Fix dw2-ifort-parameter.exp on PPC64
[binutils-gdb.git] / gdb / m68k-tdep.c
blob6b3f2b1f2792bb6954a5882885f4026a799e8b78
1 /* Target-dependent code for the Motorola 68000 series.
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include <string.h>
30 #include "gdb_assert.h"
31 #include "inferior.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "osabi.h"
35 #include "dis-asm.h"
36 #include "target-descriptions.h"
38 #include "m68k-tdep.h"
41 #define P_LINKL_FP 0x480e
42 #define P_LINKW_FP 0x4e56
43 #define P_PEA_FP 0x4856
44 #define P_MOVEAL_SP_FP 0x2c4f
45 #define P_ADDAW_SP 0xdefc
46 #define P_ADDAL_SP 0xdffc
47 #define P_SUBQW_SP 0x514f
48 #define P_SUBQL_SP 0x518f
49 #define P_LEA_SP_SP 0x4fef
50 #define P_LEA_PC_A5 0x4bfb0170
51 #define P_FMOVEMX_SP 0xf227
52 #define P_MOVEL_SP 0x2f00
53 #define P_MOVEML_SP 0x48e7
55 /* Offset from SP to first arg on stack at first instruction of a function. */
56 #define SP_ARG0 (1 * 4)
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
60 #endif
62 static const gdb_byte *
63 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
67 *lenptr = sizeof (break_insn);
68 return break_insn;
72 /* Construct types for ISA-specific registers. */
73 static struct type *
74 m68k_ps_type (struct gdbarch *gdbarch)
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
78 if (!tdep->m68k_ps_type)
80 struct type *type;
82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
96 tdep->m68k_ps_type = type;
99 return tdep->m68k_ps_type;
102 static struct type *
103 m68881_ext_type (struct gdbarch *gdbarch)
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
110 floatformats_m68881_ext);
112 return tdep->m68881_ext_type;
115 /* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
121 address. */
123 static struct type *
124 m68k_register_type (struct gdbarch *gdbarch, int regnum)
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
128 if (tdep->fpregs_present)
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
135 else
136 return m68881_ext_type (gdbarch);
139 if (regnum == M68K_FPI_REGNUM)
140 return builtin_type (gdbarch)->builtin_func_ptr;
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
143 return builtin_type (gdbarch)->builtin_int32;
145 else
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
148 return builtin_type (gdbarch)->builtin_int0;
151 if (regnum == gdbarch_pc_regnum (gdbarch))
152 return builtin_type (gdbarch)->builtin_func_ptr;
154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
155 return builtin_type (gdbarch)->builtin_data_ptr;
157 if (regnum == M68K_PS_REGNUM)
158 return m68k_ps_type (gdbarch);
160 return builtin_type (gdbarch)->builtin_int32;
163 static const char *m68k_register_names[] = {
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
166 "ps", "pc",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
168 "fpcontrol", "fpstatus", "fpiaddr"
171 /* Function: m68k_register_name
172 Returns the name of the standard m68k register regnum. */
174 static const char *
175 m68k_register_name (struct gdbarch *gdbarch, int regnum)
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
178 internal_error (__FILE__, __LINE__,
179 _("m68k_register_name: illegal register number %d"),
180 regnum);
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
183 return "";
184 else
185 return m68k_register_names[regnum];
188 /* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
191 static int
192 m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
196 return 0;
197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
201 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
204 static int
205 m68k_register_to_value (struct frame_info *frame, int regnum,
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
218 *optimizedp = *unavailablep = 0;
219 return 0;
222 /* Convert to TYPE. */
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
227 return 0;
229 convert_typed_floating (from, fpreg_type, to, type);
230 *optimizedp = *unavailablep = 0;
231 return 1;
234 /* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
237 static void
238 m68k_value_to_register (struct frame_info *frame, int regnum,
239 struct type *type, const gdb_byte *from)
241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
243 M68K_FP0_REGNUM);
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
250 return;
253 /* Convert from TYPE. */
254 convert_typed_floating (from, type, to, fpreg_type);
255 put_frame_register (frame, regnum, to);
259 /* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
288 /* Read a function return value of TYPE from REGCACHE, and copy that
289 into VALBUF. */
291 static void
292 m68k_extract_return_value (struct type *type, struct regcache *regcache,
293 gdb_byte *valbuf)
295 int len = TYPE_LENGTH (type);
296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
298 if (len <= 4)
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
303 else if (len <= 8)
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
309 else
310 internal_error (__FILE__, __LINE__,
311 _("Cannot extract return value of %d bytes long."), len);
314 static void
315 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
316 gdb_byte *valbuf)
318 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
319 struct gdbarch *gdbarch = get_regcache_arch (regcache);
320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
322 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
324 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
325 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
326 convert_typed_floating (buf, fpreg_type, valbuf, type);
328 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
329 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
330 else
331 m68k_extract_return_value (type, regcache, valbuf);
334 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
336 static void
337 m68k_store_return_value (struct type *type, struct regcache *regcache,
338 const gdb_byte *valbuf)
340 int len = TYPE_LENGTH (type);
342 if (len <= 4)
343 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
344 else if (len <= 8)
346 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
347 len - 4, valbuf);
348 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
350 else
351 internal_error (__FILE__, __LINE__,
352 _("Cannot store return value of %d bytes long."), len);
355 static void
356 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
357 const gdb_byte *valbuf)
359 struct gdbarch *gdbarch = get_regcache_arch (regcache);
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
364 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
365 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
366 convert_typed_floating (valbuf, type, buf, fpreg_type);
367 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
369 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
371 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
372 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
374 else
375 m68k_store_return_value (type, regcache, valbuf);
378 /* Return non-zero if TYPE, which is assumed to be a structure, union or
379 complex type, should be returned in registers for architecture
380 GDBARCH. */
382 static int
383 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386 enum type_code code = TYPE_CODE (type);
387 int len = TYPE_LENGTH (type);
389 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
390 || code == TYPE_CODE_COMPLEX);
392 if (tdep->struct_return == pcc_struct_return)
393 return 0;
395 return (len == 1 || len == 2 || len == 4 || len == 8);
398 /* Determine, for architecture GDBARCH, how a return value of TYPE
399 should be returned. If it is supposed to be returned in registers,
400 and READBUF is non-zero, read the appropriate value from REGCACHE,
401 and copy it into READBUF. If WRITEBUF is non-zero, write the value
402 from WRITEBUF into REGCACHE. */
404 static enum return_value_convention
405 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
406 struct type *type, struct regcache *regcache,
407 gdb_byte *readbuf, const gdb_byte *writebuf)
409 enum type_code code = TYPE_CODE (type);
411 /* GCC returns a `long double' in memory too. */
412 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
413 || code == TYPE_CODE_COMPLEX)
414 && !m68k_reg_struct_return_p (gdbarch, type))
415 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
417 /* The default on m68k is to return structures in static memory.
418 Consequently a function must return the address where we can
419 find the return value. */
421 if (readbuf)
423 ULONGEST addr;
425 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
426 read_memory (addr, readbuf, TYPE_LENGTH (type));
429 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
432 if (readbuf)
433 m68k_extract_return_value (type, regcache, readbuf);
434 if (writebuf)
435 m68k_store_return_value (type, regcache, writebuf);
437 return RETURN_VALUE_REGISTER_CONVENTION;
440 static enum return_value_convention
441 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
442 struct type *type, struct regcache *regcache,
443 gdb_byte *readbuf, const gdb_byte *writebuf)
445 enum type_code code = TYPE_CODE (type);
447 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
448 || code == TYPE_CODE_COMPLEX)
449 && !m68k_reg_struct_return_p (gdbarch, type))
451 /* The System V ABI says that:
453 "A function returning a structure or union also sets %a0 to
454 the value it finds in %a0. Thus when the caller receives
455 control again, the address of the returned object resides in
456 register %a0."
458 So the ABI guarantees that we can always find the return
459 value just after the function has returned. */
461 if (readbuf)
463 ULONGEST addr;
465 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
466 read_memory (addr, readbuf, TYPE_LENGTH (type));
469 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
472 /* This special case is for structures consisting of a single
473 `float' or `double' member. These structures are returned in
474 %fp0. For these structures, we call ourselves recursively,
475 changing TYPE into the type of the first member of the structure.
476 Since that should work for all structures that have only one
477 member, we don't bother to check the member's type here. */
478 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
480 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
481 return m68k_svr4_return_value (gdbarch, function, type, regcache,
482 readbuf, writebuf);
485 if (readbuf)
486 m68k_svr4_extract_return_value (type, regcache, readbuf);
487 if (writebuf)
488 m68k_svr4_store_return_value (type, regcache, writebuf);
490 return RETURN_VALUE_REGISTER_CONVENTION;
494 /* Always align the frame to a 4-byte boundary. This is required on
495 coldfire and harmless on the rest. */
497 static CORE_ADDR
498 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
500 /* Align the stack to four bytes. */
501 return sp & ~3;
504 static CORE_ADDR
505 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
506 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
507 struct value **args, CORE_ADDR sp, int struct_return,
508 CORE_ADDR struct_addr)
510 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
511 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
512 gdb_byte buf[4];
513 int i;
515 /* Push arguments in reverse order. */
516 for (i = nargs - 1; i >= 0; i--)
518 struct type *value_type = value_enclosing_type (args[i]);
519 int len = TYPE_LENGTH (value_type);
520 int container_len = (len + 3) & ~3;
521 int offset;
523 /* Non-scalars bigger than 4 bytes are left aligned, others are
524 right aligned. */
525 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
526 || TYPE_CODE (value_type) == TYPE_CODE_UNION
527 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
528 && len > 4)
529 offset = 0;
530 else
531 offset = container_len - len;
532 sp -= container_len;
533 write_memory (sp + offset, value_contents_all (args[i]), len);
536 /* Store struct value address. */
537 if (struct_return)
539 store_unsigned_integer (buf, 4, byte_order, struct_addr);
540 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
543 /* Store return address. */
544 sp -= 4;
545 store_unsigned_integer (buf, 4, byte_order, bp_addr);
546 write_memory (sp, buf, 4);
548 /* Finally, update the stack pointer... */
549 store_unsigned_integer (buf, 4, byte_order, sp);
550 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
552 /* ...and fake a frame pointer. */
553 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
555 /* DWARF2/GCC uses the stack address *before* the function call as a
556 frame's CFA. */
557 return sp + 8;
560 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
562 static int
563 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
565 if (num < 8)
566 /* d0..7 */
567 return (num - 0) + M68K_D0_REGNUM;
568 else if (num < 16)
569 /* a0..7 */
570 return (num - 8) + M68K_A0_REGNUM;
571 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
572 /* fp0..7 */
573 return (num - 16) + M68K_FP0_REGNUM;
574 else if (num == 25)
575 /* pc */
576 return M68K_PC_REGNUM;
577 else
578 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
582 struct m68k_frame_cache
584 /* Base address. */
585 CORE_ADDR base;
586 CORE_ADDR sp_offset;
587 CORE_ADDR pc;
589 /* Saved registers. */
590 CORE_ADDR saved_regs[M68K_NUM_REGS];
591 CORE_ADDR saved_sp;
593 /* Stack space reserved for local variables. */
594 long locals;
597 /* Allocate and initialize a frame cache. */
599 static struct m68k_frame_cache *
600 m68k_alloc_frame_cache (void)
602 struct m68k_frame_cache *cache;
603 int i;
605 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
607 /* Base address. */
608 cache->base = 0;
609 cache->sp_offset = -4;
610 cache->pc = 0;
612 /* Saved registers. We initialize these to -1 since zero is a valid
613 offset (that's where %fp is supposed to be stored). */
614 for (i = 0; i < M68K_NUM_REGS; i++)
615 cache->saved_regs[i] = -1;
617 /* Frameless until proven otherwise. */
618 cache->locals = -1;
620 return cache;
623 /* Check whether PC points at a code that sets up a new stack frame.
624 If so, it updates CACHE and returns the address of the first
625 instruction after the sequence that sets removes the "hidden"
626 argument from the stack or CURRENT_PC, whichever is smaller.
627 Otherwise, return PC. */
629 static CORE_ADDR
630 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
631 CORE_ADDR pc, CORE_ADDR current_pc,
632 struct m68k_frame_cache *cache)
634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
635 int op;
637 if (pc >= current_pc)
638 return current_pc;
640 op = read_memory_unsigned_integer (pc, 2, byte_order);
642 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
644 cache->saved_regs[M68K_FP_REGNUM] = 0;
645 cache->sp_offset += 4;
646 if (op == P_LINKW_FP)
648 /* link.w %fp, #-N */
649 /* link.w %fp, #0; adda.l #-N, %sp */
650 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
652 if (pc + 4 < current_pc && cache->locals == 0)
654 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
655 if (op == P_ADDAL_SP)
657 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
658 return pc + 10;
662 return pc + 4;
664 else if (op == P_LINKL_FP)
666 /* link.l %fp, #-N */
667 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
668 return pc + 6;
670 else
672 /* pea (%fp); movea.l %sp, %fp */
673 cache->locals = 0;
675 if (pc + 2 < current_pc)
677 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
679 if (op == P_MOVEAL_SP_FP)
681 /* move.l %sp, %fp */
682 return pc + 4;
686 return pc + 2;
689 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
691 /* subq.[wl] #N,%sp */
692 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
693 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
694 if (pc + 2 < current_pc)
696 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
697 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
699 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
700 return pc + 4;
703 return pc + 2;
705 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
707 /* adda.w #-N,%sp */
708 /* lea (-N,%sp),%sp */
709 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
710 return pc + 4;
712 else if (op == P_ADDAL_SP)
714 /* adda.l #-N,%sp */
715 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
716 return pc + 6;
719 return pc;
722 /* Check whether PC points at code that saves registers on the stack.
723 If so, it updates CACHE and returns the address of the first
724 instruction after the register saves or CURRENT_PC, whichever is
725 smaller. Otherwise, return PC. */
727 static CORE_ADDR
728 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
729 CORE_ADDR current_pc,
730 struct m68k_frame_cache *cache)
732 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
734 if (cache->locals >= 0)
736 CORE_ADDR offset;
737 int op;
738 int i, mask, regno;
740 offset = -4 - cache->locals;
741 while (pc < current_pc)
743 op = read_memory_unsigned_integer (pc, 2, byte_order);
744 if (op == P_FMOVEMX_SP
745 && gdbarch_tdep (gdbarch)->fpregs_present)
747 /* fmovem.x REGS,-(%sp) */
748 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
749 if ((op & 0xff00) == 0xe000)
751 mask = op & 0xff;
752 for (i = 0; i < 16; i++, mask >>= 1)
754 if (mask & 1)
756 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
757 offset -= 12;
760 pc += 4;
762 else
763 break;
765 else if ((op & 0177760) == P_MOVEL_SP)
767 /* move.l %R,-(%sp) */
768 regno = op & 017;
769 cache->saved_regs[regno] = offset;
770 offset -= 4;
771 pc += 2;
773 else if (op == P_MOVEML_SP)
775 /* movem.l REGS,-(%sp) */
776 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
777 for (i = 0; i < 16; i++, mask >>= 1)
779 if (mask & 1)
781 cache->saved_regs[15 - i] = offset;
782 offset -= 4;
785 pc += 4;
787 else
788 break;
792 return pc;
796 /* Do a full analysis of the prologue at PC and update CACHE
797 accordingly. Bail out early if CURRENT_PC is reached. Return the
798 address where the analysis stopped.
800 We handle all cases that can be generated by gcc.
802 For allocating a stack frame:
804 link.w %a6,#-N
805 link.l %a6,#-N
806 pea (%fp); move.l %sp,%fp
807 link.w %a6,#0; add.l #-N,%sp
808 subq.l #N,%sp
809 subq.w #N,%sp
810 subq.w #8,%sp; subq.w #N-8,%sp
811 add.w #-N,%sp
812 lea (-N,%sp),%sp
813 add.l #-N,%sp
815 For saving registers:
817 fmovem.x REGS,-(%sp)
818 move.l R1,-(%sp)
819 move.l R1,-(%sp); move.l R2,-(%sp)
820 movem.l REGS,-(%sp)
822 For setting up the PIC register:
824 lea (%pc,N),%a5
828 static CORE_ADDR
829 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
830 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
833 unsigned int op;
835 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
836 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
837 if (pc >= current_pc)
838 return current_pc;
840 /* Check for GOT setup. */
841 op = read_memory_unsigned_integer (pc, 4, byte_order);
842 if (op == P_LEA_PC_A5)
844 /* lea (%pc,N),%a5 */
845 return pc + 8;
848 return pc;
851 /* Return PC of first real instruction. */
853 static CORE_ADDR
854 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
856 struct m68k_frame_cache cache;
857 CORE_ADDR pc;
859 cache.locals = -1;
860 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
861 if (cache.locals < 0)
862 return start_pc;
863 return pc;
866 static CORE_ADDR
867 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
869 gdb_byte buf[8];
871 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
872 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
875 /* Normal frames. */
877 static struct m68k_frame_cache *
878 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
880 struct gdbarch *gdbarch = get_frame_arch (this_frame);
881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
882 struct m68k_frame_cache *cache;
883 gdb_byte buf[4];
884 int i;
886 if (*this_cache)
887 return *this_cache;
889 cache = m68k_alloc_frame_cache ();
890 *this_cache = cache;
892 /* In principle, for normal frames, %fp holds the frame pointer,
893 which holds the base address for the current stack frame.
894 However, for functions that don't need it, the frame pointer is
895 optional. For these "frameless" functions the frame pointer is
896 actually the frame pointer of the calling frame. Signal
897 trampolines are just a special case of a "frameless" function.
898 They (usually) share their frame pointer with the frame that was
899 in progress when the signal occurred. */
901 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
902 cache->base = extract_unsigned_integer (buf, 4, byte_order);
903 if (cache->base == 0)
904 return cache;
906 /* For normal frames, %pc is stored at 4(%fp). */
907 cache->saved_regs[M68K_PC_REGNUM] = 4;
909 cache->pc = get_frame_func (this_frame);
910 if (cache->pc != 0)
911 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
912 get_frame_pc (this_frame), cache);
914 if (cache->locals < 0)
916 /* We didn't find a valid frame, which means that CACHE->base
917 currently holds the frame pointer for our calling frame. If
918 we're at the start of a function, or somewhere half-way its
919 prologue, the function's frame probably hasn't been fully
920 setup yet. Try to reconstruct the base address for the stack
921 frame by looking at the stack pointer. For truly "frameless"
922 functions this might work too. */
924 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
925 cache->base = extract_unsigned_integer (buf, 4, byte_order)
926 + cache->sp_offset;
929 /* Now that we have the base address for the stack frame we can
930 calculate the value of %sp in the calling frame. */
931 cache->saved_sp = cache->base + 8;
933 /* Adjust all the saved registers such that they contain addresses
934 instead of offsets. */
935 for (i = 0; i < M68K_NUM_REGS; i++)
936 if (cache->saved_regs[i] != -1)
937 cache->saved_regs[i] += cache->base;
939 return cache;
942 static void
943 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
944 struct frame_id *this_id)
946 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
948 /* This marks the outermost frame. */
949 if (cache->base == 0)
950 return;
952 /* See the end of m68k_push_dummy_call. */
953 *this_id = frame_id_build (cache->base + 8, cache->pc);
956 static struct value *
957 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
958 int regnum)
960 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
962 gdb_assert (regnum >= 0);
964 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
965 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
967 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
968 return frame_unwind_got_memory (this_frame, regnum,
969 cache->saved_regs[regnum]);
971 return frame_unwind_got_register (this_frame, regnum, regnum);
974 static const struct frame_unwind m68k_frame_unwind =
976 NORMAL_FRAME,
977 default_frame_unwind_stop_reason,
978 m68k_frame_this_id,
979 m68k_frame_prev_register,
980 NULL,
981 default_frame_sniffer
984 static CORE_ADDR
985 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
987 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
989 return cache->base;
992 static const struct frame_base m68k_frame_base =
994 &m68k_frame_unwind,
995 m68k_frame_base_address,
996 m68k_frame_base_address,
997 m68k_frame_base_address
1000 static struct frame_id
1001 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1003 CORE_ADDR fp;
1005 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
1007 /* See the end of m68k_push_dummy_call. */
1008 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1012 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1013 We expect the first arg to be a pointer to the jmp_buf structure from which
1014 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1015 This routine returns true on success. */
1017 static int
1018 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1020 gdb_byte *buf;
1021 CORE_ADDR sp, jb_addr;
1022 struct gdbarch *gdbarch = get_frame_arch (frame);
1023 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1026 if (tdep->jb_pc < 0)
1028 internal_error (__FILE__, __LINE__,
1029 _("m68k_get_longjmp_target: not implemented"));
1030 return 0;
1033 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1034 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1036 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1037 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1038 return 0;
1040 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1041 / TARGET_CHAR_BIT, byte_order);
1043 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1044 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1045 byte_order)
1046 return 0;
1048 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1049 / TARGET_CHAR_BIT, byte_order);
1050 return 1;
1054 /* This is the implementation of gdbarch method
1055 return_in_first_hidden_param_p. */
1057 static int
1058 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1059 struct type *type)
1061 return 0;
1064 /* System V Release 4 (SVR4). */
1066 void
1067 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1069 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1071 /* SVR4 uses a different calling convention. */
1072 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1074 /* SVR4 uses %a0 instead of %a1. */
1075 tdep->struct_value_regnum = M68K_A0_REGNUM;
1079 /* Function: m68k_gdbarch_init
1080 Initializer function for the m68k gdbarch vector.
1081 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1083 static struct gdbarch *
1084 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1086 struct gdbarch_tdep *tdep = NULL;
1087 struct gdbarch *gdbarch;
1088 struct gdbarch_list *best_arch;
1089 struct tdesc_arch_data *tdesc_data = NULL;
1090 int i;
1091 enum m68k_flavour flavour = m68k_no_flavour;
1092 int has_fp = 1;
1093 const struct floatformat **long_double_format = floatformats_m68881_ext;
1095 /* Check any target description for validity. */
1096 if (tdesc_has_registers (info.target_desc))
1098 const struct tdesc_feature *feature;
1099 int valid_p;
1101 feature = tdesc_find_feature (info.target_desc,
1102 "org.gnu.gdb.m68k.core");
1104 if (feature == NULL)
1106 feature = tdesc_find_feature (info.target_desc,
1107 "org.gnu.gdb.coldfire.core");
1108 if (feature != NULL)
1109 flavour = m68k_coldfire_flavour;
1112 if (feature == NULL)
1114 feature = tdesc_find_feature (info.target_desc,
1115 "org.gnu.gdb.fido.core");
1116 if (feature != NULL)
1117 flavour = m68k_fido_flavour;
1120 if (feature == NULL)
1121 return NULL;
1123 tdesc_data = tdesc_data_alloc ();
1125 valid_p = 1;
1126 for (i = 0; i <= M68K_PC_REGNUM; i++)
1127 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1128 m68k_register_names[i]);
1130 if (!valid_p)
1132 tdesc_data_cleanup (tdesc_data);
1133 return NULL;
1136 feature = tdesc_find_feature (info.target_desc,
1137 "org.gnu.gdb.coldfire.fp");
1138 if (feature != NULL)
1140 valid_p = 1;
1141 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1142 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1143 m68k_register_names[i]);
1144 if (!valid_p)
1146 tdesc_data_cleanup (tdesc_data);
1147 return NULL;
1150 else
1151 has_fp = 0;
1154 /* The mechanism for returning floating values from function
1155 and the type of long double depend on whether we're
1156 on ColdFire or standard m68k. */
1158 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1160 const bfd_arch_info_type *coldfire_arch =
1161 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1163 if (coldfire_arch
1164 && ((*info.bfd_arch_info->compatible)
1165 (info.bfd_arch_info, coldfire_arch)))
1166 flavour = m68k_coldfire_flavour;
1169 /* If there is already a candidate, use it. */
1170 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1171 best_arch != NULL;
1172 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1174 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1175 continue;
1177 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1178 continue;
1180 break;
1183 if (best_arch != NULL)
1185 if (tdesc_data != NULL)
1186 tdesc_data_cleanup (tdesc_data);
1187 return best_arch->gdbarch;
1190 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1191 gdbarch = gdbarch_alloc (&info, tdep);
1192 tdep->fpregs_present = has_fp;
1193 tdep->flavour = flavour;
1195 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1196 long_double_format = floatformats_ieee_double;
1197 set_gdbarch_long_double_format (gdbarch, long_double_format);
1198 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1200 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1201 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1203 /* Stack grows down. */
1204 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1205 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1207 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1208 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1209 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1211 set_gdbarch_frame_args_skip (gdbarch, 8);
1212 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1214 set_gdbarch_register_type (gdbarch, m68k_register_type);
1215 set_gdbarch_register_name (gdbarch, m68k_register_name);
1216 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1217 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1218 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1219 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1220 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1221 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1222 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1224 if (has_fp)
1225 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1227 /* Try to figure out if the arch uses floating registers to return
1228 floating point values from functions. */
1229 if (has_fp)
1231 /* On ColdFire, floating point values are returned in D0. */
1232 if (flavour == m68k_coldfire_flavour)
1233 tdep->float_return = 0;
1234 else
1235 tdep->float_return = 1;
1237 else
1239 /* No floating registers, so can't use them for returning values. */
1240 tdep->float_return = 0;
1243 /* Function call & return. */
1244 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1245 set_gdbarch_return_value (gdbarch, m68k_return_value);
1246 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1247 m68k_return_in_first_hidden_param_p);
1250 /* Disassembler. */
1251 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1253 #if defined JB_PC && defined JB_ELEMENT_SIZE
1254 tdep->jb_pc = JB_PC;
1255 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1256 #else
1257 tdep->jb_pc = -1;
1258 #endif
1259 tdep->struct_value_regnum = M68K_A1_REGNUM;
1260 tdep->struct_return = reg_struct_return;
1262 /* Frame unwinder. */
1263 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1264 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1266 /* Hook in the DWARF CFI frame unwinder. */
1267 dwarf2_append_unwinders (gdbarch);
1269 frame_base_set_default (gdbarch, &m68k_frame_base);
1271 /* Hook in ABI-specific overrides, if they have been registered. */
1272 gdbarch_init_osabi (info, gdbarch);
1274 /* Now we have tuned the configuration, set a few final things,
1275 based on what the OS ABI has told us. */
1277 if (tdep->jb_pc >= 0)
1278 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1280 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1282 if (tdesc_data)
1283 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1285 return gdbarch;
1289 static void
1290 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1294 if (tdep == NULL)
1295 return;
1298 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1300 void
1301 _initialize_m68k_tdep (void)
1303 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);