1 /* Common target-dependent code for ppc64 GDB, the GNU debugger.
3 Copyright (C) 1986-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "extract-store-integer.h"
25 #include "ppc64-tdep.h"
28 /* Macros for matching instructions. Note that, since all the
29 operands are masked off before they're or-ed into the instruction,
30 you can use -1 to make masks. */
32 #define insn_d(opcd, rts, ra, d) \
33 ((((unsigned (opcd)) & 0x3f) << 26) \
34 | (((unsigned (rts)) & 0x1f) << 21) \
35 | (((unsigned (ra)) & 0x1f) << 16) \
36 | ((unsigned (d)) & 0xffff))
38 #define insn_ds(opcd, rts, ra, d, xo) \
39 ((((unsigned (opcd)) & 0x3f) << 26) \
40 | (((unsigned (rts)) & 0x1f) << 21) \
41 | (((unsigned (ra)) & 0x1f) << 16) \
42 | ((unsigned (d)) & 0xfffc) \
43 | ((unsigned (xo)) & 0x3))
45 #define insn_xfx(opcd, rts, spr, xo) \
46 ((((unsigned (opcd)) & 0x3f) << 26) \
47 | (((unsigned (rts)) & 0x1f) << 21) \
48 | (((unsigned (spr)) & 0x1f) << 16) \
49 | (((unsigned (spr)) & 0x3e0) << 6) \
50 | (((unsigned (xo)) & 0x3ff) << 1))
52 #define prefix(a, b, R, do) \
54 | (((unsigned (a)) & 0x3) << 24) \
55 | (((unsigned (b)) & 0x1) << 23) \
56 | (((unsigned (R)) & 0x1) << 20) \
57 | ((unsigned (do)) & 0x3ffff))
59 #define insn_md(opcd, ra, rs, sh, me, rc) \
60 ((((unsigned (opcd)) & 0x3f) << 26) \
61 | (((unsigned (rs)) & 0x1f) << 21) \
62 | (((unsigned (ra)) & 0x1f) << 16) \
63 | (((unsigned (sh)) & 0x3e) << 11) \
64 | (((unsigned (me)) & 0x3f) << 25) \
65 | (((unsigned (sh)) & 0x1) << 1) \
66 | ((unsigned (rc)) & 0x1))
68 #define insn_x(opcd, rt, ra, rb, opc2) \
69 ((((unsigned (opcd)) & 0x3f) << 26) \
70 | (((unsigned (rt)) & 0x1f) << 21) \
71 | (((unsigned (ra)) & 0x1f) << 16) \
72 | (((unsigned (rb)) & 0x3e) << 11) \
73 | (((unsigned (opc2)) & 0x3FF) << 1))
75 #define insn_xo(opcd, rt, ra, rb, oe, rc, opc2) \
76 ((((unsigned (opcd)) & 0x3f) << 26) \
77 | (((unsigned (rt)) & 0x1f) << 21) \
78 | (((unsigned (ra)) & 0x1f) << 16) \
79 | (((unsigned (rb)) & 0x3e) << 11) \
80 | (((unsigned (oe)) & 0x1) << 10) \
81 | (((unsigned (opc2)) & 0x1FF) << 1) \
82 | (((unsigned (rc)))))
84 /* PLT_OFF is the TOC-relative offset of a 64-bit PowerPC PLT entry.
85 Return the function's entry point. */
88 ppc64_plt_entry_point (const frame_info_ptr
&frame
, CORE_ADDR plt_off
)
90 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
91 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
92 ppc_gdbarch_tdep
*tdep
= gdbarch_tdep
<ppc_gdbarch_tdep
> (gdbarch
);
95 if (execution_direction
== EXEC_REVERSE
)
97 /* If executing in reverse, r2 will have been stored to the stack. */
98 CORE_ADDR sp
= get_frame_register_unsigned (frame
,
99 tdep
->ppc_gp0_regnum
+ 1);
100 unsigned int sp_off
= tdep
->elf_abi
== POWERPC_ELF_V1
? 40 : 24;
101 tocp
= read_memory_unsigned_integer (sp
+ sp_off
, 8, byte_order
);
104 tocp
= get_frame_register_unsigned (frame
, tdep
->ppc_gp0_regnum
+ 2);
106 /* The first word of the PLT entry is the function entry point. */
107 return read_memory_unsigned_integer (tocp
+ plt_off
, 8, byte_order
);
111 ppc64_plt_pcrel_entry_point (const frame_info_ptr
&frame
, CORE_ADDR plt_off
,
114 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
115 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
117 /* Execution direction doesn't matter, entry is pc + plt_off either way.
118 The first word of the PLT entry is the function entry point. */
119 return read_memory_unsigned_integer (pc
+ plt_off
, 8, byte_order
);
122 /* Patterns for the standard linkage functions. These are built by
123 build_plt_stub in bfd/elf64-ppc.c. */
125 /* Old ELFv1 PLT call stub. */
127 static const struct ppc_insn_pattern ppc64_standard_linkage1
[] =
129 /* addis r12, r2, <any> */
130 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
133 { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 0 },
135 /* ld r11, <any>(r12) */
136 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
138 /* addis r12, r12, 1 <optional> */
139 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
141 /* ld r2, <any>(r12) */
142 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
144 /* addis r12, r12, 1 <optional> */
145 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
148 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
150 /* ld r11, <any>(r12) <optional> */
151 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
154 { (unsigned) -1, 0x4e800420, 0 },
159 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
160 Also supports older stub with different placement of std 2,40(1),
161 a stub that omits the std 2,40(1), and both versions of power7
162 thread safety read barriers. Note that there are actually two more
163 instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
164 but there isn't any need to match them. */
166 static const struct ppc_insn_pattern ppc64_standard_linkage2
[] =
168 /* std r2, 40(r1) <optional> */
169 { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
171 /* addis r12, r2, <any> */
172 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
174 /* std r2, 40(r1) <optional> */
175 { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
177 /* ld r11, <any>(r12) */
178 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
180 /* addi r12, r12, <any> <optional> */
181 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
184 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
186 /* xor r11, r11, r11 <optional> */
187 { (unsigned) -1, 0x7d6b5a78, 1 },
189 /* add r12, r12, r11 <optional> */
190 { (unsigned) -1, 0x7d8c5a14, 1 },
192 /* ld r2, <any>(r12) */
193 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
195 /* ld r11, <any>(r12) <optional> */
196 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
198 /* bctr <optional> */
199 { (unsigned) -1, 0x4e800420, 1 },
201 /* cmpldi r2, 0 <optional> */
202 { (unsigned) -1, 0x28220000, 1 },
207 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2. */
209 static const struct ppc_insn_pattern ppc64_standard_linkage3
[] =
211 /* std r2, 40(r1) <optional> */
212 { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
214 /* ld r11, <any>(r2) */
215 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
217 /* addi r2, r2, <any> <optional> */
218 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
221 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
223 /* xor r11, r11, r11 <optional> */
224 { (unsigned) -1, 0x7d6b5a78, 1 },
226 /* add r2, r2, r11 <optional> */
227 { (unsigned) -1, 0x7c425a14, 1 },
229 /* ld r11, <any>(r2) <optional> */
230 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
232 /* ld r2, <any>(r2) */
233 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
235 /* bctr <optional> */
236 { (unsigned) -1, 0x4e800420, 1 },
238 /* cmpldi r2, 0 <optional> */
239 { (unsigned) -1, 0x28220000, 1 },
244 /* ELFv1 PLT call stub to access PLT entries more than +/- 32k from r2.
245 A more modern variant of ppc64_standard_linkage2 differing in
248 static const struct ppc_insn_pattern ppc64_standard_linkage4
[] =
250 /* std r2, 40(r1) <optional> */
251 { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
253 /* addis r11, r2, <any> */
254 { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
256 /* ld r12, <any>(r11) */
257 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
259 /* addi r11, r11, <any> <optional> */
260 { insn_d (-1, -1, -1, 0), insn_d (14, 11, 11, 0), 1 },
263 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
265 /* xor r2, r12, r12 <optional> */
266 { (unsigned) -1, 0x7d826278, 1 },
268 /* add r11, r11, r2 <optional> */
269 { (unsigned) -1, 0x7d6b1214, 1 },
271 /* ld r2, <any>(r11) */
272 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 11, 0, 0), 0 },
274 /* ld r11, <any>(r11) <optional> */
275 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 11, 0, 0), 1 },
277 /* bctr <optional> */
278 { (unsigned) -1, 0x4e800420, 1 },
280 /* cmpldi r2, 0 <optional> */
281 { (unsigned) -1, 0x28220000, 1 },
286 /* ELFv1 PLT call stub to access PLT entries within +/- 32k of r2.
287 A more modern variant of ppc64_standard_linkage3 differing in
290 static const struct ppc_insn_pattern ppc64_standard_linkage5
[] =
292 /* std r2, 40(r1) <optional> */
293 { (unsigned) -1, insn_ds (62, 2, 1, 40, 0), 1 },
295 /* ld r12, <any>(r2) */
296 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
298 /* addi r2, r2, <any> <optional> */
299 { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
302 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
304 /* xor r11, r12, r12 <optional> */
305 { (unsigned) -1, 0x7d8b6278, 1 },
307 /* add r2, r2, r11 <optional> */
308 { (unsigned) -1, 0x7c425a14, 1 },
310 /* ld r11, <any>(r2) <optional> */
311 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
313 /* ld r2, <any>(r2) */
314 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
316 /* bctr <optional> */
317 { (unsigned) -1, 0x4e800420, 1 },
319 /* cmpldi r2, 0 <optional> */
320 { (unsigned) -1, 0x28220000, 1 },
325 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2. */
327 static const struct ppc_insn_pattern ppc64_standard_linkage6
[] =
329 /* std r2, 24(r1) <optional> */
330 { (unsigned) -1, insn_ds (62, 2, 1, 24, 0), 1 },
332 /* addis r11, r2, <any> */
333 { insn_d (-1, -1, -1, 0), insn_d (15, 11, 2, 0), 0 },
335 /* ld r12, <any>(r11) */
336 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 11, 0, 0), 0 },
339 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
342 { (unsigned) -1, 0x4e800420, 0 },
347 /* ELFv2 PLT call stub to access PLT entries within +/- 32k of r2. */
349 static const struct ppc_insn_pattern ppc64_standard_linkage7
[] =
351 /* std r2, 24(r1) <optional> */
352 { (unsigned) -1, insn_ds (62, 2, 1, 24, 0), 1 },
354 /* ld r12, <any>(r2) */
355 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 2, 0, 0), 0 },
358 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
361 { (unsigned) -1, 0x4e800420, 0 },
366 /* ELFv2 PLT call stub to access PLT entries more than +/- 32k from r2,
367 supporting fusion. */
369 static const struct ppc_insn_pattern ppc64_standard_linkage8
[] =
371 /* std r2, 24(r1) <optional> */
372 { (unsigned) -1, insn_ds (62, 2, 1, 24, 0), 1 },
374 /* addis r12, r2, <any> */
375 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
377 /* ld r12, <any>(r12) */
378 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 12, 12, 0, 0), 0 },
381 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
384 { (unsigned) -1, 0x4e800420, 0 },
389 /* Power 10 ELFv2 PLT call stubs */
390 static const struct ppc_insn_pattern ppc64_standard_linkage9
[] =
392 /* std %r2,0+40(%r1) <optional> */
393 { insn_ds (-1, -1, -1, 0, 1), insn_ds (62, 2, 1, 40, 0), 1 },
396 { prefix (-1, -1, 1, 0), prefix (0, 0, 1, 0), 0 },
397 { insn_d (-1, -1, -1, 0), insn_d (57, 12, 0, 0), 0 },
400 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
403 { (unsigned) -1, 0x4e800420, 0 },
408 static const struct ppc_insn_pattern ppc64_standard_linkage10
[] =
410 /* std %r2,0+40(%r1) <optional> */
411 { insn_ds (-1, -1, -1, 0, 1), insn_ds (62, 2, 1, 40, 0), 1 },
413 /* paddi r12,<any> */
414 { prefix (-1, -1, 1, 0), prefix (2, 0, 1, 0), 0 },
415 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 0, 0), 0 },
417 /* mtctr r12 <optional> */
418 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
421 { (unsigned) -1, 0x4e800420, 0 },
426 static const struct ppc_insn_pattern ppc64_standard_linkage11
[] =
428 /* std %r2,0+40(%r1) <optional> */
429 { insn_ds (-1, -1, -1, 0, 1), insn_ds (62, 2, 1, 40, 0), 1 },
431 /* li %r11,0 <optional> */
432 { insn_d (-1, -1, -1, 0), insn_d (14, 11, 0, 0), 1 },
434 /* sldi %r11,%r11,34 <eq to rldicr rx,ry,n, 63-n> <optional> */
435 { insn_md (-1, -1, -1, 0, 0, 1), insn_md (30, 11, 11, 34, 63-34, 0), 1 },
437 /* paddi r12, <any> */
438 { prefix (-1, -1, 1, 0), prefix (2, 0, 1, 0), 0 },
439 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 0, 0), 0 },
441 /* ldx %r12,%r11,%r12 <optional> */
442 { (unsigned) -1, insn_x (31, 12, 11, 12, 21), 1 },
444 /* add %r12,%r11,%r12 <optional> */
445 { (unsigned) -1, insn_xo (31, 12, 11, 12, 0, 0, 40), 1 },
448 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
450 /* bctr */ // 13, 14, 15, 16
451 { (unsigned) -1, 0x4e800420, 0 },
456 static const struct ppc_insn_pattern ppc64_standard_linkage12
[] =
458 /* std %r2,0+40(%r1) <optional> */
459 { insn_ds (-1, -1, -1, 0, 1), insn_ds (62, 2, 1, 40, 0), 1 },
461 /* lis %r11,xxx@ha <equivalent addis rx, 0, val> */
462 /* addis r12, r2, <any> */
463 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
465 /* ori %r11,%r11,xxx@l */
466 { insn_d (-1, -1, -1, 0), insn_d (24, 11, 11, 0), 0 },
468 /* sldi %r11,%r11,34 <optional> */
469 { (unsigned) -1, insn_md (30, 11, 11, 34, 63-34, 0), 1 },
472 { prefix (-1, -1, 1, 0), prefix (2, 0, 1, 0), 0 },
473 { insn_d (-1, -1, -1, 0), insn_d (14, 12, 0, 0), 0 },
475 /* sldi %r11,%r11,34 <optional> */
476 { (unsigned) -1, insn_md (30, 11, 11, 34, 63-34, 0), 1 },
478 /* ldx %r12,%r11,%r12 <optional> */
479 { (unsigned) -1, insn_x (31, 12, 11, 12, 21), 1 },
481 /* add %r12,%r11,%r12 <optional> */
482 { (unsigned) -1, insn_xo (31, 12, 11, 12, 0, 0, 40), 1 },
485 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 12, 9, 467), 0 },
487 /* bctr */ // 17, 18, 19, 20
488 { (unsigned) -1, 0x4e800420, 0 },
493 /* When the dynamic linker is doing lazy symbol resolution, the first
494 call to a function in another object will go like this:
496 - The user's function calls the linkage function:
498 100003d4: 4b ff ff ad bl 10000380 <nnnn.plt_call.printf>
499 100003d8: e8 41 00 28 ld r2,40(r1)
501 - The linkage function loads the entry point and toc pointer from
502 the function descriptor in the PLT, and jumps to it:
504 <nnnn.plt_call.printf>:
505 10000380: f8 41 00 28 std r2,40(r1)
506 10000384: e9 62 80 78 ld r11,-32648(r2)
507 10000388: 7d 69 03 a6 mtctr r11
508 1000038c: e8 42 80 80 ld r2,-32640(r2)
509 10000390: 28 22 00 00 cmpldi r2,0
510 10000394: 4c e2 04 20 bnectr+
511 10000398: 48 00 03 a0 b 10000738 <printf@plt>
513 - But since this is the first time that PLT entry has been used, it
514 sends control to its glink entry. That loads the number of the
515 PLT entry and jumps to the common glink0 code:
518 10000738: 38 00 00 01 li r0,1
519 1000073c: 4b ff ff bc b 100006f8 <__glink_PLTresolve>
521 - The common glink0 code then transfers control to the dynamic
524 100006f0: 0000000000010440 .quad plt0 - (. + 16)
525 <__glink_PLTresolve>:
526 100006f8: 7d 88 02 a6 mflr r12
527 100006fc: 42 9f 00 05 bcl 20,4*cr7+so,10000700
528 10000700: 7d 68 02 a6 mflr r11
529 10000704: e8 4b ff f0 ld r2,-16(r11)
530 10000708: 7d 88 03 a6 mtlr r12
531 1000070c: 7d 82 5a 14 add r12,r2,r11
532 10000710: e9 6c 00 00 ld r11,0(r12)
533 10000714: e8 4c 00 08 ld r2,8(r12)
534 10000718: 7d 69 03 a6 mtctr r11
535 1000071c: e9 6c 00 10 ld r11,16(r12)
536 10000720: 4e 80 04 20 bctr
538 Eventually, this code will figure out how to skip all of this,
539 including the dynamic linker. At the moment, we just get through
540 the linkage function. */
542 /* If the current thread is about to execute a series of instructions
543 matching the ppc64_standard_linkage pattern, and INSN is the result
544 from that pattern match, return the code address to which the
545 standard linkage function will send them. (This doesn't deal with
546 dynamic linker lazy symbol resolution stubs.) */
549 ppc64_standard_linkage1_target (const frame_info_ptr
&frame
, unsigned int *insn
)
551 CORE_ADDR plt_off
= ((ppc_insn_d_field (insn
[0]) << 16)
552 + ppc_insn_ds_field (insn
[2]));
554 return ppc64_plt_entry_point (frame
, plt_off
);
558 ppc64_standard_linkage2_target (const frame_info_ptr
&frame
, unsigned int *insn
)
560 CORE_ADDR plt_off
= ((ppc_insn_d_field (insn
[1]) << 16)
561 + ppc_insn_ds_field (insn
[3]));
563 return ppc64_plt_entry_point (frame
, plt_off
);
567 ppc64_standard_linkage3_target (const frame_info_ptr
&frame
, unsigned int *insn
)
569 CORE_ADDR plt_off
= ppc_insn_ds_field (insn
[1]);
571 return ppc64_plt_entry_point (frame
, plt_off
);
575 ppc64_standard_linkage4_target (const frame_info_ptr
&frame
, unsigned int *insn
)
577 CORE_ADDR plt_off
= ((ppc_insn_d_field (insn
[1]) << 16)
578 + ppc_insn_ds_field (insn
[2]));
580 return ppc64_plt_entry_point (frame
, plt_off
);
584 ppc64_pcrel_linkage1_target (const frame_info_ptr
&frame
, unsigned int *insn
,
587 /* insn[0] is for the std instruction. */
588 CORE_ADDR plt_off
= ppc_insn_prefix_dform (insn
[1], insn
[2]);
590 return ppc64_plt_pcrel_entry_point (frame
, plt_off
, pc
);
594 ppc64_pcrel_linkage2_target (const frame_info_ptr
&frame
, unsigned int *insn
,
599 /* insn[0] is for the std instruction.
600 insn[1] is for the li r11 instruction */
601 plt_off
= ppc_insn_prefix_dform (insn
[2], insn
[3]);
603 return ppc64_plt_pcrel_entry_point (frame
, plt_off
, pc
);
607 /* Given that we've begun executing a call trampoline at PC, return
608 the entry point of the function the trampoline will go to.
610 When the execution direction is EXEC_REVERSE, scan backward to
611 check whether we are in the middle of a PLT stub. */
614 ppc64_skip_trampoline_code_1 (const frame_info_ptr
&frame
, CORE_ADDR pc
)
616 #define MAX(a,b) ((a) > (b) ? (a) : (b))
617 unsigned int insns
[MAX (MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1
),
618 ARRAY_SIZE (ppc64_standard_linkage2
)),
619 MAX (ARRAY_SIZE (ppc64_standard_linkage3
),
620 ARRAY_SIZE (ppc64_standard_linkage4
))),
621 MAX(MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage5
),
622 ARRAY_SIZE (ppc64_standard_linkage6
)),
623 MAX (ARRAY_SIZE (ppc64_standard_linkage7
),
624 ARRAY_SIZE (ppc64_standard_linkage8
))),
625 MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage9
),
626 ARRAY_SIZE (ppc64_standard_linkage10
)),
627 MAX (ARRAY_SIZE (ppc64_standard_linkage11
),
628 ARRAY_SIZE (ppc64_standard_linkage12
)))))
635 /* When reverse-debugging, scan backward to check whether we are
636 in the middle of trampoline code. */
637 if (execution_direction
== EXEC_REVERSE
)
638 scan_limit
= ARRAY_SIZE (insns
) - 1;
640 for (i
= 0; i
< scan_limit
; i
++)
642 if (i
< ARRAY_SIZE (ppc64_standard_linkage12
) - 1
643 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage12
, insns
))
644 pc
= ppc64_pcrel_linkage1_target (frame
, insns
, pc
);
645 else if (i
< ARRAY_SIZE (ppc64_standard_linkage11
) - 1
646 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage11
, insns
))
647 pc
= ppc64_pcrel_linkage2_target (frame
, insns
, pc
);
648 else if (i
< ARRAY_SIZE (ppc64_standard_linkage10
) - 1
649 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage10
, insns
))
650 pc
= ppc64_pcrel_linkage1_target (frame
, insns
, pc
);
651 else if (i
< ARRAY_SIZE (ppc64_standard_linkage9
) - 1
652 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage9
, insns
))
653 pc
= ppc64_pcrel_linkage1_target (frame
, insns
, pc
);
654 else if (i
< ARRAY_SIZE (ppc64_standard_linkage8
) - 1
655 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage8
, insns
))
656 pc
= ppc64_standard_linkage4_target (frame
, insns
);
657 else if (i
< ARRAY_SIZE (ppc64_standard_linkage7
) - 1
658 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage7
,
660 pc
= ppc64_standard_linkage3_target (frame
, insns
);
661 else if (i
< ARRAY_SIZE (ppc64_standard_linkage6
) - 1
662 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage6
,
664 pc
= ppc64_standard_linkage4_target (frame
, insns
);
665 else if (i
< ARRAY_SIZE (ppc64_standard_linkage5
) - 1
666 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage5
,
668 && (insns
[8] != 0 || insns
[9] != 0))
669 pc
= ppc64_standard_linkage3_target (frame
, insns
);
670 else if (i
< ARRAY_SIZE (ppc64_standard_linkage4
) - 1
671 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage4
,
673 && (insns
[9] != 0 || insns
[10] != 0))
674 pc
= ppc64_standard_linkage4_target (frame
, insns
);
675 else if (i
< ARRAY_SIZE (ppc64_standard_linkage3
) - 1
676 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage3
,
678 && (insns
[8] != 0 || insns
[9] != 0))
679 pc
= ppc64_standard_linkage3_target (frame
, insns
);
680 else if (i
< ARRAY_SIZE (ppc64_standard_linkage2
) - 1
681 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage2
,
683 && (insns
[10] != 0 || insns
[11] != 0))
684 pc
= ppc64_standard_linkage2_target (frame
, insns
);
685 else if (i
< ARRAY_SIZE (ppc64_standard_linkage1
) - 1
686 && ppc_insns_match_pattern (frame
, pc
, ppc64_standard_linkage1
,
688 pc
= ppc64_standard_linkage1_target (frame
, insns
);
691 /* Scan backward one more instruction if it doesn't match. */
696 /* The PLT descriptor will either point to the already resolved target
697 address, or else to a glink stub. As the latter carry synthetic @plt
698 symbols, find_solib_trampoline_target should be able to resolve them. */
699 target
= find_solib_trampoline_target (frame
, pc
);
700 return target
? target
: pc
;
706 /* Wrapper of ppc64_skip_trampoline_code_1 checking also
707 ppc_elfv2_skip_entrypoint. */
710 ppc64_skip_trampoline_code (const frame_info_ptr
&frame
, CORE_ADDR pc
)
712 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
714 pc
= ppc64_skip_trampoline_code_1 (frame
, pc
);
715 if (pc
!= 0 && gdbarch_skip_entrypoint_p (gdbarch
))
716 pc
= gdbarch_skip_entrypoint (gdbarch
, pc
);
720 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
723 Usually a function pointer's representation is simply the address
724 of the function. On GNU/Linux on the PowerPC however, a function
725 pointer may be a pointer to a function descriptor.
727 For PPC64, a function descriptor is a TOC entry, in a data section,
728 which contains three words: the first word is the address of the
729 function, the second word is the TOC pointer (r2), and the third word
730 is the static chain value.
732 Throughout GDB it is currently assumed that a function pointer contains
733 the address of the function, which is not easy to fix. In addition, the
734 conversion of a function address to a function pointer would
735 require allocation of a TOC entry in the inferior's memory space,
736 with all its drawbacks. To be able to call C++ virtual methods in
737 the inferior (which are called via function pointers),
738 find_function_addr uses this function to get the function address
739 from a function pointer.
741 If ADDR points at what is clearly a function descriptor, transform
742 it into the address of the corresponding function, if needed. Be
743 conservative, otherwise GDB will do the transformation on any
744 random addresses such as occur when there is no symbol table. */
747 ppc64_convert_from_func_ptr_addr (struct gdbarch
*gdbarch
,
749 struct target_ops
*targ
)
751 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
752 const struct target_section
*s
= target_section_by_addr (targ
, addr
);
754 /* Check if ADDR points to a function descriptor. */
755 if (s
&& strcmp (s
->the_bfd_section
->name
, ".opd") == 0)
757 /* There may be relocations that need to be applied to the .opd
758 section. Unfortunately, this function may be called at a time
759 where these relocations have not yet been performed -- this can
760 happen for example shortly after a library has been loaded with
761 dlopen, but ld.so has not yet applied the relocations.
763 To cope with both the case where the relocation has been applied,
764 and the case where it has not yet been applied, we do *not* read
765 the (maybe) relocated value from target memory, but we instead
766 read the non-relocated value from the BFD, and apply the relocation
769 This makes the assumption that all .opd entries are always relocated
770 by the same offset the section itself was relocated. This should
771 always be the case for GNU/Linux executables and shared libraries.
772 Note that other kind of object files (e.g. those added via
773 add-symbol-files) will currently never end up here anyway, as this
774 function accesses *target* sections only; only the main exec and
775 shared libraries are ever added to the target. */
780 res
= bfd_get_section_contents (s
->the_bfd_section
->owner
,
782 &buf
, addr
- s
->addr
, 8);
784 return (extract_unsigned_integer (buf
, 8, byte_order
)
785 - bfd_section_vma (s
->the_bfd_section
) + s
->addr
);
791 /* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
792 back to the original ELF symbol it was derived from. Get the size
796 ppc64_elf_make_msymbol_special (asymbol
*sym
, struct minimal_symbol
*msym
)
798 if ((sym
->flags
& BSF_SYNTHETIC
) != 0 && sym
->udata
.p
!= NULL
)
800 elf_symbol_type
*elf_sym
= (elf_symbol_type
*) sym
->udata
.p
;
801 msym
->set_size (elf_sym
->internal_elf_sym
.st_size
);