1 /* tc-d30v.c -- Assembler code for the Mitsubishi D30V
2 Copyright (C) 1997-2023 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
19 Boston, MA 02110-1301, USA. */
22 #include "safe-ctype.h"
24 #include "opcode/d30v.h"
25 #include "dwarf2dbg.h"
27 const char comment_chars
[] = ";";
28 const char line_comment_chars
[] = "#";
29 const char line_separator_chars
[] = "";
30 const char *md_shortopts
= "OnNcC";
31 const char EXP_CHARS
[] = "eE";
32 const char FLT_CHARS
[] = "dD";
39 #define NOP_MULTIPLY 1
41 static int warn_nops
= 0;
42 static int Optimizing
= 0;
43 static int warn_register_name_conflicts
= 1;
49 typedef enum _exec_type
51 EXEC_UNKNOWN
, /* No order specified. */
52 EXEC_PARALLEL
, /* Done in parallel (FM=00). */
53 EXEC_SEQ
, /* Sequential (FM=01). */
54 EXEC_REVSEQ
/* Reverse sequential (FM=10). */
58 #define MAX_INSN_FIXUPS 5
66 bfd_reloc_code_real_type reloc
;
69 typedef struct _fixups
72 struct d30v_fixup fix
[MAX_INSN_FIXUPS
];
76 static Fixups FixUps
[2];
77 static Fixups
*fixups
;
79 /* Whether current and previous instruction are word multiply insns. */
80 static int cur_mul32_p
= 0;
81 static int prev_mul32_p
= 0;
83 /* The flag_explicitly_parallel is true iff the instruction being assembled
84 has been explicitly written as a parallel short-instruction pair by the
85 human programmer. It is used in parallel_ok () to distinguish between
86 those dangerous parallelizations attempted by the human, which are to be
87 allowed, and those attempted by the assembler, which are not. It is set
88 from md_assemble (). */
89 static int flag_explicitly_parallel
= 0;
90 static int flag_xp_state
= 0;
92 /* Whether current and previous left sub-instruction disables
93 execution of right sub-instruction. */
94 static int cur_left_kills_right_p
= 0;
95 static int prev_left_kills_right_p
= 0;
97 /* The known current alignment of the current section. */
98 static int d30v_current_align
;
99 static segT d30v_current_align_seg
;
101 /* The last seen label in the current section. This is used to auto-align
102 labels preceding instructions. */
103 static symbolS
*d30v_last_label
;
106 #define NOP_LEFT ((long long) NOP << 32)
107 #define NOP_RIGHT ((long long) NOP)
108 #define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT)
110 struct option md_longopts
[] =
112 {NULL
, no_argument
, NULL
, 0}
115 size_t md_longopts_size
= sizeof (md_longopts
);
117 /* Opcode hash table. */
118 static htab_t d30v_hash
;
120 /* Do a binary search of the pre_defined_registers array to see if
121 NAME is a valid register name. Return the register number from the
122 array on success, or -1 on failure. */
125 reg_name_search (char *name
)
127 int middle
, low
, high
;
131 high
= reg_name_cnt () - 1;
135 middle
= (low
+ high
) / 2;
136 cmp
= strcasecmp (name
, pre_defined_registers
[middle
].name
);
143 if (symbol_find (name
) != NULL
)
145 if (warn_register_name_conflicts
)
146 as_warn (_("Register name %s conflicts with symbol of the same name"),
150 return pre_defined_registers
[middle
].value
;
158 /* Check the string at input_line_pointer to see if it is a valid
162 register_name (expressionS
*expressionP
)
165 char c
, *p
= input_line_pointer
;
167 while (*p
&& *p
!= '\n' && *p
!= '\r' && *p
!= ',' && *p
!= ' ' && *p
!= ')')
174 /* Look to see if it's in the register table. */
175 reg_number
= reg_name_search (input_line_pointer
);
178 expressionP
->X_op
= O_register
;
179 /* Temporarily store a pointer to the string here. */
180 expressionP
->X_op_symbol
= (symbolS
*) input_line_pointer
;
181 expressionP
->X_add_number
= reg_number
;
182 input_line_pointer
= p
;
191 check_range (unsigned long num
, int bits
, int flags
)
195 /* Don't bother checking 32-bit values. */
198 if (sizeof (unsigned long) * CHAR_BIT
== 32)
201 /* We don't record signed or unsigned for 32-bit quantities.
203 min
= -((unsigned long) 1 << (bits
- 1));
204 max
= ((unsigned long) 1 << bits
) - 1;
205 return (long) num
< min
|| (long) num
> max
;
208 if (flags
& OPERAND_SHIFT
)
210 /* We know that all shifts are right by three bits. */
213 if (flags
& OPERAND_SIGNED
)
215 unsigned long sign_bit
= ((unsigned long) -1L >> 4) + 1;
216 num
= (num
^ sign_bit
) - sign_bit
;
220 if (flags
& OPERAND_SIGNED
)
222 max
= ((unsigned long) 1 << (bits
- 1)) - 1;
223 min
= - ((unsigned long) 1 << (bits
- 1));
224 return (long) num
> max
|| (long) num
< min
;
228 max
= ((unsigned long) 1 << bits
) - 1;
229 return num
> (unsigned long) max
;
234 md_show_usage (FILE *stream
)
236 fprintf (stream
, _("\nD30V options:\n\
237 -O Make adjacent short instructions parallel if possible.\n\
238 -n Warn about all NOPs inserted by the assembler.\n\
239 -N Warn about NOPs inserted after word multiplies.\n\
240 -c Warn about symbols whose names match register names.\n\
241 -C Opposite of -C. -c is the default.\n"));
245 md_parse_option (int c
, const char *arg ATTRIBUTE_UNUSED
)
249 /* Optimize. Will attempt to parallelize operations. */
254 /* Warn about all NOPS that the assembler inserts. */
259 /* Warn about the NOPS that the assembler inserts because of the
262 warn_nops
= NOP_MULTIPLY
;
266 warn_register_name_conflicts
= 1;
270 warn_register_name_conflicts
= 0;
280 md_undefined_symbol (char *name ATTRIBUTE_UNUSED
)
286 md_atof (int type
, char *litP
, int *sizeP
)
288 return ieee_md_atof (type
, litP
, sizeP
, true);
292 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
,
293 asection
*sec ATTRIBUTE_UNUSED
,
294 fragS
*fragP ATTRIBUTE_UNUSED
)
300 md_section_align (asection
*seg
, valueT addr
)
302 int align
= bfd_section_alignment (seg
);
303 return ((addr
+ (1 << align
) - 1) & -(1 << align
));
309 struct d30v_opcode
*opcode
;
310 d30v_hash
= str_htab_create ();
312 /* Insert opcode names into a hash table. */
313 for (opcode
= (struct d30v_opcode
*) d30v_opcode_table
; opcode
->name
; opcode
++)
314 str_hash_insert (d30v_hash
, opcode
->name
, opcode
, 0);
317 FixUps
[0].next
= &FixUps
[1];
318 FixUps
[1].next
= &FixUps
[0];
320 d30v_current_align_seg
= now_seg
;
323 /* Remove the postincrement or postdecrement operator ( '+' or '-' )
324 from an expression. */
329 while (*p
!= '-' && *p
!= '+')
331 if (*p
== 0 || *p
== '\n' || *p
== '\r' || *p
== ' ' || *p
== ',')
351 static bfd_reloc_code_real_type
352 get_reloc (const struct d30v_operand
*op
, int rel_flag
)
357 if (op
->flags
& OPERAND_SHIFT
)
358 return BFD_RELOC_D30V_9_PCREL
;
360 return BFD_RELOC_D30V_6
;
363 if (!(op
->flags
& OPERAND_SHIFT
))
364 as_warn (_("unexpected 12-bit reloc type"));
365 if (rel_flag
== RELOC_PCREL
)
366 return BFD_RELOC_D30V_15_PCREL
;
368 return BFD_RELOC_D30V_15
;
370 if (!(op
->flags
& OPERAND_SHIFT
))
371 as_warn (_("unexpected 18-bit reloc type"));
372 if (rel_flag
== RELOC_PCREL
)
373 return BFD_RELOC_D30V_21_PCREL
;
375 return BFD_RELOC_D30V_21
;
377 if (rel_flag
== RELOC_PCREL
)
378 return BFD_RELOC_D30V_32_PCREL
;
380 return BFD_RELOC_D30V_32
;
386 /* Parse a string of operands and return an array of expressions. */
389 get_operands (expressionS exp
[], int cmp_hack
)
391 char *p
= input_line_pointer
;
397 exp
[numops
].X_op
= O_absent
;
398 exp
[numops
++].X_add_number
= cmp_hack
- 1;
403 while (*p
== ' ' || *p
== '\t' || *p
== ',')
406 if (*p
== 0 || *p
== '\n' || *p
== '\r')
412 exp
[numops
].X_op
= O_absent
;
416 exp
[numops
].X_add_number
= OPERAND_ATPAR
;
422 exp
[numops
].X_add_number
= OPERAND_ATMINUS
;
426 exp
[numops
].X_add_number
= OPERAND_ATSIGN
;
435 /* Just skip the trailing paren. */
440 input_line_pointer
= p
;
442 /* Check to see if it might be a register name. */
443 if (!register_name (&exp
[numops
]))
445 /* Parse as an expression. */
446 expression (&exp
[numops
]);
449 if (exp
[numops
].X_op
== O_illegal
)
450 as_bad (_("illegal operand"));
451 else if (exp
[numops
].X_op
== O_absent
)
452 as_bad (_("missing operand"));
455 p
= input_line_pointer
;
460 /* Postdecrement mode. */
461 exp
[numops
].X_op
= O_absent
;
462 exp
[numops
++].X_add_number
= OPERAND_MINUS
;
465 /* Postincrement mode. */
466 exp
[numops
].X_op
= O_absent
;
467 exp
[numops
++].X_add_number
= OPERAND_PLUS
;
473 exp
[numops
].X_op
= 0;
478 /* Generate the instruction.
479 It does everything but write the FM bits. */
482 build_insn (struct d30v_insn
*opcode
, expressionS
*opers
)
484 int i
, bits
, shift
, flags
;
485 unsigned long number
, id
= 0;
487 struct d30v_opcode
*op
= opcode
->op
;
488 struct d30v_format
*form
= opcode
->form
;
491 opcode
->ecc
<< 28 | op
->op1
<< 25 | op
->op2
<< 20 | form
->modifier
<< 18;
493 for (i
= 0; form
->operands
[i
]; i
++)
495 flags
= d30v_operand_table
[form
->operands
[i
]].flags
;
497 /* Must be a register or number. */
498 if (!(flags
& OPERAND_REG
) && !(flags
& OPERAND_NUM
)
499 && !(flags
& OPERAND_NAME
) && !(flags
& OPERAND_SPECIAL
))
502 bits
= d30v_operand_table
[form
->operands
[i
]].bits
;
503 if (flags
& OPERAND_SHIFT
)
506 shift
= 12 - d30v_operand_table
[form
->operands
[i
]].position
;
507 if (opers
[i
].X_op
!= O_symbol
)
508 number
= opers
[i
].X_add_number
;
511 if (flags
& OPERAND_REG
)
513 /* Check for mvfsys or mvtsys control registers. */
514 if (flags
& OPERAND_CONTROL
&& (number
& 0x7f) > MAX_CONTROL_REG
)
517 id
= (number
& 0x7f) - MAX_CONTROL_REG
;
520 else if (number
& OPERAND_FLAG
)
521 /* NUMBER is a flag register. */
526 else if (flags
& OPERAND_SPECIAL
)
529 if (opers
[i
].X_op
!= O_register
&& opers
[i
].X_op
!= O_constant
530 && !(flags
& OPERAND_NAME
))
532 /* Now create a fixup. */
533 if (fixups
->fc
>= MAX_INSN_FIXUPS
)
534 as_fatal (_("too many fixups"));
536 fixups
->fix
[fixups
->fc
].reloc
=
537 get_reloc (d30v_operand_table
+ form
->operands
[i
], op
->reloc_flag
);
538 fixups
->fix
[fixups
->fc
].size
= 4;
539 fixups
->fix
[fixups
->fc
].exp
= opers
[i
];
540 fixups
->fix
[fixups
->fc
].operand
= form
->operands
[i
];
541 if (fixups
->fix
[fixups
->fc
].reloc
== BFD_RELOC_D30V_9_PCREL
)
542 fixups
->fix
[fixups
->fc
].pcrel
= RELOC_PCREL
;
544 fixups
->fix
[fixups
->fc
].pcrel
= op
->reloc_flag
;
548 /* Truncate to the proper number of bits. */
549 if ((opers
[i
].X_op
== O_constant
) && check_range (number
, bits
, flags
))
550 as_bad (_("operand out of range: %ld"), number
);
552 number
&= 0x7FFFFFFF >> (31 - bits
);
553 if (flags
& OPERAND_SHIFT
)
557 /* It's a LONG instruction. */
558 insn
|= ((number
& 0xffffffff) >> 26); /* Top 6 bits. */
559 insn
<<= 32; /* Shift the first word over. */
560 insn
|= ((number
& 0x03FC0000) << 2); /* Next 8 bits. */
561 insn
|= number
& 0x0003FFFF; /* Bottom 18 bits. */
564 insn
|= number
<< shift
;
571 d30v_number_to_chars (char *buf
, /* Return 'nbytes' of chars here. */
572 long long value
, /* The value of the bits. */
573 int n
) /* Number of bytes in the output. */
577 buf
[n
] = value
& 0xff;
582 /* Write out a long form instruction. */
585 write_long (struct d30v_insn
*opcode ATTRIBUTE_UNUSED
,
590 char *f
= frag_more (8);
592 dwarf2_emit_insn (8);
594 d30v_number_to_chars (f
, insn
, 8);
596 for (i
= 0; i
< fx
->fc
; i
++)
598 if (fx
->fix
[i
].reloc
)
600 where
= f
- frag_now
->fr_literal
;
601 fix_new_exp (frag_now
, where
, fx
->fix
[i
].size
, &(fx
->fix
[i
].exp
),
602 fx
->fix
[i
].pcrel
, fx
->fix
[i
].reloc
);
609 /* Write out a short form instruction by itself. */
612 write_1_short (struct d30v_insn
*opcode
,
617 char *f
= frag_more (8);
620 dwarf2_emit_insn (8);
621 if (warn_nops
== NOP_ALL
)
622 as_warn (_("%s NOP inserted"), use_sequential
?
623 _("sequential") : _("parallel"));
625 /* The other container needs to be NOP. */
628 /* Use a sequential NOP rather than a parallel one,
629 as the current instruction is a FLAG_MUL32 type one
630 and the next instruction is a load. */
632 /* According to 4.3.1: for FM=01, sub-instructions performed
633 only by IU cannot be encoded in L-container. */
634 if (opcode
->op
->unit
== IU
)
635 /* Right then left. */
636 insn
|= FM10
| NOP_LEFT
;
638 /* Left then right. */
639 insn
= FM01
| (insn
<< 32) | NOP_RIGHT
;
643 /* According to 4.3.1: for FM=00, sub-instructions performed
644 only by IU cannot be encoded in L-container. */
645 if (opcode
->op
->unit
== IU
)
646 /* Right container. */
647 insn
|= FM00
| NOP_LEFT
;
649 /* Left container. */
650 insn
= FM00
| (insn
<< 32) | NOP_RIGHT
;
653 d30v_number_to_chars (f
, insn
, 8);
655 for (i
= 0; i
< fx
->fc
; i
++)
657 if (fx
->fix
[i
].reloc
)
659 where
= f
- frag_now
->fr_literal
;
660 fix_new_exp (frag_now
,
672 /* Check 2 instructions and determine if they can be safely
673 executed in parallel. Return 1 if they can be. */
676 parallel_ok (struct d30v_insn
*op1
,
678 struct d30v_insn
*op2
,
680 exec_type_enum exec_type
)
682 int i
, j
, shift
, regno
, bits
, ecc
;
683 unsigned long flags
, mask
, flags_set1
, flags_set2
, flags_used1
, flags_used2
;
684 unsigned long ins
, mod_reg
[2][3], used_reg
[2][3], flag_reg
[2];
685 struct d30v_format
*f
;
686 struct d30v_opcode
*op
;
688 /* Section 4.3: Both instructions must not be IU or MU only. */
689 if ((op1
->op
->unit
== IU
&& op2
->op
->unit
== IU
)
690 || (op1
->op
->unit
== MU
&& op2
->op
->unit
== MU
))
693 /* First instruction must not be a jump to safely optimize, unless this
694 is an explicit parallel operation. */
695 if (exec_type
!= EXEC_PARALLEL
696 && (op1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
)))
699 /* If one instruction is /TX or /XT and the other is /FX or /XF respectively,
700 then it is safe to allow the two to be done as parallel ops, since only
701 one will ever be executed at a time. */
702 if ((op1
->ecc
== ECC_TX
&& op2
->ecc
== ECC_FX
)
703 || (op1
->ecc
== ECC_FX
&& op2
->ecc
== ECC_TX
)
704 || (op1
->ecc
== ECC_XT
&& op2
->ecc
== ECC_XF
)
705 || (op1
->ecc
== ECC_XF
&& op2
->ecc
== ECC_XT
))
710 [2] a0, a1, flag registers. */
711 for (j
= 0; j
< 2; j
++)
729 mod_reg
[j
][0] = mod_reg
[j
][1] = 0;
730 used_reg
[j
][0] = used_reg
[j
][1] = 0;
732 if (flag_explicitly_parallel
)
734 /* For human specified parallel instructions we have been asked
735 to ignore the possibility that both instructions could modify
736 bits in the PSW, so we initialise the mod & used arrays to 0.
737 We have been asked, however, to refuse to allow parallel
738 instructions which explicitly set the same flag register,
739 eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test
740 for the use of a flag register and set a bit in the mod or used
741 array appropriately. */
747 mod_reg
[j
][2] = (op
->flags_set
& FLAG_ALL
);
748 used_reg
[j
][2] = (op
->flags_used
& FLAG_ALL
);
751 /* BSR/JSR always sets R62. */
752 if (op
->flags_used
& FLAG_JSR
)
753 mod_reg
[j
][1] = (1L << (62 - 32));
755 /* Conditional execution affects the flags_used. */
760 used_reg
[j
][2] |= flag_reg
[j
] = FLAG_0
;
765 used_reg
[j
][2] |= flag_reg
[j
] = FLAG_1
;
770 used_reg
[j
][2] |= flag_reg
[j
] = (FLAG_0
| FLAG_1
);
774 for (i
= 0; f
->operands
[i
]; i
++)
776 flags
= d30v_operand_table
[f
->operands
[i
]].flags
;
777 shift
= 12 - d30v_operand_table
[f
->operands
[i
]].position
;
778 bits
= d30v_operand_table
[f
->operands
[i
]].bits
;
782 mask
= 0x7FFFFFFF >> (31 - bits
);
784 if ((flags
& OPERAND_PLUS
) || (flags
& OPERAND_MINUS
))
786 /* This is a post-increment or post-decrement.
787 The previous register needs to be marked as modified. */
788 shift
= 12 - d30v_operand_table
[f
->operands
[i
- 1]].position
;
789 regno
= (ins
>> shift
) & 0x3f;
791 mod_reg
[j
][1] |= 1L << (regno
- 32);
793 mod_reg
[j
][0] |= 1L << regno
;
795 else if (flags
& OPERAND_REG
)
797 regno
= (ins
>> shift
) & mask
;
798 /* The memory write functions don't have a destination
800 if ((flags
& OPERAND_DEST
) && !(op
->flags_set
& FLAG_MEM
))
802 /* MODIFIED registers and flags. */
803 if (flags
& OPERAND_ACC
)
806 mod_reg
[j
][2] |= FLAG_A0
;
808 mod_reg
[j
][2] |= FLAG_A1
;
812 else if (flags
& OPERAND_FLAG
)
813 mod_reg
[j
][2] |= 1L << regno
;
814 else if (!(flags
& OPERAND_CONTROL
))
818 /* Need to check if there are two destination
819 registers, for example ld2w. */
820 if (flags
& OPERAND_2REG
)
825 for (r
= regno
; r
<= regno
+ z
; r
++)
828 mod_reg
[j
][1] |= 1L << (r
- 32);
830 mod_reg
[j
][0] |= 1L << r
;
836 /* USED, but not modified registers and flags. */
837 if (flags
& OPERAND_ACC
)
840 used_reg
[j
][2] |= FLAG_A0
;
842 used_reg
[j
][2] |= FLAG_A1
;
846 else if (flags
& OPERAND_FLAG
)
847 used_reg
[j
][2] |= 1L << regno
;
848 else if (!(flags
& OPERAND_CONTROL
))
852 /* Need to check if there are two source
853 registers, for example st2w. */
854 if (flags
& OPERAND_2REG
)
859 for (r
= regno
; r
<= regno
+ z
; r
++)
862 used_reg
[j
][1] |= 1UL << (r
- 32);
864 used_reg
[j
][0] |= 1UL << r
;
872 flags_set1
= op1
->op
->flags_set
;
873 flags_set2
= op2
->op
->flags_set
;
874 flags_used1
= op1
->op
->flags_used
;
875 flags_used2
= op2
->op
->flags_used
;
877 /* Check for illegal combinations with ADDppp/SUBppp. */
878 if (((flags_set1
& FLAG_NOT_WITH_ADDSUBppp
) != 0
879 && (flags_used2
& FLAG_ADDSUBppp
) != 0)
880 || ((flags_set2
& FLAG_NOT_WITH_ADDSUBppp
) != 0
881 && (flags_used1
& FLAG_ADDSUBppp
) != 0))
884 /* Load instruction combined with half-word multiply is illegal. */
885 if (((flags_used1
& FLAG_MEM
) != 0 && (flags_used2
& FLAG_MUL16
))
886 || ((flags_used2
& FLAG_MEM
) != 0 && (flags_used1
& FLAG_MUL16
)))
889 /* Specifically allow add || add by removing carry, overflow bits dependency.
890 This is safe, even if an addc follows since the IU takes the argument in
891 the right container, and it writes its results last.
892 However, don't paralellize add followed by addc or sub followed by
894 if (mod_reg
[0][2] == FLAG_CVVA
&& mod_reg
[1][2] == FLAG_CVVA
895 && (used_reg
[0][2] & ~flag_reg
[0]) == 0
896 && (used_reg
[1][2] & ~flag_reg
[1]) == 0
897 && op1
->op
->unit
== EITHER
&& op2
->op
->unit
== EITHER
)
899 mod_reg
[0][2] = mod_reg
[1][2] = 0;
902 for (j
= 0; j
< 3; j
++)
904 /* If the second instruction depends on the first, we obviously
905 cannot parallelize. Note, the mod flag implies use, so
906 check that as well. */
907 /* If flag_explicitly_parallel is set, then the case of the
908 second instruction using a register the first instruction
909 modifies is assumed to be okay; we trust the human. We
910 don't trust the human if both instructions modify the same
911 register but we do trust the human if they modify the same
913 /* We have now been requested not to trust the human if the
914 instructions modify the same flag registers either. */
915 if (flag_explicitly_parallel
)
917 if ((mod_reg
[0][j
] & mod_reg
[1][j
]) != 0)
921 if ((mod_reg
[0][j
] & (mod_reg
[1][j
] | used_reg
[1][j
])) != 0)
928 /* Write out a short form instruction if possible.
929 Return number of instructions not written out. */
932 write_2_short (struct d30v_insn
*opcode1
,
934 struct d30v_insn
*opcode2
,
936 exec_type_enum exec_type
,
939 long long insn
= NOP2
;
943 if (exec_type
== EXEC_SEQ
944 && (opcode1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
))
945 && ((opcode1
->op
->flags_used
& FLAG_DELAY
) == 0)
946 && ((opcode1
->ecc
== ECC_AL
) || ! Optimizing
))
948 /* Unconditional, non-delayed branches kill instructions in
949 the right bin. Conditional branches don't always but if
950 we are not optimizing, then we have been asked to produce
951 an error about such constructs. For the purposes of this
952 test, subroutine calls are considered to be branches. */
953 write_1_short (opcode1
, insn1
, fx
->next
, false);
957 /* Note: we do not have to worry about subroutine calls occurring
958 in the right hand container. The return address is always
959 aligned to the next 64 bit boundary, be that 64 or 32 bit away. */
962 case EXEC_UNKNOWN
: /* Order not specified. */
964 && parallel_ok (opcode1
, insn1
, opcode2
, insn2
, exec_type
)
965 && ! ( (opcode1
->op
->unit
== EITHER_BUT_PREFER_MU
966 || opcode1
->op
->unit
== MU
)
968 ( opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
969 || opcode2
->op
->unit
== MU
)))
972 exec_type
= EXEC_PARALLEL
;
974 if (opcode1
->op
->unit
== IU
975 || opcode2
->op
->unit
== MU
976 || opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
977 insn
= FM00
| (insn2
<< 32) | insn1
;
980 insn
= FM00
| (insn1
<< 32) | insn2
;
984 else if ((opcode1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
)
985 && ((opcode1
->op
->flags_used
& FLAG_DELAY
) == 0))
986 || opcode1
->op
->flags_used
& FLAG_RP
)
988 /* We must emit (non-delayed) branch type instructions
989 on their own with nothing in the right container. */
990 /* We must treat repeat instructions likewise, since the
991 following instruction has to be separate from the repeat
992 in order to be repeated. */
993 write_1_short (opcode1
, insn1
, fx
->next
, false);
996 else if (prev_left_kills_right_p
)
998 /* The left instruction kills the right slot, so we
999 must leave it empty. */
1000 write_1_short (opcode1
, insn1
, fx
->next
, false);
1003 else if (opcode1
->op
->unit
== IU
)
1005 if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
1007 /* Case 103810 is a request from Mitsubishi that opcodes
1008 with EITHER_BUT_PREFER_MU should not be executed in
1009 reverse sequential order. */
1010 write_1_short (opcode1
, insn1
, fx
->next
, false);
1014 /* Reverse sequential. */
1015 insn
= FM10
| (insn2
<< 32) | insn1
;
1016 exec_type
= EXEC_REVSEQ
;
1021 insn
= FM01
| (insn1
<< 32) | insn2
;
1023 exec_type
= EXEC_SEQ
;
1027 case EXEC_PARALLEL
: /* Parallel. */
1028 flag_explicitly_parallel
= flag_xp_state
;
1029 if (! parallel_ok (opcode1
, insn1
, opcode2
, insn2
, exec_type
))
1030 as_bad (_("Instructions may not be executed in parallel"));
1031 else if (opcode1
->op
->unit
== IU
)
1033 if (opcode2
->op
->unit
== IU
)
1034 as_bad (_("Two IU instructions may not be executed in parallel"));
1035 as_warn (_("Swapping instruction order"));
1036 insn
= FM00
| (insn2
<< 32) | insn1
;
1038 else if (opcode2
->op
->unit
== MU
)
1040 if (opcode1
->op
->unit
== MU
)
1041 as_bad (_("Two MU instructions may not be executed in parallel"));
1042 else if (opcode1
->op
->unit
== EITHER_BUT_PREFER_MU
)
1043 as_warn (_("Executing %s in IU may not work"), opcode1
->op
->name
);
1044 as_warn (_("Swapping instruction order"));
1045 insn
= FM00
| (insn2
<< 32) | insn1
;
1049 if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
1050 as_warn (_("Executing %s in IU may not work in parallel execution"),
1053 insn
= FM00
| (insn1
<< 32) | insn2
;
1056 flag_explicitly_parallel
= 0;
1059 case EXEC_SEQ
: /* Sequential. */
1060 if (opcode1
->op
->unit
== IU
)
1061 as_bad (_("IU instruction may not be in the left container"));
1062 if (prev_left_kills_right_p
)
1063 as_bad (_("special left instruction `%s' kills instruction "
1064 "`%s' in right container"),
1065 opcode1
->op
->name
, opcode2
->op
->name
);
1066 insn
= FM01
| (insn1
<< 32) | insn2
;
1070 case EXEC_REVSEQ
: /* Reverse sequential. */
1071 if (opcode2
->op
->unit
== MU
)
1072 as_bad (_("MU instruction may not be in the right container"));
1073 if (opcode1
->op
->unit
== EITHER_BUT_PREFER_MU
)
1074 as_warn (_("Executing %s in reverse serial with %s may not work"),
1075 opcode1
->op
->name
, opcode2
->op
->name
);
1076 else if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
1077 as_warn (_("Executing %s in IU in reverse serial may not work"),
1079 insn
= FM10
| (insn1
<< 32) | insn2
;
1084 as_fatal (_("unknown execution type passed to write_2_short()"));
1088 dwarf2_emit_insn (8);
1089 d30v_number_to_chars (f
, insn
, 8);
1091 /* If the previous instruction was a 32-bit multiply but it is put into a
1092 parallel container, mark the current instruction as being a 32-bit
1094 if (prev_mul32_p
&& exec_type
== EXEC_PARALLEL
)
1097 for (j
= 0; j
< 2; j
++)
1099 for (i
= 0; i
< fx
->fc
; i
++)
1101 if (fx
->fix
[i
].reloc
)
1103 where
= (f
- frag_now
->fr_literal
) + 4 * j
;
1105 fix_new_exp (frag_now
,
1121 /* Get a pointer to an entry in the format table.
1122 It must look at all formats for an opcode and use the operands
1123 to choose the correct one. Return NULL on error. */
1125 static struct d30v_format
*
1126 find_format (struct d30v_opcode
*opcode
,
1127 expressionS myops
[],
1131 int match
, opcode_index
, i
= 0, j
, k
;
1132 struct d30v_format
*fm
;
1137 /* Get all the operands and save them as expressions. */
1138 get_operands (myops
, cmp_hack
);
1140 while ((opcode_index
= opcode
->format
[i
++]) != 0)
1142 if (fsize
== FORCE_SHORT
&& opcode_index
>= LONG
)
1145 if (fsize
== FORCE_LONG
&& opcode_index
< LONG
)
1148 fm
= (struct d30v_format
*) &d30v_format_table
[opcode_index
];
1150 while (fm
->form
== opcode_index
)
1153 /* Now check the operands for compatibility. */
1154 for (j
= 0; match
&& fm
->operands
[j
]; j
++)
1156 int flags
= d30v_operand_table
[fm
->operands
[j
]].flags
;
1157 int bits
= d30v_operand_table
[fm
->operands
[j
]].bits
;
1158 operatorT X_op
= myops
[j
].X_op
;
1159 int num
= myops
[j
].X_add_number
;
1161 if (flags
& OPERAND_SPECIAL
)
1163 else if (X_op
== O_illegal
)
1165 else if (flags
& OPERAND_REG
)
1167 if (X_op
!= O_register
1168 || ((flags
& OPERAND_ACC
) && !(num
& OPERAND_ACC
))
1169 || (!(flags
& OPERAND_ACC
) && (num
& OPERAND_ACC
))
1170 || ((flags
& OPERAND_FLAG
) && !(num
& OPERAND_FLAG
))
1171 || (!(flags
& (OPERAND_FLAG
| OPERAND_CONTROL
)) && (num
& OPERAND_FLAG
))
1172 || ((flags
& OPERAND_CONTROL
)
1173 && !(num
& (OPERAND_CONTROL
| OPERAND_FLAG
))))
1176 else if (((flags
& OPERAND_MINUS
)
1177 && (X_op
!= O_absent
|| num
!= OPERAND_MINUS
))
1178 || ((flags
& OPERAND_PLUS
)
1179 && (X_op
!= O_absent
|| num
!= OPERAND_PLUS
))
1180 || ((flags
& OPERAND_ATMINUS
)
1181 && (X_op
!= O_absent
|| num
!= OPERAND_ATMINUS
))
1182 || ((flags
& OPERAND_ATPAR
)
1183 && (X_op
!= O_absent
|| num
!= OPERAND_ATPAR
))
1184 || ((flags
& OPERAND_ATSIGN
)
1185 && (X_op
!= O_absent
|| num
!= OPERAND_ATSIGN
)))
1187 else if (flags
& OPERAND_NUM
)
1189 /* A number can be a constant or symbol expression. */
1191 /* If we have found a register name, but that name
1192 also matches a symbol, then re-parse the name as
1194 if (X_op
== O_register
1195 && symbol_find ((char *) myops
[j
].X_op_symbol
))
1197 input_line_pointer
= (char *) myops
[j
].X_op_symbol
;
1198 expression (&myops
[j
]);
1201 /* Turn an expression into a symbol for later resolution. */
1202 if (X_op
!= O_absent
&& X_op
!= O_constant
1203 && X_op
!= O_symbol
&& X_op
!= O_register
1206 symbolS
*sym
= make_expr_symbol (&myops
[j
]);
1207 myops
[j
].X_op
= X_op
= O_symbol
;
1208 myops
[j
].X_add_symbol
= sym
;
1209 myops
[j
].X_add_number
= num
= 0;
1212 if (fm
->form
>= LONG
)
1214 /* If we're testing for a LONG format, either fits. */
1215 if (X_op
!= O_constant
&& X_op
!= O_symbol
)
1218 else if (fm
->form
< LONG
1219 && ((fsize
== FORCE_SHORT
&& X_op
== O_symbol
)
1220 || (fm
->form
== SHORT_D2
&& j
== 0)))
1223 /* This is the tricky part. Will the constant or symbol
1224 fit into the space in the current format? */
1225 else if (X_op
== O_constant
)
1227 if (check_range (num
, bits
, flags
))
1230 else if (X_op
== O_symbol
1231 && S_IS_DEFINED (myops
[j
].X_add_symbol
)
1232 && S_GET_SEGMENT (myops
[j
].X_add_symbol
) == now_seg
1233 && opcode
->reloc_flag
== RELOC_PCREL
)
1235 /* If the symbol is defined, see if the value will fit
1236 into the form we're considering. */
1240 /* Calculate the current address by running through the
1241 previous frags and adding our current offset. */
1242 value
= frag_now_fix_octets ();
1243 for (f
= frchain_now
->frch_root
; f
; f
= f
->fr_next
)
1244 value
+= f
->fr_fix
+ f
->fr_offset
;
1245 value
= S_GET_VALUE (myops
[j
].X_add_symbol
) - value
;
1246 if (check_range (value
, bits
, flags
))
1253 /* We're only done if the operands matched so far AND there
1254 are no more to check. */
1255 if (match
&& myops
[j
].X_op
== 0)
1257 /* Final check - issue a warning if an odd numbered register
1258 is used as the first register in an instruction that reads
1259 or writes 2 registers. */
1261 for (j
= 0; fm
->operands
[j
]; j
++)
1262 if (myops
[j
].X_op
== O_register
1263 && (myops
[j
].X_add_number
& 1)
1264 && (d30v_operand_table
[fm
->operands
[j
]].flags
& OPERAND_2REG
))
1265 as_warn (_("Odd numbered register used as target of multi-register instruction"));
1269 fm
= (struct d30v_format
*) &d30v_format_table
[++k
];
1275 /* Assemble a single instruction and return an opcode.
1276 Return -1 (an invalid opcode) on error. */
1278 #define NAME_BUF_LEN 20
1281 do_assemble (char *str
,
1282 struct d30v_insn
*opcode
,
1289 char name
[NAME_BUF_LEN
];
1292 int fsize
= (shortp
? FORCE_SHORT
: 0);
1293 expressionS myops
[6];
1296 /* Drop leading whitespace. */
1300 /* Find the opcode end. */
1301 for (op_start
= op_end
= str
;
1303 && nlen
< (NAME_BUF_LEN
- 1)
1305 && !is_end_of_line
[(unsigned char) *op_end
] && *op_end
!= ' ';
1308 name
[nlen
] = TOLOWER (op_start
[nlen
]);
1317 /* If there is an execution condition code, handle it. */
1321 while ((i
< ECC_MAX
) && strncasecmp (d30v_ecc_names
[i
], op_end
+ 1, 2))
1327 strncpy (tmp
, op_end
+ 1, 2);
1329 as_bad (_("unknown condition code: %s"), tmp
);
1336 opcode
->ecc
= ECC_AL
;
1338 /* CMP and CMPU change their name based on condition codes. */
1339 if (startswith (name
, "cmp"))
1342 char **d30v_str
= (char **) d30v_cc_names
;
1349 for (i
= 1; *d30v_str
&& strncmp (*d30v_str
, &name
[p
], 2); i
++, d30v_str
++)
1352 /* cmpu only supports some condition codes. */
1358 as_bad (_("cmpu doesn't support condition code %s"), &name
[p
]);
1365 as_bad (_("unknown condition code: %s"), &name
[p
]);
1374 /* Need to look for .s or .l. */
1375 if (name
[nlen
- 2] == '.')
1377 switch (name
[nlen
- 1])
1380 fsize
= FORCE_SHORT
;
1389 /* Find the first opcode with the proper name. */
1390 opcode
->op
= (struct d30v_opcode
*) str_hash_find (d30v_hash
, name
);
1391 if (opcode
->op
== NULL
)
1393 as_bad (_("unknown opcode: %s"), name
);
1397 save
= input_line_pointer
;
1398 input_line_pointer
= op_end
;
1399 while (!(opcode
->form
= find_format (opcode
->op
, myops
, fsize
, cmp_hack
)))
1402 if (opcode
->op
->name
== NULL
|| strcmp (opcode
->op
->name
, name
))
1404 as_bad (_("operands for opcode `%s' do not match any valid format"),
1409 input_line_pointer
= save
;
1411 insn
= build_insn (opcode
, myops
);
1413 /* Propagate multiply status. */
1416 if (is_parallel
&& prev_mul32_p
)
1420 prev_mul32_p
= cur_mul32_p
;
1421 cur_mul32_p
= (opcode
->op
->flags_used
& FLAG_MUL32
) != 0;
1425 /* Propagate left_kills_right status. */
1428 prev_left_kills_right_p
= cur_left_kills_right_p
;
1430 if (opcode
->op
->flags_set
& FLAG_LKR
)
1432 cur_left_kills_right_p
= 1;
1434 if (strcmp (opcode
->op
->name
, "mvtsys") == 0)
1436 /* Left kills right for only mvtsys only for
1437 PSW/PSWH/PSWL/flags target. */
1438 if ((myops
[0].X_op
== O_register
) &&
1439 ((myops
[0].X_add_number
== OPERAND_CONTROL
) || /* psw */
1440 (myops
[0].X_add_number
== OPERAND_CONTROL
+MAX_CONTROL_REG
+2) || /* pswh */
1441 (myops
[0].X_add_number
== OPERAND_CONTROL
+MAX_CONTROL_REG
+1) || /* pswl */
1442 (myops
[0].X_add_number
== OPERAND_FLAG
+0) || /* f0 */
1443 (myops
[0].X_add_number
== OPERAND_FLAG
+1) || /* f1 */
1444 (myops
[0].X_add_number
== OPERAND_FLAG
+2) || /* f2 */
1445 (myops
[0].X_add_number
== OPERAND_FLAG
+3) || /* f3 */
1446 (myops
[0].X_add_number
== OPERAND_FLAG
+4) || /* f4 */
1447 (myops
[0].X_add_number
== OPERAND_FLAG
+5) || /* f5 */
1448 (myops
[0].X_add_number
== OPERAND_FLAG
+6) || /* f6 */
1449 (myops
[0].X_add_number
== OPERAND_FLAG
+7))) /* f7 */
1451 cur_left_kills_right_p
= 1;
1455 /* Other mvtsys target registers don't kill right
1457 cur_left_kills_right_p
= 0;
1462 cur_left_kills_right_p
= 0;
1468 /* Called internally to handle all alignment needs. This takes care
1469 of eliding calls to frag_align if'n the cached current alignment
1470 says we've already got it, as well as taking care of the auto-aligning
1474 d30v_align (int n
, char *pfill
, symbolS
*label
)
1476 /* The front end is prone to changing segments out from under us
1477 temporarily when -g is in effect. */
1478 int switched_seg_p
= (d30v_current_align_seg
!= now_seg
);
1480 /* Do not assume that if 'd30v_current_align >= n' and
1481 '! switched_seg_p' that it is safe to avoid performing
1482 this alignment request. The alignment of the current frag
1483 can be changed under our feet, for example by a .ascii
1484 directive in the source code. cf testsuite/gas/d30v/reloc.s */
1485 d30v_cleanup (false);
1490 && (bfd_section_flags (now_seg
) & SEC_CODE
) != 0)
1492 static char const nop
[4] = { 0x00, 0xf0, 0x00, 0x00 };
1494 /* First, make sure we're on a four-byte boundary, in case
1495 someone has been putting .byte values the text section. */
1496 if (d30v_current_align
< 2 || switched_seg_p
)
1497 frag_align (2, 0, 0);
1498 frag_align_pattern (n
, nop
, sizeof nop
, 0);
1501 frag_align (n
, 0, 0);
1504 frag_align (n
, *pfill
, 0);
1506 if (!switched_seg_p
)
1507 d30v_current_align
= n
;
1512 int label_seen
= false;
1513 struct frag
*old_frag
;
1517 gas_assert (S_GET_SEGMENT (label
) == now_seg
);
1519 old_frag
= symbol_get_frag (label
);
1520 old_value
= S_GET_VALUE (label
);
1521 new_value
= (valueT
) frag_now_fix ();
1523 /* It is possible to have more than one label at a particular
1524 address, especially if debugging is enabled, so we must
1525 take care to adjust all the labels at this address in this
1526 fragment. To save time we search from the end of the symbol
1527 list, backwards, since the symbols we are interested in are
1528 almost certainly the ones that were most recently added.
1529 Also to save time we stop searching once we have seen at least
1530 one matching label, and we encounter a label that is no longer
1531 in the target fragment. Note, this search is guaranteed to
1532 find at least one match when sym == label, so no special case
1533 code is necessary. */
1534 for (sym
= symbol_lastP
; sym
!= NULL
; sym
= symbol_previous (sym
))
1536 if (symbol_get_frag (sym
) == old_frag
1537 && S_GET_VALUE (sym
) == old_value
)
1540 symbol_set_frag (sym
, frag_now
);
1541 S_SET_VALUE (sym
, new_value
);
1543 else if (label_seen
&& symbol_get_frag (sym
) != old_frag
)
1548 record_alignment (now_seg
, n
);
1551 /* This is the main entry point for the machine-dependent assembler.
1552 STR points to a machine-dependent instruction. This function is
1553 supposed to emit the frags/bytes it assembles to. For the D30V, it
1554 mostly handles the special VLIW parsing and packing and leaves the
1555 difficult stuff to do_assemble (). */
1557 static long long prev_insn
= -1;
1558 static struct d30v_insn prev_opcode
;
1559 static subsegT prev_subseg
;
1560 static segT prev_seg
= 0;
1563 md_assemble (char *str
)
1565 struct d30v_insn opcode
;
1567 /* Execution type; parallel, etc. */
1568 exec_type_enum extype
= EXEC_UNKNOWN
;
1569 /* Saved extype. Used for multiline instructions. */
1570 static exec_type_enum etype
= EXEC_UNKNOWN
;
1573 if ((prev_insn
!= -1) && prev_seg
1574 && ((prev_seg
!= now_seg
) || (prev_subseg
!= now_subseg
)))
1575 d30v_cleanup (false);
1577 if (d30v_current_align
< 3)
1578 d30v_align (3, NULL
, d30v_last_label
);
1579 else if (d30v_current_align
> 3)
1580 d30v_current_align
= 3;
1581 d30v_last_label
= NULL
;
1583 flag_explicitly_parallel
= 0;
1585 if (etype
== EXEC_UNKNOWN
)
1587 /* Look for the special multiple instruction separators. */
1588 str2
= strstr (str
, "||");
1591 extype
= EXEC_PARALLEL
;
1596 str2
= strstr (str
, "->");
1601 str2
= strstr (str
, "<-");
1603 extype
= EXEC_REVSEQ
;
1607 /* STR2 points to the separator, if one. */
1612 /* If two instructions are present and we already have one saved,
1613 then first write it out. */
1614 d30v_cleanup (false);
1616 /* Assemble first instruction and save it. */
1617 prev_insn
= do_assemble (str
, &prev_opcode
, 1, 0);
1618 if (prev_insn
== -1)
1619 as_bad (_("Cannot assemble instruction"));
1620 if (prev_opcode
.form
!= NULL
&& prev_opcode
.form
->form
>= LONG
)
1621 as_bad (_("First opcode is long. Unable to mix instructions as specified."));
1622 fixups
= fixups
->next
;
1625 prev_subseg
= now_subseg
;
1629 insn
= do_assemble (str
, &opcode
,
1630 (extype
!= EXEC_UNKNOWN
|| etype
!= EXEC_UNKNOWN
),
1631 extype
== EXEC_PARALLEL
);
1634 if (extype
!= EXEC_UNKNOWN
)
1636 as_bad (_("Cannot assemble instruction"));
1640 if (etype
!= EXEC_UNKNOWN
)
1643 etype
= EXEC_UNKNOWN
;
1646 /* Word multiply instructions must not be followed by either a load or a
1647 16-bit multiply instruction in the next cycle. */
1648 if ( (extype
!= EXEC_REVSEQ
)
1650 && (opcode
.op
->flags_used
& (FLAG_MEM
| FLAG_MUL16
)))
1652 /* However, load and multiply should able to be combined in a parallel
1653 operation, so check for that first. */
1655 && (opcode
.op
->flags_used
& FLAG_MEM
)
1656 && opcode
.form
->form
< LONG
1657 && (extype
== EXEC_PARALLEL
|| (Optimizing
&& extype
== EXEC_UNKNOWN
))
1658 && parallel_ok (&prev_opcode
, (long) prev_insn
,
1659 &opcode
, (long) insn
, extype
)
1660 && write_2_short (&prev_opcode
, (long) prev_insn
,
1661 &opcode
, (long) insn
, extype
, fixups
) == 0)
1663 /* No instructions saved. */
1669 /* Can't parallelize, flush previous instruction and emit a
1670 word of NOPS, unless the previous instruction is a NOP,
1671 in which case just flush it, as this will generate a word
1674 if (prev_insn
!= -1 && (strcmp (prev_opcode
.op
->name
, "nop") == 0))
1675 d30v_cleanup (false);
1680 if (prev_insn
!= -1)
1681 d30v_cleanup (true);
1685 dwarf2_emit_insn (8);
1686 d30v_number_to_chars (f
, NOP2
, 8);
1688 if (warn_nops
== NOP_ALL
|| warn_nops
== NOP_MULTIPLY
)
1690 if (opcode
.op
->flags_used
& FLAG_MEM
)
1691 as_warn (_("word of NOPs added between word multiply and load"));
1693 as_warn (_("word of NOPs added between word multiply and 16-bit multiply"));
1698 extype
= EXEC_UNKNOWN
;
1701 else if ( (extype
== EXEC_REVSEQ
)
1703 && (prev_opcode
.op
->flags_used
& (FLAG_MEM
| FLAG_MUL16
)))
1705 /* Can't parallelize, flush current instruction and add a
1707 write_1_short (&opcode
, (long) insn
, fixups
->next
->next
, true);
1709 /* Make the previous instruction the current one. */
1710 extype
= EXEC_UNKNOWN
;
1713 now_subseg
= prev_subseg
;
1715 cur_mul32_p
= prev_mul32_p
;
1717 memcpy (&opcode
, &prev_opcode
, sizeof (prev_opcode
));
1720 /* If this is a long instruction, write it and any previous short
1722 if (opcode
.form
->form
>= LONG
)
1724 if (extype
!= EXEC_UNKNOWN
)
1725 as_bad (_("Instruction uses long version, so it cannot be mixed as specified"));
1726 d30v_cleanup (false);
1727 write_long (&opcode
, insn
, fixups
);
1730 else if ((prev_insn
!= -1)
1732 (&prev_opcode
, (long) prev_insn
, &opcode
,
1733 (long) insn
, extype
, fixups
) == 0))
1735 /* No instructions saved. */
1740 if (extype
!= EXEC_UNKNOWN
)
1741 as_bad (_("Unable to mix instructions as specified"));
1743 /* Save off last instruction so it may be packed on next pass. */
1744 memcpy (&prev_opcode
, &opcode
, sizeof (prev_opcode
));
1747 prev_subseg
= now_subseg
;
1748 fixups
= fixups
->next
;
1749 prev_mul32_p
= cur_mul32_p
;
1753 /* If while processing a fixup, a reloc really needs to be created,
1754 then it is done here. */
1757 tc_gen_reloc (asection
*seg ATTRIBUTE_UNUSED
, fixS
*fixp
)
1760 reloc
= XNEW (arelent
);
1761 reloc
->sym_ptr_ptr
= XNEW (asymbol
*);
1762 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
1763 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
1764 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, fixp
->fx_r_type
);
1765 if (reloc
->howto
== NULL
)
1767 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
1768 _("reloc %d not supported by object file format"),
1769 (int) fixp
->fx_r_type
);
1778 md_estimate_size_before_relax (fragS
*fragp ATTRIBUTE_UNUSED
,
1779 asection
*seg ATTRIBUTE_UNUSED
)
1786 md_pcrel_from_section (fixS
*fixp
, segT sec
)
1788 if (fixp
->fx_addsy
!= (symbolS
*) NULL
1789 && (!S_IS_DEFINED (fixp
->fx_addsy
)
1790 || (S_GET_SEGMENT (fixp
->fx_addsy
) != sec
)))
1792 return fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
1795 /* Called after the assembler has finished parsing the input file or
1796 after a label is defined. Because the D30V assembler sometimes
1797 saves short instructions to see if it can package them with the
1798 next instruction, there may be a short instruction that still needs
1802 d30v_cleanup (int use_sequential
)
1807 if (prev_insn
!= -1)
1810 subseg
= now_subseg
;
1811 subseg_set (prev_seg
, prev_subseg
);
1812 write_1_short (&prev_opcode
, (long) prev_insn
, fixups
->next
,
1814 subseg_set (seg
, subseg
);
1817 prev_mul32_p
= false;
1823 /* This function is called at the start of every line. It checks to
1824 see if the first character is a '.', which indicates the start of a
1825 pseudo-op. If it is, then write out any unwritten instructions. */
1828 d30v_start_line (void)
1830 char *c
= input_line_pointer
;
1832 while (ISSPACE (*c
))
1836 d30v_cleanup (false);
1840 check_size (long value
, int bits
, const char *file
, int line
)
1849 max
= (1 << (bits
- 1)) - 1;
1852 as_bad_where (file
, line
, _("value too large to fit in %d bits"), bits
);
1855 /* d30v_frob_label() is called when after a label is recognized. */
1858 d30v_frob_label (symbolS
*lab
)
1860 /* Emit any pending instructions. */
1861 d30v_cleanup (false);
1863 /* Update the label's address with the current output pointer. */
1864 symbol_set_frag (lab
, frag_now
);
1865 S_SET_VALUE (lab
, (valueT
) frag_now_fix ());
1867 /* Record this label for future adjustment after we find out what
1868 kind of data it references, and the required alignment therewith. */
1869 d30v_last_label
= lab
;
1871 dwarf2_emit_label (lab
);
1874 /* Hook into cons for capturing alignment changes. */
1877 d30v_cons_align (int size
)
1881 /* Don't specially align anything in debug sections. */
1882 if ((now_seg
->flags
& SEC_ALLOC
) == 0
1883 || strcmp (now_seg
->name
, ".eh_frame") == 0)
1887 while ((size
>>= 1) != 0)
1890 if (d30v_current_align
< log_size
)
1891 d30v_align (log_size
, (char *) NULL
, NULL
);
1892 else if (d30v_current_align
> log_size
)
1893 d30v_current_align
= log_size
;
1894 d30v_last_label
= NULL
;
1898 md_apply_fix (fixS
*fixP
, valueT
*valP
, segT seg ATTRIBUTE_UNUSED
)
1901 unsigned long insn
, insn2
;
1904 if (fixP
->fx_addsy
== (symbolS
*) NULL
)
1907 /* We don't support subtracting a symbol. */
1908 if (fixP
->fx_subsy
!= (symbolS
*) NULL
)
1909 as_bad_subtract (fixP
);
1911 /* Fetch the instruction, insert the fully resolved operand
1912 value, and stuff the instruction back again. */
1913 where
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
1914 insn
= bfd_getb32 ((unsigned char *) where
);
1916 switch (fixP
->fx_r_type
)
1919 *(unsigned char *) where
= value
;
1923 bfd_putb16 ((bfd_vma
) value
, (unsigned char *) where
);
1927 bfd_putb32 ((bfd_vma
) value
, (unsigned char *) where
);
1928 bfd_putb32 (0, ((unsigned char *) where
) + 4);
1931 case BFD_RELOC_D30V_6
:
1932 check_size (value
, 6, fixP
->fx_file
, fixP
->fx_line
);
1933 insn
|= value
& 0x3F;
1934 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1937 case BFD_RELOC_D30V_9_PCREL
:
1938 if (fixP
->fx_where
& 0x7)
1943 fixP
->fx_r_type
= BFD_RELOC_D30V_9_PCREL_R
;
1945 check_size (value
, 9, fixP
->fx_file
, fixP
->fx_line
);
1946 insn
|= ((value
>> 3) & 0x3F) << 12;
1947 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1950 case BFD_RELOC_D30V_15
:
1951 check_size (value
, 15, fixP
->fx_file
, fixP
->fx_line
);
1952 insn
|= (value
>> 3) & 0xFFF;
1953 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1956 case BFD_RELOC_D30V_15_PCREL
:
1957 if (fixP
->fx_where
& 0x7)
1962 fixP
->fx_r_type
= BFD_RELOC_D30V_15_PCREL_R
;
1964 check_size (value
, 15, fixP
->fx_file
, fixP
->fx_line
);
1965 insn
|= (value
>> 3) & 0xFFF;
1966 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1969 case BFD_RELOC_D30V_21
:
1970 check_size (value
, 21, fixP
->fx_file
, fixP
->fx_line
);
1971 insn
|= (value
>> 3) & 0x3FFFF;
1972 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1975 case BFD_RELOC_D30V_21_PCREL
:
1976 if (fixP
->fx_where
& 0x7)
1981 fixP
->fx_r_type
= BFD_RELOC_D30V_21_PCREL_R
;
1983 check_size (value
, 21, fixP
->fx_file
, fixP
->fx_line
);
1984 insn
|= (value
>> 3) & 0x3FFFF;
1985 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1988 case BFD_RELOC_D30V_32
:
1989 insn2
= bfd_getb32 ((unsigned char *) where
+ 4);
1990 insn
|= (value
>> 26) & 0x3F; /* Top 6 bits. */
1991 insn2
|= ((value
& 0x03FC0000) << 2); /* Next 8 bits. */
1992 insn2
|= value
& 0x0003FFFF; /* Bottom 18 bits. */
1993 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1994 bfd_putb32 ((bfd_vma
) insn2
, (unsigned char *) where
+ 4);
1997 case BFD_RELOC_D30V_32_PCREL
:
1998 insn2
= bfd_getb32 ((unsigned char *) where
+ 4);
1999 insn
|= (value
>> 26) & 0x3F; /* Top 6 bits. */
2000 insn2
|= ((value
& 0x03FC0000) << 2); /* Next 8 bits. */
2001 insn2
|= value
& 0x0003FFFF; /* Bottom 18 bits. */
2002 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
2003 bfd_putb32 ((bfd_vma
) insn2
, (unsigned char *) where
+ 4);
2007 bfd_putb32 ((bfd_vma
) value
, (unsigned char *) where
);
2011 as_bad (_("line %d: unknown relocation type: 0x%x"),
2012 fixP
->fx_line
, fixP
->fx_r_type
);
2016 /* Handle the .align pseudo-op. This aligns to a power of two. We
2017 hook here to latch the current alignment. */
2020 s_d30v_align (int ignore ATTRIBUTE_UNUSED
)
2023 char fill
, *pfill
= NULL
;
2024 long max_alignment
= 15;
2026 align
= get_absolute_expression ();
2027 if (align
> max_alignment
)
2029 align
= max_alignment
;
2030 as_warn (_("Alignment too large: %d assumed"), align
);
2034 as_warn (_("Alignment negative: 0 assumed"));
2038 if (*input_line_pointer
== ',')
2040 input_line_pointer
++;
2041 fill
= get_absolute_expression ();
2045 d30v_last_label
= NULL
;
2046 d30v_align (align
, pfill
, NULL
);
2048 demand_empty_rest_of_line ();
2051 /* Handle the .text pseudo-op. This is like the usual one, but it
2052 clears the saved last label and resets known alignment. */
2059 d30v_last_label
= NULL
;
2060 d30v_current_align
= 0;
2061 d30v_current_align_seg
= now_seg
;
2064 /* Handle the .data pseudo-op. This is like the usual one, but it
2065 clears the saved last label and resets known alignment. */
2071 d30v_last_label
= NULL
;
2072 d30v_current_align
= 0;
2073 d30v_current_align_seg
= now_seg
;
2076 /* Handle the .section pseudo-op. This is like the usual one, but it
2077 clears the saved last label and resets known alignment. */
2080 s_d30v_section (int ignore
)
2082 obj_elf_section (ignore
);
2083 d30v_last_label
= NULL
;
2084 d30v_current_align
= 0;
2085 d30v_current_align_seg
= now_seg
;
2088 /* The target specific pseudo-ops which we support. */
2089 const pseudo_typeS md_pseudo_table
[] =
2091 { "word", cons
, 4 },
2092 { "hword", cons
, 2 },
2093 { "align", s_d30v_align
, 0 },
2094 { "text", s_d30v_text
, 0 },
2095 { "data", s_d30v_data
, 0 },
2096 { "section", s_d30v_section
, 0 },
2097 { "section.s", s_d30v_section
, 0 },
2098 { "sect", s_d30v_section
, 0 },
2099 { "sect.s", s_d30v_section
, 0 },