900 value_print_options.objectprint.
902 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
903 only for pointers and references, else it will be returned
904 for all the types (e.g. structures). This option is useful
905 to prevent retrieving enclosing type for the base classes fields.
907 REAL_TYPE_FOUND is used to inform whether the real type was found
908 (or just static type was used). The NULL may be passed if it is not
909 necessary. */
911 extern struct type *value_actual_type (struct value *value,
912 int resolve_simple_types,
913 int *real_type_found);
915 /* For lval_computed values, this structure holds functions used to
916 retrieve and set the value (or portions of the value).
918 For each function, 'V' is the 'this' pointer: an lval_funcs
919 function F may always assume that the V it receives is an
920 lval_computed value, and has F in the appropriate slot of its
921 lval_funcs structure. */
923 struct lval_funcs
925 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
926 a problem arises in obtaining VALUE's bits, this function should
927 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
928 non-optimized-out value is an internal error. */
929 void (*read) (struct value *v);
931 /* Handle an assignment TOVAL = FROMVAL by writing the value of
932 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
933 been updated. If a problem arises in doing so, this function
934 should call 'error'. If it is NULL such TOVAL assignment is an error as
935 TOVAL is not considered as an lvalue. */
936 void (*write) (struct value *toval, struct value *fromval);
938 /* Return true if any part of V is optimized out, false otherwise.
939 This will only be called for lazy values -- if the value has been
940 fetched, then the value's optimized-out bits are consulted
941 instead. */
942 bool (*is_optimized_out) (struct value *v);
944 /* If non-NULL, this is used to implement pointer indirection for
945 this value. This method may return NULL, in which case value_ind
946 will fall back to ordinary indirection. */
947 struct value *(*indirect) (struct value *value);
949 /* If non-NULL, this is used to implement reference resolving for
950 this value. This method may return NULL, in which case coerce_ref
951 will fall back to ordinary references resolving. */
952 struct value *(*coerce_ref) (const struct value *value);
954 /* If non-NULL, this is used to determine whether the indicated bits
955 of VALUE are a synthetic pointer. */
956 bool (*check_synthetic_pointer) (const struct value *value,
957 LONGEST offset, int length);
959 /* Return a duplicate of VALUE's closure, for use in a new value.
960 This may simply return the same closure, if VALUE's is
961 reference-counted or statically allocated.
963 This may be NULL, in which case VALUE's closure is re-used in the
964 new value. */
965 void *(*copy_closure) (const struct value *v);
967 /* Drop VALUE's reference to its closure. Maybe this frees the
968 closure; maybe this decrements a reference count; maybe the
969 closure is statically allocated and this does nothing.
971 This may be NULL, in which case no action is taken to free
972 VALUE's closure. */
973 void (*free_closure) (struct value *v);
976 /* Throw an error complaining that the value has been optimized
977 out. */
979 extern void error_value_optimized_out (void);
981 /* Pointer to internal variable. */
982 #define VALUE_INTERNALVAR(val) (*((val)->deprecated_internalvar_hack ()))
984 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
985 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
987 extern struct value *coerce_ref_if_computed (const struct value *arg);
989 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
990 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
991 ORIGINAL_VAL are the type and value of the original reference or
992 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
993 the address that was dereferenced.
995 Note, that VALUE is modified by this function.
997 It is a common implementation for coerce_ref and value_ind. */
999 extern struct value * readjust_indirect_value_type (struct value *value,
1000 struct type *enc_type,
1001 const struct type *original_type,
1002 struct value *original_val,
1003 CORE_ADDR original_value_address);
1005 /* Convert a REF to the object referenced. */
1007 extern struct value *coerce_ref (struct value *value);
1009 /* If ARG is an array, convert it to a pointer.
1010 If ARG is a function, convert it to a function pointer.
1012 References are dereferenced. */
1014 extern struct value *coerce_array (struct value *value);
1016 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
1017 which is (or will be copied to) VAL's contents buffer offset by
1018 BIT_OFFSET bits. Marks value contents ranges as unavailable if
1019 the corresponding memory is likewise unavailable. STACK indicates
1020 whether the memory is known to be stack memory. */
1022 extern void read_value_memory (struct value *val, LONGEST bit_offset,
1023 bool stack, CORE_ADDR memaddr,
1024 gdb_byte *buffer, size_t length);
1026 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
1027 into each element of a new vector value with VECTOR_TYPE. */
1029 struct value *value_vector_widen (struct value *scalar_value,
1030 struct type *vector_type);
1034 #include "symtab.h"
1035 #include "gdbtypes.h"
1036 #include "expression.h"
1038 class frame_info_ptr;
1039 struct fn_field;
1041 extern int print_address_demangle (const struct value_print_options *,
1042 struct gdbarch *, CORE_ADDR,
1043 struct ui_file *, int);
1045 /* Returns true if VAL is of floating-point type. In addition,
1046 throws an error if the value is an invalid floating-point value. */
1047 extern bool is_floating_value (struct value *val);
1049 extern LONGEST value_as_long (struct value *val);
1050 extern CORE_ADDR value_as_address (struct value *val);
1052 /* Extract the value from VAL as a MPZ. This coerces arrays and
1053 handles various integer-like types as well. */
1055 extern gdb_mpz value_as_mpz (struct value *val);
1057 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
1058 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
1060 extern LONGEST unpack_field_as_long (struct type *type,
1061 const gdb_byte *valaddr,
1062 int fieldno);
1064 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
1065 VALADDR, and store the result in *RESULT.
1066 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
1067 BITSIZE is zero, then the length is taken from FIELD_TYPE.
1069 Extracting bits depends on endianness of the machine. Compute the
1070 number of least significant bits to discard. For big endian machines,
1071 we compute the total number of bits in the anonymous object, subtract
1072 off the bit count from the MSB of the object to the MSB of the
1073 bitfield, then the size of the bitfield, which leaves the LSB discard
1074 count. For little endian machines, the discard count is simply the
1075 number of bits from the LSB of the anonymous object to the LSB of the
1076 bitfield.
1078 If the field is signed, we also do sign extension. */
1080 extern LONGEST unpack_bits_as_long (struct type *field_type,
1081 const gdb_byte *valaddr,
1082 LONGEST bitpos, LONGEST bitsize);
1084 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
1085 LONGEST embedded_offset, int fieldno,
1086 const struct value *val, LONGEST *result);
1088 extern struct value *value_field_bitfield (struct type *type, int fieldno,
1089 const gdb_byte *valaddr,
1090 LONGEST embedded_offset,
1091 const struct value *val);
1093 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
1095 extern struct value *value_from_longest (struct type *type, LONGEST num);
1096 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
1097 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
1098 extern struct value *value_from_host_double (struct type *type, double d);
1099 extern struct value *value_from_history_ref (const char *, const char **);
1100 extern struct value *value_from_component (struct value *, struct type *,
1101 LONGEST);
1103 /* Convert the value V into a newly allocated value. */
1104 extern struct value *value_from_mpz (struct type *type, const gdb_mpz &v);
1106 extern struct value *value_at (struct type *type, CORE_ADDR addr);
1108 /* Return a new value given a type and an address. The new value is
1109 lazy. If FRAME is given, it is used when resolving dynamic
1110 properties. */
1112 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr,
1113 frame_info_ptr frame = nullptr);
1115 /* Like value_at, but ensures that the result is marked not_lval.
1116 This can be important if the memory is "volatile". */
1117 extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
1119 extern struct value *value_from_contents_and_address_unresolved
1120 (struct type *, const gdb_byte *, CORE_ADDR);
1121 extern struct value *value_from_contents_and_address
1122 (struct type *, const gdb_byte *, CORE_ADDR,
1123 frame_info_ptr frame = nullptr);
1124 extern struct value *value_from_contents (struct type *, const gdb_byte *);
1126 extern value *default_value_from_register (gdbarch *gdbarch, type *type,
1127 int regnum,
1128 const frame_info_ptr &this_frame);
1130 extern struct value *value_from_register (struct type *type, int regnum,
1131 frame_info_ptr frame);
1133 extern CORE_ADDR address_from_register (int regnum,
1134 frame_info_ptr frame);
1136 extern struct value *value_of_variable (struct symbol *var,
1137 const struct block *b);
1139 extern struct value *address_of_variable (struct symbol *var,
1140 const struct block *b);
1142 /* Return a value with the contents of register REGNUM as found in the frame
1143 previous to NEXT_FRAME. */
1145 extern value *value_of_register (int regnum, frame_info_ptr next_frame);
1147 /* Same as the above, but the value is not fetched. */
1149 extern value *value_of_register_lazy (frame_info_ptr next_frame, int regnum);
1151 /* Return the symbol's reading requirement. */
1153 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
1155 /* Return true if the symbol needs a frame. This is a wrapper for
1156 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
1158 extern int symbol_read_needs_frame (struct symbol *);
1160 extern struct value *read_var_value (struct symbol *var,
1161 const struct block *var_block,
1162 frame_info_ptr frame);
1164 extern struct value *allocate_repeat_value (struct type *type, int count);
1166 extern struct value *value_mark (void);
1168 extern void value_free_to_mark (const struct value *mark);
1170 /* A helper class that uses value_mark at construction time and calls
1171 value_free_to_mark in the destructor. This is used to clear out
1172 temporary values created during the lifetime of this object. */
1173 class scoped_value_mark
1175 public:
1177 scoped_value_mark ()
1178 : m_value (value_mark ())
1182 ~scoped_value_mark ()
1184 free_to_mark ();
1187 scoped_value_mark (scoped_value_mark &&other) = default;
1189 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1191 /* Free the values currently on the value stack. */
1192 void free_to_mark ()
1194 if (!m_freed)
1196 value_free_to_mark (m_value);
1197 m_freed = true;
1201 private:
1203 const struct value *m_value;
1204 bool m_freed = false;
1207 /* Create not_lval value representing a NULL-terminated C string. The
1208 resulting value has type TYPE_CODE_ARRAY. The string passed in should
1209 not include embedded null characters.
1211 PTR points to the string data; COUNT is number of characters (does
1212 not include the NULL terminator) pointed to by PTR, each character is of
1213 type (and size of) CHAR_TYPE. */
1215 extern struct value *value_cstring (const gdb_byte *ptr, ssize_t count,
1216 struct type *char_type);
1218 /* Specialisation of value_cstring above. In this case PTR points to
1219 single byte characters. CHAR_TYPE must have a length of 1. */
1220 inline struct value *value_cstring (const char *ptr, ssize_t count,
1221 struct type *char_type)
1223 gdb_assert (char_type->length () == 1);
1224 return value_cstring ((const gdb_byte *) ptr, count, char_type);
1227 /* Create a not_lval value with type TYPE_CODE_STRING, the resulting value
1228 has type TYPE_CODE_STRING.
1230 PTR points to the string data; COUNT is number of characters pointed to
1231 by PTR, each character has the type (and size of) CHAR_TYPE.
1233 Note that string types are like array of char types with a lower bound
1234 defined by the language (usually zero or one). Also the string may
1235 contain embedded null characters. */
1237 extern struct value *value_string (const gdb_byte *ptr, ssize_t count,
1238 struct type *char_type);
1240 /* Specialisation of value_string above. In this case PTR points to
1241 single byte characters. CHAR_TYPE must have a length of 1. */
1242 inline struct value *value_string (const char *ptr, ssize_t count,
1243 struct type *char_type)
1245 gdb_assert (char_type->length () == 1);
1246 return value_string ((const gdb_byte *) ptr, count, char_type);
1249 extern struct value *value_array (int lowbound,
1250 gdb::array_view<struct value *> elemvec);
1252 extern struct value *value_concat (struct value *arg1, struct value *arg2);
1254 extern struct value *value_binop (struct value *arg1, struct value *arg2,
1255 enum exp_opcode op);
1257 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
1259 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
1261 /* Return true if VAL does not live in target memory, but should in order
1262 to operate on it. Otherwise return false. */
1264 extern bool value_must_coerce_to_target (struct value *arg1);
1266 extern struct value *value_coerce_to_target (struct value *arg1);
1268 extern struct value *value_coerce_array (struct value *arg1);
1270 extern struct value *value_coerce_function (struct value *arg1);
1272 extern struct value *value_ind (struct value *arg1);
1274 extern struct value *value_addr (struct value *arg1);
1276 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
1278 extern struct value *value_assign (struct value *toval,
1279 struct value *fromval);
1281 /* The unary + operation. */
1282 extern struct value *value_pos (struct value *arg1);
1284 /* The unary - operation. */
1285 extern struct value *value_neg (struct value *arg1);
1287 /* The unary ~ operation -- but note that it also implements the GCC
1288 extension, where ~ of a complex number is the complex
1289 conjugate. */
1290 extern struct value *value_complement (struct value *arg1);
1292 extern struct value *value_struct_elt (struct value **argp,
1293 std::optional<gdb::array_view <value *>> args,
1294 const char *name, int *static_memfuncp,
1295 const char *err);
1297 extern struct value *value_struct_elt_bitpos (struct value **argp,
1298 int bitpos,
1299 struct type *field_type,
1300 const char *err);
1302 extern struct value *value_aggregate_elt (struct type *curtype,
1303 const char *name,
1304 struct type *expect_type,
1305 int want_address,
1306 enum noside noside);
1308 extern struct value *value_static_field (struct type *type, int fieldno);
1310 enum oload_search_type { NON_METHOD, METHOD, BOTH };
1312 extern int find_overload_match (gdb::array_view<value *> args,
1313 const char *name,
1314 enum oload_search_type method,
1315 struct value **objp, struct symbol *fsym,
1316 struct value **valp, struct symbol **symp,
1317 int *staticp, const int no_adl,
1318 enum noside noside);
1320 extern struct value *value_field (struct value *arg1, int fieldno);
1322 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
1323 int *);
1325 extern struct value *value_full_object (struct value *, struct type *, int,
1326 int, int);
1328 extern struct value *value_cast_pointers (struct type *, struct value *, int);
1330 extern struct value *value_cast (struct type *type, struct value *arg2);
1332 extern struct value *value_reinterpret_cast (struct type *type,
1333 struct value *arg);
1335 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1337 extern struct value *value_one (struct type *type);
1339 extern struct value *value_repeat (struct value *arg1, int count);
1341 extern struct value *value_subscript (struct value *array, LONGEST index);
1343 /* Assuming VAL is array-like (see type::is_array_like), return an
1344 array form of VAL. */
1345 extern struct value *value_to_array (struct value *val);
1347 extern struct value *value_bitstring_subscript (struct type *type,
1348 struct value *bitstring,
1349 LONGEST index);
1351 extern struct value *register_value_being_returned (struct type *valtype,
1352 struct regcache *retbuf);
1354 extern int value_bit_index (struct type *type, const gdb_byte *addr,
1355 int index);
1357 extern enum return_value_convention
1358 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1359 struct type *value_type);
1361 extern int using_struct_return (struct gdbarch *gdbarch,
1362 struct value *function,
1363 struct type *value_type);
1365 extern value *evaluate_var_value (enum noside noside, const block *blk,
1366 symbol *var);
1368 extern value *evaluate_var_msym_value (enum noside noside,
1369 struct objfile *objfile,
1370 minimal_symbol *msymbol);
1372 namespace expr { class operation; };
1373 extern void fetch_subexp_value (struct expression *exp,
1374 expr::operation *op,
1375 struct value **valp, struct value **resultp,
1376 std::vector<value_ref_ptr> *val_chain,
1377 bool preserve_errors);
1379 extern struct value *parse_and_eval (const char *exp, parser_flags flags = 0);
1381 extern struct value *parse_to_comma_and_eval (const char **expp);
1383 extern struct type *parse_and_eval_type (const char *p, int length);
1385 extern CORE_ADDR parse_and_eval_address (const char *exp);
1387 extern LONGEST parse_and_eval_long (const char *exp);
1389 extern void unop_promote (const struct language_defn *language,
1390 struct gdbarch *gdbarch,
1391 struct value **arg1);
1393 extern void binop_promote (const struct language_defn *language,
1394 struct gdbarch *gdbarch,
1395 struct value **arg1, struct value **arg2);
1397 extern struct value *access_value_history (int num);
1399 /* Return the number of items in the value history. */
1401 extern ULONGEST value_history_count ();
1403 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1404 struct internalvar *var);
1406 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1408 extern void set_internalvar (struct internalvar *var, struct value *val);
1410 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1412 extern void set_internalvar_string (struct internalvar *var,
1413 const char *string);
1415 extern void clear_internalvar (struct internalvar *var);
1417 extern void set_internalvar_component (struct internalvar *var,
1418 LONGEST offset,
1419 LONGEST bitpos, LONGEST bitsize,
1420 struct value *newvalue);
1422 extern struct internalvar *lookup_only_internalvar (const char *name);
1424 extern struct internalvar *create_internalvar (const char *name);
1426 extern void complete_internalvar (completion_tracker &tracker,
1427 const char *name);
1429 /* An internalvar can be dynamically computed by supplying a vector of
1430 function pointers to perform various operations. */
1432 struct internalvar_funcs
1434 /* Compute the value of the variable. The DATA argument passed to
1435 the function is the same argument that was passed to
1436 `create_internalvar_type_lazy'. */
1438 struct value *(*make_value) (struct gdbarch *arch,
1439 struct internalvar *var,
1440 void *data);
1442 /* Update the agent expression EXPR with bytecode to compute the
1443 value. VALUE is the agent value we are updating. The DATA
1444 argument passed to this function is the same argument that was
1445 passed to `create_internalvar_type_lazy'. If this pointer is
1446 NULL, then the internalvar cannot be compiled to an agent
1447 expression. */
1449 void (*compile_to_ax) (struct internalvar *var,
1450 struct agent_expr *expr,
1451 struct axs_value *value,
1452 void *data);
1455 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1456 const struct internalvar_funcs *funcs,
1457 void *data);
1459 /* Compile an internal variable to an agent expression. VAR is the
1460 variable to compile; EXPR and VALUE are the agent expression we are
1461 updating. This will return 0 if there is no known way to compile
1462 VAR, and 1 if VAR was successfully compiled. It may also throw an
1463 exception on error. */
1465 extern int compile_internalvar_to_ax (struct internalvar *var,
1466 struct agent_expr *expr,
1467 struct axs_value *value);
1469 extern struct internalvar *lookup_internalvar (const char *name);
1471 extern int value_equal (struct value *arg1, struct value *arg2);
1473 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1475 extern int value_less (struct value *arg1, struct value *arg2);
1477 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1478 extern bool value_logical_not (struct value *arg1);
1480 /* Returns true if the value VAL represents a true value. */
1481 static inline bool
1482 value_true (struct value *val)
1484 return !value_logical_not (val);
1487 /* C++ */
1489 extern struct value *value_of_this (const struct language_defn *lang);
1491 extern struct value *value_of_this_silent (const struct language_defn *lang);
1493 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1494 enum exp_opcode op,
1495 enum exp_opcode otherop,
1496 enum noside noside);
1498 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1499 enum noside noside);
1501 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1502 int j, struct type *type, LONGEST offset);
1504 extern int binop_types_user_defined_p (enum exp_opcode op,
1505 struct type *type1,
1506 struct type *type2);
1508 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1509 struct value *arg2);
1511 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1513 extern int destructor_name_p (const char *name, struct type *type);
1515 extern value_ref_ptr release_value (struct value *val);
1517 extern void modify_field (struct type *type, gdb_byte *addr,
1518 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1520 extern void type_print (struct type *type, const char *varstring,
1521 struct ui_file *stream, int show);
1523 extern std::string type_to_string (struct type *type);
1525 extern gdb_byte *baseclass_addr (struct type *type, int index,
1526 gdb_byte *valaddr,
1527 struct value **valuep, int *errp);
1529 extern void print_longest (struct ui_file *stream, int format,
1530 int use_local, LONGEST val);
1532 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1533 struct ui_file *stream);
1535 extern void value_print (struct value *val, struct ui_file *stream,
1536 const struct value_print_options *options);
1538 /* Release values from the value chain and return them. Values
1539 created after MARK are released. If MARK is nullptr, or if MARK is
1540 not found on the value chain, then all values are released. Values
1541 are returned in reverse order of creation; that is, newest
1542 first. */
1544 extern std::vector<value_ref_ptr> value_release_to_mark
1545 (const struct value *mark);
1547 extern void common_val_print (struct value *val,
1548 struct ui_file *stream, int recurse,
1549 const struct value_print_options *options,
1550 const struct language_defn *language);
1552 extern int val_print_string (struct type *elttype, const char *encoding,
1553 CORE_ADDR addr, int len,
1554 struct ui_file *stream,
1555 const struct value_print_options *options);
1557 extern void print_variable_and_value (const char *name,
1558 struct symbol *var,
1559 frame_info_ptr frame,
1560 struct ui_file *stream,
1561 int indent);
1563 extern void typedef_print (struct type *type, struct symbol *news,
1564 struct ui_file *stream);
1566 extern const char *internalvar_name (const struct internalvar *var);
1568 extern void preserve_values (struct objfile *);
1570 /* From values.c */
1572 extern struct value *make_cv_value (int, int, struct value *);
1574 /* From valops.c */
1576 extern struct value *varying_to_slice (struct value *);
1578 extern struct value *value_slice (struct value *, int, int);
1580 /* Create a complex number. The type is the complex type; the values
1581 are cast to the underlying scalar type before the complex number is
1582 created. */
1584 extern struct value *value_literal_complex (struct value *, struct value *,
1585 struct type *);
1587 /* Return the real part of a complex value. */
1589 extern struct value *value_real_part (struct value *value);
1591 /* Return the imaginary part of a complex value. */
1593 extern struct value *value_imaginary_part (struct value *value);
1595 extern struct value *find_function_in_inferior (const char *,
1596 struct objfile **);
1598 extern struct value *value_allocate_space_in_inferior (int);
1600 /* User function handler. */
1602 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1603 const struct language_defn *language,
1604 void *cookie,
1605 int argc,
1606 struct value **argv);
1608 /* Add a new internal function. NAME is the name of the function; DOC
1609 is a documentation string describing the function. HANDLER is
1610 called when the function is invoked. COOKIE is an arbitrary
1611 pointer which is passed to HANDLER and is intended for "user
1612 data". */
1614 extern void add_internal_function (const char *name, const char *doc,
1615 internal_function_fn handler,
1616 void *cookie);
1618 /* This overload takes an allocated documentation string. */
1620 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1621 gdb::unique_xmalloc_ptr<char> &&doc,
1622 internal_function_fn handler,
1623 void *cookie);
1625 struct value *call_internal_function (struct gdbarch *gdbarch,
1626 const struct language_defn *language,
1627 struct value *function,
1628 int argc, struct value **argv);
1630 const char *value_internal_function_name (struct value *);
1632 /* Destroy the values currently allocated. This is called when GDB is
1633 exiting (e.g., on quit_force). */
1634 extern void finalize_values ();
1636 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1637 of floating-point, fixed-point, or integer type. */
1638 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1640 /* Return true if LEN (in bytes) exceeds the max-value-size setting,
1641 otherwise, return false. If the user has disabled (set to unlimited)
1642 the max-value-size setting then this function will always return false. */
1643 extern bool exceeds_max_value_size (ULONGEST length);
1645 /* While an instance of this class is live, and array values that are
1646 created, that are larger than max_value_size, will be restricted in size
1647 to a particular number of elements. */
1649 struct scoped_array_length_limiting
1651 /* Limit any large array values to only contain ELEMENTS elements. */
1652 scoped_array_length_limiting (int elements);
1654 /* Restore the previous array value limit. */
1655 ~scoped_array_length_limiting ();
1657 private:
1658 /* Used to hold the previous array value element limit. */
1659 std::optional<int> m_old_value;
1662 /* Helpers for building pseudo register values from raw registers. */
1664 /* Create a value for pseudo register PSEUDO_REG_NUM by using bytes from
1665 raw register RAW_REG_NUM starting at RAW_OFFSET.
1667 The size of the pseudo register specifies how many bytes to use. The
1668 offset plus the size must not overflow the raw register's size. */
1670 value *pseudo_from_raw_part (frame_info_ptr next_frame, int pseudo_reg_num,
1671 int raw_reg_num, int raw_offset);
1673 /* Write PSEUDO_BUF, the contents of a pseudo register, to part of raw register
1674 RAW_REG_NUM starting at RAW_OFFSET. */
1676 void pseudo_to_raw_part (frame_info_ptr next_frame,
1677 gdb::array_view<const gdb_byte> pseudo_buf,
1678 int raw_reg_num, int raw_offset);
1680 /* Create a value for pseudo register PSEUDO_REG_NUM by concatenating raw
1681 registers RAW_REG_1_NUM and RAW_REG_2_NUM.
1683 The sum of the sizes of raw registers must be equal to the size of the
1684 pseudo register. */
1686 value *pseudo_from_concat_raw (frame_info_ptr next_frame, int pseudo_reg_num,
1687 int raw_reg_1_num, int raw_reg_2_num);
1689 /* Write PSEUDO_BUF, the contents of a pseudo register, to the two raw registers
1690 RAW_REG_1_NUM and RAW_REG_2_NUM. */
1692 void pseudo_to_concat_raw (frame_info_ptr next_frame,
1693 gdb::array_view<const gdb_byte> pseudo_buf,
1694 int raw_reg_1_num, int raw_reg_2_num);
1696 /* Same as the above, but with three raw registers. */
1698 value *pseudo_from_concat_raw (frame_info_ptr next_frame, int pseudo_reg_num,
1699 int raw_reg_1_num, int raw_reg_2_num,
1700 int raw_reg_3_num);
1702 /* Write PSEUDO_BUF, the contents of a pseudo register, to the three raw
1703 registers RAW_REG_1_NUM, RAW_REG_2_NUM and RAW_REG_3_NUM. */
1705 void pseudo_to_concat_raw (frame_info_ptr next_frame,
1706 gdb::array_view<const gdb_byte> pseudo_buf,
1707 int raw_reg_1_num, int raw_reg_2_num,
1708 int raw_reg_3_num);
1710 #endif /* !defined (VALUE_H) */