2009-10-19 Pedro Alves <pedro@codesourcery.com>
[binutils-gdb.git] / gdb / sparc-tdep.c
blob1ec7d515b47522a8e5ddda7342c14cc180b6a86a
1 /* Target-dependent code for SPARC.
3 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "dis-asm.h"
24 #include "dwarf2-frame.h"
25 #include "floatformat.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "gdbtypes.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "objfiles.h"
34 #include "osabi.h"
35 #include "regcache.h"
36 #include "target.h"
37 #include "value.h"
39 #include "gdb_assert.h"
40 #include "gdb_string.h"
42 #include "sparc-tdep.h"
44 struct regset;
46 /* This file implements the SPARC 32-bit ABI as defined by the section
47 "Low-Level System Information" of the SPARC Compliance Definition
48 (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD
49 lists changes with respect to the original 32-bit psABI as defined
50 in the "System V ABI, SPARC Processor Supplement".
52 Note that if we talk about SunOS, we mean SunOS 4.x, which was
53 BSD-based, which is sometimes (retroactively?) referred to as
54 Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and
55 above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9
56 suffering from severe version number inflation). Solaris 2.x is
57 also known as SunOS 5.x, since that's what uname(1) says. Solaris
58 2.x is SVR4-based. */
60 /* Please use the sparc32_-prefix for 32-bit specific code, the
61 sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
62 code that can handle both. The 64-bit specific code lives in
63 sparc64-tdep.c; don't add any here. */
65 /* The SPARC Floating-Point Quad-Precision format is similar to
66 big-endian IA-64 Quad-recision format. */
67 #define floatformats_sparc_quad floatformats_ia64_quad
69 /* The stack pointer is offset from the stack frame by a BIAS of 2047
70 (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
71 hosts, so undefine it first. */
72 #undef BIAS
73 #define BIAS 2047
75 /* Macros to extract fields from SPARC instructions. */
76 #define X_OP(i) (((i) >> 30) & 0x3)
77 #define X_RD(i) (((i) >> 25) & 0x1f)
78 #define X_A(i) (((i) >> 29) & 1)
79 #define X_COND(i) (((i) >> 25) & 0xf)
80 #define X_OP2(i) (((i) >> 22) & 0x7)
81 #define X_IMM22(i) ((i) & 0x3fffff)
82 #define X_OP3(i) (((i) >> 19) & 0x3f)
83 #define X_RS1(i) (((i) >> 14) & 0x1f)
84 #define X_RS2(i) ((i) & 0x1f)
85 #define X_I(i) (((i) >> 13) & 1)
86 /* Sign extension macros. */
87 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
88 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
89 #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000)
91 /* Fetch the instruction at PC. Instructions are always big-endian
92 even if the processor operates in little-endian mode. */
94 unsigned long
95 sparc_fetch_instruction (CORE_ADDR pc)
97 gdb_byte buf[4];
98 unsigned long insn;
99 int i;
101 /* If we can't read the instruction at PC, return zero. */
102 if (target_read_memory (pc, buf, sizeof (buf)))
103 return 0;
105 insn = 0;
106 for (i = 0; i < sizeof (buf); i++)
107 insn = (insn << 8) | buf[i];
108 return insn;
112 /* Return non-zero if the instruction corresponding to PC is an "unimp"
113 instruction. */
115 static int
116 sparc_is_unimp_insn (CORE_ADDR pc)
118 const unsigned long insn = sparc_fetch_instruction (pc);
120 return ((insn & 0xc1c00000) == 0);
123 /* OpenBSD/sparc includes StackGhost, which according to the author's
124 website http://stackghost.cerias.purdue.edu "... transparently and
125 automatically protects applications' stack frames; more
126 specifically, it guards the return pointers. The protection
127 mechanisms require no application source or binary modification and
128 imposes only a negligible performance penalty."
130 The same website provides the following description of how
131 StackGhost works:
133 "StackGhost interfaces with the kernel trap handler that would
134 normally write out registers to the stack and the handler that
135 would read them back in. By XORing a cookie into the
136 return-address saved in the user stack when it is actually written
137 to the stack, and then XOR it out when the return-address is pulled
138 from the stack, StackGhost can cause attacker corrupted return
139 pointers to behave in a manner the attacker cannot predict.
140 StackGhost can also use several unused bits in the return pointer
141 to detect a smashed return pointer and abort the process."
143 For GDB this means that whenever we're reading %i7 from a stack
144 frame's window save area, we'll have to XOR the cookie.
146 More information on StackGuard can be found on in:
148 Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated
149 Stack Protection." 2001. Published in USENIX Security Symposium
150 '01. */
152 /* Fetch StackGhost Per-Process XOR cookie. */
154 ULONGEST
155 sparc_fetch_wcookie (struct gdbarch *gdbarch)
157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
158 struct target_ops *ops = &current_target;
159 gdb_byte buf[8];
160 int len;
162 len = target_read (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8);
163 if (len == -1)
164 return 0;
166 /* We should have either an 32-bit or an 64-bit cookie. */
167 gdb_assert (len == 4 || len == 8);
169 return extract_unsigned_integer (buf, len, byte_order);
173 /* The functions on this page are intended to be used to classify
174 function arguments. */
176 /* Check whether TYPE is "Integral or Pointer". */
178 static int
179 sparc_integral_or_pointer_p (const struct type *type)
181 int len = TYPE_LENGTH (type);
183 switch (TYPE_CODE (type))
185 case TYPE_CODE_INT:
186 case TYPE_CODE_BOOL:
187 case TYPE_CODE_CHAR:
188 case TYPE_CODE_ENUM:
189 case TYPE_CODE_RANGE:
190 /* We have byte, half-word, word and extended-word/doubleword
191 integral types. The doubleword is an extension to the
192 original 32-bit ABI by the SCD 2.4.x. */
193 return (len == 1 || len == 2 || len == 4 || len == 8);
194 case TYPE_CODE_PTR:
195 case TYPE_CODE_REF:
196 /* Allow either 32-bit or 64-bit pointers. */
197 return (len == 4 || len == 8);
198 default:
199 break;
202 return 0;
205 /* Check whether TYPE is "Floating". */
207 static int
208 sparc_floating_p (const struct type *type)
210 switch (TYPE_CODE (type))
212 case TYPE_CODE_FLT:
214 int len = TYPE_LENGTH (type);
215 return (len == 4 || len == 8 || len == 16);
217 default:
218 break;
221 return 0;
224 /* Check whether TYPE is "Structure or Union". */
226 static int
227 sparc_structure_or_union_p (const struct type *type)
229 switch (TYPE_CODE (type))
231 case TYPE_CODE_STRUCT:
232 case TYPE_CODE_UNION:
233 return 1;
234 default:
235 break;
238 return 0;
241 /* Register information. */
243 static const char *sparc32_register_names[] =
245 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
246 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
247 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
248 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
255 "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr"
258 /* Total number of registers. */
259 #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names)
261 /* We provide the aliases %d0..%d30 for the floating registers as
262 "psuedo" registers. */
264 static const char *sparc32_pseudo_register_names[] =
266 "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14",
267 "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30"
270 /* Total number of pseudo registers. */
271 #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names)
273 /* Return the name of register REGNUM. */
275 static const char *
276 sparc32_register_name (struct gdbarch *gdbarch, int regnum)
278 if (regnum >= 0 && regnum < SPARC32_NUM_REGS)
279 return sparc32_register_names[regnum];
281 if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS)
282 return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS];
284 return NULL;
287 /* Construct types for ISA-specific registers. */
289 static struct type *
290 sparc_psr_type (struct gdbarch *gdbarch)
292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294 if (!tdep->sparc_psr_type)
296 struct type *type;
298 type = arch_flags_type (gdbarch, "builtin_type_sparc_psr", 4);
299 append_flags_type_flag (type, 5, "ET");
300 append_flags_type_flag (type, 6, "PS");
301 append_flags_type_flag (type, 7, "S");
302 append_flags_type_flag (type, 12, "EF");
303 append_flags_type_flag (type, 13, "EC");
305 tdep->sparc_psr_type = type;
308 return tdep->sparc_psr_type;
311 static struct type *
312 sparc_fsr_type (struct gdbarch *gdbarch)
314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 if (!tdep->sparc_fsr_type)
318 struct type *type;
320 type = arch_flags_type (gdbarch, "builtin_type_sparc_fsr", 4);
321 append_flags_type_flag (type, 0, "NXA");
322 append_flags_type_flag (type, 1, "DZA");
323 append_flags_type_flag (type, 2, "UFA");
324 append_flags_type_flag (type, 3, "OFA");
325 append_flags_type_flag (type, 4, "NVA");
326 append_flags_type_flag (type, 5, "NXC");
327 append_flags_type_flag (type, 6, "DZC");
328 append_flags_type_flag (type, 7, "UFC");
329 append_flags_type_flag (type, 8, "OFC");
330 append_flags_type_flag (type, 9, "NVC");
331 append_flags_type_flag (type, 22, "NS");
332 append_flags_type_flag (type, 23, "NXM");
333 append_flags_type_flag (type, 24, "DZM");
334 append_flags_type_flag (type, 25, "UFM");
335 append_flags_type_flag (type, 26, "OFM");
336 append_flags_type_flag (type, 27, "NVM");
338 tdep->sparc_fsr_type = type;
341 return tdep->sparc_fsr_type;
344 /* Return the GDB type object for the "standard" data type of data in
345 register REGNUM. */
347 static struct type *
348 sparc32_register_type (struct gdbarch *gdbarch, int regnum)
350 if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM)
351 return builtin_type (gdbarch)->builtin_float;
353 if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM)
354 return builtin_type (gdbarch)->builtin_double;
356 if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM)
357 return builtin_type (gdbarch)->builtin_data_ptr;
359 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
360 return builtin_type (gdbarch)->builtin_func_ptr;
362 if (regnum == SPARC32_PSR_REGNUM)
363 return sparc_psr_type (gdbarch);
365 if (regnum == SPARC32_FSR_REGNUM)
366 return sparc_fsr_type (gdbarch);
368 return builtin_type (gdbarch)->builtin_int32;
371 static void
372 sparc32_pseudo_register_read (struct gdbarch *gdbarch,
373 struct regcache *regcache,
374 int regnum, gdb_byte *buf)
376 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
378 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
379 regcache_raw_read (regcache, regnum, buf);
380 regcache_raw_read (regcache, regnum + 1, buf + 4);
383 static void
384 sparc32_pseudo_register_write (struct gdbarch *gdbarch,
385 struct regcache *regcache,
386 int regnum, const gdb_byte *buf)
388 gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM);
390 regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM);
391 regcache_raw_write (regcache, regnum, buf);
392 regcache_raw_write (regcache, regnum + 1, buf + 4);
396 static CORE_ADDR
397 sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
398 CORE_ADDR funcaddr,
399 struct value **args, int nargs,
400 struct type *value_type,
401 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
402 struct regcache *regcache)
404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
406 *bp_addr = sp - 4;
407 *real_pc = funcaddr;
409 if (using_struct_return (gdbarch, NULL, value_type))
411 gdb_byte buf[4];
413 /* This is an UNIMP instruction. */
414 store_unsigned_integer (buf, 4, byte_order,
415 TYPE_LENGTH (value_type) & 0x1fff);
416 write_memory (sp - 8, buf, 4);
417 return sp - 8;
420 return sp - 4;
423 static CORE_ADDR
424 sparc32_store_arguments (struct regcache *regcache, int nargs,
425 struct value **args, CORE_ADDR sp,
426 int struct_return, CORE_ADDR struct_addr)
428 struct gdbarch *gdbarch = get_regcache_arch (regcache);
429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
430 /* Number of words in the "parameter array". */
431 int num_elements = 0;
432 int element = 0;
433 int i;
435 for (i = 0; i < nargs; i++)
437 struct type *type = value_type (args[i]);
438 int len = TYPE_LENGTH (type);
440 if (sparc_structure_or_union_p (type)
441 || (sparc_floating_p (type) && len == 16))
443 /* Structure, Union and Quad-Precision Arguments. */
444 sp -= len;
446 /* Use doubleword alignment for these values. That's always
447 correct, and wasting a few bytes shouldn't be a problem. */
448 sp &= ~0x7;
450 write_memory (sp, value_contents (args[i]), len);
451 args[i] = value_from_pointer (lookup_pointer_type (type), sp);
452 num_elements++;
454 else if (sparc_floating_p (type))
456 /* Floating arguments. */
457 gdb_assert (len == 4 || len == 8);
458 num_elements += (len / 4);
460 else
462 /* Integral and pointer arguments. */
463 gdb_assert (sparc_integral_or_pointer_p (type));
465 if (len < 4)
466 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
467 args[i]);
468 num_elements += ((len + 3) / 4);
472 /* Always allocate at least six words. */
473 sp -= max (6, num_elements) * 4;
475 /* The psABI says that "Software convention requires space for the
476 struct/union return value pointer, even if the word is unused." */
477 sp -= 4;
479 /* The psABI says that "Although software convention and the
480 operating system require every stack frame to be doubleword
481 aligned." */
482 sp &= ~0x7;
484 for (i = 0; i < nargs; i++)
486 const bfd_byte *valbuf = value_contents (args[i]);
487 struct type *type = value_type (args[i]);
488 int len = TYPE_LENGTH (type);
490 gdb_assert (len == 4 || len == 8);
492 if (element < 6)
494 int regnum = SPARC_O0_REGNUM + element;
496 regcache_cooked_write (regcache, regnum, valbuf);
497 if (len > 4 && element < 5)
498 regcache_cooked_write (regcache, regnum + 1, valbuf + 4);
501 /* Always store the argument in memory. */
502 write_memory (sp + 4 + element * 4, valbuf, len);
503 element += len / 4;
506 gdb_assert (element == num_elements);
508 if (struct_return)
510 gdb_byte buf[4];
512 store_unsigned_integer (buf, 4, byte_order, struct_addr);
513 write_memory (sp, buf, 4);
516 return sp;
519 static CORE_ADDR
520 sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
521 struct regcache *regcache, CORE_ADDR bp_addr,
522 int nargs, struct value **args, CORE_ADDR sp,
523 int struct_return, CORE_ADDR struct_addr)
525 CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8));
527 /* Set return address. */
528 regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc);
530 /* Set up function arguments. */
531 sp = sparc32_store_arguments (regcache, nargs, args, sp,
532 struct_return, struct_addr);
534 /* Allocate the 16-word window save area. */
535 sp -= 16 * 4;
537 /* Stack should be doubleword aligned at this point. */
538 gdb_assert (sp % 8 == 0);
540 /* Finally, update the stack pointer. */
541 regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
543 return sp;
547 /* Use the program counter to determine the contents and size of a
548 breakpoint instruction. Return a pointer to a string of bytes that
549 encode a breakpoint instruction, store the length of the string in
550 *LEN and optionally adjust *PC to point to the correct memory
551 location for inserting the breakpoint. */
553 static const gdb_byte *
554 sparc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
556 static const gdb_byte break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
558 *len = sizeof (break_insn);
559 return break_insn;
563 /* Allocate and initialize a frame cache. */
565 static struct sparc_frame_cache *
566 sparc_alloc_frame_cache (void)
568 struct sparc_frame_cache *cache;
569 int i;
571 cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache);
573 /* Base address. */
574 cache->base = 0;
575 cache->pc = 0;
577 /* Frameless until proven otherwise. */
578 cache->frameless_p = 1;
580 cache->struct_return_p = 0;
582 return cache;
585 /* GCC generates several well-known sequences of instructions at the begining
586 of each function prologue when compiling with -fstack-check. If one of
587 such sequences starts at START_PC, then return the address of the
588 instruction immediately past this sequence. Otherwise, return START_PC. */
590 static CORE_ADDR
591 sparc_skip_stack_check (const CORE_ADDR start_pc)
593 CORE_ADDR pc = start_pc;
594 unsigned long insn;
595 int offset_stack_checking_sequence = 0;
597 /* With GCC, all stack checking sequences begin with the same two
598 instructions. */
600 /* sethi <some immediate>,%g1 */
601 insn = sparc_fetch_instruction (pc);
602 pc = pc + 4;
603 if (!(X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 1))
604 return start_pc;
606 /* sub %sp, %g1, %g1 */
607 insn = sparc_fetch_instruction (pc);
608 pc = pc + 4;
609 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
610 && X_RD (insn) == 1 && X_RS1 (insn) == 14 && X_RS2 (insn) == 1))
611 return start_pc;
613 insn = sparc_fetch_instruction (pc);
614 pc = pc + 4;
616 /* First possible sequence:
617 [first two instructions above]
618 clr [%g1 - some immediate] */
620 /* clr [%g1 - some immediate] */
621 if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
622 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
624 /* Valid stack-check sequence, return the new PC. */
625 return pc;
628 /* Second possible sequence: A small number of probes.
629 [first two instructions above]
630 clr [%g1]
631 add %g1, -<some immediate>, %g1
632 clr [%g1]
633 [repeat the two instructions above any (small) number of times]
634 clr [%g1 - some immediate] */
636 /* clr [%g1] */
637 else if (X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
638 && X_RS1 (insn) == 1 && X_RD (insn) == 0)
640 while (1)
642 /* add %g1, -<some immediate>, %g1 */
643 insn = sparc_fetch_instruction (pc);
644 pc = pc + 4;
645 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
646 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
647 break;
649 /* clr [%g1] */
650 insn = sparc_fetch_instruction (pc);
651 pc = pc + 4;
652 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
653 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
654 return start_pc;
657 /* clr [%g1 - some immediate] */
658 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
659 && X_RS1 (insn) == 1 && X_RD (insn) == 0))
660 return start_pc;
662 /* We found a valid stack-check sequence, return the new PC. */
663 return pc;
666 /* Third sequence: A probing loop.
667 [first two instructions above]
668 sethi <some immediate>, %g4
669 sub %g1, %g4, %g4
670 cmp %g1, %g4
671 be <disp>
672 add %g1, -<some immediate>, %g1
673 ba <disp>
674 clr [%g1]
675 clr [%g4 - some immediate] */
677 /* sethi <some immediate>, %g4 */
678 else if (X_OP (insn) == 0 && X_OP2 (insn) == 0x4 && X_RD (insn) == 4)
680 /* sub %g1, %g4, %g4 */
681 insn = sparc_fetch_instruction (pc);
682 pc = pc + 4;
683 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x4 && !X_I(insn)
684 && X_RD (insn) == 4 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
685 return start_pc;
687 /* cmp %g1, %g4 */
688 insn = sparc_fetch_instruction (pc);
689 pc = pc + 4;
690 if (!(X_OP (insn) == 2 && X_OP3 (insn) == 0x14 && !X_I(insn)
691 && X_RD (insn) == 0 && X_RS1 (insn) == 1 && X_RS2 (insn) == 4))
692 return start_pc;
694 /* be <disp> */
695 insn = sparc_fetch_instruction (pc);
696 pc = pc + 4;
697 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x1))
698 return start_pc;
700 /* add %g1, -<some immediate>, %g1 */
701 insn = sparc_fetch_instruction (pc);
702 pc = pc + 4;
703 if (!(X_OP (insn) == 2 && X_OP3(insn) == 0 && X_I(insn)
704 && X_RS1 (insn) == 1 && X_RD (insn) == 1))
705 return start_pc;
707 /* ba <disp> */
708 insn = sparc_fetch_instruction (pc);
709 pc = pc + 4;
710 if (!(X_OP (insn) == 0 && X_COND (insn) == 0x8))
711 return start_pc;
713 /* clr [%g1] */
714 insn = sparc_fetch_instruction (pc);
715 pc = pc + 4;
716 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && !X_I(insn)
717 && X_RD (insn) == 0 && X_RS1 (insn) == 1))
718 return start_pc;
720 /* clr [%g4 - some immediate] */
721 insn = sparc_fetch_instruction (pc);
722 pc = pc + 4;
723 if (!(X_OP (insn) == 3 && X_OP3(insn) == 0x4 && X_I(insn)
724 && X_RS1 (insn) == 4 && X_RD (insn) == 0))
725 return start_pc;
727 /* We found a valid stack-check sequence, return the new PC. */
728 return pc;
731 /* No stack check code in our prologue, return the start_pc. */
732 return start_pc;
735 CORE_ADDR
736 sparc_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
737 CORE_ADDR current_pc, struct sparc_frame_cache *cache)
739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
740 unsigned long insn;
741 int offset = 0;
742 int dest = -1;
744 pc = sparc_skip_stack_check (pc);
746 if (current_pc <= pc)
747 return current_pc;
749 /* We have to handle to "Procedure Linkage Table" (PLT) special. On
750 SPARC the linker usually defines a symbol (typically
751 _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section.
752 This symbol makes us end up here with PC pointing at the start of
753 the PLT and CURRENT_PC probably pointing at a PLT entry. If we
754 would do our normal prologue analysis, we would probably conclude
755 that we've got a frame when in reality we don't, since the
756 dynamic linker patches up the first PLT with some code that
757 starts with a SAVE instruction. Patch up PC such that it points
758 at the start of our PLT entry. */
759 if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL))
760 pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size);
762 insn = sparc_fetch_instruction (pc);
764 /* Recognize a SETHI insn and record its destination. */
765 if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04)
767 dest = X_RD (insn);
768 offset += 4;
770 insn = sparc_fetch_instruction (pc + 4);
773 /* Allow for an arithmetic operation on DEST or %g1. */
774 if (X_OP (insn) == 2 && X_I (insn)
775 && (X_RD (insn) == 1 || X_RD (insn) == dest))
777 offset += 4;
779 insn = sparc_fetch_instruction (pc + 8);
782 /* Check for the SAVE instruction that sets up the frame. */
783 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
785 cache->frameless_p = 0;
786 return pc + offset + 4;
789 return pc;
792 static CORE_ADDR
793 sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
795 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
796 return frame_unwind_register_unsigned (this_frame, tdep->pc_regnum);
799 /* Return PC of first real instruction of the function starting at
800 START_PC. */
802 static CORE_ADDR
803 sparc32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
805 struct symtab_and_line sal;
806 CORE_ADDR func_start, func_end;
807 struct sparc_frame_cache cache;
809 /* This is the preferred method, find the end of the prologue by
810 using the debugging information. */
811 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
813 sal = find_pc_line (func_start, 0);
815 if (sal.end < func_end
816 && start_pc <= sal.end)
817 return sal.end;
820 start_pc = sparc_analyze_prologue (gdbarch, start_pc, 0xffffffffUL, &cache);
822 /* The psABI says that "Although the first 6 words of arguments
823 reside in registers, the standard stack frame reserves space for
824 them.". It also suggests that a function may use that space to
825 "write incoming arguments 0 to 5" into that space, and that's
826 indeed what GCC seems to be doing. In that case GCC will
827 generate debug information that points to the stack slots instead
828 of the registers, so we should consider the instructions that
829 write out these incoming arguments onto the stack. Of course we
830 only need to do this if we have a stack frame. */
832 while (!cache.frameless_p)
834 unsigned long insn = sparc_fetch_instruction (start_pc);
836 /* Recognize instructions that store incoming arguments in
837 %i0...%i5 into the corresponding stack slot. */
838 if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn)
839 && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30
840 && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4)
842 start_pc += 4;
843 continue;
846 break;
849 return start_pc;
852 /* Normal frames. */
854 struct sparc_frame_cache *
855 sparc_frame_cache (struct frame_info *this_frame, void **this_cache)
857 struct sparc_frame_cache *cache;
859 if (*this_cache)
860 return *this_cache;
862 cache = sparc_alloc_frame_cache ();
863 *this_cache = cache;
865 cache->pc = get_frame_func (this_frame);
866 if (cache->pc != 0)
867 sparc_analyze_prologue (get_frame_arch (this_frame), cache->pc,
868 get_frame_pc (this_frame), cache);
870 if (cache->frameless_p)
872 /* This function is frameless, so %fp (%i6) holds the frame
873 pointer for our calling frame. Use %sp (%o6) as this frame's
874 base address. */
875 cache->base =
876 get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
878 else
880 /* For normal frames, %fp (%i6) holds the frame pointer, the
881 base address for the current stack frame. */
882 cache->base =
883 get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
886 if (cache->base & 1)
887 cache->base += BIAS;
889 return cache;
892 static int
893 sparc32_struct_return_from_sym (struct symbol *sym)
895 struct type *type = check_typedef (SYMBOL_TYPE (sym));
896 enum type_code code = TYPE_CODE (type);
898 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
900 type = check_typedef (TYPE_TARGET_TYPE (type));
901 if (sparc_structure_or_union_p (type)
902 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
903 return 1;
906 return 0;
909 struct sparc_frame_cache *
910 sparc32_frame_cache (struct frame_info *this_frame, void **this_cache)
912 struct sparc_frame_cache *cache;
913 struct symbol *sym;
915 if (*this_cache)
916 return *this_cache;
918 cache = sparc_frame_cache (this_frame, this_cache);
920 sym = find_pc_function (cache->pc);
921 if (sym)
923 cache->struct_return_p = sparc32_struct_return_from_sym (sym);
925 else
927 /* There is no debugging information for this function to
928 help us determine whether this function returns a struct
929 or not. So we rely on another heuristic which is to check
930 the instruction at the return address and see if this is
931 an "unimp" instruction. If it is, then it is a struct-return
932 function. */
933 CORE_ADDR pc;
934 int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
936 pc = get_frame_register_unsigned (this_frame, regnum) + 8;
937 if (sparc_is_unimp_insn (pc))
938 cache->struct_return_p = 1;
941 return cache;
944 static void
945 sparc32_frame_this_id (struct frame_info *this_frame, void **this_cache,
946 struct frame_id *this_id)
948 struct sparc_frame_cache *cache =
949 sparc32_frame_cache (this_frame, this_cache);
951 /* This marks the outermost frame. */
952 if (cache->base == 0)
953 return;
955 (*this_id) = frame_id_build (cache->base, cache->pc);
958 static struct value *
959 sparc32_frame_prev_register (struct frame_info *this_frame,
960 void **this_cache, int regnum)
962 struct gdbarch *gdbarch = get_frame_arch (this_frame);
963 struct sparc_frame_cache *cache =
964 sparc32_frame_cache (this_frame, this_cache);
966 if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
968 CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0;
970 /* If this functions has a Structure, Union or Quad-Precision
971 return value, we have to skip the UNIMP instruction that encodes
972 the size of the structure. */
973 if (cache->struct_return_p)
974 pc += 4;
976 regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
977 pc += get_frame_register_unsigned (this_frame, regnum) + 8;
978 return frame_unwind_got_constant (this_frame, regnum, pc);
981 /* Handle StackGhost. */
983 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
985 if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM)
987 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
988 ULONGEST i7;
990 /* Read the value in from memory. */
991 i7 = get_frame_memory_unsigned (this_frame, addr, 4);
992 return frame_unwind_got_constant (this_frame, regnum, i7 ^ wcookie);
996 /* The previous frame's `local' and `in' registers have been saved
997 in the register save area. */
998 if (!cache->frameless_p
999 && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
1001 CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4;
1003 return frame_unwind_got_memory (this_frame, regnum, addr);
1006 /* The previous frame's `out' registers are accessible as the
1007 current frame's `in' registers. */
1008 if (!cache->frameless_p
1009 && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
1010 regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
1012 return frame_unwind_got_register (this_frame, regnum, regnum);
1015 static const struct frame_unwind sparc32_frame_unwind =
1017 NORMAL_FRAME,
1018 sparc32_frame_this_id,
1019 sparc32_frame_prev_register,
1020 NULL,
1021 default_frame_sniffer
1025 static CORE_ADDR
1026 sparc32_frame_base_address (struct frame_info *this_frame, void **this_cache)
1028 struct sparc_frame_cache *cache =
1029 sparc32_frame_cache (this_frame, this_cache);
1031 return cache->base;
1034 static const struct frame_base sparc32_frame_base =
1036 &sparc32_frame_unwind,
1037 sparc32_frame_base_address,
1038 sparc32_frame_base_address,
1039 sparc32_frame_base_address
1042 static struct frame_id
1043 sparc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1045 CORE_ADDR sp;
1047 sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
1048 if (sp & 1)
1049 sp += BIAS;
1050 return frame_id_build (sp, get_frame_pc (this_frame));
1054 /* Extract a function return value of TYPE from REGCACHE, and copy
1055 that into VALBUF. */
1057 static void
1058 sparc32_extract_return_value (struct type *type, struct regcache *regcache,
1059 gdb_byte *valbuf)
1061 int len = TYPE_LENGTH (type);
1062 gdb_byte buf[8];
1064 gdb_assert (!sparc_structure_or_union_p (type));
1065 gdb_assert (!(sparc_floating_p (type) && len == 16));
1067 if (sparc_floating_p (type))
1069 /* Floating return values. */
1070 regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf);
1071 if (len > 4)
1072 regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4);
1073 memcpy (valbuf, buf, len);
1075 else
1077 /* Integral and pointer return values. */
1078 gdb_assert (sparc_integral_or_pointer_p (type));
1080 regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
1081 if (len > 4)
1083 regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4);
1084 gdb_assert (len == 8);
1085 memcpy (valbuf, buf, 8);
1087 else
1089 /* Just stripping off any unused bytes should preserve the
1090 signed-ness just fine. */
1091 memcpy (valbuf, buf + 4 - len, len);
1096 /* Store the function return value of type TYPE from VALBUF into
1097 REGCACHE. */
1099 static void
1100 sparc32_store_return_value (struct type *type, struct regcache *regcache,
1101 const gdb_byte *valbuf)
1103 int len = TYPE_LENGTH (type);
1104 gdb_byte buf[8];
1106 gdb_assert (!sparc_structure_or_union_p (type));
1107 gdb_assert (!(sparc_floating_p (type) && len == 16));
1109 if (sparc_floating_p (type))
1111 /* Floating return values. */
1112 memcpy (buf, valbuf, len);
1113 regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf);
1114 if (len > 4)
1115 regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4);
1117 else
1119 /* Integral and pointer return values. */
1120 gdb_assert (sparc_integral_or_pointer_p (type));
1122 if (len > 4)
1124 gdb_assert (len == 8);
1125 memcpy (buf, valbuf, 8);
1126 regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4);
1128 else
1130 /* ??? Do we need to do any sign-extension here? */
1131 memcpy (buf + 4 - len, valbuf, len);
1133 regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
1137 static enum return_value_convention
1138 sparc32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1139 struct type *type, struct regcache *regcache,
1140 gdb_byte *readbuf, const gdb_byte *writebuf)
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1144 /* The psABI says that "...every stack frame reserves the word at
1145 %fp+64. If a function returns a structure, union, or
1146 quad-precision value, this word should hold the address of the
1147 object into which the return value should be copied." This
1148 guarantees that we can always find the return value, not just
1149 before the function returns. */
1151 if (sparc_structure_or_union_p (type)
1152 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16))
1154 if (readbuf)
1156 ULONGEST sp;
1157 CORE_ADDR addr;
1159 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1160 addr = read_memory_unsigned_integer (sp + 64, 4, byte_order);
1161 read_memory (addr, readbuf, TYPE_LENGTH (type));
1164 return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
1167 if (readbuf)
1168 sparc32_extract_return_value (type, regcache, readbuf);
1169 if (writebuf)
1170 sparc32_store_return_value (type, regcache, writebuf);
1172 return RETURN_VALUE_REGISTER_CONVENTION;
1175 static int
1176 sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
1178 return (sparc_structure_or_union_p (type)
1179 || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16));
1182 static int
1183 sparc32_dwarf2_struct_return_p (struct frame_info *this_frame)
1185 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1186 struct symbol *sym = find_pc_function (pc);
1188 if (sym)
1189 return sparc32_struct_return_from_sym (sym);
1190 return 0;
1193 static void
1194 sparc32_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1195 struct dwarf2_frame_state_reg *reg,
1196 struct frame_info *this_frame)
1198 int off;
1200 switch (regnum)
1202 case SPARC_G0_REGNUM:
1203 /* Since %g0 is always zero, there is no point in saving it, and
1204 people will be inclined omit it from the CFI. Make sure we
1205 don't warn about that. */
1206 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1207 break;
1208 case SPARC_SP_REGNUM:
1209 reg->how = DWARF2_FRAME_REG_CFA;
1210 break;
1211 case SPARC32_PC_REGNUM:
1212 case SPARC32_NPC_REGNUM:
1213 reg->how = DWARF2_FRAME_REG_RA_OFFSET;
1214 off = 8;
1215 if (sparc32_dwarf2_struct_return_p (this_frame))
1216 off += 4;
1217 if (regnum == SPARC32_NPC_REGNUM)
1218 off += 4;
1219 reg->loc.offset = off;
1220 break;
1225 /* The SPARC Architecture doesn't have hardware single-step support,
1226 and most operating systems don't implement it either, so we provide
1227 software single-step mechanism. */
1229 static CORE_ADDR
1230 sparc_analyze_control_transfer (struct frame_info *frame,
1231 CORE_ADDR pc, CORE_ADDR *npc)
1233 unsigned long insn = sparc_fetch_instruction (pc);
1234 int conditional_p = X_COND (insn) & 0x7;
1235 int branch_p = 0;
1236 long offset = 0; /* Must be signed for sign-extend. */
1238 if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
1240 /* Branch on Integer Register with Prediction (BPr). */
1241 branch_p = 1;
1242 conditional_p = 1;
1244 else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
1246 /* Branch on Floating-Point Condition Codes (FBfcc). */
1247 branch_p = 1;
1248 offset = 4 * X_DISP22 (insn);
1250 else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
1252 /* Branch on Floating-Point Condition Codes with Prediction
1253 (FBPfcc). */
1254 branch_p = 1;
1255 offset = 4 * X_DISP19 (insn);
1257 else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
1259 /* Branch on Integer Condition Codes (Bicc). */
1260 branch_p = 1;
1261 offset = 4 * X_DISP22 (insn);
1263 else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
1265 /* Branch on Integer Condition Codes with Prediction (BPcc). */
1266 branch_p = 1;
1267 offset = 4 * X_DISP19 (insn);
1269 else if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3a)
1271 /* Trap instruction (TRAP). */
1272 return gdbarch_tdep (get_frame_arch (frame))->step_trap (frame, insn);
1275 /* FIXME: Handle DONE and RETRY instructions. */
1277 if (branch_p)
1279 if (conditional_p)
1281 /* For conditional branches, return nPC + 4 iff the annul
1282 bit is 1. */
1283 return (X_A (insn) ? *npc + 4 : 0);
1285 else
1287 /* For unconditional branches, return the target if its
1288 specified condition is "always" and return nPC + 4 if the
1289 condition is "never". If the annul bit is 1, set *NPC to
1290 zero. */
1291 if (X_COND (insn) == 0x0)
1292 pc = *npc, offset = 4;
1293 if (X_A (insn))
1294 *npc = 0;
1296 gdb_assert (offset != 0);
1297 return pc + offset;
1301 return 0;
1304 static CORE_ADDR
1305 sparc_step_trap (struct frame_info *frame, unsigned long insn)
1307 return 0;
1311 sparc_software_single_step (struct frame_info *frame)
1313 struct gdbarch *arch = get_frame_arch (frame);
1314 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1315 struct address_space *aspace = get_frame_address_space (frame);
1316 CORE_ADDR npc, nnpc;
1318 CORE_ADDR pc, orig_npc;
1320 pc = get_frame_register_unsigned (frame, tdep->pc_regnum);
1321 orig_npc = npc = get_frame_register_unsigned (frame, tdep->npc_regnum);
1323 /* Analyze the instruction at PC. */
1324 nnpc = sparc_analyze_control_transfer (frame, pc, &npc);
1325 if (npc != 0)
1326 insert_single_step_breakpoint (arch, aspace, npc);
1328 if (nnpc != 0)
1329 insert_single_step_breakpoint (arch, aspace, nnpc);
1331 /* Assert that we have set at least one breakpoint, and that
1332 they're not set at the same spot - unless we're going
1333 from here straight to NULL, i.e. a call or jump to 0. */
1334 gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0);
1335 gdb_assert (nnpc != npc || orig_npc == 0);
1337 return 1;
1340 static void
1341 sparc_write_pc (struct regcache *regcache, CORE_ADDR pc)
1343 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1345 regcache_cooked_write_unsigned (regcache, tdep->pc_regnum, pc);
1346 regcache_cooked_write_unsigned (regcache, tdep->npc_regnum, pc + 4);
1350 /* Return the appropriate register set for the core section identified
1351 by SECT_NAME and SECT_SIZE. */
1353 static const struct regset *
1354 sparc_regset_from_core_section (struct gdbarch *gdbarch,
1355 const char *sect_name, size_t sect_size)
1357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1359 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
1360 return tdep->gregset;
1362 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
1363 return tdep->fpregset;
1365 return NULL;
1369 static struct gdbarch *
1370 sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1372 struct gdbarch_tdep *tdep;
1373 struct gdbarch *gdbarch;
1375 /* If there is already a candidate, use it. */
1376 arches = gdbarch_list_lookup_by_info (arches, &info);
1377 if (arches != NULL)
1378 return arches->gdbarch;
1380 /* Allocate space for the new architecture. */
1381 tdep = XZALLOC (struct gdbarch_tdep);
1382 gdbarch = gdbarch_alloc (&info, tdep);
1384 tdep->pc_regnum = SPARC32_PC_REGNUM;
1385 tdep->npc_regnum = SPARC32_NPC_REGNUM;
1386 tdep->step_trap = sparc_step_trap;
1388 set_gdbarch_long_double_bit (gdbarch, 128);
1389 set_gdbarch_long_double_format (gdbarch, floatformats_sparc_quad);
1391 set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS);
1392 set_gdbarch_register_name (gdbarch, sparc32_register_name);
1393 set_gdbarch_register_type (gdbarch, sparc32_register_type);
1394 set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS);
1395 set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read);
1396 set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write);
1398 /* Register numbers of various important registers. */
1399 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
1400 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */
1401 set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
1403 /* Call dummy code. */
1404 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1405 set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code);
1406 set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call);
1408 set_gdbarch_return_value (gdbarch, sparc32_return_value);
1409 set_gdbarch_stabs_argument_has_addr
1410 (gdbarch, sparc32_stabs_argument_has_addr);
1412 set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue);
1414 /* Stack grows downward. */
1415 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1417 set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
1419 set_gdbarch_frame_args_skip (gdbarch, 8);
1421 set_gdbarch_print_insn (gdbarch, print_insn_sparc);
1423 set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
1424 set_gdbarch_write_pc (gdbarch, sparc_write_pc);
1426 set_gdbarch_dummy_id (gdbarch, sparc_dummy_id);
1428 set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc);
1430 frame_base_set_default (gdbarch, &sparc32_frame_base);
1432 /* Hook in the DWARF CFI frame unwinder. */
1433 dwarf2_frame_set_init_reg (gdbarch, sparc32_dwarf2_frame_init_reg);
1434 /* FIXME: kettenis/20050423: Don't enable the unwinder until the
1435 StackGhost issues have been resolved. */
1437 /* Hook in ABI-specific overrides, if they have been registered. */
1438 gdbarch_init_osabi (info, gdbarch);
1440 frame_unwind_append_unwinder (gdbarch, &sparc32_frame_unwind);
1442 /* If we have register sets, enable the generic core file support. */
1443 if (tdep->gregset)
1444 set_gdbarch_regset_from_core_section (gdbarch,
1445 sparc_regset_from_core_section);
1447 return gdbarch;
1450 /* Helper functions for dealing with register windows. */
1452 void
1453 sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum)
1455 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457 int offset = 0;
1458 gdb_byte buf[8];
1459 int i;
1461 if (sp & 1)
1463 /* Registers are 64-bit. */
1464 sp += BIAS;
1466 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1468 if (regnum == i || regnum == -1)
1470 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1472 /* Handle StackGhost. */
1473 if (i == SPARC_I7_REGNUM)
1475 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1476 ULONGEST i7;
1478 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1479 store_unsigned_integer (buf + offset, 8, byte_order,
1480 i7 ^ wcookie);
1483 regcache_raw_supply (regcache, i, buf);
1487 else
1489 /* Registers are 32-bit. Toss any sign-extension of the stack
1490 pointer. */
1491 sp &= 0xffffffffUL;
1493 /* Clear out the top half of the temporary buffer, and put the
1494 register value in the bottom half if we're in 64-bit mode. */
1495 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1497 memset (buf, 0, 4);
1498 offset = 4;
1501 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1503 if (regnum == i || regnum == -1)
1505 target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1506 buf + offset, 4);
1508 /* Handle StackGhost. */
1509 if (i == SPARC_I7_REGNUM)
1511 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1512 ULONGEST i7;
1514 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1515 store_unsigned_integer (buf + offset, 4, byte_order,
1516 i7 ^ wcookie);
1519 regcache_raw_supply (regcache, i, buf);
1525 void
1526 sparc_collect_rwindow (const struct regcache *regcache,
1527 CORE_ADDR sp, int regnum)
1529 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1531 int offset = 0;
1532 gdb_byte buf[8];
1533 int i;
1535 if (sp & 1)
1537 /* Registers are 64-bit. */
1538 sp += BIAS;
1540 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1542 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1544 regcache_raw_collect (regcache, i, buf);
1546 /* Handle StackGhost. */
1547 if (i == SPARC_I7_REGNUM)
1549 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1550 ULONGEST i7;
1552 i7 = extract_unsigned_integer (buf + offset, 8, byte_order);
1553 store_unsigned_integer (buf, 8, byte_order, i7 ^ wcookie);
1556 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
1560 else
1562 /* Registers are 32-bit. Toss any sign-extension of the stack
1563 pointer. */
1564 sp &= 0xffffffffUL;
1566 /* Only use the bottom half if we're in 64-bit mode. */
1567 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1568 offset = 4;
1570 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1572 if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
1574 regcache_raw_collect (regcache, i, buf);
1576 /* Handle StackGhost. */
1577 if (i == SPARC_I7_REGNUM)
1579 ULONGEST wcookie = sparc_fetch_wcookie (gdbarch);
1580 ULONGEST i7;
1582 i7 = extract_unsigned_integer (buf + offset, 4, byte_order);
1583 store_unsigned_integer (buf + offset, 4, byte_order,
1584 i7 ^ wcookie);
1587 target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
1588 buf + offset, 4);
1594 /* Helper functions for dealing with register sets. */
1596 void
1597 sparc32_supply_gregset (const struct sparc_gregset *gregset,
1598 struct regcache *regcache,
1599 int regnum, const void *gregs)
1601 const gdb_byte *regs = gregs;
1602 int i;
1604 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1605 regcache_raw_supply (regcache, SPARC32_PSR_REGNUM,
1606 regs + gregset->r_psr_offset);
1608 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1609 regcache_raw_supply (regcache, SPARC32_PC_REGNUM,
1610 regs + gregset->r_pc_offset);
1612 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1613 regcache_raw_supply (regcache, SPARC32_NPC_REGNUM,
1614 regs + gregset->r_npc_offset);
1616 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1617 regcache_raw_supply (regcache, SPARC32_Y_REGNUM,
1618 regs + gregset->r_y_offset);
1620 if (regnum == SPARC_G0_REGNUM || regnum == -1)
1621 regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL);
1623 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1625 int offset = gregset->r_g1_offset;
1627 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1629 if (regnum == i || regnum == -1)
1630 regcache_raw_supply (regcache, i, regs + offset);
1631 offset += 4;
1635 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1637 /* Not all of the register set variants include Locals and
1638 Inputs. For those that don't, we read them off the stack. */
1639 if (gregset->r_l0_offset == -1)
1641 ULONGEST sp;
1643 regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp);
1644 sparc_supply_rwindow (regcache, sp, regnum);
1646 else
1648 int offset = gregset->r_l0_offset;
1650 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1652 if (regnum == i || regnum == -1)
1653 regcache_raw_supply (regcache, i, regs + offset);
1654 offset += 4;
1660 void
1661 sparc32_collect_gregset (const struct sparc_gregset *gregset,
1662 const struct regcache *regcache,
1663 int regnum, void *gregs)
1665 gdb_byte *regs = gregs;
1666 int i;
1668 if (regnum == SPARC32_PSR_REGNUM || regnum == -1)
1669 regcache_raw_collect (regcache, SPARC32_PSR_REGNUM,
1670 regs + gregset->r_psr_offset);
1672 if (regnum == SPARC32_PC_REGNUM || regnum == -1)
1673 regcache_raw_collect (regcache, SPARC32_PC_REGNUM,
1674 regs + gregset->r_pc_offset);
1676 if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
1677 regcache_raw_collect (regcache, SPARC32_NPC_REGNUM,
1678 regs + gregset->r_npc_offset);
1680 if (regnum == SPARC32_Y_REGNUM || regnum == -1)
1681 regcache_raw_collect (regcache, SPARC32_Y_REGNUM,
1682 regs + gregset->r_y_offset);
1684 if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1)
1686 int offset = gregset->r_g1_offset;
1688 /* %g0 is always zero. */
1689 for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++)
1691 if (regnum == i || regnum == -1)
1692 regcache_raw_collect (regcache, i, regs + offset);
1693 offset += 4;
1697 if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1)
1699 /* Not all of the register set variants include Locals and
1700 Inputs. For those that don't, we read them off the stack. */
1701 if (gregset->r_l0_offset != -1)
1703 int offset = gregset->r_l0_offset;
1705 for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
1707 if (regnum == i || regnum == -1)
1708 regcache_raw_collect (regcache, i, regs + offset);
1709 offset += 4;
1715 void
1716 sparc32_supply_fpregset (struct regcache *regcache,
1717 int regnum, const void *fpregs)
1719 const gdb_byte *regs = fpregs;
1720 int i;
1722 for (i = 0; i < 32; i++)
1724 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1725 regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1728 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1729 regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1732 void
1733 sparc32_collect_fpregset (const struct regcache *regcache,
1734 int regnum, void *fpregs)
1736 gdb_byte *regs = fpregs;
1737 int i;
1739 for (i = 0; i < 32; i++)
1741 if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1)
1742 regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4));
1745 if (regnum == SPARC32_FSR_REGNUM || regnum == -1)
1746 regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4);
1750 /* SunOS 4. */
1752 /* From <machine/reg.h>. */
1753 const struct sparc_gregset sparc32_sunos4_gregset =
1755 0 * 4, /* %psr */
1756 1 * 4, /* %pc */
1757 2 * 4, /* %npc */
1758 3 * 4, /* %y */
1759 -1, /* %wim */
1760 -1, /* %tbr */
1761 4 * 4, /* %g1 */
1762 -1 /* %l0 */
1766 /* Provide a prototype to silence -Wmissing-prototypes. */
1767 void _initialize_sparc_tdep (void);
1769 void
1770 _initialize_sparc_tdep (void)
1772 register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init);