1 /* Common target dependent code for GDB on ARM systems.
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include <ctype.h> /* XXX for isupper (). */
29 #include "dis-asm.h" /* For register styles. */
31 #include "reggroups.h"
34 #include "arch-utils.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
40 #include "dwarf2-frame.h"
42 #include "prologue-value.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
49 #include "gdb/sim-arm.h"
52 #include "coff/internal.h"
55 #include "gdb_assert.h"
59 #include "record-full.h"
61 #include "features/arm-with-m.c"
62 #include "features/arm-with-m-fpa-layout.c"
63 #include "features/arm-with-m-vfp-d16.c"
64 #include "features/arm-with-iwmmxt.c"
65 #include "features/arm-with-vfpv2.c"
66 #include "features/arm-with-vfpv3.c"
67 #include "features/arm-with-neon.c"
71 /* Macros for setting and testing a bit in a minimal symbol that marks
72 it as Thumb function. The MSB of the minimal symbol's "info" field
73 is used for this purpose.
75 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
76 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
78 #define MSYMBOL_SET_SPECIAL(msym) \
79 MSYMBOL_TARGET_FLAG_1 (msym) = 1
81 #define MSYMBOL_IS_SPECIAL(msym) \
82 MSYMBOL_TARGET_FLAG_1 (msym)
84 /* Per-objfile data used for mapping symbols. */
85 static const struct objfile_data
*arm_objfile_data_key
;
87 struct arm_mapping_symbol
92 typedef struct arm_mapping_symbol arm_mapping_symbol_s
;
93 DEF_VEC_O(arm_mapping_symbol_s
);
95 struct arm_per_objfile
97 VEC(arm_mapping_symbol_s
) **section_maps
;
100 /* The list of available "set arm ..." and "show arm ..." commands. */
101 static struct cmd_list_element
*setarmcmdlist
= NULL
;
102 static struct cmd_list_element
*showarmcmdlist
= NULL
;
104 /* The type of floating-point to use. Keep this in sync with enum
105 arm_float_model, and the help string in _initialize_arm_tdep. */
106 static const char *const fp_model_strings
[] =
116 /* A variable that can be configured by the user. */
117 static enum arm_float_model arm_fp_model
= ARM_FLOAT_AUTO
;
118 static const char *current_fp_model
= "auto";
120 /* The ABI to use. Keep this in sync with arm_abi_kind. */
121 static const char *const arm_abi_strings
[] =
129 /* A variable that can be configured by the user. */
130 static enum arm_abi_kind arm_abi_global
= ARM_ABI_AUTO
;
131 static const char *arm_abi_string
= "auto";
133 /* The execution mode to assume. */
134 static const char *const arm_mode_strings
[] =
142 static const char *arm_fallback_mode_string
= "auto";
143 static const char *arm_force_mode_string
= "auto";
145 /* Internal override of the execution mode. -1 means no override,
146 0 means override to ARM mode, 1 means override to Thumb mode.
147 The effect is the same as if arm_force_mode has been set by the
148 user (except the internal override has precedence over a user's
149 arm_force_mode override). */
150 static int arm_override_mode
= -1;
152 /* Number of different reg name sets (options). */
153 static int num_disassembly_options
;
155 /* The standard register names, and all the valid aliases for them. Note
156 that `fp', `sp' and `pc' are not added in this alias list, because they
157 have been added as builtin user registers in
158 std-regs.c:_initialize_frame_reg. */
163 } arm_register_aliases
[] = {
164 /* Basic register numbers. */
181 /* Synonyms (argument and variable registers). */
194 /* Other platform-specific names for r9. */
200 /* Names used by GCC (not listed in the ARM EABI). */
202 /* A special name from the older ATPCS. */
206 static const char *const arm_register_names
[] =
207 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
208 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
209 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
210 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
211 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
212 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
213 "fps", "cpsr" }; /* 24 25 */
215 /* Valid register name styles. */
216 static const char **valid_disassembly_styles
;
218 /* Disassembly style to use. Default to "std" register names. */
219 static const char *disassembly_style
;
221 /* This is used to keep the bfd arch_info in sync with the disassembly
223 static void set_disassembly_style_sfunc(char *, int,
224 struct cmd_list_element
*);
225 static void set_disassembly_style (void);
227 static void convert_from_extended (const struct floatformat
*, const void *,
229 static void convert_to_extended (const struct floatformat
*, void *,
232 static enum register_status
arm_neon_quad_read (struct gdbarch
*gdbarch
,
233 struct regcache
*regcache
,
234 int regnum
, gdb_byte
*buf
);
235 static void arm_neon_quad_write (struct gdbarch
*gdbarch
,
236 struct regcache
*regcache
,
237 int regnum
, const gdb_byte
*buf
);
239 static int thumb_insn_size (unsigned short inst1
);
241 struct arm_prologue_cache
243 /* The stack pointer at the time this frame was created; i.e. the
244 caller's stack pointer when this function was called. It is used
245 to identify this frame. */
248 /* The frame base for this frame is just prev_sp - frame size.
249 FRAMESIZE is the distance from the frame pointer to the
250 initial stack pointer. */
254 /* The register used to hold the frame pointer for this frame. */
257 /* Saved register offsets. */
258 struct trad_frame_saved_reg
*saved_regs
;
261 static CORE_ADDR
arm_analyze_prologue (struct gdbarch
*gdbarch
,
262 CORE_ADDR prologue_start
,
263 CORE_ADDR prologue_end
,
264 struct arm_prologue_cache
*cache
);
266 /* Architecture version for displaced stepping. This effects the behaviour of
267 certain instructions, and really should not be hard-wired. */
269 #define DISPLACED_STEPPING_ARCH_VERSION 5
271 /* Addresses for calling Thumb functions have the bit 0 set.
272 Here are some macros to test, set, or clear bit 0 of addresses. */
273 #define IS_THUMB_ADDR(addr) ((addr) & 1)
274 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
275 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
277 /* Set to true if the 32-bit mode is in use. */
281 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
284 arm_psr_thumb_bit (struct gdbarch
*gdbarch
)
286 if (gdbarch_tdep (gdbarch
)->is_m
)
292 /* Determine if FRAME is executing in Thumb mode. */
295 arm_frame_is_thumb (struct frame_info
*frame
)
298 ULONGEST t_bit
= arm_psr_thumb_bit (get_frame_arch (frame
));
300 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
301 directly (from a signal frame or dummy frame) or by interpreting
302 the saved LR (from a prologue or DWARF frame). So consult it and
303 trust the unwinders. */
304 cpsr
= get_frame_register_unsigned (frame
, ARM_PS_REGNUM
);
306 return (cpsr
& t_bit
) != 0;
309 /* Callback for VEC_lower_bound. */
312 arm_compare_mapping_symbols (const struct arm_mapping_symbol
*lhs
,
313 const struct arm_mapping_symbol
*rhs
)
315 return lhs
->value
< rhs
->value
;
318 /* Search for the mapping symbol covering MEMADDR. If one is found,
319 return its type. Otherwise, return 0. If START is non-NULL,
320 set *START to the location of the mapping symbol. */
323 arm_find_mapping_symbol (CORE_ADDR memaddr
, CORE_ADDR
*start
)
325 struct obj_section
*sec
;
327 /* If there are mapping symbols, consult them. */
328 sec
= find_pc_section (memaddr
);
331 struct arm_per_objfile
*data
;
332 VEC(arm_mapping_symbol_s
) *map
;
333 struct arm_mapping_symbol map_key
= { memaddr
- obj_section_addr (sec
),
337 data
= objfile_data (sec
->objfile
, arm_objfile_data_key
);
340 map
= data
->section_maps
[sec
->the_bfd_section
->index
];
341 if (!VEC_empty (arm_mapping_symbol_s
, map
))
343 struct arm_mapping_symbol
*map_sym
;
345 idx
= VEC_lower_bound (arm_mapping_symbol_s
, map
, &map_key
,
346 arm_compare_mapping_symbols
);
348 /* VEC_lower_bound finds the earliest ordered insertion
349 point. If the following symbol starts at this exact
350 address, we use that; otherwise, the preceding
351 mapping symbol covers this address. */
352 if (idx
< VEC_length (arm_mapping_symbol_s
, map
))
354 map_sym
= VEC_index (arm_mapping_symbol_s
, map
, idx
);
355 if (map_sym
->value
== map_key
.value
)
358 *start
= map_sym
->value
+ obj_section_addr (sec
);
359 return map_sym
->type
;
365 map_sym
= VEC_index (arm_mapping_symbol_s
, map
, idx
- 1);
367 *start
= map_sym
->value
+ obj_section_addr (sec
);
368 return map_sym
->type
;
377 /* Determine if the program counter specified in MEMADDR is in a Thumb
378 function. This function should be called for addresses unrelated to
379 any executing frame; otherwise, prefer arm_frame_is_thumb. */
382 arm_pc_is_thumb (struct gdbarch
*gdbarch
, CORE_ADDR memaddr
)
384 struct bound_minimal_symbol sym
;
386 struct displaced_step_closure
* dsc
387 = get_displaced_step_closure_by_addr(memaddr
);
389 /* If checking the mode of displaced instruction in copy area, the mode
390 should be determined by instruction on the original address. */
394 fprintf_unfiltered (gdb_stdlog
,
395 "displaced: check mode of %.8lx instead of %.8lx\n",
396 (unsigned long) dsc
->insn_addr
,
397 (unsigned long) memaddr
);
398 memaddr
= dsc
->insn_addr
;
401 /* If bit 0 of the address is set, assume this is a Thumb address. */
402 if (IS_THUMB_ADDR (memaddr
))
405 /* Respect internal mode override if active. */
406 if (arm_override_mode
!= -1)
407 return arm_override_mode
;
409 /* If the user wants to override the symbol table, let him. */
410 if (strcmp (arm_force_mode_string
, "arm") == 0)
412 if (strcmp (arm_force_mode_string
, "thumb") == 0)
415 /* ARM v6-M and v7-M are always in Thumb mode. */
416 if (gdbarch_tdep (gdbarch
)->is_m
)
419 /* If there are mapping symbols, consult them. */
420 type
= arm_find_mapping_symbol (memaddr
, NULL
);
424 /* Thumb functions have a "special" bit set in minimal symbols. */
425 sym
= lookup_minimal_symbol_by_pc (memaddr
);
427 return (MSYMBOL_IS_SPECIAL (sym
.minsym
));
429 /* If the user wants to override the fallback mode, let them. */
430 if (strcmp (arm_fallback_mode_string
, "arm") == 0)
432 if (strcmp (arm_fallback_mode_string
, "thumb") == 0)
435 /* If we couldn't find any symbol, but we're talking to a running
436 target, then trust the current value of $cpsr. This lets
437 "display/i $pc" always show the correct mode (though if there is
438 a symbol table we will not reach here, so it still may not be
439 displayed in the mode it will be executed). */
440 if (target_has_registers
)
441 return arm_frame_is_thumb (get_current_frame ());
443 /* Otherwise we're out of luck; we assume ARM. */
447 /* Remove useless bits from addresses in a running program. */
449 arm_addr_bits_remove (struct gdbarch
*gdbarch
, CORE_ADDR val
)
451 /* On M-profile devices, do not strip the low bit from EXC_RETURN
452 (the magic exception return address). */
453 if (gdbarch_tdep (gdbarch
)->is_m
454 && (val
& 0xfffffff0) == 0xfffffff0)
458 return UNMAKE_THUMB_ADDR (val
);
460 return (val
& 0x03fffffc);
463 /* Return 1 if PC is the start of a compiler helper function which
464 can be safely ignored during prologue skipping. IS_THUMB is true
465 if the function is known to be a Thumb function due to the way it
468 skip_prologue_function (struct gdbarch
*gdbarch
, CORE_ADDR pc
, int is_thumb
)
470 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
471 struct bound_minimal_symbol msym
;
473 msym
= lookup_minimal_symbol_by_pc (pc
);
474 if (msym
.minsym
!= NULL
475 && BMSYMBOL_VALUE_ADDRESS (msym
) == pc
476 && MSYMBOL_LINKAGE_NAME (msym
.minsym
) != NULL
)
478 const char *name
= MSYMBOL_LINKAGE_NAME (msym
.minsym
);
480 /* The GNU linker's Thumb call stub to foo is named
482 if (strstr (name
, "_from_thumb") != NULL
)
485 /* On soft-float targets, __truncdfsf2 is called to convert promoted
486 arguments to their argument types in non-prototyped
488 if (strncmp (name
, "__truncdfsf2", strlen ("__truncdfsf2")) == 0)
490 if (strncmp (name
, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0)
493 /* Internal functions related to thread-local storage. */
494 if (strncmp (name
, "__tls_get_addr", strlen ("__tls_get_addr")) == 0)
496 if (strncmp (name
, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0)
501 /* If we run against a stripped glibc, we may be unable to identify
502 special functions by name. Check for one important case,
503 __aeabi_read_tp, by comparing the *code* against the default
504 implementation (this is hand-written ARM assembler in glibc). */
507 && read_memory_unsigned_integer (pc
, 4, byte_order_for_code
)
508 == 0xe3e00a0f /* mov r0, #0xffff0fff */
509 && read_memory_unsigned_integer (pc
+ 4, 4, byte_order_for_code
)
510 == 0xe240f01f) /* sub pc, r0, #31 */
517 /* Support routines for instruction parsing. */
518 #define submask(x) ((1L << ((x) + 1)) - 1)
519 #define bit(obj,st) (((obj) >> (st)) & 1)
520 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
521 #define sbits(obj,st,fn) \
522 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
523 #define BranchDest(addr,instr) \
524 ((CORE_ADDR) (((unsigned long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
526 /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
527 the first 16-bit of instruction, and INSN2 is the second 16-bit of
529 #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
530 ((bits ((insn1), 0, 3) << 12) \
531 | (bits ((insn1), 10, 10) << 11) \
532 | (bits ((insn2), 12, 14) << 8) \
533 | bits ((insn2), 0, 7))
535 /* Extract the immediate from instruction movw/movt of encoding A. INSN is
536 the 32-bit instruction. */
537 #define EXTRACT_MOVW_MOVT_IMM_A(insn) \
538 ((bits ((insn), 16, 19) << 12) \
539 | bits ((insn), 0, 11))
541 /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
544 thumb_expand_immediate (unsigned int imm
)
546 unsigned int count
= imm
>> 7;
554 return (imm
& 0xff) | ((imm
& 0xff) << 16);
556 return ((imm
& 0xff) << 8) | ((imm
& 0xff) << 24);
558 return (imm
& 0xff) | ((imm
& 0xff) << 8)
559 | ((imm
& 0xff) << 16) | ((imm
& 0xff) << 24);
562 return (0x80 | (imm
& 0x7f)) << (32 - count
);
565 /* Return 1 if the 16-bit Thumb instruction INST might change
566 control flow, 0 otherwise. */
569 thumb_instruction_changes_pc (unsigned short inst
)
571 if ((inst
& 0xff00) == 0xbd00) /* pop {rlist, pc} */
574 if ((inst
& 0xf000) == 0xd000) /* conditional branch */
577 if ((inst
& 0xf800) == 0xe000) /* unconditional branch */
580 if ((inst
& 0xff00) == 0x4700) /* bx REG, blx REG */
583 if ((inst
& 0xff87) == 0x4687) /* mov pc, REG */
586 if ((inst
& 0xf500) == 0xb100) /* CBNZ or CBZ. */
592 /* Return 1 if the 32-bit Thumb instruction in INST1 and INST2
593 might change control flow, 0 otherwise. */
596 thumb2_instruction_changes_pc (unsigned short inst1
, unsigned short inst2
)
598 if ((inst1
& 0xf800) == 0xf000 && (inst2
& 0x8000) == 0x8000)
600 /* Branches and miscellaneous control instructions. */
602 if ((inst2
& 0x1000) != 0 || (inst2
& 0xd001) == 0xc000)
607 else if (inst1
== 0xf3de && (inst2
& 0xff00) == 0x3f00)
609 /* SUBS PC, LR, #imm8. */
612 else if ((inst2
& 0xd000) == 0x8000 && (inst1
& 0x0380) != 0x0380)
614 /* Conditional branch. */
621 if ((inst1
& 0xfe50) == 0xe810)
623 /* Load multiple or RFE. */
625 if (bit (inst1
, 7) && !bit (inst1
, 8))
631 else if (!bit (inst1
, 7) && bit (inst1
, 8))
637 else if (bit (inst1
, 7) && bit (inst1
, 8))
642 else if (!bit (inst1
, 7) && !bit (inst1
, 8))
651 if ((inst1
& 0xffef) == 0xea4f && (inst2
& 0xfff0) == 0x0f00)
653 /* MOV PC or MOVS PC. */
657 if ((inst1
& 0xff70) == 0xf850 && (inst2
& 0xf000) == 0xf000)
660 if (bits (inst1
, 0, 3) == 15)
666 if ((inst2
& 0x0fc0) == 0x0000)
672 if ((inst1
& 0xfff0) == 0xe8d0 && (inst2
& 0xfff0) == 0xf000)
678 if ((inst1
& 0xfff0) == 0xe8d0 && (inst2
& 0xfff0) == 0xf010)
687 /* Analyze a Thumb prologue, looking for a recognizable stack frame
688 and frame pointer. Scan until we encounter a store that could
689 clobber the stack frame unexpectedly, or an unknown instruction.
690 Return the last address which is definitely safe to skip for an
691 initial breakpoint. */
694 thumb_analyze_prologue (struct gdbarch
*gdbarch
,
695 CORE_ADDR start
, CORE_ADDR limit
,
696 struct arm_prologue_cache
*cache
)
698 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
699 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
702 struct pv_area
*stack
;
703 struct cleanup
*back_to
;
705 CORE_ADDR unrecognized_pc
= 0;
707 for (i
= 0; i
< 16; i
++)
708 regs
[i
] = pv_register (i
, 0);
709 stack
= make_pv_area (ARM_SP_REGNUM
, gdbarch_addr_bit (gdbarch
));
710 back_to
= make_cleanup_free_pv_area (stack
);
712 while (start
< limit
)
716 insn
= read_memory_unsigned_integer (start
, 2, byte_order_for_code
);
718 if ((insn
& 0xfe00) == 0xb400) /* push { rlist } */
723 if (pv_area_store_would_trash (stack
, regs
[ARM_SP_REGNUM
]))
726 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
727 whether to save LR (R14). */
728 mask
= (insn
& 0xff) | ((insn
& 0x100) << 6);
730 /* Calculate offsets of saved R0-R7 and LR. */
731 for (regno
= ARM_LR_REGNUM
; regno
>= 0; regno
--)
732 if (mask
& (1 << regno
))
734 regs
[ARM_SP_REGNUM
] = pv_add_constant (regs
[ARM_SP_REGNUM
],
736 pv_area_store (stack
, regs
[ARM_SP_REGNUM
], 4, regs
[regno
]);
739 else if ((insn
& 0xff00) == 0xb000) /* add sp, #simm OR
742 offset
= (insn
& 0x7f) << 2; /* get scaled offset */
743 if (insn
& 0x80) /* Check for SUB. */
744 regs
[ARM_SP_REGNUM
] = pv_add_constant (regs
[ARM_SP_REGNUM
],
747 regs
[ARM_SP_REGNUM
] = pv_add_constant (regs
[ARM_SP_REGNUM
],
750 else if ((insn
& 0xf800) == 0xa800) /* add Rd, sp, #imm */
751 regs
[bits (insn
, 8, 10)] = pv_add_constant (regs
[ARM_SP_REGNUM
],
753 else if ((insn
& 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
754 && pv_is_register (regs
[bits (insn
, 3, 5)], ARM_SP_REGNUM
))
755 regs
[bits (insn
, 0, 2)] = pv_add_constant (regs
[bits (insn
, 3, 5)],
757 else if ((insn
& 0xf800) == 0x3000 /* add Rd, #imm */
758 && pv_is_register (regs
[bits (insn
, 8, 10)], ARM_SP_REGNUM
))
759 regs
[bits (insn
, 8, 10)] = pv_add_constant (regs
[bits (insn
, 8, 10)],
761 else if ((insn
& 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
762 && pv_is_register (regs
[bits (insn
, 6, 8)], ARM_SP_REGNUM
)
763 && pv_is_constant (regs
[bits (insn
, 3, 5)]))
764 regs
[bits (insn
, 0, 2)] = pv_add (regs
[bits (insn
, 3, 5)],
765 regs
[bits (insn
, 6, 8)]);
766 else if ((insn
& 0xff00) == 0x4400 /* add Rd, Rm */
767 && pv_is_constant (regs
[bits (insn
, 3, 6)]))
769 int rd
= (bit (insn
, 7) << 3) + bits (insn
, 0, 2);
770 int rm
= bits (insn
, 3, 6);
771 regs
[rd
] = pv_add (regs
[rd
], regs
[rm
]);
773 else if ((insn
& 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
775 int dst_reg
= (insn
& 0x7) + ((insn
& 0x80) >> 4);
776 int src_reg
= (insn
& 0x78) >> 3;
777 regs
[dst_reg
] = regs
[src_reg
];
779 else if ((insn
& 0xf800) == 0x9000) /* str rd, [sp, #off] */
781 /* Handle stores to the stack. Normally pushes are used,
782 but with GCC -mtpcs-frame, there may be other stores
783 in the prologue to create the frame. */
784 int regno
= (insn
>> 8) & 0x7;
787 offset
= (insn
& 0xff) << 2;
788 addr
= pv_add_constant (regs
[ARM_SP_REGNUM
], offset
);
790 if (pv_area_store_would_trash (stack
, addr
))
793 pv_area_store (stack
, addr
, 4, regs
[regno
]);
795 else if ((insn
& 0xf800) == 0x6000) /* str rd, [rn, #off] */
797 int rd
= bits (insn
, 0, 2);
798 int rn
= bits (insn
, 3, 5);
801 offset
= bits (insn
, 6, 10) << 2;
802 addr
= pv_add_constant (regs
[rn
], offset
);
804 if (pv_area_store_would_trash (stack
, addr
))
807 pv_area_store (stack
, addr
, 4, regs
[rd
]);
809 else if (((insn
& 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
810 || (insn
& 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
811 && pv_is_register (regs
[bits (insn
, 3, 5)], ARM_SP_REGNUM
))
812 /* Ignore stores of argument registers to the stack. */
814 else if ((insn
& 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
815 && pv_is_register (regs
[bits (insn
, 8, 10)], ARM_SP_REGNUM
))
816 /* Ignore block loads from the stack, potentially copying
817 parameters from memory. */
819 else if ((insn
& 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
820 || ((insn
& 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
821 && pv_is_register (regs
[bits (insn
, 3, 5)], ARM_SP_REGNUM
)))
822 /* Similarly ignore single loads from the stack. */
824 else if ((insn
& 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
825 || (insn
& 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
826 /* Skip register copies, i.e. saves to another register
827 instead of the stack. */
829 else if ((insn
& 0xf800) == 0x2000) /* movs Rd, #imm */
830 /* Recognize constant loads; even with small stacks these are necessary
832 regs
[bits (insn
, 8, 10)] = pv_constant (bits (insn
, 0, 7));
833 else if ((insn
& 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
835 /* Constant pool loads, for the same reason. */
836 unsigned int constant
;
839 loc
= start
+ 4 + bits (insn
, 0, 7) * 4;
840 constant
= read_memory_unsigned_integer (loc
, 4, byte_order
);
841 regs
[bits (insn
, 8, 10)] = pv_constant (constant
);
843 else if (thumb_insn_size (insn
) == 4) /* 32-bit Thumb-2 instructions. */
845 unsigned short inst2
;
847 inst2
= read_memory_unsigned_integer (start
+ 2, 2,
848 byte_order_for_code
);
850 if ((insn
& 0xf800) == 0xf000 && (inst2
& 0xe800) == 0xe800)
852 /* BL, BLX. Allow some special function calls when
853 skipping the prologue; GCC generates these before
854 storing arguments to the stack. */
856 int j1
, j2
, imm1
, imm2
;
858 imm1
= sbits (insn
, 0, 10);
859 imm2
= bits (inst2
, 0, 10);
860 j1
= bit (inst2
, 13);
861 j2
= bit (inst2
, 11);
863 offset
= ((imm1
<< 12) + (imm2
<< 1));
864 offset
^= ((!j2
) << 22) | ((!j1
) << 23);
866 nextpc
= start
+ 4 + offset
;
867 /* For BLX make sure to clear the low bits. */
868 if (bit (inst2
, 12) == 0)
869 nextpc
= nextpc
& 0xfffffffc;
871 if (!skip_prologue_function (gdbarch
, nextpc
,
872 bit (inst2
, 12) != 0))
876 else if ((insn
& 0xffd0) == 0xe900 /* stmdb Rn{!},
878 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
880 pv_t addr
= regs
[bits (insn
, 0, 3)];
883 if (pv_area_store_would_trash (stack
, addr
))
886 /* Calculate offsets of saved registers. */
887 for (regno
= ARM_LR_REGNUM
; regno
>= 0; regno
--)
888 if (inst2
& (1 << regno
))
890 addr
= pv_add_constant (addr
, -4);
891 pv_area_store (stack
, addr
, 4, regs
[regno
]);
895 regs
[bits (insn
, 0, 3)] = addr
;
898 else if ((insn
& 0xff50) == 0xe940 /* strd Rt, Rt2,
900 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
902 int regno1
= bits (inst2
, 12, 15);
903 int regno2
= bits (inst2
, 8, 11);
904 pv_t addr
= regs
[bits (insn
, 0, 3)];
906 offset
= inst2
& 0xff;
908 addr
= pv_add_constant (addr
, offset
);
910 addr
= pv_add_constant (addr
, -offset
);
912 if (pv_area_store_would_trash (stack
, addr
))
915 pv_area_store (stack
, addr
, 4, regs
[regno1
]);
916 pv_area_store (stack
, pv_add_constant (addr
, 4),
920 regs
[bits (insn
, 0, 3)] = addr
;
923 else if ((insn
& 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
924 && (inst2
& 0x0c00) == 0x0c00
925 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
927 int regno
= bits (inst2
, 12, 15);
928 pv_t addr
= regs
[bits (insn
, 0, 3)];
930 offset
= inst2
& 0xff;
932 addr
= pv_add_constant (addr
, offset
);
934 addr
= pv_add_constant (addr
, -offset
);
936 if (pv_area_store_would_trash (stack
, addr
))
939 pv_area_store (stack
, addr
, 4, regs
[regno
]);
942 regs
[bits (insn
, 0, 3)] = addr
;
945 else if ((insn
& 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
946 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
948 int regno
= bits (inst2
, 12, 15);
951 offset
= inst2
& 0xfff;
952 addr
= pv_add_constant (regs
[bits (insn
, 0, 3)], offset
);
954 if (pv_area_store_would_trash (stack
, addr
))
957 pv_area_store (stack
, addr
, 4, regs
[regno
]);
960 else if ((insn
& 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
961 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
962 /* Ignore stores of argument registers to the stack. */
965 else if ((insn
& 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
966 && (inst2
& 0x0d00) == 0x0c00
967 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
968 /* Ignore stores of argument registers to the stack. */
971 else if ((insn
& 0xffd0) == 0xe890 /* ldmia Rn[!],
973 && (inst2
& 0x8000) == 0x0000
974 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
975 /* Ignore block loads from the stack, potentially copying
976 parameters from memory. */
979 else if ((insn
& 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
981 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
982 /* Similarly ignore dual loads from the stack. */
985 else if ((insn
& 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
986 && (inst2
& 0x0d00) == 0x0c00
987 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
988 /* Similarly ignore single loads from the stack. */
991 else if ((insn
& 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
992 && pv_is_register (regs
[bits (insn
, 0, 3)], ARM_SP_REGNUM
))
993 /* Similarly ignore single loads from the stack. */
996 else if ((insn
& 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
997 && (inst2
& 0x8000) == 0x0000)
999 unsigned int imm
= ((bits (insn
, 10, 10) << 11)
1000 | (bits (inst2
, 12, 14) << 8)
1001 | bits (inst2
, 0, 7));
1003 regs
[bits (inst2
, 8, 11)]
1004 = pv_add_constant (regs
[bits (insn
, 0, 3)],
1005 thumb_expand_immediate (imm
));
1008 else if ((insn
& 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
1009 && (inst2
& 0x8000) == 0x0000)
1011 unsigned int imm
= ((bits (insn
, 10, 10) << 11)
1012 | (bits (inst2
, 12, 14) << 8)
1013 | bits (inst2
, 0, 7));
1015 regs
[bits (inst2
, 8, 11)]
1016 = pv_add_constant (regs
[bits (insn
, 0, 3)], imm
);
1019 else if ((insn
& 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
1020 && (inst2
& 0x8000) == 0x0000)
1022 unsigned int imm
= ((bits (insn
, 10, 10) << 11)
1023 | (bits (inst2
, 12, 14) << 8)
1024 | bits (inst2
, 0, 7));
1026 regs
[bits (inst2
, 8, 11)]
1027 = pv_add_constant (regs
[bits (insn
, 0, 3)],
1028 - (CORE_ADDR
) thumb_expand_immediate (imm
));
1031 else if ((insn
& 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
1032 && (inst2
& 0x8000) == 0x0000)
1034 unsigned int imm
= ((bits (insn
, 10, 10) << 11)
1035 | (bits (inst2
, 12, 14) << 8)
1036 | bits (inst2
, 0, 7));
1038 regs
[bits (inst2
, 8, 11)]
1039 = pv_add_constant (regs
[bits (insn
, 0, 3)], - (CORE_ADDR
) imm
);
1042 else if ((insn
& 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1044 unsigned int imm
= ((bits (insn
, 10, 10) << 11)
1045 | (bits (inst2
, 12, 14) << 8)
1046 | bits (inst2
, 0, 7));
1048 regs
[bits (inst2
, 8, 11)]
1049 = pv_constant (thumb_expand_immediate (imm
));
1052 else if ((insn
& 0xfbf0) == 0xf240) /* movw Rd, #const */
1055 = EXTRACT_MOVW_MOVT_IMM_T (insn
, inst2
);
1057 regs
[bits (inst2
, 8, 11)] = pv_constant (imm
);
1060 else if (insn
== 0xea5f /* mov.w Rd,Rm */
1061 && (inst2
& 0xf0f0) == 0)
1063 int dst_reg
= (inst2
& 0x0f00) >> 8;
1064 int src_reg
= inst2
& 0xf;
1065 regs
[dst_reg
] = regs
[src_reg
];
1068 else if ((insn
& 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1070 /* Constant pool loads. */
1071 unsigned int constant
;
1074 offset
= bits (insn
, 0, 11);
1076 loc
= start
+ 4 + offset
;
1078 loc
= start
+ 4 - offset
;
1080 constant
= read_memory_unsigned_integer (loc
, 4, byte_order
);
1081 regs
[bits (inst2
, 12, 15)] = pv_constant (constant
);
1084 else if ((insn
& 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1086 /* Constant pool loads. */
1087 unsigned int constant
;
1090 offset
= bits (insn
, 0, 7) << 2;
1092 loc
= start
+ 4 + offset
;
1094 loc
= start
+ 4 - offset
;
1096 constant
= read_memory_unsigned_integer (loc
, 4, byte_order
);
1097 regs
[bits (inst2
, 12, 15)] = pv_constant (constant
);
1099 constant
= read_memory_unsigned_integer (loc
+ 4, 4, byte_order
);
1100 regs
[bits (inst2
, 8, 11)] = pv_constant (constant
);
1103 else if (thumb2_instruction_changes_pc (insn
, inst2
))
1105 /* Don't scan past anything that might change control flow. */
1110 /* The optimizer might shove anything into the prologue,
1111 so we just skip what we don't recognize. */
1112 unrecognized_pc
= start
;
1117 else if (thumb_instruction_changes_pc (insn
))
1119 /* Don't scan past anything that might change control flow. */
1124 /* The optimizer might shove anything into the prologue,
1125 so we just skip what we don't recognize. */
1126 unrecognized_pc
= start
;
1133 fprintf_unfiltered (gdb_stdlog
, "Prologue scan stopped at %s\n",
1134 paddress (gdbarch
, start
));
1136 if (unrecognized_pc
== 0)
1137 unrecognized_pc
= start
;
1141 do_cleanups (back_to
);
1142 return unrecognized_pc
;
1145 if (pv_is_register (regs
[ARM_FP_REGNUM
], ARM_SP_REGNUM
))
1147 /* Frame pointer is fp. Frame size is constant. */
1148 cache
->framereg
= ARM_FP_REGNUM
;
1149 cache
->framesize
= -regs
[ARM_FP_REGNUM
].k
;
1151 else if (pv_is_register (regs
[THUMB_FP_REGNUM
], ARM_SP_REGNUM
))
1153 /* Frame pointer is r7. Frame size is constant. */
1154 cache
->framereg
= THUMB_FP_REGNUM
;
1155 cache
->framesize
= -regs
[THUMB_FP_REGNUM
].k
;
1159 /* Try the stack pointer... this is a bit desperate. */
1160 cache
->framereg
= ARM_SP_REGNUM
;
1161 cache
->framesize
= -regs
[ARM_SP_REGNUM
].k
;
1164 for (i
= 0; i
< 16; i
++)
1165 if (pv_area_find_reg (stack
, gdbarch
, i
, &offset
))
1166 cache
->saved_regs
[i
].addr
= offset
;
1168 do_cleanups (back_to
);
1169 return unrecognized_pc
;
1173 /* Try to analyze the instructions starting from PC, which load symbol
1174 __stack_chk_guard. Return the address of instruction after loading this
1175 symbol, set the dest register number to *BASEREG, and set the size of
1176 instructions for loading symbol in OFFSET. Return 0 if instructions are
1180 arm_analyze_load_stack_chk_guard(CORE_ADDR pc
, struct gdbarch
*gdbarch
,
1181 unsigned int *destreg
, int *offset
)
1183 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
1184 int is_thumb
= arm_pc_is_thumb (gdbarch
, pc
);
1185 unsigned int low
, high
, address
;
1190 unsigned short insn1
1191 = read_memory_unsigned_integer (pc
, 2, byte_order_for_code
);
1193 if ((insn1
& 0xf800) == 0x4800) /* ldr Rd, #immed */
1195 *destreg
= bits (insn1
, 8, 10);
1197 address
= bits (insn1
, 0, 7);
1199 else if ((insn1
& 0xfbf0) == 0xf240) /* movw Rd, #const */
1201 unsigned short insn2
1202 = read_memory_unsigned_integer (pc
+ 2, 2, byte_order_for_code
);
1204 low
= EXTRACT_MOVW_MOVT_IMM_T (insn1
, insn2
);
1207 = read_memory_unsigned_integer (pc
+ 4, 2, byte_order_for_code
);
1209 = read_memory_unsigned_integer (pc
+ 6, 2, byte_order_for_code
);
1211 /* movt Rd, #const */
1212 if ((insn1
& 0xfbc0) == 0xf2c0)
1214 high
= EXTRACT_MOVW_MOVT_IMM_T (insn1
, insn2
);
1215 *destreg
= bits (insn2
, 8, 11);
1217 address
= (high
<< 16 | low
);
1224 = read_memory_unsigned_integer (pc
, 4, byte_order_for_code
);
1226 if ((insn
& 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */
1228 address
= bits (insn
, 0, 11);
1229 *destreg
= bits (insn
, 12, 15);
1232 else if ((insn
& 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1234 low
= EXTRACT_MOVW_MOVT_IMM_A (insn
);
1237 = read_memory_unsigned_integer (pc
+ 4, 4, byte_order_for_code
);
1239 if ((insn
& 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1241 high
= EXTRACT_MOVW_MOVT_IMM_A (insn
);
1242 *destreg
= bits (insn
, 12, 15);
1244 address
= (high
<< 16 | low
);
1252 /* Try to skip a sequence of instructions used for stack protector. If PC
1253 points to the first instruction of this sequence, return the address of
1254 first instruction after this sequence, otherwise, return original PC.
1256 On arm, this sequence of instructions is composed of mainly three steps,
1257 Step 1: load symbol __stack_chk_guard,
1258 Step 2: load from address of __stack_chk_guard,
1259 Step 3: store it to somewhere else.
1261 Usually, instructions on step 2 and step 3 are the same on various ARM
1262 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1263 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1264 instructions in step 1 vary from different ARM architectures. On ARMv7,
1267 movw Rn, #:lower16:__stack_chk_guard
1268 movt Rn, #:upper16:__stack_chk_guard
1275 .word __stack_chk_guard
1277 Since ldr/str is a very popular instruction, we can't use them as
1278 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1279 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1280 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1283 arm_skip_stack_protector(CORE_ADDR pc
, struct gdbarch
*gdbarch
)
1285 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
1286 unsigned int basereg
;
1287 struct bound_minimal_symbol stack_chk_guard
;
1289 int is_thumb
= arm_pc_is_thumb (gdbarch
, pc
);
1292 /* Try to parse the instructions in Step 1. */
1293 addr
= arm_analyze_load_stack_chk_guard (pc
, gdbarch
,
1298 stack_chk_guard
= lookup_minimal_symbol_by_pc (addr
);
1299 /* If name of symbol doesn't start with '__stack_chk_guard', this
1300 instruction sequence is not for stack protector. If symbol is
1301 removed, we conservatively think this sequence is for stack protector. */
1302 if (stack_chk_guard
.minsym
1303 && strncmp (MSYMBOL_LINKAGE_NAME (stack_chk_guard
.minsym
),
1304 "__stack_chk_guard",
1305 strlen ("__stack_chk_guard")) != 0)
1310 unsigned int destreg
;
1312 = read_memory_unsigned_integer (pc
+ offset
, 2, byte_order_for_code
);
1314 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1315 if ((insn
& 0xf800) != 0x6800)
1317 if (bits (insn
, 3, 5) != basereg
)
1319 destreg
= bits (insn
, 0, 2);
1321 insn
= read_memory_unsigned_integer (pc
+ offset
+ 2, 2,
1322 byte_order_for_code
);
1323 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1324 if ((insn
& 0xf800) != 0x6000)
1326 if (destreg
!= bits (insn
, 0, 2))
1331 unsigned int destreg
;
1333 = read_memory_unsigned_integer (pc
+ offset
, 4, byte_order_for_code
);
1335 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1336 if ((insn
& 0x0e500000) != 0x04100000)
1338 if (bits (insn
, 16, 19) != basereg
)
1340 destreg
= bits (insn
, 12, 15);
1341 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1342 insn
= read_memory_unsigned_integer (pc
+ offset
+ 4,
1343 4, byte_order_for_code
);
1344 if ((insn
& 0x0e500000) != 0x04000000)
1346 if (bits (insn
, 12, 15) != destreg
)
1349 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1352 return pc
+ offset
+ 4;
1354 return pc
+ offset
+ 8;
1357 /* Advance the PC across any function entry prologue instructions to
1358 reach some "real" code.
1360 The APCS (ARM Procedure Call Standard) defines the following
1364 [stmfd sp!, {a1,a2,a3,a4}]
1365 stmfd sp!, {...,fp,ip,lr,pc}
1366 [stfe f7, [sp, #-12]!]
1367 [stfe f6, [sp, #-12]!]
1368 [stfe f5, [sp, #-12]!]
1369 [stfe f4, [sp, #-12]!]
1370 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1373 arm_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1375 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
1378 CORE_ADDR func_addr
, limit_pc
;
1380 /* See if we can determine the end of the prologue via the symbol table.
1381 If so, then return either PC, or the PC after the prologue, whichever
1383 if (find_pc_partial_function (pc
, NULL
, &func_addr
, NULL
))
1385 CORE_ADDR post_prologue_pc
1386 = skip_prologue_using_sal (gdbarch
, func_addr
);
1387 struct symtab
*s
= find_pc_symtab (func_addr
);
1389 if (post_prologue_pc
)
1391 = arm_skip_stack_protector (post_prologue_pc
, gdbarch
);
1394 /* GCC always emits a line note before the prologue and another
1395 one after, even if the two are at the same address or on the
1396 same line. Take advantage of this so that we do not need to
1397 know every instruction that might appear in the prologue. We
1398 will have producer information for most binaries; if it is
1399 missing (e.g. for -gstabs), assuming the GNU tools. */
1400 if (post_prologue_pc
1402 || s
->producer
== NULL
1403 || strncmp (s
->producer
, "GNU ", sizeof ("GNU ") - 1) == 0
1404 || strncmp (s
->producer
, "clang ", sizeof ("clang ") - 1) == 0))
1405 return post_prologue_pc
;
1407 if (post_prologue_pc
!= 0)
1409 CORE_ADDR analyzed_limit
;
1411 /* For non-GCC compilers, make sure the entire line is an
1412 acceptable prologue; GDB will round this function's
1413 return value up to the end of the following line so we
1414 can not skip just part of a line (and we do not want to).
1416 RealView does not treat the prologue specially, but does
1417 associate prologue code with the opening brace; so this
1418 lets us skip the first line if we think it is the opening
1420 if (arm_pc_is_thumb (gdbarch
, func_addr
))
1421 analyzed_limit
= thumb_analyze_prologue (gdbarch
, func_addr
,
1422 post_prologue_pc
, NULL
);
1424 analyzed_limit
= arm_analyze_prologue (gdbarch
, func_addr
,
1425 post_prologue_pc
, NULL
);
1427 if (analyzed_limit
!= post_prologue_pc
)
1430 return post_prologue_pc
;
1434 /* Can't determine prologue from the symbol table, need to examine
1437 /* Find an upper limit on the function prologue using the debug
1438 information. If the debug information could not be used to provide
1439 that bound, then use an arbitrary large number as the upper bound. */
1440 /* Like arm_scan_prologue, stop no later than pc + 64. */
1441 limit_pc
= skip_prologue_using_sal (gdbarch
, pc
);
1443 limit_pc
= pc
+ 64; /* Magic. */
1446 /* Check if this is Thumb code. */
1447 if (arm_pc_is_thumb (gdbarch
, pc
))
1448 return thumb_analyze_prologue (gdbarch
, pc
, limit_pc
, NULL
);
1450 for (skip_pc
= pc
; skip_pc
< limit_pc
; skip_pc
+= 4)
1452 inst
= read_memory_unsigned_integer (skip_pc
, 4, byte_order_for_code
);
1454 /* "mov ip, sp" is no longer a required part of the prologue. */
1455 if (inst
== 0xe1a0c00d) /* mov ip, sp */
1458 if ((inst
& 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
1461 if ((inst
& 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
1464 /* Some prologues begin with "str lr, [sp, #-4]!". */
1465 if (inst
== 0xe52de004) /* str lr, [sp, #-4]! */
1468 if ((inst
& 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
1471 if ((inst
& 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
1474 /* Any insns after this point may float into the code, if it makes
1475 for better instruction scheduling, so we skip them only if we
1476 find them, but still consider the function to be frame-ful. */
1478 /* We may have either one sfmfd instruction here, or several stfe
1479 insns, depending on the version of floating point code we
1481 if ((inst
& 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
1484 if ((inst
& 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
1487 if ((inst
& 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
1490 if ((inst
& 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
1493 if ((inst
& 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */
1494 || (inst
& 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */
1495 || (inst
& 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
1498 if ((inst
& 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */
1499 || (inst
& 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */
1500 || (inst
& 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
1503 /* Un-recognized instruction; stop scanning. */
1507 return skip_pc
; /* End of prologue. */
1511 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1512 This function decodes a Thumb function prologue to determine:
1513 1) the size of the stack frame
1514 2) which registers are saved on it
1515 3) the offsets of saved regs
1516 4) the offset from the stack pointer to the frame pointer
1518 A typical Thumb function prologue would create this stack frame
1519 (offsets relative to FP)
1520 old SP -> 24 stack parameters
1523 R7 -> 0 local variables (16 bytes)
1524 SP -> -12 additional stack space (12 bytes)
1525 The frame size would thus be 36 bytes, and the frame offset would be
1526 12 bytes. The frame register is R7.
1528 The comments for thumb_skip_prolog() describe the algorithm we use
1529 to detect the end of the prolog. */
1533 thumb_scan_prologue (struct gdbarch
*gdbarch
, CORE_ADDR prev_pc
,
1534 CORE_ADDR block_addr
, struct arm_prologue_cache
*cache
)
1536 CORE_ADDR prologue_start
;
1537 CORE_ADDR prologue_end
;
1539 if (find_pc_partial_function (block_addr
, NULL
, &prologue_start
,
1542 /* See comment in arm_scan_prologue for an explanation of
1544 if (prologue_end
> prologue_start
+ 64)
1546 prologue_end
= prologue_start
+ 64;
1550 /* We're in the boondocks: we have no idea where the start of the
1554 prologue_end
= min (prologue_end
, prev_pc
);
1556 thumb_analyze_prologue (gdbarch
, prologue_start
, prologue_end
, cache
);
1559 /* Return 1 if THIS_INSTR might change control flow, 0 otherwise. */
1562 arm_instruction_changes_pc (uint32_t this_instr
)
1564 if (bits (this_instr
, 28, 31) == INST_NV
)
1565 /* Unconditional instructions. */
1566 switch (bits (this_instr
, 24, 27))
1570 /* Branch with Link and change to Thumb. */
1575 /* Coprocessor register transfer. */
1576 if (bits (this_instr
, 12, 15) == 15)
1577 error (_("Invalid update to pc in instruction"));
1583 switch (bits (this_instr
, 25, 27))
1586 if (bits (this_instr
, 23, 24) == 2 && bit (this_instr
, 20) == 0)
1588 /* Multiplies and extra load/stores. */
1589 if (bit (this_instr
, 4) == 1 && bit (this_instr
, 7) == 1)
1590 /* Neither multiplies nor extension load/stores are allowed
1594 /* Otherwise, miscellaneous instructions. */
1596 /* BX <reg>, BXJ <reg>, BLX <reg> */
1597 if (bits (this_instr
, 4, 27) == 0x12fff1
1598 || bits (this_instr
, 4, 27) == 0x12fff2
1599 || bits (this_instr
, 4, 27) == 0x12fff3)
1602 /* Other miscellaneous instructions are unpredictable if they
1606 /* Data processing instruction. Fall through. */
1609 if (bits (this_instr
, 12, 15) == 15)
1616 /* Media instructions and architecturally undefined instructions. */
1617 if (bits (this_instr
, 25, 27) == 3 && bit (this_instr
, 4) == 1)
1621 if (bit (this_instr
, 20) == 0)
1625 if (bits (this_instr
, 12, 15) == ARM_PC_REGNUM
)
1631 /* Load/store multiple. */
1632 if (bit (this_instr
, 20) == 1 && bit (this_instr
, 15) == 1)
1638 /* Branch and branch with link. */
1643 /* Coprocessor transfers or SWIs can not affect PC. */
1647 internal_error (__FILE__
, __LINE__
, _("bad value in switch"));
1651 /* Analyze an ARM mode prologue starting at PROLOGUE_START and
1652 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1653 fill it in. Return the first address not recognized as a prologue
1656 We recognize all the instructions typically found in ARM prologues,
1657 plus harmless instructions which can be skipped (either for analysis
1658 purposes, or a more restrictive set that can be skipped when finding
1659 the end of the prologue). */
1662 arm_analyze_prologue (struct gdbarch
*gdbarch
,
1663 CORE_ADDR prologue_start
, CORE_ADDR prologue_end
,
1664 struct arm_prologue_cache
*cache
)
1666 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1667 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
1669 CORE_ADDR offset
, current_pc
;
1670 pv_t regs
[ARM_FPS_REGNUM
];
1671 struct pv_area
*stack
;
1672 struct cleanup
*back_to
;
1673 int framereg
, framesize
;
1674 CORE_ADDR unrecognized_pc
= 0;
1676 /* Search the prologue looking for instructions that set up the
1677 frame pointer, adjust the stack pointer, and save registers.
1679 Be careful, however, and if it doesn't look like a prologue,
1680 don't try to scan it. If, for instance, a frameless function
1681 begins with stmfd sp!, then we will tell ourselves there is
1682 a frame, which will confuse stack traceback, as well as "finish"
1683 and other operations that rely on a knowledge of the stack
1686 for (regno
= 0; regno
< ARM_FPS_REGNUM
; regno
++)
1687 regs
[regno
] = pv_register (regno
, 0);
1688 stack
= make_pv_area (ARM_SP_REGNUM
, gdbarch_addr_bit (gdbarch
));
1689 back_to
= make_cleanup_free_pv_area (stack
);
1691 for (current_pc
= prologue_start
;
1692 current_pc
< prologue_end
;
1696 = read_memory_unsigned_integer (current_pc
, 4, byte_order_for_code
);
1698 if (insn
== 0xe1a0c00d) /* mov ip, sp */
1700 regs
[ARM_IP_REGNUM
] = regs
[ARM_SP_REGNUM
];
1703 else if ((insn
& 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1704 && pv_is_register (regs
[bits (insn
, 16, 19)], ARM_SP_REGNUM
))
1706 unsigned imm
= insn
& 0xff; /* immediate value */
1707 unsigned rot
= (insn
& 0xf00) >> 7; /* rotate amount */
1708 int rd
= bits (insn
, 12, 15);
1709 imm
= (imm
>> rot
) | (imm
<< (32 - rot
));
1710 regs
[rd
] = pv_add_constant (regs
[bits (insn
, 16, 19)], imm
);
1713 else if ((insn
& 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1714 && pv_is_register (regs
[bits (insn
, 16, 19)], ARM_SP_REGNUM
))
1716 unsigned imm
= insn
& 0xff; /* immediate value */
1717 unsigned rot
= (insn
& 0xf00) >> 7; /* rotate amount */
1718 int rd
= bits (insn
, 12, 15);
1719 imm
= (imm
>> rot
) | (imm
<< (32 - rot
));
1720 regs
[rd
] = pv_add_constant (regs
[bits (insn
, 16, 19)], -imm
);
1723 else if ((insn
& 0xffff0fff) == 0xe52d0004) /* str Rd,
1726 if (pv_area_store_would_trash (stack
, regs
[ARM_SP_REGNUM
]))
1728 regs
[ARM_SP_REGNUM
] = pv_add_constant (regs
[ARM_SP_REGNUM
], -4);
1729 pv_area_store (stack
, regs
[ARM_SP_REGNUM
], 4,
1730 regs
[bits (insn
, 12, 15)]);
1733 else if ((insn
& 0xffff0000) == 0xe92d0000)
1734 /* stmfd sp!, {..., fp, ip, lr, pc}
1736 stmfd sp!, {a1, a2, a3, a4} */
1738 int mask
= insn
& 0xffff;
1740 if (pv_area_store_would_trash (stack
, regs
[ARM_SP_REGNUM
]))
1743 /* Calculate offsets of saved registers. */
1744 for (regno
= ARM_PC_REGNUM
; regno
>= 0; regno
--)
1745 if (mask
& (1 << regno
))
1748 = pv_add_constant (regs
[ARM_SP_REGNUM
], -4);
1749 pv_area_store (stack
, regs
[ARM_SP_REGNUM
], 4, regs
[regno
]);
1752 else if ((insn
& 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1753 || (insn
& 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1754 || (insn
& 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1756 /* No need to add this to saved_regs -- it's just an arg reg. */
1759 else if ((insn
& 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1760 || (insn
& 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1761 || (insn
& 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1763 /* No need to add this to saved_regs -- it's just an arg reg. */
1766 else if ((insn
& 0xfff00000) == 0xe8800000 /* stm Rn,
1768 && pv_is_register (regs
[bits (insn
, 16, 19)], ARM_SP_REGNUM
))
1770 /* No need to add this to saved_regs -- it's just arg regs. */
1773 else if ((insn
& 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1775 unsigned imm
= insn
& 0xff; /* immediate value */
1776 unsigned rot
= (insn
& 0xf00) >> 7; /* rotate amount */
1777 imm
= (imm
>> rot
) | (imm
<< (32 - rot
));
1778 regs
[ARM_FP_REGNUM
] = pv_add_constant (regs
[ARM_IP_REGNUM
], -imm
);
1780 else if ((insn
& 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1782 unsigned imm
= insn
& 0xff; /* immediate value */
1783 unsigned rot
= (insn
& 0xf00) >> 7; /* rotate amount */
1784 imm
= (imm
>> rot
) | (imm
<< (32 - rot
));
1785 regs
[ARM_SP_REGNUM
] = pv_add_constant (regs
[ARM_SP_REGNUM
], -imm
);
1787 else if ((insn
& 0xffff7fff) == 0xed6d0103 /* stfe f?,
1789 && gdbarch_tdep (gdbarch
)->have_fpa_registers
)
1791 if (pv_area_store_would_trash (stack
, regs
[ARM_SP_REGNUM
]))
1794 regs
[ARM_SP_REGNUM
] = pv_add_constant (regs
[ARM_SP_REGNUM
], -12);
1795 regno
= ARM_F0_REGNUM
+ ((insn
>> 12) & 0x07);
1796 pv_area_store (stack
, regs
[ARM_SP_REGNUM
], 12, regs
[regno
]);
1798 else if ((insn
& 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1800 && gdbarch_tdep (gdbarch
)->have_fpa_registers
)
1802 int n_saved_fp_regs
;
1803 unsigned int fp_start_reg
, fp_bound_reg
;
1805 if (pv_area_store_would_trash (stack
, regs
[ARM_SP_REGNUM
]))
1808 if ((insn
& 0x800) == 0x800) /* N0 is set */
1810 if ((insn
& 0x40000) == 0x40000) /* N1 is set */
1811 n_saved_fp_regs
= 3;
1813 n_saved_fp_regs
= 1;
1817 if ((insn
& 0x40000) == 0x40000) /* N1 is set */
1818 n_saved_fp_regs
= 2;
1820 n_saved_fp_regs
= 4;
1823 fp_start_reg
= ARM_F0_REGNUM
+ ((insn
>> 12) & 0x7);
1824 fp_bound_reg
= fp_start_reg
+ n_saved_fp_regs
;
1825 for (; fp_start_reg
< fp_bound_reg
; fp_start_reg
++)
1827 regs
[ARM_SP_REGNUM
] = pv_add_constant (regs
[ARM_SP_REGNUM
], -12);
1828 pv_area_store (stack
, regs
[ARM_SP_REGNUM
], 12,
1829 regs
[fp_start_reg
++]);
1832 else if ((insn
& 0xff000000) == 0xeb000000 && cache
== NULL
) /* bl */
1834 /* Allow some special function calls when skipping the
1835 prologue; GCC generates these before storing arguments to
1837 CORE_ADDR dest
= BranchDest (current_pc
, insn
);
1839 if (skip_prologue_function (gdbarch
, dest
, 0))
1844 else if ((insn
& 0xf0000000) != 0xe0000000)
1845 break; /* Condition not true, exit early. */
1846 else if (arm_instruction_changes_pc (insn
))
1847 /* Don't scan past anything that might change control flow. */
1849 else if ((insn
& 0xfe500000) == 0xe8100000 /* ldm */
1850 && pv_is_register (regs
[bits (insn
, 16, 19)], ARM_SP_REGNUM
))
1851 /* Ignore block loads from the stack, potentially copying
1852 parameters from memory. */
1854 else if ((insn
& 0xfc500000) == 0xe4100000
1855 && pv_is_register (regs
[bits (insn
, 16, 19)], ARM_SP_REGNUM
))
1856 /* Similarly ignore single loads from the stack. */
1858 else if ((insn
& 0xffff0ff0) == 0xe1a00000)
1859 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1860 register instead of the stack. */
1864 /* The optimizer might shove anything into the prologue,
1865 so we just skip what we don't recognize. */
1866 unrecognized_pc
= current_pc
;
1871 if (unrecognized_pc
== 0)
1872 unrecognized_pc
= current_pc
;
1874 /* The frame size is just the distance from the frame register
1875 to the original stack pointer. */
1876 if (pv_is_register (regs
[ARM_FP_REGNUM
], ARM_SP_REGNUM
))
1878 /* Frame pointer is fp. */
1879 framereg
= ARM_FP_REGNUM
;
1880 framesize
= -regs
[ARM_FP_REGNUM
].k
;
1884 /* Try the stack pointer... this is a bit desperate. */
1885 framereg
= ARM_SP_REGNUM
;
1886 framesize
= -regs
[ARM_SP_REGNUM
].k
;
1891 cache
->framereg
= framereg
;
1892 cache
->framesize
= framesize
;
1894 for (regno
= 0; regno
< ARM_FPS_REGNUM
; regno
++)
1895 if (pv_area_find_reg (stack
, gdbarch
, regno
, &offset
))
1896 cache
->saved_regs
[regno
].addr
= offset
;
1900 fprintf_unfiltered (gdb_stdlog
, "Prologue scan stopped at %s\n",
1901 paddress (gdbarch
, unrecognized_pc
));
1903 do_cleanups (back_to
);
1904 return unrecognized_pc
;
1908 arm_scan_prologue (struct frame_info
*this_frame
,
1909 struct arm_prologue_cache
*cache
)
1911 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1912 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1914 CORE_ADDR prologue_start
, prologue_end
, current_pc
;
1915 CORE_ADDR prev_pc
= get_frame_pc (this_frame
);
1916 CORE_ADDR block_addr
= get_frame_address_in_block (this_frame
);
1917 pv_t regs
[ARM_FPS_REGNUM
];
1918 struct pv_area
*stack
;
1919 struct cleanup
*back_to
;
1922 /* Assume there is no frame until proven otherwise. */
1923 cache
->framereg
= ARM_SP_REGNUM
;
1924 cache
->framesize
= 0;
1926 /* Check for Thumb prologue. */
1927 if (arm_frame_is_thumb (this_frame
))
1929 thumb_scan_prologue (gdbarch
, prev_pc
, block_addr
, cache
);
1933 /* Find the function prologue. If we can't find the function in
1934 the symbol table, peek in the stack frame to find the PC. */
1935 if (find_pc_partial_function (block_addr
, NULL
, &prologue_start
,
1938 /* One way to find the end of the prologue (which works well
1939 for unoptimized code) is to do the following:
1941 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1944 prologue_end = prev_pc;
1945 else if (sal.end < prologue_end)
1946 prologue_end = sal.end;
1948 This mechanism is very accurate so long as the optimizer
1949 doesn't move any instructions from the function body into the
1950 prologue. If this happens, sal.end will be the last
1951 instruction in the first hunk of prologue code just before
1952 the first instruction that the scheduler has moved from
1953 the body to the prologue.
1955 In order to make sure that we scan all of the prologue
1956 instructions, we use a slightly less accurate mechanism which
1957 may scan more than necessary. To help compensate for this
1958 lack of accuracy, the prologue scanning loop below contains
1959 several clauses which'll cause the loop to terminate early if
1960 an implausible prologue instruction is encountered.
1966 is a suitable endpoint since it accounts for the largest
1967 possible prologue plus up to five instructions inserted by
1970 if (prologue_end
> prologue_start
+ 64)
1972 prologue_end
= prologue_start
+ 64; /* See above. */
1977 /* We have no symbol information. Our only option is to assume this
1978 function has a standard stack frame and the normal frame register.
1979 Then, we can find the value of our frame pointer on entrance to
1980 the callee (or at the present moment if this is the innermost frame).
1981 The value stored there should be the address of the stmfd + 8. */
1982 CORE_ADDR frame_loc
;
1983 LONGEST return_value
;
1985 frame_loc
= get_frame_register_unsigned (this_frame
, ARM_FP_REGNUM
);
1986 if (!safe_read_memory_integer (frame_loc
, 4, byte_order
, &return_value
))
1990 prologue_start
= gdbarch_addr_bits_remove
1991 (gdbarch
, return_value
) - 8;
1992 prologue_end
= prologue_start
+ 64; /* See above. */
1996 if (prev_pc
< prologue_end
)
1997 prologue_end
= prev_pc
;
1999 arm_analyze_prologue (gdbarch
, prologue_start
, prologue_end
, cache
);
2002 static struct arm_prologue_cache
*
2003 arm_make_prologue_cache (struct frame_info
*this_frame
)
2006 struct arm_prologue_cache
*cache
;
2007 CORE_ADDR unwound_fp
;
2009 cache
= FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache
);
2010 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
2012 arm_scan_prologue (this_frame
, cache
);
2014 unwound_fp
= get_frame_register_unsigned (this_frame
, cache
->framereg
);
2015 if (unwound_fp
== 0)
2018 cache
->prev_sp
= unwound_fp
+ cache
->framesize
;
2020 /* Calculate actual addresses of saved registers using offsets
2021 determined by arm_scan_prologue. */
2022 for (reg
= 0; reg
< gdbarch_num_regs (get_frame_arch (this_frame
)); reg
++)
2023 if (trad_frame_addr_p (cache
->saved_regs
, reg
))
2024 cache
->saved_regs
[reg
].addr
+= cache
->prev_sp
;
2029 /* Our frame ID for a normal frame is the current function's starting PC
2030 and the caller's SP when we were called. */
2033 arm_prologue_this_id (struct frame_info
*this_frame
,
2035 struct frame_id
*this_id
)
2037 struct arm_prologue_cache
*cache
;
2041 if (*this_cache
== NULL
)
2042 *this_cache
= arm_make_prologue_cache (this_frame
);
2043 cache
= *this_cache
;
2045 /* This is meant to halt the backtrace at "_start". */
2046 pc
= get_frame_pc (this_frame
);
2047 if (pc
<= gdbarch_tdep (get_frame_arch (this_frame
))->lowest_pc
)
2050 /* If we've hit a wall, stop. */
2051 if (cache
->prev_sp
== 0)
2054 /* Use function start address as part of the frame ID. If we cannot
2055 identify the start address (due to missing symbol information),
2056 fall back to just using the current PC. */
2057 func
= get_frame_func (this_frame
);
2061 id
= frame_id_build (cache
->prev_sp
, func
);
2065 static struct value
*
2066 arm_prologue_prev_register (struct frame_info
*this_frame
,
2070 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2071 struct arm_prologue_cache
*cache
;
2073 if (*this_cache
== NULL
)
2074 *this_cache
= arm_make_prologue_cache (this_frame
);
2075 cache
= *this_cache
;
2077 /* If we are asked to unwind the PC, then we need to return the LR
2078 instead. The prologue may save PC, but it will point into this
2079 frame's prologue, not the next frame's resume location. Also
2080 strip the saved T bit. A valid LR may have the low bit set, but
2081 a valid PC never does. */
2082 if (prev_regnum
== ARM_PC_REGNUM
)
2086 lr
= frame_unwind_register_unsigned (this_frame
, ARM_LR_REGNUM
);
2087 return frame_unwind_got_constant (this_frame
, prev_regnum
,
2088 arm_addr_bits_remove (gdbarch
, lr
));
2091 /* SP is generally not saved to the stack, but this frame is
2092 identified by the next frame's stack pointer at the time of the call.
2093 The value was already reconstructed into PREV_SP. */
2094 if (prev_regnum
== ARM_SP_REGNUM
)
2095 return frame_unwind_got_constant (this_frame
, prev_regnum
, cache
->prev_sp
);
2097 /* The CPSR may have been changed by the call instruction and by the
2098 called function. The only bit we can reconstruct is the T bit,
2099 by checking the low bit of LR as of the call. This is a reliable
2100 indicator of Thumb-ness except for some ARM v4T pre-interworking
2101 Thumb code, which could get away with a clear low bit as long as
2102 the called function did not use bx. Guess that all other
2103 bits are unchanged; the condition flags are presumably lost,
2104 but the processor status is likely valid. */
2105 if (prev_regnum
== ARM_PS_REGNUM
)
2108 ULONGEST t_bit
= arm_psr_thumb_bit (gdbarch
);
2110 cpsr
= get_frame_register_unsigned (this_frame
, prev_regnum
);
2111 lr
= frame_unwind_register_unsigned (this_frame
, ARM_LR_REGNUM
);
2112 if (IS_THUMB_ADDR (lr
))
2116 return frame_unwind_got_constant (this_frame
, prev_regnum
, cpsr
);
2119 return trad_frame_get_prev_register (this_frame
, cache
->saved_regs
,
2123 struct frame_unwind arm_prologue_unwind
= {
2125 default_frame_unwind_stop_reason
,
2126 arm_prologue_this_id
,
2127 arm_prologue_prev_register
,
2129 default_frame_sniffer
2132 /* Maintain a list of ARM exception table entries per objfile, similar to the
2133 list of mapping symbols. We only cache entries for standard ARM-defined
2134 personality routines; the cache will contain only the frame unwinding
2135 instructions associated with the entry (not the descriptors). */
2137 static const struct objfile_data
*arm_exidx_data_key
;
2139 struct arm_exidx_entry
2144 typedef struct arm_exidx_entry arm_exidx_entry_s
;
2145 DEF_VEC_O(arm_exidx_entry_s
);
2147 struct arm_exidx_data
2149 VEC(arm_exidx_entry_s
) **section_maps
;
2153 arm_exidx_data_free (struct objfile
*objfile
, void *arg
)
2155 struct arm_exidx_data
*data
= arg
;
2158 for (i
= 0; i
< objfile
->obfd
->section_count
; i
++)
2159 VEC_free (arm_exidx_entry_s
, data
->section_maps
[i
]);
2163 arm_compare_exidx_entries (const struct arm_exidx_entry
*lhs
,
2164 const struct arm_exidx_entry
*rhs
)
2166 return lhs
->addr
< rhs
->addr
;
2169 static struct obj_section
*
2170 arm_obj_section_from_vma (struct objfile
*objfile
, bfd_vma vma
)
2172 struct obj_section
*osect
;
2174 ALL_OBJFILE_OSECTIONS (objfile
, osect
)
2175 if (bfd_get_section_flags (objfile
->obfd
,
2176 osect
->the_bfd_section
) & SEC_ALLOC
)
2178 bfd_vma start
, size
;
2179 start
= bfd_get_section_vma (objfile
->obfd
, osect
->the_bfd_section
);
2180 size
= bfd_get_section_size (osect
->the_bfd_section
);
2182 if (start
<= vma
&& vma
< start
+ size
)
2189 /* Parse contents of exception table and exception index sections
2190 of OBJFILE, and fill in the exception table entry cache.
2192 For each entry that refers to a standard ARM-defined personality
2193 routine, extract the frame unwinding instructions (from either
2194 the index or the table section). The unwinding instructions
2196 - extracting them from the rest of the table data
2197 - converting to host endianness
2198 - appending the implicit 0xb0 ("Finish") code
2200 The extracted and normalized instructions are stored for later
2201 retrieval by the arm_find_exidx_entry routine. */
2204 arm_exidx_new_objfile (struct objfile
*objfile
)
2206 struct cleanup
*cleanups
;
2207 struct arm_exidx_data
*data
;
2208 asection
*exidx
, *extab
;
2209 bfd_vma exidx_vma
= 0, extab_vma
= 0;
2210 bfd_size_type exidx_size
= 0, extab_size
= 0;
2211 gdb_byte
*exidx_data
= NULL
, *extab_data
= NULL
;
2214 /* If we've already touched this file, do nothing. */
2215 if (!objfile
|| objfile_data (objfile
, arm_exidx_data_key
) != NULL
)
2217 cleanups
= make_cleanup (null_cleanup
, NULL
);
2219 /* Read contents of exception table and index. */
2220 exidx
= bfd_get_section_by_name (objfile
->obfd
, ".ARM.exidx");
2223 exidx_vma
= bfd_section_vma (objfile
->obfd
, exidx
);
2224 exidx_size
= bfd_get_section_size (exidx
);
2225 exidx_data
= xmalloc (exidx_size
);
2226 make_cleanup (xfree
, exidx_data
);
2228 if (!bfd_get_section_contents (objfile
->obfd
, exidx
,
2229 exidx_data
, 0, exidx_size
))
2231 do_cleanups (cleanups
);
2236 extab
= bfd_get_section_by_name (objfile
->obfd
, ".ARM.extab");
2239 extab_vma
= bfd_section_vma (objfile
->obfd
, extab
);
2240 extab_size
= bfd_get_section_size (extab
);
2241 extab_data
= xmalloc (extab_size
);
2242 make_cleanup (xfree
, extab_data
);
2244 if (!bfd_get_section_contents (objfile
->obfd
, extab
,
2245 extab_data
, 0, extab_size
))
2247 do_cleanups (cleanups
);
2252 /* Allocate exception table data structure. */
2253 data
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct arm_exidx_data
);
2254 set_objfile_data (objfile
, arm_exidx_data_key
, data
);
2255 data
->section_maps
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
2256 objfile
->obfd
->section_count
,
2257 VEC(arm_exidx_entry_s
) *);
2259 /* Fill in exception table. */
2260 for (i
= 0; i
< exidx_size
/ 8; i
++)
2262 struct arm_exidx_entry new_exidx_entry
;
2263 bfd_vma idx
= bfd_h_get_32 (objfile
->obfd
, exidx_data
+ i
* 8);
2264 bfd_vma val
= bfd_h_get_32 (objfile
->obfd
, exidx_data
+ i
* 8 + 4);
2265 bfd_vma addr
= 0, word
= 0;
2266 int n_bytes
= 0, n_words
= 0;
2267 struct obj_section
*sec
;
2268 gdb_byte
*entry
= NULL
;
2270 /* Extract address of start of function. */
2271 idx
= ((idx
& 0x7fffffff) ^ 0x40000000) - 0x40000000;
2272 idx
+= exidx_vma
+ i
* 8;
2274 /* Find section containing function and compute section offset. */
2275 sec
= arm_obj_section_from_vma (objfile
, idx
);
2278 idx
-= bfd_get_section_vma (objfile
->obfd
, sec
->the_bfd_section
);
2280 /* Determine address of exception table entry. */
2283 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2285 else if ((val
& 0xff000000) == 0x80000000)
2287 /* Exception table entry embedded in .ARM.exidx
2288 -- must be short form. */
2292 else if (!(val
& 0x80000000))
2294 /* Exception table entry in .ARM.extab. */
2295 addr
= ((val
& 0x7fffffff) ^ 0x40000000) - 0x40000000;
2296 addr
+= exidx_vma
+ i
* 8 + 4;
2298 if (addr
>= extab_vma
&& addr
+ 4 <= extab_vma
+ extab_size
)
2300 word
= bfd_h_get_32 (objfile
->obfd
,
2301 extab_data
+ addr
- extab_vma
);
2304 if ((word
& 0xff000000) == 0x80000000)
2309 else if ((word
& 0xff000000) == 0x81000000
2310 || (word
& 0xff000000) == 0x82000000)
2314 n_words
= ((word
>> 16) & 0xff);
2316 else if (!(word
& 0x80000000))
2319 struct obj_section
*pers_sec
;
2320 int gnu_personality
= 0;
2322 /* Custom personality routine. */
2323 pers
= ((word
& 0x7fffffff) ^ 0x40000000) - 0x40000000;
2324 pers
= UNMAKE_THUMB_ADDR (pers
+ addr
- 4);
2326 /* Check whether we've got one of the variants of the
2327 GNU personality routines. */
2328 pers_sec
= arm_obj_section_from_vma (objfile
, pers
);
2331 static const char *personality
[] =
2333 "__gcc_personality_v0",
2334 "__gxx_personality_v0",
2335 "__gcj_personality_v0",
2336 "__gnu_objc_personality_v0",
2340 CORE_ADDR pc
= pers
+ obj_section_offset (pers_sec
);
2343 for (k
= 0; personality
[k
]; k
++)
2344 if (lookup_minimal_symbol_by_pc_name
2345 (pc
, personality
[k
], objfile
))
2347 gnu_personality
= 1;
2352 /* If so, the next word contains a word count in the high
2353 byte, followed by the same unwind instructions as the
2354 pre-defined forms. */
2356 && addr
+ 4 <= extab_vma
+ extab_size
)
2358 word
= bfd_h_get_32 (objfile
->obfd
,
2359 extab_data
+ addr
- extab_vma
);
2362 n_words
= ((word
>> 24) & 0xff);
2368 /* Sanity check address. */
2370 if (addr
< extab_vma
|| addr
+ 4 * n_words
> extab_vma
+ extab_size
)
2371 n_words
= n_bytes
= 0;
2373 /* The unwind instructions reside in WORD (only the N_BYTES least
2374 significant bytes are valid), followed by N_WORDS words in the
2375 extab section starting at ADDR. */
2376 if (n_bytes
|| n_words
)
2378 gdb_byte
*p
= entry
= obstack_alloc (&objfile
->objfile_obstack
,
2379 n_bytes
+ n_words
* 4 + 1);
2382 *p
++ = (gdb_byte
) ((word
>> (8 * n_bytes
)) & 0xff);
2386 word
= bfd_h_get_32 (objfile
->obfd
,
2387 extab_data
+ addr
- extab_vma
);
2390 *p
++ = (gdb_byte
) ((word
>> 24) & 0xff);
2391 *p
++ = (gdb_byte
) ((word
>> 16) & 0xff);
2392 *p
++ = (gdb_byte
) ((word
>> 8) & 0xff);
2393 *p
++ = (gdb_byte
) (word
& 0xff);
2396 /* Implied "Finish" to terminate the list. */
2400 /* Push entry onto vector. They are guaranteed to always
2401 appear in order of increasing addresses. */
2402 new_exidx_entry
.addr
= idx
;
2403 new_exidx_entry
.entry
= entry
;
2404 VEC_safe_push (arm_exidx_entry_s
,
2405 data
->section_maps
[sec
->the_bfd_section
->index
],
2409 do_cleanups (cleanups
);
2412 /* Search for the exception table entry covering MEMADDR. If one is found,
2413 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2414 set *START to the start of the region covered by this entry. */
2417 arm_find_exidx_entry (CORE_ADDR memaddr
, CORE_ADDR
*start
)
2419 struct obj_section
*sec
;
2421 sec
= find_pc_section (memaddr
);
2424 struct arm_exidx_data
*data
;
2425 VEC(arm_exidx_entry_s
) *map
;
2426 struct arm_exidx_entry map_key
= { memaddr
- obj_section_addr (sec
), 0 };
2429 data
= objfile_data (sec
->objfile
, arm_exidx_data_key
);
2432 map
= data
->section_maps
[sec
->the_bfd_section
->index
];
2433 if (!VEC_empty (arm_exidx_entry_s
, map
))
2435 struct arm_exidx_entry
*map_sym
;
2437 idx
= VEC_lower_bound (arm_exidx_entry_s
, map
, &map_key
,
2438 arm_compare_exidx_entries
);
2440 /* VEC_lower_bound finds the earliest ordered insertion
2441 point. If the following symbol starts at this exact
2442 address, we use that; otherwise, the preceding
2443 exception table entry covers this address. */
2444 if (idx
< VEC_length (arm_exidx_entry_s
, map
))
2446 map_sym
= VEC_index (arm_exidx_entry_s
, map
, idx
);
2447 if (map_sym
->addr
== map_key
.addr
)
2450 *start
= map_sym
->addr
+ obj_section_addr (sec
);
2451 return map_sym
->entry
;
2457 map_sym
= VEC_index (arm_exidx_entry_s
, map
, idx
- 1);
2459 *start
= map_sym
->addr
+ obj_section_addr (sec
);
2460 return map_sym
->entry
;
2469 /* Given the current frame THIS_FRAME, and its associated frame unwinding
2470 instruction list from the ARM exception table entry ENTRY, allocate and
2471 return a prologue cache structure describing how to unwind this frame.
2473 Return NULL if the unwinding instruction list contains a "spare",
2474 "reserved" or "refuse to unwind" instruction as defined in section
2475 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2476 for the ARM Architecture" document. */
2478 static struct arm_prologue_cache
*
2479 arm_exidx_fill_cache (struct frame_info
*this_frame
, gdb_byte
*entry
)
2484 struct arm_prologue_cache
*cache
;
2485 cache
= FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache
);
2486 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
2492 /* Whenever we reload SP, we actually have to retrieve its
2493 actual value in the current frame. */
2496 if (trad_frame_realreg_p (cache
->saved_regs
, ARM_SP_REGNUM
))
2498 int reg
= cache
->saved_regs
[ARM_SP_REGNUM
].realreg
;
2499 vsp
= get_frame_register_unsigned (this_frame
, reg
);
2503 CORE_ADDR addr
= cache
->saved_regs
[ARM_SP_REGNUM
].addr
;
2504 vsp
= get_frame_memory_unsigned (this_frame
, addr
, 4);
2510 /* Decode next unwind instruction. */
2513 if ((insn
& 0xc0) == 0)
2515 int offset
= insn
& 0x3f;
2516 vsp
+= (offset
<< 2) + 4;
2518 else if ((insn
& 0xc0) == 0x40)
2520 int offset
= insn
& 0x3f;
2521 vsp
-= (offset
<< 2) + 4;
2523 else if ((insn
& 0xf0) == 0x80)
2525 int mask
= ((insn
& 0xf) << 8) | *entry
++;
2528 /* The special case of an all-zero mask identifies
2529 "Refuse to unwind". We return NULL to fall back
2530 to the prologue analyzer. */
2534 /* Pop registers r4..r15 under mask. */
2535 for (i
= 0; i
< 12; i
++)
2536 if (mask
& (1 << i
))
2538 cache
->saved_regs
[4 + i
].addr
= vsp
;
2542 /* Special-case popping SP -- we need to reload vsp. */
2543 if (mask
& (1 << (ARM_SP_REGNUM
- 4)))
2546 else if ((insn
& 0xf0) == 0x90)
2548 int reg
= insn
& 0xf;
2550 /* Reserved cases. */
2551 if (reg
== ARM_SP_REGNUM
|| reg
== ARM_PC_REGNUM
)
2554 /* Set SP from another register and mark VSP for reload. */
2555 cache
->saved_regs
[ARM_SP_REGNUM
] = cache
->saved_regs
[reg
];
2558 else if ((insn
& 0xf0) == 0xa0)
2560 int count
= insn
& 0x7;
2561 int pop_lr
= (insn
& 0x8) != 0;
2564 /* Pop r4..r[4+count]. */
2565 for (i
= 0; i
<= count
; i
++)
2567 cache
->saved_regs
[4 + i
].addr
= vsp
;
2571 /* If indicated by flag, pop LR as well. */
2574 cache
->saved_regs
[ARM_LR_REGNUM
].addr
= vsp
;
2578 else if (insn
== 0xb0)
2580 /* We could only have updated PC by popping into it; if so, it
2581 will show up as address. Otherwise, copy LR into PC. */
2582 if (!trad_frame_addr_p (cache
->saved_regs
, ARM_PC_REGNUM
))
2583 cache
->saved_regs
[ARM_PC_REGNUM
]
2584 = cache
->saved_regs
[ARM_LR_REGNUM
];
2589 else if (insn
== 0xb1)
2591 int mask
= *entry
++;
2594 /* All-zero mask and mask >= 16 is "spare". */
2595 if (mask
== 0 || mask
>= 16)
2598 /* Pop r0..r3 under mask. */
2599 for (i
= 0; i
< 4; i
++)
2600 if (mask
& (1 << i
))
2602 cache
->saved_regs
[i
].addr
= vsp
;
2606 else if (insn
== 0xb2)
2608 ULONGEST offset
= 0;
2613 offset
|= (*entry
& 0x7f) << shift
;
2616 while (*entry
++ & 0x80);
2618 vsp
+= 0x204 + (offset
<< 2);
2620 else if (insn
== 0xb3)
2622 int start
= *entry
>> 4;
2623 int count
= (*entry
++) & 0xf;
2626 /* Only registers D0..D15 are valid here. */
2627 if (start
+ count
>= 16)
2630 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2631 for (i
= 0; i
<= count
; i
++)
2633 cache
->saved_regs
[ARM_D0_REGNUM
+ start
+ i
].addr
= vsp
;
2637 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2640 else if ((insn
& 0xf8) == 0xb8)
2642 int count
= insn
& 0x7;
2645 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2646 for (i
= 0; i
<= count
; i
++)
2648 cache
->saved_regs
[ARM_D0_REGNUM
+ 8 + i
].addr
= vsp
;
2652 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2655 else if (insn
== 0xc6)
2657 int start
= *entry
>> 4;
2658 int count
= (*entry
++) & 0xf;
2661 /* Only registers WR0..WR15 are valid. */
2662 if (start
+ count
>= 16)
2665 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2666 for (i
= 0; i
<= count
; i
++)
2668 cache
->saved_regs
[ARM_WR0_REGNUM
+ start
+ i
].addr
= vsp
;
2672 else if (insn
== 0xc7)
2674 int mask
= *entry
++;
2677 /* All-zero mask and mask >= 16 is "spare". */
2678 if (mask
== 0 || mask
>= 16)
2681 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2682 for (i
= 0; i
< 4; i
++)
2683 if (mask
& (1 << i
))
2685 cache
->saved_regs
[ARM_WCGR0_REGNUM
+ i
].addr
= vsp
;
2689 else if ((insn
& 0xf8) == 0xc0)
2691 int count
= insn
& 0x7;
2694 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2695 for (i
= 0; i
<= count
; i
++)
2697 cache
->saved_regs
[ARM_WR0_REGNUM
+ 10 + i
].addr
= vsp
;
2701 else if (insn
== 0xc8)
2703 int start
= *entry
>> 4;
2704 int count
= (*entry
++) & 0xf;
2707 /* Only registers D0..D31 are valid. */
2708 if (start
+ count
>= 16)
2711 /* Pop VFP double-precision registers
2712 D[16+start]..D[16+start+count]. */
2713 for (i
= 0; i
<= count
; i
++)
2715 cache
->saved_regs
[ARM_D0_REGNUM
+ 16 + start
+ i
].addr
= vsp
;
2719 else if (insn
== 0xc9)
2721 int start
= *entry
>> 4;
2722 int count
= (*entry
++) & 0xf;
2725 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2726 for (i
= 0; i
<= count
; i
++)
2728 cache
->saved_regs
[ARM_D0_REGNUM
+ start
+ i
].addr
= vsp
;
2732 else if ((insn
& 0xf8) == 0xd0)
2734 int count
= insn
& 0x7;
2737 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2738 for (i
= 0; i
<= count
; i
++)
2740 cache
->saved_regs
[ARM_D0_REGNUM
+ 8 + i
].addr
= vsp
;
2746 /* Everything else is "spare". */
2751 /* If we restore SP from a register, assume this was the frame register.
2752 Otherwise just fall back to SP as frame register. */
2753 if (trad_frame_realreg_p (cache
->saved_regs
, ARM_SP_REGNUM
))
2754 cache
->framereg
= cache
->saved_regs
[ARM_SP_REGNUM
].realreg
;
2756 cache
->framereg
= ARM_SP_REGNUM
;
2758 /* Determine offset to previous frame. */
2760 = vsp
- get_frame_register_unsigned (this_frame
, cache
->framereg
);
2762 /* We already got the previous SP. */
2763 cache
->prev_sp
= vsp
;
2768 /* Unwinding via ARM exception table entries. Note that the sniffer
2769 already computes a filled-in prologue cache, which is then used
2770 with the same arm_prologue_this_id and arm_prologue_prev_register
2771 routines also used for prologue-parsing based unwinding. */
2774 arm_exidx_unwind_sniffer (const struct frame_unwind
*self
,
2775 struct frame_info
*this_frame
,
2776 void **this_prologue_cache
)
2778 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2779 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
2780 CORE_ADDR addr_in_block
, exidx_region
, func_start
;
2781 struct arm_prologue_cache
*cache
;
2784 /* See if we have an ARM exception table entry covering this address. */
2785 addr_in_block
= get_frame_address_in_block (this_frame
);
2786 entry
= arm_find_exidx_entry (addr_in_block
, &exidx_region
);
2790 /* The ARM exception table does not describe unwind information
2791 for arbitrary PC values, but is guaranteed to be correct only
2792 at call sites. We have to decide here whether we want to use
2793 ARM exception table information for this frame, or fall back
2794 to using prologue parsing. (Note that if we have DWARF CFI,
2795 this sniffer isn't even called -- CFI is always preferred.)
2797 Before we make this decision, however, we check whether we
2798 actually have *symbol* information for the current frame.
2799 If not, prologue parsing would not work anyway, so we might
2800 as well use the exception table and hope for the best. */
2801 if (find_pc_partial_function (addr_in_block
, NULL
, &func_start
, NULL
))
2805 /* If the next frame is "normal", we are at a call site in this
2806 frame, so exception information is guaranteed to be valid. */
2807 if (get_next_frame (this_frame
)
2808 && get_frame_type (get_next_frame (this_frame
)) == NORMAL_FRAME
)
2811 /* We also assume exception information is valid if we're currently
2812 blocked in a system call. The system library is supposed to
2813 ensure this, so that e.g. pthread cancellation works. */
2814 if (arm_frame_is_thumb (this_frame
))
2818 if (safe_read_memory_integer (get_frame_pc (this_frame
) - 2, 2,
2819 byte_order_for_code
, &insn
)
2820 && (insn
& 0xff00) == 0xdf00 /* svc */)
2827 if (safe_read_memory_integer (get_frame_pc (this_frame
) - 4, 4,
2828 byte_order_for_code
, &insn
)
2829 && (insn
& 0x0f000000) == 0x0f000000 /* svc */)
2833 /* Bail out if we don't know that exception information is valid. */
2837 /* The ARM exception index does not mark the *end* of the region
2838 covered by the entry, and some functions will not have any entry.
2839 To correctly recognize the end of the covered region, the linker
2840 should have inserted dummy records with a CANTUNWIND marker.
2842 Unfortunately, current versions of GNU ld do not reliably do
2843 this, and thus we may have found an incorrect entry above.
2844 As a (temporary) sanity check, we only use the entry if it
2845 lies *within* the bounds of the function. Note that this check
2846 might reject perfectly valid entries that just happen to cover
2847 multiple functions; therefore this check ought to be removed
2848 once the linker is fixed. */
2849 if (func_start
> exidx_region
)
2853 /* Decode the list of unwinding instructions into a prologue cache.
2854 Note that this may fail due to e.g. a "refuse to unwind" code. */
2855 cache
= arm_exidx_fill_cache (this_frame
, entry
);
2859 *this_prologue_cache
= cache
;
2863 struct frame_unwind arm_exidx_unwind
= {
2865 default_frame_unwind_stop_reason
,
2866 arm_prologue_this_id
,
2867 arm_prologue_prev_register
,
2869 arm_exidx_unwind_sniffer
2872 static struct arm_prologue_cache
*
2873 arm_make_stub_cache (struct frame_info
*this_frame
)
2875 struct arm_prologue_cache
*cache
;
2877 cache
= FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache
);
2878 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
2880 cache
->prev_sp
= get_frame_register_unsigned (this_frame
, ARM_SP_REGNUM
);
2885 /* Our frame ID for a stub frame is the current SP and LR. */
2888 arm_stub_this_id (struct frame_info
*this_frame
,
2890 struct frame_id
*this_id
)
2892 struct arm_prologue_cache
*cache
;
2894 if (*this_cache
== NULL
)
2895 *this_cache
= arm_make_stub_cache (this_frame
);
2896 cache
= *this_cache
;
2898 *this_id
= frame_id_build (cache
->prev_sp
, get_frame_pc (this_frame
));
2902 arm_stub_unwind_sniffer (const struct frame_unwind
*self
,
2903 struct frame_info
*this_frame
,
2904 void **this_prologue_cache
)
2906 CORE_ADDR addr_in_block
;
2909 addr_in_block
= get_frame_address_in_block (this_frame
);
2910 if (in_plt_section (addr_in_block
)
2911 /* We also use the stub winder if the target memory is unreadable
2912 to avoid having the prologue unwinder trying to read it. */
2913 || target_read_memory (get_frame_pc (this_frame
), dummy
, 4) != 0)
2919 struct frame_unwind arm_stub_unwind
= {
2921 default_frame_unwind_stop_reason
,
2923 arm_prologue_prev_register
,
2925 arm_stub_unwind_sniffer
2928 /* Put here the code to store, into CACHE->saved_regs, the addresses
2929 of the saved registers of frame described by THIS_FRAME. CACHE is
2932 static struct arm_prologue_cache
*
2933 arm_m_exception_cache (struct frame_info
*this_frame
)
2935 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2936 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2937 struct arm_prologue_cache
*cache
;
2938 CORE_ADDR unwound_sp
;
2941 cache
= FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache
);
2942 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
2944 unwound_sp
= get_frame_register_unsigned (this_frame
,
2947 /* The hardware saves eight 32-bit words, comprising xPSR,
2948 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2949 "B1.5.6 Exception entry behavior" in
2950 "ARMv7-M Architecture Reference Manual". */
2951 cache
->saved_regs
[0].addr
= unwound_sp
;
2952 cache
->saved_regs
[1].addr
= unwound_sp
+ 4;
2953 cache
->saved_regs
[2].addr
= unwound_sp
+ 8;
2954 cache
->saved_regs
[3].addr
= unwound_sp
+ 12;
2955 cache
->saved_regs
[12].addr
= unwound_sp
+ 16;
2956 cache
->saved_regs
[14].addr
= unwound_sp
+ 20;
2957 cache
->saved_regs
[15].addr
= unwound_sp
+ 24;
2958 cache
->saved_regs
[ARM_PS_REGNUM
].addr
= unwound_sp
+ 28;
2960 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2961 aligner between the top of the 32-byte stack frame and the
2962 previous context's stack pointer. */
2963 cache
->prev_sp
= unwound_sp
+ 32;
2964 if (safe_read_memory_integer (unwound_sp
+ 28, 4, byte_order
, &xpsr
)
2965 && (xpsr
& (1 << 9)) != 0)
2966 cache
->prev_sp
+= 4;
2971 /* Implementation of function hook 'this_id' in
2972 'struct frame_uwnind'. */
2975 arm_m_exception_this_id (struct frame_info
*this_frame
,
2977 struct frame_id
*this_id
)
2979 struct arm_prologue_cache
*cache
;
2981 if (*this_cache
== NULL
)
2982 *this_cache
= arm_m_exception_cache (this_frame
);
2983 cache
= *this_cache
;
2985 /* Our frame ID for a stub frame is the current SP and LR. */
2986 *this_id
= frame_id_build (cache
->prev_sp
,
2987 get_frame_pc (this_frame
));
2990 /* Implementation of function hook 'prev_register' in
2991 'struct frame_uwnind'. */
2993 static struct value
*
2994 arm_m_exception_prev_register (struct frame_info
*this_frame
,
2998 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2999 struct arm_prologue_cache
*cache
;
3001 if (*this_cache
== NULL
)
3002 *this_cache
= arm_m_exception_cache (this_frame
);
3003 cache
= *this_cache
;
3005 /* The value was already reconstructed into PREV_SP. */
3006 if (prev_regnum
== ARM_SP_REGNUM
)
3007 return frame_unwind_got_constant (this_frame
, prev_regnum
,
3010 return trad_frame_get_prev_register (this_frame
, cache
->saved_regs
,
3014 /* Implementation of function hook 'sniffer' in
3015 'struct frame_uwnind'. */
3018 arm_m_exception_unwind_sniffer (const struct frame_unwind
*self
,
3019 struct frame_info
*this_frame
,
3020 void **this_prologue_cache
)
3022 CORE_ADDR this_pc
= get_frame_pc (this_frame
);
3024 /* No need to check is_m; this sniffer is only registered for
3025 M-profile architectures. */
3027 /* Exception frames return to one of these magic PCs. Other values
3028 are not defined as of v7-M. See details in "B1.5.8 Exception
3029 return behavior" in "ARMv7-M Architecture Reference Manual". */
3030 if (this_pc
== 0xfffffff1 || this_pc
== 0xfffffff9
3031 || this_pc
== 0xfffffffd)
3037 /* Frame unwinder for M-profile exceptions. */
3039 struct frame_unwind arm_m_exception_unwind
=
3042 default_frame_unwind_stop_reason
,
3043 arm_m_exception_this_id
,
3044 arm_m_exception_prev_register
,
3046 arm_m_exception_unwind_sniffer
3050 arm_normal_frame_base (struct frame_info
*this_frame
, void **this_cache
)
3052 struct arm_prologue_cache
*cache
;
3054 if (*this_cache
== NULL
)
3055 *this_cache
= arm_make_prologue_cache (this_frame
);
3056 cache
= *this_cache
;
3058 return cache
->prev_sp
- cache
->framesize
;
3061 struct frame_base arm_normal_base
= {
3062 &arm_prologue_unwind
,
3063 arm_normal_frame_base
,
3064 arm_normal_frame_base
,
3065 arm_normal_frame_base
3068 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
3069 dummy frame. The frame ID's base needs to match the TOS value
3070 saved by save_dummy_frame_tos() and returned from
3071 arm_push_dummy_call, and the PC needs to match the dummy frame's
3074 static struct frame_id
3075 arm_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
3077 return frame_id_build (get_frame_register_unsigned (this_frame
,
3079 get_frame_pc (this_frame
));
3082 /* Given THIS_FRAME, find the previous frame's resume PC (which will
3083 be used to construct the previous frame's ID, after looking up the
3084 containing function). */
3087 arm_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
3090 pc
= frame_unwind_register_unsigned (this_frame
, ARM_PC_REGNUM
);
3091 return arm_addr_bits_remove (gdbarch
, pc
);
3095 arm_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
3097 return frame_unwind_register_unsigned (this_frame
, ARM_SP_REGNUM
);
3100 static struct value
*
3101 arm_dwarf2_prev_register (struct frame_info
*this_frame
, void **this_cache
,
3104 struct gdbarch
* gdbarch
= get_frame_arch (this_frame
);
3106 ULONGEST t_bit
= arm_psr_thumb_bit (gdbarch
);
3111 /* The PC is normally copied from the return column, which
3112 describes saves of LR. However, that version may have an
3113 extra bit set to indicate Thumb state. The bit is not
3115 lr
= frame_unwind_register_unsigned (this_frame
, ARM_LR_REGNUM
);
3116 return frame_unwind_got_constant (this_frame
, regnum
,
3117 arm_addr_bits_remove (gdbarch
, lr
));
3120 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3121 cpsr
= get_frame_register_unsigned (this_frame
, regnum
);
3122 lr
= frame_unwind_register_unsigned (this_frame
, ARM_LR_REGNUM
);
3123 if (IS_THUMB_ADDR (lr
))
3127 return frame_unwind_got_constant (this_frame
, regnum
, cpsr
);
3130 internal_error (__FILE__
, __LINE__
,
3131 _("Unexpected register %d"), regnum
);
3136 arm_dwarf2_frame_init_reg (struct gdbarch
*gdbarch
, int regnum
,
3137 struct dwarf2_frame_state_reg
*reg
,
3138 struct frame_info
*this_frame
)
3144 reg
->how
= DWARF2_FRAME_REG_FN
;
3145 reg
->loc
.fn
= arm_dwarf2_prev_register
;
3148 reg
->how
= DWARF2_FRAME_REG_CFA
;
3153 /* Return true if we are in the function's epilogue, i.e. after the
3154 instruction that destroyed the function's stack frame. */
3157 thumb_in_function_epilogue_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
3159 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
3160 unsigned int insn
, insn2
;
3161 int found_return
= 0, found_stack_adjust
= 0;
3162 CORE_ADDR func_start
, func_end
;
3166 if (!find_pc_partial_function (pc
, NULL
, &func_start
, &func_end
))
3169 /* The epilogue is a sequence of instructions along the following lines:
3171 - add stack frame size to SP or FP
3172 - [if frame pointer used] restore SP from FP
3173 - restore registers from SP [may include PC]
3174 - a return-type instruction [if PC wasn't already restored]
3176 In a first pass, we scan forward from the current PC and verify the
3177 instructions we find as compatible with this sequence, ending in a
3180 However, this is not sufficient to distinguish indirect function calls
3181 within a function from indirect tail calls in the epilogue in some cases.
3182 Therefore, if we didn't already find any SP-changing instruction during
3183 forward scan, we add a backward scanning heuristic to ensure we actually
3184 are in the epilogue. */
3187 while (scan_pc
< func_end
&& !found_return
)
3189 if (target_read_memory (scan_pc
, buf
, 2))
3193 insn
= extract_unsigned_integer (buf
, 2, byte_order_for_code
);
3195 if ((insn
& 0xff80) == 0x4700) /* bx <Rm> */
3197 else if (insn
== 0x46f7) /* mov pc, lr */
3199 else if (insn
== 0x46bd) /* mov sp, r7 */
3200 found_stack_adjust
= 1;
3201 else if ((insn
& 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3202 found_stack_adjust
= 1;
3203 else if ((insn
& 0xfe00) == 0xbc00) /* pop <registers> */
3205 found_stack_adjust
= 1;
3206 if (insn
& 0x0100) /* <registers> include PC. */
3209 else if (thumb_insn_size (insn
) == 4) /* 32-bit Thumb-2 instruction */
3211 if (target_read_memory (scan_pc
, buf
, 2))
3215 insn2
= extract_unsigned_integer (buf
, 2, byte_order_for_code
);
3217 if (insn
== 0xe8bd) /* ldm.w sp!, <registers> */
3219 found_stack_adjust
= 1;
3220 if (insn2
& 0x8000) /* <registers> include PC. */
3223 else if (insn
== 0xf85d /* ldr.w <Rt>, [sp], #4 */
3224 && (insn2
& 0x0fff) == 0x0b04)
3226 found_stack_adjust
= 1;
3227 if ((insn2
& 0xf000) == 0xf000) /* <Rt> is PC. */
3230 else if ((insn
& 0xffbf) == 0xecbd /* vldm sp!, <list> */
3231 && (insn2
& 0x0e00) == 0x0a00)
3232 found_stack_adjust
= 1;
3243 /* Since any instruction in the epilogue sequence, with the possible
3244 exception of return itself, updates the stack pointer, we need to
3245 scan backwards for at most one instruction. Try either a 16-bit or
3246 a 32-bit instruction. This is just a heuristic, so we do not worry
3247 too much about false positives. */
3249 if (!found_stack_adjust
)
3251 if (pc
- 4 < func_start
)
3253 if (target_read_memory (pc
- 4, buf
, 4))
3256 insn
= extract_unsigned_integer (buf
, 2, byte_order_for_code
);
3257 insn2
= extract_unsigned_integer (buf
+ 2, 2, byte_order_for_code
);
3259 if (insn2
== 0x46bd) /* mov sp, r7 */
3260 found_stack_adjust
= 1;
3261 else if ((insn2
& 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3262 found_stack_adjust
= 1;
3263 else if ((insn2
& 0xff00) == 0xbc00) /* pop <registers> without PC */
3264 found_stack_adjust
= 1;
3265 else if (insn
== 0xe8bd) /* ldm.w sp!, <registers> */
3266 found_stack_adjust
= 1;
3267 else if (insn
== 0xf85d /* ldr.w <Rt>, [sp], #4 */
3268 && (insn2
& 0x0fff) == 0x0b04)
3269 found_stack_adjust
= 1;
3270 else if ((insn
& 0xffbf) == 0xecbd /* vldm sp!, <list> */
3271 && (insn2
& 0x0e00) == 0x0a00)
3272 found_stack_adjust
= 1;
3275 return found_stack_adjust
;
3278 /* Return true if we are in the function's epilogue, i.e. after the
3279 instruction that destroyed the function's stack frame. */
3282 arm_in_function_epilogue_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
3284 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
3286 int found_return
, found_stack_adjust
;
3287 CORE_ADDR func_start
, func_end
;
3289 if (arm_pc_is_thumb (gdbarch
, pc
))
3290 return thumb_in_function_epilogue_p (gdbarch
, pc
);
3292 if (!find_pc_partial_function (pc
, NULL
, &func_start
, &func_end
))
3295 /* We are in the epilogue if the previous instruction was a stack
3296 adjustment and the next instruction is a possible return (bx, mov
3297 pc, or pop). We could have to scan backwards to find the stack
3298 adjustment, or forwards to find the return, but this is a decent
3299 approximation. First scan forwards. */
3302 insn
= read_memory_unsigned_integer (pc
, 4, byte_order_for_code
);
3303 if (bits (insn
, 28, 31) != INST_NV
)
3305 if ((insn
& 0x0ffffff0) == 0x012fff10)
3308 else if ((insn
& 0x0ffffff0) == 0x01a0f000)
3311 else if ((insn
& 0x0fff0000) == 0x08bd0000
3312 && (insn
& 0x0000c000) != 0)
3313 /* POP (LDMIA), including PC or LR. */
3320 /* Scan backwards. This is just a heuristic, so do not worry about
3321 false positives from mode changes. */
3323 if (pc
< func_start
+ 4)
3326 found_stack_adjust
= 0;
3327 insn
= read_memory_unsigned_integer (pc
- 4, 4, byte_order_for_code
);
3328 if (bits (insn
, 28, 31) != INST_NV
)
3330 if ((insn
& 0x0df0f000) == 0x0080d000)
3331 /* ADD SP (register or immediate). */
3332 found_stack_adjust
= 1;
3333 else if ((insn
& 0x0df0f000) == 0x0040d000)
3334 /* SUB SP (register or immediate). */
3335 found_stack_adjust
= 1;
3336 else if ((insn
& 0x0ffffff0) == 0x01a0d000)
3338 found_stack_adjust
= 1;
3339 else if ((insn
& 0x0fff0000) == 0x08bd0000)
3341 found_stack_adjust
= 1;
3342 else if ((insn
& 0x0fff0000) == 0x049d0000)
3343 /* POP of a single register. */
3344 found_stack_adjust
= 1;
3347 if (found_stack_adjust
)
3354 /* When arguments must be pushed onto the stack, they go on in reverse
3355 order. The code below implements a FILO (stack) to do this. */
3360 struct stack_item
*prev
;
3364 static struct stack_item
*
3365 push_stack_item (struct stack_item
*prev
, const void *contents
, int len
)
3367 struct stack_item
*si
;
3368 si
= xmalloc (sizeof (struct stack_item
));
3369 si
->data
= xmalloc (len
);
3372 memcpy (si
->data
, contents
, len
);
3376 static struct stack_item
*
3377 pop_stack_item (struct stack_item
*si
)
3379 struct stack_item
*dead
= si
;
3387 /* Return the alignment (in bytes) of the given type. */
3390 arm_type_align (struct type
*t
)
3396 t
= check_typedef (t
);
3397 switch (TYPE_CODE (t
))
3400 /* Should never happen. */
3401 internal_error (__FILE__
, __LINE__
, _("unknown type alignment"));
3405 case TYPE_CODE_ENUM
:
3409 case TYPE_CODE_RANGE
:
3411 case TYPE_CODE_CHAR
:
3412 case TYPE_CODE_BOOL
:
3413 return TYPE_LENGTH (t
);
3415 case TYPE_CODE_ARRAY
:
3416 case TYPE_CODE_COMPLEX
:
3417 /* TODO: What about vector types? */
3418 return arm_type_align (TYPE_TARGET_TYPE (t
));
3420 case TYPE_CODE_STRUCT
:
3421 case TYPE_CODE_UNION
:
3423 for (n
= 0; n
< TYPE_NFIELDS (t
); n
++)
3425 falign
= arm_type_align (TYPE_FIELD_TYPE (t
, n
));
3433 /* Possible base types for a candidate for passing and returning in
3436 enum arm_vfp_cprc_base_type
3445 /* The length of one element of base type B. */
3448 arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b
)
3452 case VFP_CPRC_SINGLE
:
3454 case VFP_CPRC_DOUBLE
:
3456 case VFP_CPRC_VEC64
:
3458 case VFP_CPRC_VEC128
:
3461 internal_error (__FILE__
, __LINE__
, _("Invalid VFP CPRC type: %d."),
3466 /* The character ('s', 'd' or 'q') for the type of VFP register used
3467 for passing base type B. */
3470 arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b
)
3474 case VFP_CPRC_SINGLE
:
3476 case VFP_CPRC_DOUBLE
:
3478 case VFP_CPRC_VEC64
:
3480 case VFP_CPRC_VEC128
:
3483 internal_error (__FILE__
, __LINE__
, _("Invalid VFP CPRC type: %d."),
3488 /* Determine whether T may be part of a candidate for passing and
3489 returning in VFP registers, ignoring the limit on the total number
3490 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3491 classification of the first valid component found; if it is not
3492 VFP_CPRC_UNKNOWN, all components must have the same classification
3493 as *BASE_TYPE. If it is found that T contains a type not permitted
3494 for passing and returning in VFP registers, a type differently
3495 classified from *BASE_TYPE, or two types differently classified
3496 from each other, return -1, otherwise return the total number of
3497 base-type elements found (possibly 0 in an empty structure or
3498 array). Vectors and complex types are not currently supported,
3499 matching the generic AAPCS support. */
3502 arm_vfp_cprc_sub_candidate (struct type
*t
,
3503 enum arm_vfp_cprc_base_type
*base_type
)
3505 t
= check_typedef (t
);
3506 switch (TYPE_CODE (t
))
3509 switch (TYPE_LENGTH (t
))
3512 if (*base_type
== VFP_CPRC_UNKNOWN
)
3513 *base_type
= VFP_CPRC_SINGLE
;
3514 else if (*base_type
!= VFP_CPRC_SINGLE
)
3519 if (*base_type
== VFP_CPRC_UNKNOWN
)
3520 *base_type
= VFP_CPRC_DOUBLE
;
3521 else if (*base_type
!= VFP_CPRC_DOUBLE
)
3530 case TYPE_CODE_ARRAY
:
3534 count
= arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t
), base_type
);
3537 if (TYPE_LENGTH (t
) == 0)
3539 gdb_assert (count
== 0);
3542 else if (count
== 0)
3544 unitlen
= arm_vfp_cprc_unit_length (*base_type
);
3545 gdb_assert ((TYPE_LENGTH (t
) % unitlen
) == 0);
3546 return TYPE_LENGTH (t
) / unitlen
;
3550 case TYPE_CODE_STRUCT
:
3555 for (i
= 0; i
< TYPE_NFIELDS (t
); i
++)
3557 int sub_count
= arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t
, i
),
3559 if (sub_count
== -1)
3563 if (TYPE_LENGTH (t
) == 0)
3565 gdb_assert (count
== 0);
3568 else if (count
== 0)
3570 unitlen
= arm_vfp_cprc_unit_length (*base_type
);
3571 if (TYPE_LENGTH (t
) != unitlen
* count
)
3576 case TYPE_CODE_UNION
:
3581 for (i
= 0; i
< TYPE_NFIELDS (t
); i
++)
3583 int sub_count
= arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t
, i
),
3585 if (sub_count
== -1)
3587 count
= (count
> sub_count
? count
: sub_count
);
3589 if (TYPE_LENGTH (t
) == 0)
3591 gdb_assert (count
== 0);
3594 else if (count
== 0)
3596 unitlen
= arm_vfp_cprc_unit_length (*base_type
);
3597 if (TYPE_LENGTH (t
) != unitlen
* count
)
3609 /* Determine whether T is a VFP co-processor register candidate (CPRC)
3610 if passed to or returned from a non-variadic function with the VFP
3611 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3612 *BASE_TYPE to the base type for T and *COUNT to the number of
3613 elements of that base type before returning. */
3616 arm_vfp_call_candidate (struct type
*t
, enum arm_vfp_cprc_base_type
*base_type
,
3619 enum arm_vfp_cprc_base_type b
= VFP_CPRC_UNKNOWN
;
3620 int c
= arm_vfp_cprc_sub_candidate (t
, &b
);
3621 if (c
<= 0 || c
> 4)
3628 /* Return 1 if the VFP ABI should be used for passing arguments to and
3629 returning values from a function of type FUNC_TYPE, 0
3633 arm_vfp_abi_for_function (struct gdbarch
*gdbarch
, struct type
*func_type
)
3635 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3636 /* Variadic functions always use the base ABI. Assume that functions
3637 without debug info are not variadic. */
3638 if (func_type
&& TYPE_VARARGS (check_typedef (func_type
)))
3640 /* The VFP ABI is only supported as a variant of AAPCS. */
3641 if (tdep
->arm_abi
!= ARM_ABI_AAPCS
)
3643 return gdbarch_tdep (gdbarch
)->fp_model
== ARM_FLOAT_VFP
;
3646 /* We currently only support passing parameters in integer registers, which
3647 conforms with GCC's default model, and VFP argument passing following
3648 the VFP variant of AAPCS. Several other variants exist and
3649 we should probably support some of them based on the selected ABI. */
3652 arm_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
3653 struct regcache
*regcache
, CORE_ADDR bp_addr
, int nargs
,
3654 struct value
**args
, CORE_ADDR sp
, int struct_return
,
3655 CORE_ADDR struct_addr
)
3657 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
3661 struct stack_item
*si
= NULL
;
3664 unsigned vfp_regs_free
= (1 << 16) - 1;
3666 /* Determine the type of this function and whether the VFP ABI
3668 ftype
= check_typedef (value_type (function
));
3669 if (TYPE_CODE (ftype
) == TYPE_CODE_PTR
)
3670 ftype
= check_typedef (TYPE_TARGET_TYPE (ftype
));
3671 use_vfp_abi
= arm_vfp_abi_for_function (gdbarch
, ftype
);
3673 /* Set the return address. For the ARM, the return breakpoint is
3674 always at BP_ADDR. */
3675 if (arm_pc_is_thumb (gdbarch
, bp_addr
))
3677 regcache_cooked_write_unsigned (regcache
, ARM_LR_REGNUM
, bp_addr
);
3679 /* Walk through the list of args and determine how large a temporary
3680 stack is required. Need to take care here as structs may be
3681 passed on the stack, and we have to push them. */
3684 argreg
= ARM_A1_REGNUM
;
3687 /* The struct_return pointer occupies the first parameter
3688 passing register. */
3692 fprintf_unfiltered (gdb_stdlog
, "struct return in %s = %s\n",
3693 gdbarch_register_name (gdbarch
, argreg
),
3694 paddress (gdbarch
, struct_addr
));
3695 regcache_cooked_write_unsigned (regcache
, argreg
, struct_addr
);
3699 for (argnum
= 0; argnum
< nargs
; argnum
++)
3702 struct type
*arg_type
;
3703 struct type
*target_type
;
3704 enum type_code typecode
;
3705 const bfd_byte
*val
;
3707 enum arm_vfp_cprc_base_type vfp_base_type
;
3709 int may_use_core_reg
= 1;
3711 arg_type
= check_typedef (value_type (args
[argnum
]));
3712 len
= TYPE_LENGTH (arg_type
);
3713 target_type
= TYPE_TARGET_TYPE (arg_type
);
3714 typecode
= TYPE_CODE (arg_type
);
3715 val
= value_contents (args
[argnum
]);
3717 align
= arm_type_align (arg_type
);
3718 /* Round alignment up to a whole number of words. */
3719 align
= (align
+ INT_REGISTER_SIZE
- 1) & ~(INT_REGISTER_SIZE
- 1);
3720 /* Different ABIs have different maximum alignments. */
3721 if (gdbarch_tdep (gdbarch
)->arm_abi
== ARM_ABI_APCS
)
3723 /* The APCS ABI only requires word alignment. */
3724 align
= INT_REGISTER_SIZE
;
3728 /* The AAPCS requires at most doubleword alignment. */
3729 if (align
> INT_REGISTER_SIZE
* 2)
3730 align
= INT_REGISTER_SIZE
* 2;
3734 && arm_vfp_call_candidate (arg_type
, &vfp_base_type
,
3742 /* Because this is a CPRC it cannot go in a core register or
3743 cause a core register to be skipped for alignment.
3744 Either it goes in VFP registers and the rest of this loop
3745 iteration is skipped for this argument, or it goes on the
3746 stack (and the stack alignment code is correct for this
3748 may_use_core_reg
= 0;
3750 unit_length
= arm_vfp_cprc_unit_length (vfp_base_type
);
3751 shift
= unit_length
/ 4;
3752 mask
= (1 << (shift
* vfp_base_count
)) - 1;
3753 for (regno
= 0; regno
< 16; regno
+= shift
)
3754 if (((vfp_regs_free
>> regno
) & mask
) == mask
)
3763 vfp_regs_free
&= ~(mask
<< regno
);
3764 reg_scaled
= regno
/ shift
;
3765 reg_char
= arm_vfp_cprc_reg_char (vfp_base_type
);
3766 for (i
= 0; i
< vfp_base_count
; i
++)
3770 if (reg_char
== 'q')
3771 arm_neon_quad_write (gdbarch
, regcache
, reg_scaled
+ i
,
3772 val
+ i
* unit_length
);
3775 xsnprintf (name_buf
, sizeof (name_buf
), "%c%d",
3776 reg_char
, reg_scaled
+ i
);
3777 regnum
= user_reg_map_name_to_regnum (gdbarch
, name_buf
,
3779 regcache_cooked_write (regcache
, regnum
,
3780 val
+ i
* unit_length
);
3787 /* This CPRC could not go in VFP registers, so all VFP
3788 registers are now marked as used. */
3793 /* Push stack padding for dowubleword alignment. */
3794 if (nstack
& (align
- 1))
3796 si
= push_stack_item (si
, val
, INT_REGISTER_SIZE
);
3797 nstack
+= INT_REGISTER_SIZE
;
3800 /* Doubleword aligned quantities must go in even register pairs. */
3801 if (may_use_core_reg
3802 && argreg
<= ARM_LAST_ARG_REGNUM
3803 && align
> INT_REGISTER_SIZE
3807 /* If the argument is a pointer to a function, and it is a
3808 Thumb function, create a LOCAL copy of the value and set
3809 the THUMB bit in it. */
3810 if (TYPE_CODE_PTR
== typecode
3811 && target_type
!= NULL
3812 && TYPE_CODE_FUNC
== TYPE_CODE (check_typedef (target_type
)))
3814 CORE_ADDR regval
= extract_unsigned_integer (val
, len
, byte_order
);
3815 if (arm_pc_is_thumb (gdbarch
, regval
))
3817 bfd_byte
*copy
= alloca (len
);
3818 store_unsigned_integer (copy
, len
, byte_order
,
3819 MAKE_THUMB_ADDR (regval
));
3824 /* Copy the argument to general registers or the stack in
3825 register-sized pieces. Large arguments are split between
3826 registers and stack. */
3829 int partial_len
= len
< INT_REGISTER_SIZE
? len
: INT_REGISTER_SIZE
;
3831 if (may_use_core_reg
&& argreg
<= ARM_LAST_ARG_REGNUM
)
3833 /* The argument is being passed in a general purpose
3836 = extract_unsigned_integer (val
, partial_len
, byte_order
);
3837 if (byte_order
== BFD_ENDIAN_BIG
)
3838 regval
<<= (INT_REGISTER_SIZE
- partial_len
) * 8;
3840 fprintf_unfiltered (gdb_stdlog
, "arg %d in %s = 0x%s\n",
3842 gdbarch_register_name
3844 phex (regval
, INT_REGISTER_SIZE
));
3845 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
3850 /* Push the arguments onto the stack. */
3852 fprintf_unfiltered (gdb_stdlog
, "arg %d @ sp + %d\n",
3854 si
= push_stack_item (si
, val
, INT_REGISTER_SIZE
);
3855 nstack
+= INT_REGISTER_SIZE
;
3862 /* If we have an odd number of words to push, then decrement the stack
3863 by one word now, so first stack argument will be dword aligned. */
3870 write_memory (sp
, si
->data
, si
->len
);
3871 si
= pop_stack_item (si
);
3874 /* Finally, update teh SP register. */
3875 regcache_cooked_write_unsigned (regcache
, ARM_SP_REGNUM
, sp
);
3881 /* Always align the frame to an 8-byte boundary. This is required on
3882 some platforms and harmless on the rest. */
3885 arm_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
3887 /* Align the stack to eight bytes. */
3888 return sp
& ~ (CORE_ADDR
) 7;
3892 print_fpu_flags (struct ui_file
*file
, int flags
)
3894 if (flags
& (1 << 0))
3895 fputs_filtered ("IVO ", file
);
3896 if (flags
& (1 << 1))
3897 fputs_filtered ("DVZ ", file
);
3898 if (flags
& (1 << 2))
3899 fputs_filtered ("OFL ", file
);
3900 if (flags
& (1 << 3))
3901 fputs_filtered ("UFL ", file
);
3902 if (flags
& (1 << 4))
3903 fputs_filtered ("INX ", file
);
3904 fputc_filtered ('\n', file
);
3907 /* Print interesting information about the floating point processor
3908 (if present) or emulator. */
3910 arm_print_float_info (struct gdbarch
*gdbarch
, struct ui_file
*file
,
3911 struct frame_info
*frame
, const char *args
)
3913 unsigned long status
= get_frame_register_unsigned (frame
, ARM_FPS_REGNUM
);
3916 type
= (status
>> 24) & 127;
3917 if (status
& (1 << 31))
3918 fprintf_filtered (file
, _("Hardware FPU type %d\n"), type
);
3920 fprintf_filtered (file
, _("Software FPU type %d\n"), type
);
3921 /* i18n: [floating point unit] mask */
3922 fputs_filtered (_("mask: "), file
);
3923 print_fpu_flags (file
, status
>> 16);
3924 /* i18n: [floating point unit] flags */
3925 fputs_filtered (_("flags: "), file
);
3926 print_fpu_flags (file
, status
);
3929 /* Construct the ARM extended floating point type. */
3930 static struct type
*
3931 arm_ext_type (struct gdbarch
*gdbarch
)
3933 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3935 if (!tdep
->arm_ext_type
)
3937 = arch_float_type (gdbarch
, -1, "builtin_type_arm_ext",
3938 floatformats_arm_ext
);
3940 return tdep
->arm_ext_type
;
3943 static struct type
*
3944 arm_neon_double_type (struct gdbarch
*gdbarch
)
3946 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3948 if (tdep
->neon_double_type
== NULL
)
3950 struct type
*t
, *elem
;
3952 t
= arch_composite_type (gdbarch
, "__gdb_builtin_type_neon_d",
3954 elem
= builtin_type (gdbarch
)->builtin_uint8
;
3955 append_composite_type_field (t
, "u8", init_vector_type (elem
, 8));
3956 elem
= builtin_type (gdbarch
)->builtin_uint16
;
3957 append_composite_type_field (t
, "u16", init_vector_type (elem
, 4));
3958 elem
= builtin_type (gdbarch
)->builtin_uint32
;
3959 append_composite_type_field (t
, "u32", init_vector_type (elem
, 2));
3960 elem
= builtin_type (gdbarch
)->builtin_uint64
;
3961 append_composite_type_field (t
, "u64", elem
);
3962 elem
= builtin_type (gdbarch
)->builtin_float
;
3963 append_composite_type_field (t
, "f32", init_vector_type (elem
, 2));
3964 elem
= builtin_type (gdbarch
)->builtin_double
;
3965 append_composite_type_field (t
, "f64", elem
);
3967 TYPE_VECTOR (t
) = 1;
3968 TYPE_NAME (t
) = "neon_d";
3969 tdep
->neon_double_type
= t
;
3972 return tdep
->neon_double_type
;
3975 /* FIXME: The vector types are not correctly ordered on big-endian
3976 targets. Just as s0 is the low bits of d0, d0[0] is also the low
3977 bits of d0 - regardless of what unit size is being held in d0. So
3978 the offset of the first uint8 in d0 is 7, but the offset of the
3979 first float is 4. This code works as-is for little-endian
3982 static struct type
*
3983 arm_neon_quad_type (struct gdbarch
*gdbarch
)
3985 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3987 if (tdep
->neon_quad_type
== NULL
)
3989 struct type
*t
, *elem
;
3991 t
= arch_composite_type (gdbarch
, "__gdb_builtin_type_neon_q",
3993 elem
= builtin_type (gdbarch
)->builtin_uint8
;
3994 append_composite_type_field (t
, "u8", init_vector_type (elem
, 16));
3995 elem
= builtin_type (gdbarch
)->builtin_uint16
;
3996 append_composite_type_field (t
, "u16", init_vector_type (elem
, 8));
3997 elem
= builtin_type (gdbarch
)->builtin_uint32
;
3998 append_composite_type_field (t
, "u32", init_vector_type (elem
, 4));
3999 elem
= builtin_type (gdbarch
)->builtin_uint64
;
4000 append_composite_type_field (t
, "u64", init_vector_type (elem
, 2));
4001 elem
= builtin_type (gdbarch
)->builtin_float
;
4002 append_composite_type_field (t
, "f32", init_vector_type (elem
, 4));
4003 elem
= builtin_type (gdbarch
)->builtin_double
;
4004 append_composite_type_field (t
, "f64", init_vector_type (elem
, 2));
4006 TYPE_VECTOR (t
) = 1;
4007 TYPE_NAME (t
) = "neon_q";
4008 tdep
->neon_quad_type
= t
;
4011 return tdep
->neon_quad_type
;
4014 /* Return the GDB type object for the "standard" data type of data in
4017 static struct type
*
4018 arm_register_type (struct gdbarch
*gdbarch
, int regnum
)
4020 int num_regs
= gdbarch_num_regs (gdbarch
);
4022 if (gdbarch_tdep (gdbarch
)->have_vfp_pseudos
4023 && regnum
>= num_regs
&& regnum
< num_regs
+ 32)
4024 return builtin_type (gdbarch
)->builtin_float
;
4026 if (gdbarch_tdep (gdbarch
)->have_neon_pseudos
4027 && regnum
>= num_regs
+ 32 && regnum
< num_regs
+ 32 + 16)
4028 return arm_neon_quad_type (gdbarch
);
4030 /* If the target description has register information, we are only
4031 in this function so that we can override the types of
4032 double-precision registers for NEON. */
4033 if (tdesc_has_registers (gdbarch_target_desc (gdbarch
)))
4035 struct type
*t
= tdesc_register_type (gdbarch
, regnum
);
4037 if (regnum
>= ARM_D0_REGNUM
&& regnum
< ARM_D0_REGNUM
+ 32
4038 && TYPE_CODE (t
) == TYPE_CODE_FLT
4039 && gdbarch_tdep (gdbarch
)->have_neon
)
4040 return arm_neon_double_type (gdbarch
);
4045 if (regnum
>= ARM_F0_REGNUM
&& regnum
< ARM_F0_REGNUM
+ NUM_FREGS
)
4047 if (!gdbarch_tdep (gdbarch
)->have_fpa_registers
)
4048 return builtin_type (gdbarch
)->builtin_void
;
4050 return arm_ext_type (gdbarch
);
4052 else if (regnum
== ARM_SP_REGNUM
)
4053 return builtin_type (gdbarch
)->builtin_data_ptr
;
4054 else if (regnum
== ARM_PC_REGNUM
)
4055 return builtin_type (gdbarch
)->builtin_func_ptr
;
4056 else if (regnum
>= ARRAY_SIZE (arm_register_names
))
4057 /* These registers are only supported on targets which supply
4058 an XML description. */
4059 return builtin_type (gdbarch
)->builtin_int0
;
4061 return builtin_type (gdbarch
)->builtin_uint32
;
4064 /* Map a DWARF register REGNUM onto the appropriate GDB register
4068 arm_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
4070 /* Core integer regs. */
4071 if (reg
>= 0 && reg
<= 15)
4074 /* Legacy FPA encoding. These were once used in a way which
4075 overlapped with VFP register numbering, so their use is
4076 discouraged, but GDB doesn't support the ARM toolchain
4077 which used them for VFP. */
4078 if (reg
>= 16 && reg
<= 23)
4079 return ARM_F0_REGNUM
+ reg
- 16;
4081 /* New assignments for the FPA registers. */
4082 if (reg
>= 96 && reg
<= 103)
4083 return ARM_F0_REGNUM
+ reg
- 96;
4085 /* WMMX register assignments. */
4086 if (reg
>= 104 && reg
<= 111)
4087 return ARM_WCGR0_REGNUM
+ reg
- 104;
4089 if (reg
>= 112 && reg
<= 127)
4090 return ARM_WR0_REGNUM
+ reg
- 112;
4092 if (reg
>= 192 && reg
<= 199)
4093 return ARM_WC0_REGNUM
+ reg
- 192;
4095 /* VFP v2 registers. A double precision value is actually
4096 in d1 rather than s2, but the ABI only defines numbering
4097 for the single precision registers. This will "just work"
4098 in GDB for little endian targets (we'll read eight bytes,
4099 starting in s0 and then progressing to s1), but will be
4100 reversed on big endian targets with VFP. This won't
4101 be a problem for the new Neon quad registers; you're supposed
4102 to use DW_OP_piece for those. */
4103 if (reg
>= 64 && reg
<= 95)
4107 xsnprintf (name_buf
, sizeof (name_buf
), "s%d", reg
- 64);
4108 return user_reg_map_name_to_regnum (gdbarch
, name_buf
,
4112 /* VFP v3 / Neon registers. This range is also used for VFP v2
4113 registers, except that it now describes d0 instead of s0. */
4114 if (reg
>= 256 && reg
<= 287)
4118 xsnprintf (name_buf
, sizeof (name_buf
), "d%d", reg
- 256);
4119 return user_reg_map_name_to_regnum (gdbarch
, name_buf
,
4126 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4128 arm_register_sim_regno (struct gdbarch
*gdbarch
, int regnum
)
4131 gdb_assert (reg
>= 0 && reg
< gdbarch_num_regs (gdbarch
));
4133 if (regnum
>= ARM_WR0_REGNUM
&& regnum
<= ARM_WR15_REGNUM
)
4134 return regnum
- ARM_WR0_REGNUM
+ SIM_ARM_IWMMXT_COP0R0_REGNUM
;
4136 if (regnum
>= ARM_WC0_REGNUM
&& regnum
<= ARM_WC7_REGNUM
)
4137 return regnum
- ARM_WC0_REGNUM
+ SIM_ARM_IWMMXT_COP1R0_REGNUM
;
4139 if (regnum
>= ARM_WCGR0_REGNUM
&& regnum
<= ARM_WCGR7_REGNUM
)
4140 return regnum
- ARM_WCGR0_REGNUM
+ SIM_ARM_IWMMXT_COP1R8_REGNUM
;
4142 if (reg
< NUM_GREGS
)
4143 return SIM_ARM_R0_REGNUM
+ reg
;
4146 if (reg
< NUM_FREGS
)
4147 return SIM_ARM_FP0_REGNUM
+ reg
;
4150 if (reg
< NUM_SREGS
)
4151 return SIM_ARM_FPS_REGNUM
+ reg
;
4154 internal_error (__FILE__
, __LINE__
, _("Bad REGNUM %d"), regnum
);
4157 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4158 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4159 It is thought that this is is the floating-point register format on
4160 little-endian systems. */
4163 convert_from_extended (const struct floatformat
*fmt
, const void *ptr
,
4164 void *dbl
, int endianess
)
4168 if (endianess
== BFD_ENDIAN_BIG
)
4169 floatformat_to_doublest (&floatformat_arm_ext_big
, ptr
, &d
);
4171 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword
,
4173 floatformat_from_doublest (fmt
, &d
, dbl
);
4177 convert_to_extended (const struct floatformat
*fmt
, void *dbl
, const void *ptr
,
4182 floatformat_to_doublest (fmt
, ptr
, &d
);
4183 if (endianess
== BFD_ENDIAN_BIG
)
4184 floatformat_from_doublest (&floatformat_arm_ext_big
, &d
, dbl
);
4186 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword
,
4191 condition_true (unsigned long cond
, unsigned long status_reg
)
4193 if (cond
== INST_AL
|| cond
== INST_NV
)
4199 return ((status_reg
& FLAG_Z
) != 0);
4201 return ((status_reg
& FLAG_Z
) == 0);
4203 return ((status_reg
& FLAG_C
) != 0);
4205 return ((status_reg
& FLAG_C
) == 0);
4207 return ((status_reg
& FLAG_N
) != 0);
4209 return ((status_reg
& FLAG_N
) == 0);
4211 return ((status_reg
& FLAG_V
) != 0);
4213 return ((status_reg
& FLAG_V
) == 0);
4215 return ((status_reg
& (FLAG_C
| FLAG_Z
)) == FLAG_C
);
4217 return ((status_reg
& (FLAG_C
| FLAG_Z
)) != FLAG_C
);
4219 return (((status_reg
& FLAG_N
) == 0) == ((status_reg
& FLAG_V
) == 0));
4221 return (((status_reg
& FLAG_N
) == 0) != ((status_reg
& FLAG_V
) == 0));
4223 return (((status_reg
& FLAG_Z
) == 0)
4224 && (((status_reg
& FLAG_N
) == 0)
4225 == ((status_reg
& FLAG_V
) == 0)));
4227 return (((status_reg
& FLAG_Z
) != 0)
4228 || (((status_reg
& FLAG_N
) == 0)
4229 != ((status_reg
& FLAG_V
) == 0)));
4234 static unsigned long
4235 shifted_reg_val (struct frame_info
*frame
, unsigned long inst
, int carry
,
4236 unsigned long pc_val
, unsigned long status_reg
)
4238 unsigned long res
, shift
;
4239 int rm
= bits (inst
, 0, 3);
4240 unsigned long shifttype
= bits (inst
, 5, 6);
4244 int rs
= bits (inst
, 8, 11);
4245 shift
= (rs
== 15 ? pc_val
+ 8
4246 : get_frame_register_unsigned (frame
, rs
)) & 0xFF;
4249 shift
= bits (inst
, 7, 11);
4251 res
= (rm
== ARM_PC_REGNUM
4252 ? (pc_val
+ (bit (inst
, 4) ? 12 : 8))
4253 : get_frame_register_unsigned (frame
, rm
));
4258 res
= shift
>= 32 ? 0 : res
<< shift
;
4262 res
= shift
>= 32 ? 0 : res
>> shift
;
4268 res
= ((res
& 0x80000000L
)
4269 ? ~((~res
) >> shift
) : res
>> shift
);
4272 case 3: /* ROR/RRX */
4275 res
= (res
>> 1) | (carry
? 0x80000000L
: 0);
4277 res
= (res
>> shift
) | (res
<< (32 - shift
));
4281 return res
& 0xffffffff;
4284 /* Return number of 1-bits in VAL. */
4287 bitcount (unsigned long val
)
4290 for (nbits
= 0; val
!= 0; nbits
++)
4291 val
&= val
- 1; /* Delete rightmost 1-bit in val. */
4295 /* Return the size in bytes of the complete Thumb instruction whose
4296 first halfword is INST1. */
4299 thumb_insn_size (unsigned short inst1
)
4301 if ((inst1
& 0xe000) == 0xe000 && (inst1
& 0x1800) != 0)
4308 thumb_advance_itstate (unsigned int itstate
)
4310 /* Preserve IT[7:5], the first three bits of the condition. Shift
4311 the upcoming condition flags left by one bit. */
4312 itstate
= (itstate
& 0xe0) | ((itstate
<< 1) & 0x1f);
4314 /* If we have finished the IT block, clear the state. */
4315 if ((itstate
& 0x0f) == 0)
4321 /* Find the next PC after the current instruction executes. In some
4322 cases we can not statically determine the answer (see the IT state
4323 handling in this function); in that case, a breakpoint may be
4324 inserted in addition to the returned PC, which will be used to set
4325 another breakpoint by our caller. */
4328 thumb_get_next_pc_raw (struct frame_info
*frame
, CORE_ADDR pc
)
4330 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4331 struct address_space
*aspace
= get_frame_address_space (frame
);
4332 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4333 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
4334 unsigned long pc_val
= ((unsigned long) pc
) + 4; /* PC after prefetch */
4335 unsigned short inst1
;
4336 CORE_ADDR nextpc
= pc
+ 2; /* Default is next instruction. */
4337 unsigned long offset
;
4338 ULONGEST status
, itstate
;
4340 nextpc
= MAKE_THUMB_ADDR (nextpc
);
4341 pc_val
= MAKE_THUMB_ADDR (pc_val
);
4343 inst1
= read_memory_unsigned_integer (pc
, 2, byte_order_for_code
);
4345 /* Thumb-2 conditional execution support. There are eight bits in
4346 the CPSR which describe conditional execution state. Once
4347 reconstructed (they're in a funny order), the low five bits
4348 describe the low bit of the condition for each instruction and
4349 how many instructions remain. The high three bits describe the
4350 base condition. One of the low four bits will be set if an IT
4351 block is active. These bits read as zero on earlier
4353 status
= get_frame_register_unsigned (frame
, ARM_PS_REGNUM
);
4354 itstate
= ((status
>> 8) & 0xfc) | ((status
>> 25) & 0x3);
4356 /* If-Then handling. On GNU/Linux, where this routine is used, we
4357 use an undefined instruction as a breakpoint. Unlike BKPT, IT
4358 can disable execution of the undefined instruction. So we might
4359 miss the breakpoint if we set it on a skipped conditional
4360 instruction. Because conditional instructions can change the
4361 flags, affecting the execution of further instructions, we may
4362 need to set two breakpoints. */
4364 if (gdbarch_tdep (gdbarch
)->thumb2_breakpoint
!= NULL
)
4366 if ((inst1
& 0xff00) == 0xbf00 && (inst1
& 0x000f) != 0)
4368 /* An IT instruction. Because this instruction does not
4369 modify the flags, we can accurately predict the next
4370 executed instruction. */
4371 itstate
= inst1
& 0x00ff;
4372 pc
+= thumb_insn_size (inst1
);
4374 while (itstate
!= 0 && ! condition_true (itstate
>> 4, status
))
4376 inst1
= read_memory_unsigned_integer (pc
, 2,
4377 byte_order_for_code
);
4378 pc
+= thumb_insn_size (inst1
);
4379 itstate
= thumb_advance_itstate (itstate
);
4382 return MAKE_THUMB_ADDR (pc
);
4384 else if (itstate
!= 0)
4386 /* We are in a conditional block. Check the condition. */
4387 if (! condition_true (itstate
>> 4, status
))
4389 /* Advance to the next executed instruction. */
4390 pc
+= thumb_insn_size (inst1
);
4391 itstate
= thumb_advance_itstate (itstate
);
4393 while (itstate
!= 0 && ! condition_true (itstate
>> 4, status
))
4395 inst1
= read_memory_unsigned_integer (pc
, 2,
4396 byte_order_for_code
);
4397 pc
+= thumb_insn_size (inst1
);
4398 itstate
= thumb_advance_itstate (itstate
);
4401 return MAKE_THUMB_ADDR (pc
);
4403 else if ((itstate
& 0x0f) == 0x08)
4405 /* This is the last instruction of the conditional
4406 block, and it is executed. We can handle it normally
4407 because the following instruction is not conditional,
4408 and we must handle it normally because it is
4409 permitted to branch. Fall through. */
4415 /* There are conditional instructions after this one.
4416 If this instruction modifies the flags, then we can
4417 not predict what the next executed instruction will
4418 be. Fortunately, this instruction is architecturally
4419 forbidden to branch; we know it will fall through.
4420 Start by skipping past it. */
4421 pc
+= thumb_insn_size (inst1
);
4422 itstate
= thumb_advance_itstate (itstate
);
4424 /* Set a breakpoint on the following instruction. */
4425 gdb_assert ((itstate
& 0x0f) != 0);
4426 arm_insert_single_step_breakpoint (gdbarch
, aspace
,
4427 MAKE_THUMB_ADDR (pc
));
4428 cond_negated
= (itstate
>> 4) & 1;
4430 /* Skip all following instructions with the same
4431 condition. If there is a later instruction in the IT
4432 block with the opposite condition, set the other
4433 breakpoint there. If not, then set a breakpoint on
4434 the instruction after the IT block. */
4437 inst1
= read_memory_unsigned_integer (pc
, 2,
4438 byte_order_for_code
);
4439 pc
+= thumb_insn_size (inst1
);
4440 itstate
= thumb_advance_itstate (itstate
);
4442 while (itstate
!= 0 && ((itstate
>> 4) & 1) == cond_negated
);
4444 return MAKE_THUMB_ADDR (pc
);
4448 else if (itstate
& 0x0f)
4450 /* We are in a conditional block. Check the condition. */
4451 int cond
= itstate
>> 4;
4453 if (! condition_true (cond
, status
))
4454 /* Advance to the next instruction. All the 32-bit
4455 instructions share a common prefix. */
4456 return MAKE_THUMB_ADDR (pc
+ thumb_insn_size (inst1
));
4458 /* Otherwise, handle the instruction normally. */
4461 if ((inst1
& 0xff00) == 0xbd00) /* pop {rlist, pc} */
4465 /* Fetch the saved PC from the stack. It's stored above
4466 all of the other registers. */
4467 offset
= bitcount (bits (inst1
, 0, 7)) * INT_REGISTER_SIZE
;
4468 sp
= get_frame_register_unsigned (frame
, ARM_SP_REGNUM
);
4469 nextpc
= read_memory_unsigned_integer (sp
+ offset
, 4, byte_order
);
4471 else if ((inst1
& 0xf000) == 0xd000) /* conditional branch */
4473 unsigned long cond
= bits (inst1
, 8, 11);
4474 if (cond
== 0x0f) /* 0x0f = SWI */
4476 struct gdbarch_tdep
*tdep
;
4477 tdep
= gdbarch_tdep (gdbarch
);
4479 if (tdep
->syscall_next_pc
!= NULL
)
4480 nextpc
= tdep
->syscall_next_pc (frame
);
4483 else if (cond
!= 0x0f && condition_true (cond
, status
))
4484 nextpc
= pc_val
+ (sbits (inst1
, 0, 7) << 1);
4486 else if ((inst1
& 0xf800) == 0xe000) /* unconditional branch */
4488 nextpc
= pc_val
+ (sbits (inst1
, 0, 10) << 1);
4490 else if (thumb_insn_size (inst1
) == 4) /* 32-bit instruction */
4492 unsigned short inst2
;
4493 inst2
= read_memory_unsigned_integer (pc
+ 2, 2, byte_order_for_code
);
4495 /* Default to the next instruction. */
4497 nextpc
= MAKE_THUMB_ADDR (nextpc
);
4499 if ((inst1
& 0xf800) == 0xf000 && (inst2
& 0x8000) == 0x8000)
4501 /* Branches and miscellaneous control instructions. */
4503 if ((inst2
& 0x1000) != 0 || (inst2
& 0xd001) == 0xc000)
4506 int j1
, j2
, imm1
, imm2
;
4508 imm1
= sbits (inst1
, 0, 10);
4509 imm2
= bits (inst2
, 0, 10);
4510 j1
= bit (inst2
, 13);
4511 j2
= bit (inst2
, 11);
4513 offset
= ((imm1
<< 12) + (imm2
<< 1));
4514 offset
^= ((!j2
) << 22) | ((!j1
) << 23);
4516 nextpc
= pc_val
+ offset
;
4517 /* For BLX make sure to clear the low bits. */
4518 if (bit (inst2
, 12) == 0)
4519 nextpc
= nextpc
& 0xfffffffc;
4521 else if (inst1
== 0xf3de && (inst2
& 0xff00) == 0x3f00)
4523 /* SUBS PC, LR, #imm8. */
4524 nextpc
= get_frame_register_unsigned (frame
, ARM_LR_REGNUM
);
4525 nextpc
-= inst2
& 0x00ff;
4527 else if ((inst2
& 0xd000) == 0x8000 && (inst1
& 0x0380) != 0x0380)
4529 /* Conditional branch. */
4530 if (condition_true (bits (inst1
, 6, 9), status
))
4532 int sign
, j1
, j2
, imm1
, imm2
;
4534 sign
= sbits (inst1
, 10, 10);
4535 imm1
= bits (inst1
, 0, 5);
4536 imm2
= bits (inst2
, 0, 10);
4537 j1
= bit (inst2
, 13);
4538 j2
= bit (inst2
, 11);
4540 offset
= (sign
<< 20) + (j2
<< 19) + (j1
<< 18);
4541 offset
+= (imm1
<< 12) + (imm2
<< 1);
4543 nextpc
= pc_val
+ offset
;
4547 else if ((inst1
& 0xfe50) == 0xe810)
4549 /* Load multiple or RFE. */
4550 int rn
, offset
, load_pc
= 1;
4552 rn
= bits (inst1
, 0, 3);
4553 if (bit (inst1
, 7) && !bit (inst1
, 8))
4556 if (!bit (inst2
, 15))
4558 offset
= bitcount (inst2
) * 4 - 4;
4560 else if (!bit (inst1
, 7) && bit (inst1
, 8))
4563 if (!bit (inst2
, 15))
4567 else if (bit (inst1
, 7) && bit (inst1
, 8))
4572 else if (!bit (inst1
, 7) && !bit (inst1
, 8))
4582 CORE_ADDR addr
= get_frame_register_unsigned (frame
, rn
);
4583 nextpc
= get_frame_memory_unsigned (frame
, addr
+ offset
, 4);
4586 else if ((inst1
& 0xffef) == 0xea4f && (inst2
& 0xfff0) == 0x0f00)
4588 /* MOV PC or MOVS PC. */
4589 nextpc
= get_frame_register_unsigned (frame
, bits (inst2
, 0, 3));
4590 nextpc
= MAKE_THUMB_ADDR (nextpc
);
4592 else if ((inst1
& 0xff70) == 0xf850 && (inst2
& 0xf000) == 0xf000)
4596 int rn
, load_pc
= 1;
4598 rn
= bits (inst1
, 0, 3);
4599 base
= get_frame_register_unsigned (frame
, rn
);
4600 if (rn
== ARM_PC_REGNUM
)
4602 base
= (base
+ 4) & ~(CORE_ADDR
) 0x3;
4604 base
+= bits (inst2
, 0, 11);
4606 base
-= bits (inst2
, 0, 11);
4608 else if (bit (inst1
, 7))
4609 base
+= bits (inst2
, 0, 11);
4610 else if (bit (inst2
, 11))
4612 if (bit (inst2
, 10))
4615 base
+= bits (inst2
, 0, 7);
4617 base
-= bits (inst2
, 0, 7);
4620 else if ((inst2
& 0x0fc0) == 0x0000)
4622 int shift
= bits (inst2
, 4, 5), rm
= bits (inst2
, 0, 3);
4623 base
+= get_frame_register_unsigned (frame
, rm
) << shift
;
4630 nextpc
= get_frame_memory_unsigned (frame
, base
, 4);
4632 else if ((inst1
& 0xfff0) == 0xe8d0 && (inst2
& 0xfff0) == 0xf000)
4635 CORE_ADDR tbl_reg
, table
, offset
, length
;
4637 tbl_reg
= bits (inst1
, 0, 3);
4638 if (tbl_reg
== 0x0f)
4639 table
= pc
+ 4; /* Regcache copy of PC isn't right yet. */
4641 table
= get_frame_register_unsigned (frame
, tbl_reg
);
4643 offset
= get_frame_register_unsigned (frame
, bits (inst2
, 0, 3));
4644 length
= 2 * get_frame_memory_unsigned (frame
, table
+ offset
, 1);
4645 nextpc
= pc_val
+ length
;
4647 else if ((inst1
& 0xfff0) == 0xe8d0 && (inst2
& 0xfff0) == 0xf010)
4650 CORE_ADDR tbl_reg
, table
, offset
, length
;
4652 tbl_reg
= bits (inst1
, 0, 3);
4653 if (tbl_reg
== 0x0f)
4654 table
= pc
+ 4; /* Regcache copy of PC isn't right yet. */
4656 table
= get_frame_register_unsigned (frame
, tbl_reg
);
4658 offset
= 2 * get_frame_register_unsigned (frame
, bits (inst2
, 0, 3));
4659 length
= 2 * get_frame_memory_unsigned (frame
, table
+ offset
, 2);
4660 nextpc
= pc_val
+ length
;
4663 else if ((inst1
& 0xff00) == 0x4700) /* bx REG, blx REG */
4665 if (bits (inst1
, 3, 6) == 0x0f)
4666 nextpc
= UNMAKE_THUMB_ADDR (pc_val
);
4668 nextpc
= get_frame_register_unsigned (frame
, bits (inst1
, 3, 6));
4670 else if ((inst1
& 0xff87) == 0x4687) /* mov pc, REG */
4672 if (bits (inst1
, 3, 6) == 0x0f)
4675 nextpc
= get_frame_register_unsigned (frame
, bits (inst1
, 3, 6));
4677 nextpc
= MAKE_THUMB_ADDR (nextpc
);
4679 else if ((inst1
& 0xf500) == 0xb100)
4682 int imm
= (bit (inst1
, 9) << 6) + (bits (inst1
, 3, 7) << 1);
4683 ULONGEST reg
= get_frame_register_unsigned (frame
, bits (inst1
, 0, 2));
4685 if (bit (inst1
, 11) && reg
!= 0)
4686 nextpc
= pc_val
+ imm
;
4687 else if (!bit (inst1
, 11) && reg
== 0)
4688 nextpc
= pc_val
+ imm
;
4693 /* Get the raw next address. PC is the current program counter, in
4694 FRAME, which is assumed to be executing in ARM mode.
4696 The value returned has the execution state of the next instruction
4697 encoded in it. Use IS_THUMB_ADDR () to see whether the instruction is
4698 in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory
4702 arm_get_next_pc_raw (struct frame_info
*frame
, CORE_ADDR pc
)
4704 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4705 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4706 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
4707 unsigned long pc_val
;
4708 unsigned long this_instr
;
4709 unsigned long status
;
4712 pc_val
= (unsigned long) pc
;
4713 this_instr
= read_memory_unsigned_integer (pc
, 4, byte_order_for_code
);
4715 status
= get_frame_register_unsigned (frame
, ARM_PS_REGNUM
);
4716 nextpc
= (CORE_ADDR
) (pc_val
+ 4); /* Default case */
4718 if (bits (this_instr
, 28, 31) == INST_NV
)
4719 switch (bits (this_instr
, 24, 27))
4724 /* Branch with Link and change to Thumb. */
4725 nextpc
= BranchDest (pc
, this_instr
);
4726 nextpc
|= bit (this_instr
, 24) << 1;
4727 nextpc
= MAKE_THUMB_ADDR (nextpc
);
4733 /* Coprocessor register transfer. */
4734 if (bits (this_instr
, 12, 15) == 15)
4735 error (_("Invalid update to pc in instruction"));
4738 else if (condition_true (bits (this_instr
, 28, 31), status
))
4740 switch (bits (this_instr
, 24, 27))
4743 case 0x1: /* data processing */
4747 unsigned long operand1
, operand2
, result
= 0;
4751 if (bits (this_instr
, 12, 15) != 15)
4754 if (bits (this_instr
, 22, 25) == 0
4755 && bits (this_instr
, 4, 7) == 9) /* multiply */
4756 error (_("Invalid update to pc in instruction"));
4758 /* BX <reg>, BLX <reg> */
4759 if (bits (this_instr
, 4, 27) == 0x12fff1
4760 || bits (this_instr
, 4, 27) == 0x12fff3)
4762 rn
= bits (this_instr
, 0, 3);
4763 nextpc
= ((rn
== ARM_PC_REGNUM
)
4765 : get_frame_register_unsigned (frame
, rn
));
4770 /* Multiply into PC. */
4771 c
= (status
& FLAG_C
) ? 1 : 0;
4772 rn
= bits (this_instr
, 16, 19);
4773 operand1
= ((rn
== ARM_PC_REGNUM
)
4775 : get_frame_register_unsigned (frame
, rn
));
4777 if (bit (this_instr
, 25))
4779 unsigned long immval
= bits (this_instr
, 0, 7);
4780 unsigned long rotate
= 2 * bits (this_instr
, 8, 11);
4781 operand2
= ((immval
>> rotate
) | (immval
<< (32 - rotate
)))
4784 else /* operand 2 is a shifted register. */
4785 operand2
= shifted_reg_val (frame
, this_instr
, c
,
4788 switch (bits (this_instr
, 21, 24))
4791 result
= operand1
& operand2
;
4795 result
= operand1
^ operand2
;
4799 result
= operand1
- operand2
;
4803 result
= operand2
- operand1
;
4807 result
= operand1
+ operand2
;
4811 result
= operand1
+ operand2
+ c
;
4815 result
= operand1
- operand2
+ c
;
4819 result
= operand2
- operand1
+ c
;
4825 case 0xb: /* tst, teq, cmp, cmn */
4826 result
= (unsigned long) nextpc
;
4830 result
= operand1
| operand2
;
4834 /* Always step into a function. */
4839 result
= operand1
& ~operand2
;
4847 /* In 26-bit APCS the bottom two bits of the result are
4848 ignored, and we always end up in ARM state. */
4850 nextpc
= arm_addr_bits_remove (gdbarch
, result
);
4858 case 0x5: /* data transfer */
4861 if (bit (this_instr
, 20))
4864 if (bits (this_instr
, 12, 15) == 15)
4870 if (bit (this_instr
, 22))
4871 error (_("Invalid update to pc in instruction"));
4873 /* byte write to PC */
4874 rn
= bits (this_instr
, 16, 19);
4875 base
= ((rn
== ARM_PC_REGNUM
)
4877 : get_frame_register_unsigned (frame
, rn
));
4879 if (bit (this_instr
, 24))
4882 int c
= (status
& FLAG_C
) ? 1 : 0;
4883 unsigned long offset
=
4884 (bit (this_instr
, 25)
4885 ? shifted_reg_val (frame
, this_instr
, c
, pc_val
, status
)
4886 : bits (this_instr
, 0, 11));
4888 if (bit (this_instr
, 23))
4894 (CORE_ADDR
) read_memory_unsigned_integer ((CORE_ADDR
) base
,
4901 case 0x9: /* block transfer */
4902 if (bit (this_instr
, 20))
4905 if (bit (this_instr
, 15))
4909 unsigned long rn_val
4910 = get_frame_register_unsigned (frame
,
4911 bits (this_instr
, 16, 19));
4913 if (bit (this_instr
, 23))
4916 unsigned long reglist
= bits (this_instr
, 0, 14);
4917 offset
= bitcount (reglist
) * 4;
4918 if (bit (this_instr
, 24)) /* pre */
4921 else if (bit (this_instr
, 24))
4925 (CORE_ADDR
) read_memory_unsigned_integer ((CORE_ADDR
)
4932 case 0xb: /* branch & link */
4933 case 0xa: /* branch */
4935 nextpc
= BranchDest (pc
, this_instr
);
4941 case 0xe: /* coproc ops */
4945 struct gdbarch_tdep
*tdep
;
4946 tdep
= gdbarch_tdep (gdbarch
);
4948 if (tdep
->syscall_next_pc
!= NULL
)
4949 nextpc
= tdep
->syscall_next_pc (frame
);
4955 fprintf_filtered (gdb_stderr
, _("Bad bit-field extraction\n"));
4963 /* Determine next PC after current instruction executes. Will call either
4964 arm_get_next_pc_raw or thumb_get_next_pc_raw. Error out if infinite
4965 loop is detected. */
4968 arm_get_next_pc (struct frame_info
*frame
, CORE_ADDR pc
)
4972 if (arm_frame_is_thumb (frame
))
4973 nextpc
= thumb_get_next_pc_raw (frame
, pc
);
4975 nextpc
= arm_get_next_pc_raw (frame
, pc
);
4980 /* Like insert_single_step_breakpoint, but make sure we use a breakpoint
4981 of the appropriate mode (as encoded in the PC value), even if this
4982 differs from what would be expected according to the symbol tables. */
4985 arm_insert_single_step_breakpoint (struct gdbarch
*gdbarch
,
4986 struct address_space
*aspace
,
4989 struct cleanup
*old_chain
4990 = make_cleanup_restore_integer (&arm_override_mode
);
4992 arm_override_mode
= IS_THUMB_ADDR (pc
);
4993 pc
= gdbarch_addr_bits_remove (gdbarch
, pc
);
4995 insert_single_step_breakpoint (gdbarch
, aspace
, pc
);
4997 do_cleanups (old_chain
);
5000 /* Checks for an atomic sequence of instructions beginning with a LDREX{,B,H,D}
5001 instruction and ending with a STREX{,B,H,D} instruction. If such a sequence
5002 is found, attempt to step through it. A breakpoint is placed at the end of
5006 thumb_deal_with_atomic_sequence_raw (struct frame_info
*frame
)
5008 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
5009 struct address_space
*aspace
= get_frame_address_space (frame
);
5010 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
5011 CORE_ADDR pc
= get_frame_pc (frame
);
5012 CORE_ADDR breaks
[2] = {-1, -1};
5014 unsigned short insn1
, insn2
;
5017 int last_breakpoint
= 0; /* Defaults to 0 (no breakpoints placed). */
5018 const int atomic_sequence_length
= 16; /* Instruction sequence length. */
5019 ULONGEST status
, itstate
;
5021 /* We currently do not support atomic sequences within an IT block. */
5022 status
= get_frame_register_unsigned (frame
, ARM_PS_REGNUM
);
5023 itstate
= ((status
>> 8) & 0xfc) | ((status
>> 25) & 0x3);
5027 /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction. */
5028 insn1
= read_memory_unsigned_integer (loc
, 2, byte_order_for_code
);
5030 if (thumb_insn_size (insn1
) != 4)
5033 insn2
= read_memory_unsigned_integer (loc
, 2, byte_order_for_code
);
5035 if (!((insn1
& 0xfff0) == 0xe850
5036 || ((insn1
& 0xfff0) == 0xe8d0 && (insn2
& 0x00c0) == 0x0040)))
5039 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
5041 for (insn_count
= 0; insn_count
< atomic_sequence_length
; ++insn_count
)
5043 insn1
= read_memory_unsigned_integer (loc
, 2, byte_order_for_code
);
5046 if (thumb_insn_size (insn1
) != 4)
5048 /* Assume that there is at most one conditional branch in the
5049 atomic sequence. If a conditional branch is found, put a
5050 breakpoint in its destination address. */
5051 if ((insn1
& 0xf000) == 0xd000 && bits (insn1
, 8, 11) != 0x0f)
5053 if (last_breakpoint
> 0)
5054 return 0; /* More than one conditional branch found,
5055 fallback to the standard code. */
5057 breaks
[1] = loc
+ 2 + (sbits (insn1
, 0, 7) << 1);
5061 /* We do not support atomic sequences that use any *other*
5062 instructions but conditional branches to change the PC.
5063 Fall back to standard code to avoid losing control of
5065 else if (thumb_instruction_changes_pc (insn1
))
5070 insn2
= read_memory_unsigned_integer (loc
, 2, byte_order_for_code
);
5073 /* Assume that there is at most one conditional branch in the
5074 atomic sequence. If a conditional branch is found, put a
5075 breakpoint in its destination address. */
5076 if ((insn1
& 0xf800) == 0xf000
5077 && (insn2
& 0xd000) == 0x8000
5078 && (insn1
& 0x0380) != 0x0380)
5080 int sign
, j1
, j2
, imm1
, imm2
;
5081 unsigned int offset
;
5083 sign
= sbits (insn1
, 10, 10);
5084 imm1
= bits (insn1
, 0, 5);
5085 imm2
= bits (insn2
, 0, 10);
5086 j1
= bit (insn2
, 13);
5087 j2
= bit (insn2
, 11);
5089 offset
= (sign
<< 20) + (j2
<< 19) + (j1
<< 18);
5090 offset
+= (imm1
<< 12) + (imm2
<< 1);
5092 if (last_breakpoint
> 0)
5093 return 0; /* More than one conditional branch found,
5094 fallback to the standard code. */
5096 breaks
[1] = loc
+ offset
;
5100 /* We do not support atomic sequences that use any *other*
5101 instructions but conditional branches to change the PC.
5102 Fall back to standard code to avoid losing control of
5104 else if (thumb2_instruction_changes_pc (insn1
, insn2
))
5107 /* If we find a strex{,b,h,d}, we're done. */
5108 if ((insn1
& 0xfff0) == 0xe840
5109 || ((insn1
& 0xfff0) == 0xe8c0 && (insn2
& 0x00c0) == 0x0040))
5114 /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence. */
5115 if (insn_count
== atomic_sequence_length
)
5118 /* Insert a breakpoint right after the end of the atomic sequence. */
5121 /* Check for duplicated breakpoints. Check also for a breakpoint
5122 placed (branch instruction's destination) anywhere in sequence. */
5124 && (breaks
[1] == breaks
[0]
5125 || (breaks
[1] >= pc
&& breaks
[1] < loc
)))
5126 last_breakpoint
= 0;
5128 /* Effectively inserts the breakpoints. */
5129 for (index
= 0; index
<= last_breakpoint
; index
++)
5130 arm_insert_single_step_breakpoint (gdbarch
, aspace
,
5131 MAKE_THUMB_ADDR (breaks
[index
]));
5137 arm_deal_with_atomic_sequence_raw (struct frame_info
*frame
)
5139 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
5140 struct address_space
*aspace
= get_frame_address_space (frame
);
5141 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
5142 CORE_ADDR pc
= get_frame_pc (frame
);
5143 CORE_ADDR breaks
[2] = {-1, -1};
5148 int last_breakpoint
= 0; /* Defaults to 0 (no breakpoints placed). */
5149 const int atomic_sequence_length
= 16; /* Instruction sequence length. */
5151 /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction.
5152 Note that we do not currently support conditionally executed atomic
5154 insn
= read_memory_unsigned_integer (loc
, 4, byte_order_for_code
);
5156 if ((insn
& 0xff9000f0) != 0xe1900090)
5159 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
5161 for (insn_count
= 0; insn_count
< atomic_sequence_length
; ++insn_count
)
5163 insn
= read_memory_unsigned_integer (loc
, 4, byte_order_for_code
);
5166 /* Assume that there is at most one conditional branch in the atomic
5167 sequence. If a conditional branch is found, put a breakpoint in
5168 its destination address. */
5169 if (bits (insn
, 24, 27) == 0xa)
5171 if (last_breakpoint
> 0)
5172 return 0; /* More than one conditional branch found, fallback
5173 to the standard single-step code. */
5175 breaks
[1] = BranchDest (loc
- 4, insn
);
5179 /* We do not support atomic sequences that use any *other* instructions
5180 but conditional branches to change the PC. Fall back to standard
5181 code to avoid losing control of execution. */
5182 else if (arm_instruction_changes_pc (insn
))
5185 /* If we find a strex{,b,h,d}, we're done. */
5186 if ((insn
& 0xff9000f0) == 0xe1800090)
5190 /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence. */
5191 if (insn_count
== atomic_sequence_length
)
5194 /* Insert a breakpoint right after the end of the atomic sequence. */
5197 /* Check for duplicated breakpoints. Check also for a breakpoint
5198 placed (branch instruction's destination) anywhere in sequence. */
5200 && (breaks
[1] == breaks
[0]
5201 || (breaks
[1] >= pc
&& breaks
[1] < loc
)))
5202 last_breakpoint
= 0;
5204 /* Effectively inserts the breakpoints. */
5205 for (index
= 0; index
<= last_breakpoint
; index
++)
5206 arm_insert_single_step_breakpoint (gdbarch
, aspace
, breaks
[index
]);
5212 arm_deal_with_atomic_sequence (struct frame_info
*frame
)
5214 if (arm_frame_is_thumb (frame
))
5215 return thumb_deal_with_atomic_sequence_raw (frame
);
5217 return arm_deal_with_atomic_sequence_raw (frame
);
5220 /* single_step() is called just before we want to resume the inferior,
5221 if we want to single-step it but there is no hardware or kernel
5222 single-step support. We find the target of the coming instruction
5223 and breakpoint it. */
5226 arm_software_single_step (struct frame_info
*frame
)
5228 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
5229 struct address_space
*aspace
= get_frame_address_space (frame
);
5232 if (arm_deal_with_atomic_sequence (frame
))
5235 next_pc
= arm_get_next_pc (frame
, get_frame_pc (frame
));
5236 arm_insert_single_step_breakpoint (gdbarch
, aspace
, next_pc
);
5241 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
5242 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
5243 NULL if an error occurs. BUF is freed. */
5246 extend_buffer_earlier (gdb_byte
*buf
, CORE_ADDR endaddr
,
5247 int old_len
, int new_len
)
5250 int bytes_to_read
= new_len
- old_len
;
5252 new_buf
= xmalloc (new_len
);
5253 memcpy (new_buf
+ bytes_to_read
, buf
, old_len
);
5255 if (target_read_memory (endaddr
- new_len
, new_buf
, bytes_to_read
) != 0)
5263 /* An IT block is at most the 2-byte IT instruction followed by
5264 four 4-byte instructions. The furthest back we must search to
5265 find an IT block that affects the current instruction is thus
5266 2 + 3 * 4 == 14 bytes. */
5267 #define MAX_IT_BLOCK_PREFIX 14
5269 /* Use a quick scan if there are more than this many bytes of
5271 #define IT_SCAN_THRESHOLD 32
5273 /* Adjust a breakpoint's address to move breakpoints out of IT blocks.
5274 A breakpoint in an IT block may not be hit, depending on the
5277 arm_adjust_breakpoint_address (struct gdbarch
*gdbarch
, CORE_ADDR bpaddr
)
5281 CORE_ADDR boundary
, func_start
;
5283 enum bfd_endian order
= gdbarch_byte_order_for_code (gdbarch
);
5284 int i
, any
, last_it
, last_it_count
;
5286 /* If we are using BKPT breakpoints, none of this is necessary. */
5287 if (gdbarch_tdep (gdbarch
)->thumb2_breakpoint
== NULL
)
5290 /* ARM mode does not have this problem. */
5291 if (!arm_pc_is_thumb (gdbarch
, bpaddr
))
5294 /* We are setting a breakpoint in Thumb code that could potentially
5295 contain an IT block. The first step is to find how much Thumb
5296 code there is; we do not need to read outside of known Thumb
5298 map_type
= arm_find_mapping_symbol (bpaddr
, &boundary
);
5300 /* Thumb-2 code must have mapping symbols to have a chance. */
5303 bpaddr
= gdbarch_addr_bits_remove (gdbarch
, bpaddr
);
5305 if (find_pc_partial_function (bpaddr
, NULL
, &func_start
, NULL
)
5306 && func_start
> boundary
)
5307 boundary
= func_start
;
5309 /* Search for a candidate IT instruction. We have to do some fancy
5310 footwork to distinguish a real IT instruction from the second
5311 half of a 32-bit instruction, but there is no need for that if
5312 there's no candidate. */
5313 buf_len
= min (bpaddr
- boundary
, MAX_IT_BLOCK_PREFIX
);
5315 /* No room for an IT instruction. */
5318 buf
= xmalloc (buf_len
);
5319 if (target_read_memory (bpaddr
- buf_len
, buf
, buf_len
) != 0)
5322 for (i
= 0; i
< buf_len
; i
+= 2)
5324 unsigned short inst1
= extract_unsigned_integer (&buf
[i
], 2, order
);
5325 if ((inst1
& 0xff00) == 0xbf00 && (inst1
& 0x000f) != 0)
5337 /* OK, the code bytes before this instruction contain at least one
5338 halfword which resembles an IT instruction. We know that it's
5339 Thumb code, but there are still two possibilities. Either the
5340 halfword really is an IT instruction, or it is the second half of
5341 a 32-bit Thumb instruction. The only way we can tell is to
5342 scan forwards from a known instruction boundary. */
5343 if (bpaddr
- boundary
> IT_SCAN_THRESHOLD
)
5347 /* There's a lot of code before this instruction. Start with an
5348 optimistic search; it's easy to recognize halfwords that can
5349 not be the start of a 32-bit instruction, and use that to
5350 lock on to the instruction boundaries. */
5351 buf
= extend_buffer_earlier (buf
, bpaddr
, buf_len
, IT_SCAN_THRESHOLD
);
5354 buf_len
= IT_SCAN_THRESHOLD
;
5357 for (i
= 0; i
< buf_len
- sizeof (buf
) && ! definite
; i
+= 2)
5359 unsigned short inst1
= extract_unsigned_integer (&buf
[i
], 2, order
);
5360 if (thumb_insn_size (inst1
) == 2)
5367 /* At this point, if DEFINITE, BUF[I] is the first place we
5368 are sure that we know the instruction boundaries, and it is far
5369 enough from BPADDR that we could not miss an IT instruction
5370 affecting BPADDR. If ! DEFINITE, give up - start from a
5374 buf
= extend_buffer_earlier (buf
, bpaddr
, buf_len
,
5378 buf_len
= bpaddr
- boundary
;
5384 buf
= extend_buffer_earlier (buf
, bpaddr
, buf_len
, bpaddr
- boundary
);
5387 buf_len
= bpaddr
- boundary
;
5391 /* Scan forwards. Find the last IT instruction before BPADDR. */
5396 unsigned short inst1
= extract_unsigned_integer (&buf
[i
], 2, order
);
5398 if ((inst1
& 0xff00) == 0xbf00 && (inst1
& 0x000f) != 0)
5403 else if (inst1
& 0x0002)
5405 else if (inst1
& 0x0004)
5410 i
+= thumb_insn_size (inst1
);
5416 /* There wasn't really an IT instruction after all. */
5419 if (last_it_count
< 1)
5420 /* It was too far away. */
5423 /* This really is a trouble spot. Move the breakpoint to the IT
5425 return bpaddr
- buf_len
+ last_it
;
5428 /* ARM displaced stepping support.
5430 Generally ARM displaced stepping works as follows:
5432 1. When an instruction is to be single-stepped, it is first decoded by
5433 arm_process_displaced_insn (called from arm_displaced_step_copy_insn).
5434 Depending on the type of instruction, it is then copied to a scratch
5435 location, possibly in a modified form. The copy_* set of functions
5436 performs such modification, as necessary. A breakpoint is placed after
5437 the modified instruction in the scratch space to return control to GDB.
5438 Note in particular that instructions which modify the PC will no longer
5439 do so after modification.
5441 2. The instruction is single-stepped, by setting the PC to the scratch
5442 location address, and resuming. Control returns to GDB when the
5445 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
5446 function used for the current instruction. This function's job is to
5447 put the CPU/memory state back to what it would have been if the
5448 instruction had been executed unmodified in its original location. */
5450 /* NOP instruction (mov r0, r0). */
5451 #define ARM_NOP 0xe1a00000
5452 #define THUMB_NOP 0x4600
5454 /* Helper for register reads for displaced stepping. In particular, this
5455 returns the PC as it would be seen by the instruction at its original
5459 displaced_read_reg (struct regcache
*regs
, struct displaced_step_closure
*dsc
,
5463 CORE_ADDR from
= dsc
->insn_addr
;
5465 if (regno
== ARM_PC_REGNUM
)
5467 /* Compute pipeline offset:
5468 - When executing an ARM instruction, PC reads as the address of the
5469 current instruction plus 8.
5470 - When executing a Thumb instruction, PC reads as the address of the
5471 current instruction plus 4. */
5478 if (debug_displaced
)
5479 fprintf_unfiltered (gdb_stdlog
, "displaced: read pc value %.8lx\n",
5480 (unsigned long) from
);
5481 return (ULONGEST
) from
;
5485 regcache_cooked_read_unsigned (regs
, regno
, &ret
);
5486 if (debug_displaced
)
5487 fprintf_unfiltered (gdb_stdlog
, "displaced: read r%d value %.8lx\n",
5488 regno
, (unsigned long) ret
);
5494 displaced_in_arm_mode (struct regcache
*regs
)
5497 ULONGEST t_bit
= arm_psr_thumb_bit (get_regcache_arch (regs
));
5499 regcache_cooked_read_unsigned (regs
, ARM_PS_REGNUM
, &ps
);
5501 return (ps
& t_bit
) == 0;
5504 /* Write to the PC as from a branch instruction. */
5507 branch_write_pc (struct regcache
*regs
, struct displaced_step_closure
*dsc
,
5511 /* Note: If bits 0/1 are set, this branch would be unpredictable for
5512 architecture versions < 6. */
5513 regcache_cooked_write_unsigned (regs
, ARM_PC_REGNUM
,
5514 val
& ~(ULONGEST
) 0x3);
5516 regcache_cooked_write_unsigned (regs
, ARM_PC_REGNUM
,
5517 val
& ~(ULONGEST
) 0x1);
5520 /* Write to the PC as from a branch-exchange instruction. */
5523 bx_write_pc (struct regcache
*regs
, ULONGEST val
)
5526 ULONGEST t_bit
= arm_psr_thumb_bit (get_regcache_arch (regs
));
5528 regcache_cooked_read_unsigned (regs
, ARM_PS_REGNUM
, &ps
);
5532 regcache_cooked_write_unsigned (regs
, ARM_PS_REGNUM
, ps
| t_bit
);
5533 regcache_cooked_write_unsigned (regs
, ARM_PC_REGNUM
, val
& 0xfffffffe);
5535 else if ((val
& 2) == 0)
5537 regcache_cooked_write_unsigned (regs
, ARM_PS_REGNUM
, ps
& ~t_bit
);
5538 regcache_cooked_write_unsigned (regs
, ARM_PC_REGNUM
, val
);
5542 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
5543 mode, align dest to 4 bytes). */
5544 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
5545 regcache_cooked_write_unsigned (regs
, ARM_PS_REGNUM
, ps
& ~t_bit
);
5546 regcache_cooked_write_unsigned (regs
, ARM_PC_REGNUM
, val
& 0xfffffffc);
5550 /* Write to the PC as if from a load instruction. */
5553 load_write_pc (struct regcache
*regs
, struct displaced_step_closure
*dsc
,
5556 if (DISPLACED_STEPPING_ARCH_VERSION
>= 5)
5557 bx_write_pc (regs
, val
);
5559 branch_write_pc (regs
, dsc
, val
);
5562 /* Write to the PC as if from an ALU instruction. */
5565 alu_write_pc (struct regcache
*regs
, struct displaced_step_closure
*dsc
,
5568 if (DISPLACED_STEPPING_ARCH_VERSION
>= 7 && !dsc
->is_thumb
)
5569 bx_write_pc (regs
, val
);
5571 branch_write_pc (regs
, dsc
, val
);
5574 /* Helper for writing to registers for displaced stepping. Writing to the PC
5575 has a varying effects depending on the instruction which does the write:
5576 this is controlled by the WRITE_PC argument. */
5579 displaced_write_reg (struct regcache
*regs
, struct displaced_step_closure
*dsc
,
5580 int regno
, ULONGEST val
, enum pc_write_style write_pc
)
5582 if (regno
== ARM_PC_REGNUM
)
5584 if (debug_displaced
)
5585 fprintf_unfiltered (gdb_stdlog
, "displaced: writing pc %.8lx\n",
5586 (unsigned long) val
);
5589 case BRANCH_WRITE_PC
:
5590 branch_write_pc (regs
, dsc
, val
);
5594 bx_write_pc (regs
, val
);
5598 load_write_pc (regs
, dsc
, val
);
5602 alu_write_pc (regs
, dsc
, val
);
5605 case CANNOT_WRITE_PC
:
5606 warning (_("Instruction wrote to PC in an unexpected way when "
5607 "single-stepping"));
5611 internal_error (__FILE__
, __LINE__
,
5612 _("Invalid argument to displaced_write_reg"));
5615 dsc
->wrote_to_pc
= 1;
5619 if (debug_displaced
)
5620 fprintf_unfiltered (gdb_stdlog
, "displaced: writing r%d value %.8lx\n",
5621 regno
, (unsigned long) val
);
5622 regcache_cooked_write_unsigned (regs
, regno
, val
);
5626 /* This function is used to concisely determine if an instruction INSN
5627 references PC. Register fields of interest in INSN should have the
5628 corresponding fields of BITMASK set to 0b1111. The function
5629 returns return 1 if any of these fields in INSN reference the PC
5630 (also 0b1111, r15), else it returns 0. */
5633 insn_references_pc (uint32_t insn
, uint32_t bitmask
)
5635 uint32_t lowbit
= 1;
5637 while (bitmask
!= 0)
5641 for (; lowbit
&& (bitmask
& lowbit
) == 0; lowbit
<<= 1)
5647 mask
= lowbit
* 0xf;
5649 if ((insn
& mask
) == mask
)
5658 /* The simplest copy function. Many instructions have the same effect no
5659 matter what address they are executed at: in those cases, use this. */
5662 arm_copy_unmodified (struct gdbarch
*gdbarch
, uint32_t insn
,
5663 const char *iname
, struct displaced_step_closure
*dsc
)
5665 if (debug_displaced
)
5666 fprintf_unfiltered (gdb_stdlog
, "displaced: copying insn %.8lx, "
5667 "opcode/class '%s' unmodified\n", (unsigned long) insn
,
5670 dsc
->modinsn
[0] = insn
;
5676 thumb_copy_unmodified_32bit (struct gdbarch
*gdbarch
, uint16_t insn1
,
5677 uint16_t insn2
, const char *iname
,
5678 struct displaced_step_closure
*dsc
)
5680 if (debug_displaced
)
5681 fprintf_unfiltered (gdb_stdlog
, "displaced: copying insn %.4x %.4x, "
5682 "opcode/class '%s' unmodified\n", insn1
, insn2
,
5685 dsc
->modinsn
[0] = insn1
;
5686 dsc
->modinsn
[1] = insn2
;
5692 /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
5695 thumb_copy_unmodified_16bit (struct gdbarch
*gdbarch
, unsigned int insn
,
5697 struct displaced_step_closure
*dsc
)
5699 if (debug_displaced
)
5700 fprintf_unfiltered (gdb_stdlog
, "displaced: copying insn %.4x, "
5701 "opcode/class '%s' unmodified\n", insn
,
5704 dsc
->modinsn
[0] = insn
;
5709 /* Preload instructions with immediate offset. */
5712 cleanup_preload (struct gdbarch
*gdbarch
,
5713 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
5715 displaced_write_reg (regs
, dsc
, 0, dsc
->tmp
[0], CANNOT_WRITE_PC
);
5716 if (!dsc
->u
.preload
.immed
)
5717 displaced_write_reg (regs
, dsc
, 1, dsc
->tmp
[1], CANNOT_WRITE_PC
);
5721 install_preload (struct gdbarch
*gdbarch
, struct regcache
*regs
,
5722 struct displaced_step_closure
*dsc
, unsigned int rn
)
5725 /* Preload instructions:
5727 {pli/pld} [rn, #+/-imm]
5729 {pli/pld} [r0, #+/-imm]. */
5731 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
5732 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
5733 displaced_write_reg (regs
, dsc
, 0, rn_val
, CANNOT_WRITE_PC
);
5734 dsc
->u
.preload
.immed
= 1;
5736 dsc
->cleanup
= &cleanup_preload
;
5740 arm_copy_preload (struct gdbarch
*gdbarch
, uint32_t insn
, struct regcache
*regs
,
5741 struct displaced_step_closure
*dsc
)
5743 unsigned int rn
= bits (insn
, 16, 19);
5745 if (!insn_references_pc (insn
, 0x000f0000ul
))
5746 return arm_copy_unmodified (gdbarch
, insn
, "preload", dsc
);
5748 if (debug_displaced
)
5749 fprintf_unfiltered (gdb_stdlog
, "displaced: copying preload insn %.8lx\n",
5750 (unsigned long) insn
);
5752 dsc
->modinsn
[0] = insn
& 0xfff0ffff;
5754 install_preload (gdbarch
, regs
, dsc
, rn
);
5760 thumb2_copy_preload (struct gdbarch
*gdbarch
, uint16_t insn1
, uint16_t insn2
,
5761 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
5763 unsigned int rn
= bits (insn1
, 0, 3);
5764 unsigned int u_bit
= bit (insn1
, 7);
5765 int imm12
= bits (insn2
, 0, 11);
5768 if (rn
!= ARM_PC_REGNUM
)
5769 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
, "preload", dsc
);
5771 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
5772 PLD (literal) Encoding T1. */
5773 if (debug_displaced
)
5774 fprintf_unfiltered (gdb_stdlog
,
5775 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
5776 (unsigned int) dsc
->insn_addr
, u_bit
? '+' : '-',
5782 /* Rewrite instruction {pli/pld} PC imm12 into:
5783 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
5787 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
5789 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
5790 dsc
->tmp
[1] = displaced_read_reg (regs
, dsc
, 1);
5792 pc_val
= displaced_read_reg (regs
, dsc
, ARM_PC_REGNUM
);
5794 displaced_write_reg (regs
, dsc
, 0, pc_val
, CANNOT_WRITE_PC
);
5795 displaced_write_reg (regs
, dsc
, 1, imm12
, CANNOT_WRITE_PC
);
5796 dsc
->u
.preload
.immed
= 0;
5798 /* {pli/pld} [r0, r1] */
5799 dsc
->modinsn
[0] = insn1
& 0xfff0;
5800 dsc
->modinsn
[1] = 0xf001;
5803 dsc
->cleanup
= &cleanup_preload
;
5807 /* Preload instructions with register offset. */
5810 install_preload_reg(struct gdbarch
*gdbarch
, struct regcache
*regs
,
5811 struct displaced_step_closure
*dsc
, unsigned int rn
,
5814 ULONGEST rn_val
, rm_val
;
5816 /* Preload register-offset instructions:
5818 {pli/pld} [rn, rm {, shift}]
5820 {pli/pld} [r0, r1 {, shift}]. */
5822 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
5823 dsc
->tmp
[1] = displaced_read_reg (regs
, dsc
, 1);
5824 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
5825 rm_val
= displaced_read_reg (regs
, dsc
, rm
);
5826 displaced_write_reg (regs
, dsc
, 0, rn_val
, CANNOT_WRITE_PC
);
5827 displaced_write_reg (regs
, dsc
, 1, rm_val
, CANNOT_WRITE_PC
);
5828 dsc
->u
.preload
.immed
= 0;
5830 dsc
->cleanup
= &cleanup_preload
;
5834 arm_copy_preload_reg (struct gdbarch
*gdbarch
, uint32_t insn
,
5835 struct regcache
*regs
,
5836 struct displaced_step_closure
*dsc
)
5838 unsigned int rn
= bits (insn
, 16, 19);
5839 unsigned int rm
= bits (insn
, 0, 3);
5842 if (!insn_references_pc (insn
, 0x000f000ful
))
5843 return arm_copy_unmodified (gdbarch
, insn
, "preload reg", dsc
);
5845 if (debug_displaced
)
5846 fprintf_unfiltered (gdb_stdlog
, "displaced: copying preload insn %.8lx\n",
5847 (unsigned long) insn
);
5849 dsc
->modinsn
[0] = (insn
& 0xfff0fff0) | 0x1;
5851 install_preload_reg (gdbarch
, regs
, dsc
, rn
, rm
);
5855 /* Copy/cleanup coprocessor load and store instructions. */
5858 cleanup_copro_load_store (struct gdbarch
*gdbarch
,
5859 struct regcache
*regs
,
5860 struct displaced_step_closure
*dsc
)
5862 ULONGEST rn_val
= displaced_read_reg (regs
, dsc
, 0);
5864 displaced_write_reg (regs
, dsc
, 0, dsc
->tmp
[0], CANNOT_WRITE_PC
);
5866 if (dsc
->u
.ldst
.writeback
)
5867 displaced_write_reg (regs
, dsc
, dsc
->u
.ldst
.rn
, rn_val
, LOAD_WRITE_PC
);
5871 install_copro_load_store (struct gdbarch
*gdbarch
, struct regcache
*regs
,
5872 struct displaced_step_closure
*dsc
,
5873 int writeback
, unsigned int rn
)
5877 /* Coprocessor load/store instructions:
5879 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
5881 {stc/stc2} [r0, #+/-imm].
5883 ldc/ldc2 are handled identically. */
5885 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
5886 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
5887 /* PC should be 4-byte aligned. */
5888 rn_val
= rn_val
& 0xfffffffc;
5889 displaced_write_reg (regs
, dsc
, 0, rn_val
, CANNOT_WRITE_PC
);
5891 dsc
->u
.ldst
.writeback
= writeback
;
5892 dsc
->u
.ldst
.rn
= rn
;
5894 dsc
->cleanup
= &cleanup_copro_load_store
;
5898 arm_copy_copro_load_store (struct gdbarch
*gdbarch
, uint32_t insn
,
5899 struct regcache
*regs
,
5900 struct displaced_step_closure
*dsc
)
5902 unsigned int rn
= bits (insn
, 16, 19);
5904 if (!insn_references_pc (insn
, 0x000f0000ul
))
5905 return arm_copy_unmodified (gdbarch
, insn
, "copro load/store", dsc
);
5907 if (debug_displaced
)
5908 fprintf_unfiltered (gdb_stdlog
, "displaced: copying coprocessor "
5909 "load/store insn %.8lx\n", (unsigned long) insn
);
5911 dsc
->modinsn
[0] = insn
& 0xfff0ffff;
5913 install_copro_load_store (gdbarch
, regs
, dsc
, bit (insn
, 25), rn
);
5919 thumb2_copy_copro_load_store (struct gdbarch
*gdbarch
, uint16_t insn1
,
5920 uint16_t insn2
, struct regcache
*regs
,
5921 struct displaced_step_closure
*dsc
)
5923 unsigned int rn
= bits (insn1
, 0, 3);
5925 if (rn
!= ARM_PC_REGNUM
)
5926 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
5927 "copro load/store", dsc
);
5929 if (debug_displaced
)
5930 fprintf_unfiltered (gdb_stdlog
, "displaced: copying coprocessor "
5931 "load/store insn %.4x%.4x\n", insn1
, insn2
);
5933 dsc
->modinsn
[0] = insn1
& 0xfff0;
5934 dsc
->modinsn
[1] = insn2
;
5937 /* This function is called for copying instruction LDC/LDC2/VLDR, which
5938 doesn't support writeback, so pass 0. */
5939 install_copro_load_store (gdbarch
, regs
, dsc
, 0, rn
);
5944 /* Clean up branch instructions (actually perform the branch, by setting
5948 cleanup_branch (struct gdbarch
*gdbarch
, struct regcache
*regs
,
5949 struct displaced_step_closure
*dsc
)
5951 uint32_t status
= displaced_read_reg (regs
, dsc
, ARM_PS_REGNUM
);
5952 int branch_taken
= condition_true (dsc
->u
.branch
.cond
, status
);
5953 enum pc_write_style write_pc
= dsc
->u
.branch
.exchange
5954 ? BX_WRITE_PC
: BRANCH_WRITE_PC
;
5959 if (dsc
->u
.branch
.link
)
5961 /* The value of LR should be the next insn of current one. In order
5962 not to confuse logic hanlding later insn `bx lr', if current insn mode
5963 is Thumb, the bit 0 of LR value should be set to 1. */
5964 ULONGEST next_insn_addr
= dsc
->insn_addr
+ dsc
->insn_size
;
5967 next_insn_addr
|= 0x1;
5969 displaced_write_reg (regs
, dsc
, ARM_LR_REGNUM
, next_insn_addr
,
5973 displaced_write_reg (regs
, dsc
, ARM_PC_REGNUM
, dsc
->u
.branch
.dest
, write_pc
);
5976 /* Copy B/BL/BLX instructions with immediate destinations. */
5979 install_b_bl_blx (struct gdbarch
*gdbarch
, struct regcache
*regs
,
5980 struct displaced_step_closure
*dsc
,
5981 unsigned int cond
, int exchange
, int link
, long offset
)
5983 /* Implement "BL<cond> <label>" as:
5985 Preparation: cond <- instruction condition
5986 Insn: mov r0, r0 (nop)
5987 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
5989 B<cond> similar, but don't set r14 in cleanup. */
5991 dsc
->u
.branch
.cond
= cond
;
5992 dsc
->u
.branch
.link
= link
;
5993 dsc
->u
.branch
.exchange
= exchange
;
5995 dsc
->u
.branch
.dest
= dsc
->insn_addr
;
5996 if (link
&& exchange
)
5997 /* For BLX, offset is computed from the Align (PC, 4). */
5998 dsc
->u
.branch
.dest
= dsc
->u
.branch
.dest
& 0xfffffffc;
6001 dsc
->u
.branch
.dest
+= 4 + offset
;
6003 dsc
->u
.branch
.dest
+= 8 + offset
;
6005 dsc
->cleanup
= &cleanup_branch
;
6008 arm_copy_b_bl_blx (struct gdbarch
*gdbarch
, uint32_t insn
,
6009 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
6011 unsigned int cond
= bits (insn
, 28, 31);
6012 int exchange
= (cond
== 0xf);
6013 int link
= exchange
|| bit (insn
, 24);
6016 if (debug_displaced
)
6017 fprintf_unfiltered (gdb_stdlog
, "displaced: copying %s immediate insn "
6018 "%.8lx\n", (exchange
) ? "blx" : (link
) ? "bl" : "b",
6019 (unsigned long) insn
);
6021 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
6022 then arrange the switch into Thumb mode. */
6023 offset
= (bits (insn
, 0, 23) << 2) | (bit (insn
, 24) << 1) | 1;
6025 offset
= bits (insn
, 0, 23) << 2;
6027 if (bit (offset
, 25))
6028 offset
= offset
| ~0x3ffffff;
6030 dsc
->modinsn
[0] = ARM_NOP
;
6032 install_b_bl_blx (gdbarch
, regs
, dsc
, cond
, exchange
, link
, offset
);
6037 thumb2_copy_b_bl_blx (struct gdbarch
*gdbarch
, uint16_t insn1
,
6038 uint16_t insn2
, struct regcache
*regs
,
6039 struct displaced_step_closure
*dsc
)
6041 int link
= bit (insn2
, 14);
6042 int exchange
= link
&& !bit (insn2
, 12);
6045 int j1
= bit (insn2
, 13);
6046 int j2
= bit (insn2
, 11);
6047 int s
= sbits (insn1
, 10, 10);
6048 int i1
= !(j1
^ bit (insn1
, 10));
6049 int i2
= !(j2
^ bit (insn1
, 10));
6051 if (!link
&& !exchange
) /* B */
6053 offset
= (bits (insn2
, 0, 10) << 1);
6054 if (bit (insn2
, 12)) /* Encoding T4 */
6056 offset
|= (bits (insn1
, 0, 9) << 12)
6062 else /* Encoding T3 */
6064 offset
|= (bits (insn1
, 0, 5) << 12)
6068 cond
= bits (insn1
, 6, 9);
6073 offset
= (bits (insn1
, 0, 9) << 12);
6074 offset
|= ((i2
<< 22) | (i1
<< 23) | (s
<< 24));
6075 offset
|= exchange
?
6076 (bits (insn2
, 1, 10) << 2) : (bits (insn2
, 0, 10) << 1);
6079 if (debug_displaced
)
6080 fprintf_unfiltered (gdb_stdlog
, "displaced: copying %s insn "
6081 "%.4x %.4x with offset %.8lx\n",
6082 link
? (exchange
) ? "blx" : "bl" : "b",
6083 insn1
, insn2
, offset
);
6085 dsc
->modinsn
[0] = THUMB_NOP
;
6087 install_b_bl_blx (gdbarch
, regs
, dsc
, cond
, exchange
, link
, offset
);
6091 /* Copy B Thumb instructions. */
6093 thumb_copy_b (struct gdbarch
*gdbarch
, unsigned short insn
,
6094 struct displaced_step_closure
*dsc
)
6096 unsigned int cond
= 0;
6098 unsigned short bit_12_15
= bits (insn
, 12, 15);
6099 CORE_ADDR from
= dsc
->insn_addr
;
6101 if (bit_12_15
== 0xd)
6103 /* offset = SignExtend (imm8:0, 32) */
6104 offset
= sbits ((insn
<< 1), 0, 8);
6105 cond
= bits (insn
, 8, 11);
6107 else if (bit_12_15
== 0xe) /* Encoding T2 */
6109 offset
= sbits ((insn
<< 1), 0, 11);
6113 if (debug_displaced
)
6114 fprintf_unfiltered (gdb_stdlog
,
6115 "displaced: copying b immediate insn %.4x "
6116 "with offset %d\n", insn
, offset
);
6118 dsc
->u
.branch
.cond
= cond
;
6119 dsc
->u
.branch
.link
= 0;
6120 dsc
->u
.branch
.exchange
= 0;
6121 dsc
->u
.branch
.dest
= from
+ 4 + offset
;
6123 dsc
->modinsn
[0] = THUMB_NOP
;
6125 dsc
->cleanup
= &cleanup_branch
;
6130 /* Copy BX/BLX with register-specified destinations. */
6133 install_bx_blx_reg (struct gdbarch
*gdbarch
, struct regcache
*regs
,
6134 struct displaced_step_closure
*dsc
, int link
,
6135 unsigned int cond
, unsigned int rm
)
6137 /* Implement {BX,BLX}<cond> <reg>" as:
6139 Preparation: cond <- instruction condition
6140 Insn: mov r0, r0 (nop)
6141 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
6143 Don't set r14 in cleanup for BX. */
6145 dsc
->u
.branch
.dest
= displaced_read_reg (regs
, dsc
, rm
);
6147 dsc
->u
.branch
.cond
= cond
;
6148 dsc
->u
.branch
.link
= link
;
6150 dsc
->u
.branch
.exchange
= 1;
6152 dsc
->cleanup
= &cleanup_branch
;
6156 arm_copy_bx_blx_reg (struct gdbarch
*gdbarch
, uint32_t insn
,
6157 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
6159 unsigned int cond
= bits (insn
, 28, 31);
6162 int link
= bit (insn
, 5);
6163 unsigned int rm
= bits (insn
, 0, 3);
6165 if (debug_displaced
)
6166 fprintf_unfiltered (gdb_stdlog
, "displaced: copying insn %.8lx",
6167 (unsigned long) insn
);
6169 dsc
->modinsn
[0] = ARM_NOP
;
6171 install_bx_blx_reg (gdbarch
, regs
, dsc
, link
, cond
, rm
);
6176 thumb_copy_bx_blx_reg (struct gdbarch
*gdbarch
, uint16_t insn
,
6177 struct regcache
*regs
,
6178 struct displaced_step_closure
*dsc
)
6180 int link
= bit (insn
, 7);
6181 unsigned int rm
= bits (insn
, 3, 6);
6183 if (debug_displaced
)
6184 fprintf_unfiltered (gdb_stdlog
, "displaced: copying insn %.4x",
6185 (unsigned short) insn
);
6187 dsc
->modinsn
[0] = THUMB_NOP
;
6189 install_bx_blx_reg (gdbarch
, regs
, dsc
, link
, INST_AL
, rm
);
6195 /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
6198 cleanup_alu_imm (struct gdbarch
*gdbarch
,
6199 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
6201 ULONGEST rd_val
= displaced_read_reg (regs
, dsc
, 0);
6202 displaced_write_reg (regs
, dsc
, 0, dsc
->tmp
[0], CANNOT_WRITE_PC
);
6203 displaced_write_reg (regs
, dsc
, 1, dsc
->tmp
[1], CANNOT_WRITE_PC
);
6204 displaced_write_reg (regs
, dsc
, dsc
->rd
, rd_val
, ALU_WRITE_PC
);
6208 arm_copy_alu_imm (struct gdbarch
*gdbarch
, uint32_t insn
, struct regcache
*regs
,
6209 struct displaced_step_closure
*dsc
)
6211 unsigned int rn
= bits (insn
, 16, 19);
6212 unsigned int rd
= bits (insn
, 12, 15);
6213 unsigned int op
= bits (insn
, 21, 24);
6214 int is_mov
= (op
== 0xd);
6215 ULONGEST rd_val
, rn_val
;
6217 if (!insn_references_pc (insn
, 0x000ff000ul
))
6218 return arm_copy_unmodified (gdbarch
, insn
, "ALU immediate", dsc
);
6220 if (debug_displaced
)
6221 fprintf_unfiltered (gdb_stdlog
, "displaced: copying immediate %s insn "
6222 "%.8lx\n", is_mov
? "move" : "ALU",
6223 (unsigned long) insn
);
6225 /* Instruction is of form:
6227 <op><cond> rd, [rn,] #imm
6231 Preparation: tmp1, tmp2 <- r0, r1;
6233 Insn: <op><cond> r0, r1, #imm
6234 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
6237 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
6238 dsc
->tmp
[1] = displaced_read_reg (regs
, dsc
, 1);
6239 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
6240 rd_val
= displaced_read_reg (regs
, dsc
, rd
);
6241 displaced_write_reg (regs
, dsc
, 0, rd_val
, CANNOT_WRITE_PC
);
6242 displaced_write_reg (regs
, dsc
, 1, rn_val
, CANNOT_WRITE_PC
);
6246 dsc
->modinsn
[0] = insn
& 0xfff00fff;
6248 dsc
->modinsn
[0] = (insn
& 0xfff00fff) | 0x10000;
6250 dsc
->cleanup
= &cleanup_alu_imm
;
6256 thumb2_copy_alu_imm (struct gdbarch
*gdbarch
, uint16_t insn1
,
6257 uint16_t insn2
, struct regcache
*regs
,
6258 struct displaced_step_closure
*dsc
)
6260 unsigned int op
= bits (insn1
, 5, 8);
6261 unsigned int rn
, rm
, rd
;
6262 ULONGEST rd_val
, rn_val
;
6264 rn
= bits (insn1
, 0, 3); /* Rn */
6265 rm
= bits (insn2
, 0, 3); /* Rm */
6266 rd
= bits (insn2
, 8, 11); /* Rd */
6268 /* This routine is only called for instruction MOV. */
6269 gdb_assert (op
== 0x2 && rn
== 0xf);
6271 if (rm
!= ARM_PC_REGNUM
&& rd
!= ARM_PC_REGNUM
)
6272 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
, "ALU imm", dsc
);
6274 if (debug_displaced
)
6275 fprintf_unfiltered (gdb_stdlog
, "displaced: copying reg %s insn %.4x%.4x\n",
6276 "ALU", insn1
, insn2
);
6278 /* Instruction is of form:
6280 <op><cond> rd, [rn,] #imm
6284 Preparation: tmp1, tmp2 <- r0, r1;
6286 Insn: <op><cond> r0, r1, #imm
6287 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
6290 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
6291 dsc
->tmp
[1] = displaced_read_reg (regs
, dsc
, 1);
6292 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
6293 rd_val
= displaced_read_reg (regs
, dsc
, rd
);
6294 displaced_write_reg (regs
, dsc
, 0, rd_val
, CANNOT_WRITE_PC
);
6295 displaced_write_reg (regs
, dsc
, 1, rn_val
, CANNOT_WRITE_PC
);
6298 dsc
->modinsn
[0] = insn1
;
6299 dsc
->modinsn
[1] = ((insn2
& 0xf0f0) | 0x1);
6302 dsc
->cleanup
= &cleanup_alu_imm
;
6307 /* Copy/cleanup arithmetic/logic insns with register RHS. */
6310 cleanup_alu_reg (struct gdbarch
*gdbarch
,
6311 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
6316 rd_val
= displaced_read_reg (regs
, dsc
, 0);
6318 for (i
= 0; i
< 3; i
++)
6319 displaced_write_reg (regs
, dsc
, i
, dsc
->tmp
[i
], CANNOT_WRITE_PC
);
6321 displaced_write_reg (regs
, dsc
, dsc
->rd
, rd_val
, ALU_WRITE_PC
);
6325 install_alu_reg (struct gdbarch
*gdbarch
, struct regcache
*regs
,
6326 struct displaced_step_closure
*dsc
,
6327 unsigned int rd
, unsigned int rn
, unsigned int rm
)
6329 ULONGEST rd_val
, rn_val
, rm_val
;
6331 /* Instruction is of form:
6333 <op><cond> rd, [rn,] rm [, <shift>]
6337 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
6338 r0, r1, r2 <- rd, rn, rm
6339 Insn: <op><cond> r0, r1, r2 [, <shift>]
6340 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
6343 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
6344 dsc
->tmp
[1] = displaced_read_reg (regs
, dsc
, 1);
6345 dsc
->tmp
[2] = displaced_read_reg (regs
, dsc
, 2);
6346 rd_val
= displaced_read_reg (regs
, dsc
, rd
);
6347 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
6348 rm_val
= displaced_read_reg (regs
, dsc
, rm
);
6349 displaced_write_reg (regs
, dsc
, 0, rd_val
, CANNOT_WRITE_PC
);
6350 displaced_write_reg (regs
, dsc
, 1, rn_val
, CANNOT_WRITE_PC
);
6351 displaced_write_reg (regs
, dsc
, 2, rm_val
, CANNOT_WRITE_PC
);
6354 dsc
->cleanup
= &cleanup_alu_reg
;
6358 arm_copy_alu_reg (struct gdbarch
*gdbarch
, uint32_t insn
, struct regcache
*regs
,
6359 struct displaced_step_closure
*dsc
)
6361 unsigned int op
= bits (insn
, 21, 24);
6362 int is_mov
= (op
== 0xd);
6364 if (!insn_references_pc (insn
, 0x000ff00ful
))
6365 return arm_copy_unmodified (gdbarch
, insn
, "ALU reg", dsc
);
6367 if (debug_displaced
)
6368 fprintf_unfiltered (gdb_stdlog
, "displaced: copying reg %s insn %.8lx\n",
6369 is_mov
? "move" : "ALU", (unsigned long) insn
);
6372 dsc
->modinsn
[0] = (insn
& 0xfff00ff0) | 0x2;
6374 dsc
->modinsn
[0] = (insn
& 0xfff00ff0) | 0x10002;
6376 install_alu_reg (gdbarch
, regs
, dsc
, bits (insn
, 12, 15), bits (insn
, 16, 19),
6382 thumb_copy_alu_reg (struct gdbarch
*gdbarch
, uint16_t insn
,
6383 struct regcache
*regs
,
6384 struct displaced_step_closure
*dsc
)
6386 unsigned rn
, rm
, rd
;
6388 rd
= bits (insn
, 3, 6);
6389 rn
= (bit (insn
, 7) << 3) | bits (insn
, 0, 2);
6392 if (rd
!= ARM_PC_REGNUM
&& rn
!= ARM_PC_REGNUM
)
6393 return thumb_copy_unmodified_16bit (gdbarch
, insn
, "ALU reg", dsc
);
6395 if (debug_displaced
)
6396 fprintf_unfiltered (gdb_stdlog
, "displaced: copying reg %s insn %.4x\n",
6397 "ALU", (unsigned short) insn
);
6399 dsc
->modinsn
[0] = ((insn
& 0xff00) | 0x08);
6401 install_alu_reg (gdbarch
, regs
, dsc
, rd
, rn
, rm
);
6406 /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
6409 cleanup_alu_shifted_reg (struct gdbarch
*gdbarch
,
6410 struct regcache
*regs
,
6411 struct displaced_step_closure
*dsc
)
6413 ULONGEST rd_val
= displaced_read_reg (regs
, dsc
, 0);
6416 for (i
= 0; i
< 4; i
++)
6417 displaced_write_reg (regs
, dsc
, i
, dsc
->tmp
[i
], CANNOT_WRITE_PC
);
6419 displaced_write_reg (regs
, dsc
, dsc
->rd
, rd_val
, ALU_WRITE_PC
);
6423 install_alu_shifted_reg (struct gdbarch
*gdbarch
, struct regcache
*regs
,
6424 struct displaced_step_closure
*dsc
,
6425 unsigned int rd
, unsigned int rn
, unsigned int rm
,
6429 ULONGEST rd_val
, rn_val
, rm_val
, rs_val
;
6431 /* Instruction is of form:
6433 <op><cond> rd, [rn,] rm, <shift> rs
6437 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
6438 r0, r1, r2, r3 <- rd, rn, rm, rs
6439 Insn: <op><cond> r0, r1, r2, <shift> r3
6441 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
6445 for (i
= 0; i
< 4; i
++)
6446 dsc
->tmp
[i
] = displaced_read_reg (regs
, dsc
, i
);
6448 rd_val
= displaced_read_reg (regs
, dsc
, rd
);
6449 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
6450 rm_val
= displaced_read_reg (regs
, dsc
, rm
);
6451 rs_val
= displaced_read_reg (regs
, dsc
, rs
);
6452 displaced_write_reg (regs
, dsc
, 0, rd_val
, CANNOT_WRITE_PC
);
6453 displaced_write_reg (regs
, dsc
, 1, rn_val
, CANNOT_WRITE_PC
);
6454 displaced_write_reg (regs
, dsc
, 2, rm_val
, CANNOT_WRITE_PC
);
6455 displaced_write_reg (regs
, dsc
, 3, rs_val
, CANNOT_WRITE_PC
);
6457 dsc
->cleanup
= &cleanup_alu_shifted_reg
;
6461 arm_copy_alu_shifted_reg (struct gdbarch
*gdbarch
, uint32_t insn
,
6462 struct regcache
*regs
,
6463 struct displaced_step_closure
*dsc
)
6465 unsigned int op
= bits (insn
, 21, 24);
6466 int is_mov
= (op
== 0xd);
6467 unsigned int rd
, rn
, rm
, rs
;
6469 if (!insn_references_pc (insn
, 0x000fff0ful
))
6470 return arm_copy_unmodified (gdbarch
, insn
, "ALU shifted reg", dsc
);
6472 if (debug_displaced
)
6473 fprintf_unfiltered (gdb_stdlog
, "displaced: copying shifted reg %s insn "
6474 "%.8lx\n", is_mov
? "move" : "ALU",
6475 (unsigned long) insn
);
6477 rn
= bits (insn
, 16, 19);
6478 rm
= bits (insn
, 0, 3);
6479 rs
= bits (insn
, 8, 11);
6480 rd
= bits (insn
, 12, 15);
6483 dsc
->modinsn
[0] = (insn
& 0xfff000f0) | 0x302;
6485 dsc
->modinsn
[0] = (insn
& 0xfff000f0) | 0x10302;
6487 install_alu_shifted_reg (gdbarch
, regs
, dsc
, rd
, rn
, rm
, rs
);
6492 /* Clean up load instructions. */
6495 cleanup_load (struct gdbarch
*gdbarch
, struct regcache
*regs
,
6496 struct displaced_step_closure
*dsc
)
6498 ULONGEST rt_val
, rt_val2
= 0, rn_val
;
6500 rt_val
= displaced_read_reg (regs
, dsc
, 0);
6501 if (dsc
->u
.ldst
.xfersize
== 8)
6502 rt_val2
= displaced_read_reg (regs
, dsc
, 1);
6503 rn_val
= displaced_read_reg (regs
, dsc
, 2);
6505 displaced_write_reg (regs
, dsc
, 0, dsc
->tmp
[0], CANNOT_WRITE_PC
);
6506 if (dsc
->u
.ldst
.xfersize
> 4)
6507 displaced_write_reg (regs
, dsc
, 1, dsc
->tmp
[1], CANNOT_WRITE_PC
);
6508 displaced_write_reg (regs
, dsc
, 2, dsc
->tmp
[2], CANNOT_WRITE_PC
);
6509 if (!dsc
->u
.ldst
.immed
)
6510 displaced_write_reg (regs
, dsc
, 3, dsc
->tmp
[3], CANNOT_WRITE_PC
);
6512 /* Handle register writeback. */
6513 if (dsc
->u
.ldst
.writeback
)
6514 displaced_write_reg (regs
, dsc
, dsc
->u
.ldst
.rn
, rn_val
, CANNOT_WRITE_PC
);
6515 /* Put result in right place. */
6516 displaced_write_reg (regs
, dsc
, dsc
->rd
, rt_val
, LOAD_WRITE_PC
);
6517 if (dsc
->u
.ldst
.xfersize
== 8)
6518 displaced_write_reg (regs
, dsc
, dsc
->rd
+ 1, rt_val2
, LOAD_WRITE_PC
);
6521 /* Clean up store instructions. */
6524 cleanup_store (struct gdbarch
*gdbarch
, struct regcache
*regs
,
6525 struct displaced_step_closure
*dsc
)
6527 ULONGEST rn_val
= displaced_read_reg (regs
, dsc
, 2);
6529 displaced_write_reg (regs
, dsc
, 0, dsc
->tmp
[0], CANNOT_WRITE_PC
);
6530 if (dsc
->u
.ldst
.xfersize
> 4)
6531 displaced_write_reg (regs
, dsc
, 1, dsc
->tmp
[1], CANNOT_WRITE_PC
);
6532 displaced_write_reg (regs
, dsc
, 2, dsc
->tmp
[2], CANNOT_WRITE_PC
);
6533 if (!dsc
->u
.ldst
.immed
)
6534 displaced_write_reg (regs
, dsc
, 3, dsc
->tmp
[3], CANNOT_WRITE_PC
);
6535 if (!dsc
->u
.ldst
.restore_r4
)
6536 displaced_write_reg (regs
, dsc
, 4, dsc
->tmp
[4], CANNOT_WRITE_PC
);
6539 if (dsc
->u
.ldst
.writeback
)
6540 displaced_write_reg (regs
, dsc
, dsc
->u
.ldst
.rn
, rn_val
, CANNOT_WRITE_PC
);
6543 /* Copy "extra" load/store instructions. These are halfword/doubleword
6544 transfers, which have a different encoding to byte/word transfers. */
6547 arm_copy_extra_ld_st (struct gdbarch
*gdbarch
, uint32_t insn
, int unpriveleged
,
6548 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
6550 unsigned int op1
= bits (insn
, 20, 24);
6551 unsigned int op2
= bits (insn
, 5, 6);
6552 unsigned int rt
= bits (insn
, 12, 15);
6553 unsigned int rn
= bits (insn
, 16, 19);
6554 unsigned int rm
= bits (insn
, 0, 3);
6555 char load
[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
6556 char bytesize
[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
6557 int immed
= (op1
& 0x4) != 0;
6559 ULONGEST rt_val
, rt_val2
= 0, rn_val
, rm_val
= 0;
6561 if (!insn_references_pc (insn
, 0x000ff00ful
))
6562 return arm_copy_unmodified (gdbarch
, insn
, "extra load/store", dsc
);
6564 if (debug_displaced
)
6565 fprintf_unfiltered (gdb_stdlog
, "displaced: copying %sextra load/store "
6566 "insn %.8lx\n", unpriveleged
? "unpriveleged " : "",
6567 (unsigned long) insn
);
6569 opcode
= ((op2
<< 2) | (op1
& 0x1) | ((op1
& 0x4) >> 1)) - 4;
6572 internal_error (__FILE__
, __LINE__
,
6573 _("copy_extra_ld_st: instruction decode error"));
6575 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
6576 dsc
->tmp
[1] = displaced_read_reg (regs
, dsc
, 1);
6577 dsc
->tmp
[2] = displaced_read_reg (regs
, dsc
, 2);
6579 dsc
->tmp
[3] = displaced_read_reg (regs
, dsc
, 3);
6581 rt_val
= displaced_read_reg (regs
, dsc
, rt
);
6582 if (bytesize
[opcode
] == 8)
6583 rt_val2
= displaced_read_reg (regs
, dsc
, rt
+ 1);
6584 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
6586 rm_val
= displaced_read_reg (regs
, dsc
, rm
);
6588 displaced_write_reg (regs
, dsc
, 0, rt_val
, CANNOT_WRITE_PC
);
6589 if (bytesize
[opcode
] == 8)
6590 displaced_write_reg (regs
, dsc
, 1, rt_val2
, CANNOT_WRITE_PC
);
6591 displaced_write_reg (regs
, dsc
, 2, rn_val
, CANNOT_WRITE_PC
);
6593 displaced_write_reg (regs
, dsc
, 3, rm_val
, CANNOT_WRITE_PC
);
6596 dsc
->u
.ldst
.xfersize
= bytesize
[opcode
];
6597 dsc
->u
.ldst
.rn
= rn
;
6598 dsc
->u
.ldst
.immed
= immed
;
6599 dsc
->u
.ldst
.writeback
= bit (insn
, 24) == 0 || bit (insn
, 21) != 0;
6600 dsc
->u
.ldst
.restore_r4
= 0;
6603 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
6605 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
6606 dsc
->modinsn
[0] = (insn
& 0xfff00fff) | 0x20000;
6608 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
6610 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
6611 dsc
->modinsn
[0] = (insn
& 0xfff00ff0) | 0x20003;
6613 dsc
->cleanup
= load
[opcode
] ? &cleanup_load
: &cleanup_store
;
6618 /* Copy byte/half word/word loads and stores. */
6621 install_load_store (struct gdbarch
*gdbarch
, struct regcache
*regs
,
6622 struct displaced_step_closure
*dsc
, int load
,
6623 int immed
, int writeback
, int size
, int usermode
,
6624 int rt
, int rm
, int rn
)
6626 ULONGEST rt_val
, rn_val
, rm_val
= 0;
6628 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
6629 dsc
->tmp
[2] = displaced_read_reg (regs
, dsc
, 2);
6631 dsc
->tmp
[3] = displaced_read_reg (regs
, dsc
, 3);
6633 dsc
->tmp
[4] = displaced_read_reg (regs
, dsc
, 4);
6635 rt_val
= displaced_read_reg (regs
, dsc
, rt
);
6636 rn_val
= displaced_read_reg (regs
, dsc
, rn
);
6638 rm_val
= displaced_read_reg (regs
, dsc
, rm
);
6640 displaced_write_reg (regs
, dsc
, 0, rt_val
, CANNOT_WRITE_PC
);
6641 displaced_write_reg (regs
, dsc
, 2, rn_val
, CANNOT_WRITE_PC
);
6643 displaced_write_reg (regs
, dsc
, 3, rm_val
, CANNOT_WRITE_PC
);
6645 dsc
->u
.ldst
.xfersize
= size
;
6646 dsc
->u
.ldst
.rn
= rn
;
6647 dsc
->u
.ldst
.immed
= immed
;
6648 dsc
->u
.ldst
.writeback
= writeback
;
6650 /* To write PC we can do:
6652 Before this sequence of instructions:
6653 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
6654 r2 is the Rn value got from dispalced_read_reg.
6656 Insn1: push {pc} Write address of STR instruction + offset on stack
6657 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
6658 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
6659 = addr(Insn1) + offset - addr(Insn3) - 8
6661 Insn4: add r4, r4, #8 r4 = offset - 8
6662 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
6664 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
6666 Otherwise we don't know what value to write for PC, since the offset is
6667 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
6668 of this can be found in Section "Saving from r15" in
6669 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
6671 dsc
->cleanup
= load
? &cleanup_load
: &cleanup_store
;
6676 thumb2_copy_load_literal (struct gdbarch
*gdbarch
, uint16_t insn1
,
6677 uint16_t insn2
, struct regcache
*regs
,
6678 struct displaced_step_closure
*dsc
, int size
)
6680 unsigned int u_bit
= bit (insn1
, 7);
6681 unsigned int rt
= bits (insn2
, 12, 15);
6682 int imm12
= bits (insn2
, 0, 11);
6685 if (debug_displaced
)
6686 fprintf_unfiltered (gdb_stdlog
,
6687 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
6688 (unsigned int) dsc
->insn_addr
, rt
, u_bit
? '+' : '-',
6694 /* Rewrite instruction LDR Rt imm12 into:
6696 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
6700 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
6703 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
6704 dsc
->tmp
[2] = displaced_read_reg (regs
, dsc
, 2);
6705 dsc
->tmp
[3] = displaced_read_reg (regs
, dsc
, 3);
6707 pc_val
= displaced_read_reg (regs
, dsc
, ARM_PC_REGNUM
);
6709 pc_val
= pc_val
& 0xfffffffc;
6711 displaced_write_reg (regs
, dsc
, 2, pc_val
, CANNOT_WRITE_PC
);
6712 displaced_write_reg (regs
, dsc
, 3, imm12
, CANNOT_WRITE_PC
);
6716 dsc
->u
.ldst
.xfersize
= size
;
6717 dsc
->u
.ldst
.immed
= 0;
6718 dsc
->u
.ldst
.writeback
= 0;
6719 dsc
->u
.ldst
.restore_r4
= 0;
6721 /* LDR R0, R2, R3 */
6722 dsc
->modinsn
[0] = 0xf852;
6723 dsc
->modinsn
[1] = 0x3;
6726 dsc
->cleanup
= &cleanup_load
;
6732 thumb2_copy_load_reg_imm (struct gdbarch
*gdbarch
, uint16_t insn1
,
6733 uint16_t insn2
, struct regcache
*regs
,
6734 struct displaced_step_closure
*dsc
,
6735 int writeback
, int immed
)
6737 unsigned int rt
= bits (insn2
, 12, 15);
6738 unsigned int rn
= bits (insn1
, 0, 3);
6739 unsigned int rm
= bits (insn2
, 0, 3); /* Only valid if !immed. */
6740 /* In LDR (register), there is also a register Rm, which is not allowed to
6741 be PC, so we don't have to check it. */
6743 if (rt
!= ARM_PC_REGNUM
&& rn
!= ARM_PC_REGNUM
)
6744 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
, "load",
6747 if (debug_displaced
)
6748 fprintf_unfiltered (gdb_stdlog
,
6749 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
6750 rt
, rn
, insn1
, insn2
);
6752 install_load_store (gdbarch
, regs
, dsc
, 1, immed
, writeback
, 4,
6755 dsc
->u
.ldst
.restore_r4
= 0;
6758 /* ldr[b]<cond> rt, [rn, #imm], etc.
6760 ldr[b]<cond> r0, [r2, #imm]. */
6762 dsc
->modinsn
[0] = (insn1
& 0xfff0) | 0x2;
6763 dsc
->modinsn
[1] = insn2
& 0x0fff;
6766 /* ldr[b]<cond> rt, [rn, rm], etc.
6768 ldr[b]<cond> r0, [r2, r3]. */
6770 dsc
->modinsn
[0] = (insn1
& 0xfff0) | 0x2;
6771 dsc
->modinsn
[1] = (insn2
& 0x0ff0) | 0x3;
6781 arm_copy_ldr_str_ldrb_strb (struct gdbarch
*gdbarch
, uint32_t insn
,
6782 struct regcache
*regs
,
6783 struct displaced_step_closure
*dsc
,
6784 int load
, int size
, int usermode
)
6786 int immed
= !bit (insn
, 25);
6787 int writeback
= (bit (insn
, 24) == 0 || bit (insn
, 21) != 0);
6788 unsigned int rt
= bits (insn
, 12, 15);
6789 unsigned int rn
= bits (insn
, 16, 19);
6790 unsigned int rm
= bits (insn
, 0, 3); /* Only valid if !immed. */
6792 if (!insn_references_pc (insn
, 0x000ff00ful
))
6793 return arm_copy_unmodified (gdbarch
, insn
, "load/store", dsc
);
6795 if (debug_displaced
)
6796 fprintf_unfiltered (gdb_stdlog
,
6797 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
6798 load
? (size
== 1 ? "ldrb" : "ldr")
6799 : (size
== 1 ? "strb" : "str"), usermode
? "t" : "",
6801 (unsigned long) insn
);
6803 install_load_store (gdbarch
, regs
, dsc
, load
, immed
, writeback
, size
,
6804 usermode
, rt
, rm
, rn
);
6806 if (load
|| rt
!= ARM_PC_REGNUM
)
6808 dsc
->u
.ldst
.restore_r4
= 0;
6811 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
6813 {ldr,str}[b]<cond> r0, [r2, #imm]. */
6814 dsc
->modinsn
[0] = (insn
& 0xfff00fff) | 0x20000;
6816 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
6818 {ldr,str}[b]<cond> r0, [r2, r3]. */
6819 dsc
->modinsn
[0] = (insn
& 0xfff00ff0) | 0x20003;
6823 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
6824 dsc
->u
.ldst
.restore_r4
= 1;
6825 dsc
->modinsn
[0] = 0xe92d8000; /* push {pc} */
6826 dsc
->modinsn
[1] = 0xe8bd0010; /* pop {r4} */
6827 dsc
->modinsn
[2] = 0xe044400f; /* sub r4, r4, pc. */
6828 dsc
->modinsn
[3] = 0xe2844008; /* add r4, r4, #8. */
6829 dsc
->modinsn
[4] = 0xe0800004; /* add r0, r0, r4. */
6833 dsc
->modinsn
[5] = (insn
& 0xfff00fff) | 0x20000;
6835 dsc
->modinsn
[5] = (insn
& 0xfff00ff0) | 0x20003;
6840 dsc
->cleanup
= load
? &cleanup_load
: &cleanup_store
;
6845 /* Cleanup LDM instructions with fully-populated register list. This is an
6846 unfortunate corner case: it's impossible to implement correctly by modifying
6847 the instruction. The issue is as follows: we have an instruction,
6851 which we must rewrite to avoid loading PC. A possible solution would be to
6852 do the load in two halves, something like (with suitable cleanup
6856 ldm[id][ab] r8!, {r0-r7}
6858 ldm[id][ab] r8, {r7-r14}
6861 but at present there's no suitable place for <temp>, since the scratch space
6862 is overwritten before the cleanup routine is called. For now, we simply
6863 emulate the instruction. */
6866 cleanup_block_load_all (struct gdbarch
*gdbarch
, struct regcache
*regs
,
6867 struct displaced_step_closure
*dsc
)
6869 int inc
= dsc
->u
.block
.increment
;
6870 int bump_before
= dsc
->u
.block
.before
? (inc
? 4 : -4) : 0;
6871 int bump_after
= dsc
->u
.block
.before
? 0 : (inc
? 4 : -4);
6872 uint32_t regmask
= dsc
->u
.block
.regmask
;
6873 int regno
= inc
? 0 : 15;
6874 CORE_ADDR xfer_addr
= dsc
->u
.block
.xfer_addr
;
6875 int exception_return
= dsc
->u
.block
.load
&& dsc
->u
.block
.user
6876 && (regmask
& 0x8000) != 0;
6877 uint32_t status
= displaced_read_reg (regs
, dsc
, ARM_PS_REGNUM
);
6878 int do_transfer
= condition_true (dsc
->u
.block
.cond
, status
);
6879 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
6884 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
6885 sensible we can do here. Complain loudly. */
6886 if (exception_return
)
6887 error (_("Cannot single-step exception return"));
6889 /* We don't handle any stores here for now. */
6890 gdb_assert (dsc
->u
.block
.load
!= 0);
6892 if (debug_displaced
)
6893 fprintf_unfiltered (gdb_stdlog
, "displaced: emulating block transfer: "
6894 "%s %s %s\n", dsc
->u
.block
.load
? "ldm" : "stm",
6895 dsc
->u
.block
.increment
? "inc" : "dec",
6896 dsc
->u
.block
.before
? "before" : "after");
6903 while (regno
<= ARM_PC_REGNUM
&& (regmask
& (1 << regno
)) == 0)
6906 while (regno
>= 0 && (regmask
& (1 << regno
)) == 0)
6909 xfer_addr
+= bump_before
;
6911 memword
= read_memory_unsigned_integer (xfer_addr
, 4, byte_order
);
6912 displaced_write_reg (regs
, dsc
, regno
, memword
, LOAD_WRITE_PC
);
6914 xfer_addr
+= bump_after
;
6916 regmask
&= ~(1 << regno
);
6919 if (dsc
->u
.block
.writeback
)
6920 displaced_write_reg (regs
, dsc
, dsc
->u
.block
.rn
, xfer_addr
,
6924 /* Clean up an STM which included the PC in the register list. */
6927 cleanup_block_store_pc (struct gdbarch
*gdbarch
, struct regcache
*regs
,
6928 struct displaced_step_closure
*dsc
)
6930 uint32_t status
= displaced_read_reg (regs
, dsc
, ARM_PS_REGNUM
);
6931 int store_executed
= condition_true (dsc
->u
.block
.cond
, status
);
6932 CORE_ADDR pc_stored_at
, transferred_regs
= bitcount (dsc
->u
.block
.regmask
);
6933 CORE_ADDR stm_insn_addr
;
6936 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
6938 /* If condition code fails, there's nothing else to do. */
6939 if (!store_executed
)
6942 if (dsc
->u
.block
.increment
)
6944 pc_stored_at
= dsc
->u
.block
.xfer_addr
+ 4 * transferred_regs
;
6946 if (dsc
->u
.block
.before
)
6951 pc_stored_at
= dsc
->u
.block
.xfer_addr
;
6953 if (dsc
->u
.block
.before
)
6957 pc_val
= read_memory_unsigned_integer (pc_stored_at
, 4, byte_order
);
6958 stm_insn_addr
= dsc
->scratch_base
;
6959 offset
= pc_val
- stm_insn_addr
;
6961 if (debug_displaced
)
6962 fprintf_unfiltered (gdb_stdlog
, "displaced: detected PC offset %.8lx for "
6963 "STM instruction\n", offset
);
6965 /* Rewrite the stored PC to the proper value for the non-displaced original
6967 write_memory_unsigned_integer (pc_stored_at
, 4, byte_order
,
6968 dsc
->insn_addr
+ offset
);
6971 /* Clean up an LDM which includes the PC in the register list. We clumped all
6972 the registers in the transferred list into a contiguous range r0...rX (to
6973 avoid loading PC directly and losing control of the debugged program), so we
6974 must undo that here. */
6977 cleanup_block_load_pc (struct gdbarch
*gdbarch
,
6978 struct regcache
*regs
,
6979 struct displaced_step_closure
*dsc
)
6981 uint32_t status
= displaced_read_reg (regs
, dsc
, ARM_PS_REGNUM
);
6982 int load_executed
= condition_true (dsc
->u
.block
.cond
, status
);
6983 unsigned int mask
= dsc
->u
.block
.regmask
, write_reg
= ARM_PC_REGNUM
;
6984 unsigned int regs_loaded
= bitcount (mask
);
6985 unsigned int num_to_shuffle
= regs_loaded
, clobbered
;
6987 /* The method employed here will fail if the register list is fully populated
6988 (we need to avoid loading PC directly). */
6989 gdb_assert (num_to_shuffle
< 16);
6994 clobbered
= (1 << num_to_shuffle
) - 1;
6996 while (num_to_shuffle
> 0)
6998 if ((mask
& (1 << write_reg
)) != 0)
7000 unsigned int read_reg
= num_to_shuffle
- 1;
7002 if (read_reg
!= write_reg
)
7004 ULONGEST rval
= displaced_read_reg (regs
, dsc
, read_reg
);
7005 displaced_write_reg (regs
, dsc
, write_reg
, rval
, LOAD_WRITE_PC
);
7006 if (debug_displaced
)
7007 fprintf_unfiltered (gdb_stdlog
, _("displaced: LDM: move "
7008 "loaded register r%d to r%d\n"), read_reg
,
7011 else if (debug_displaced
)
7012 fprintf_unfiltered (gdb_stdlog
, _("displaced: LDM: register "
7013 "r%d already in the right place\n"),
7016 clobbered
&= ~(1 << write_reg
);
7024 /* Restore any registers we scribbled over. */
7025 for (write_reg
= 0; clobbered
!= 0; write_reg
++)
7027 if ((clobbered
& (1 << write_reg
)) != 0)
7029 displaced_write_reg (regs
, dsc
, write_reg
, dsc
->tmp
[write_reg
],
7031 if (debug_displaced
)
7032 fprintf_unfiltered (gdb_stdlog
, _("displaced: LDM: restored "
7033 "clobbered register r%d\n"), write_reg
);
7034 clobbered
&= ~(1 << write_reg
);
7038 /* Perform register writeback manually. */
7039 if (dsc
->u
.block
.writeback
)
7041 ULONGEST new_rn_val
= dsc
->u
.block
.xfer_addr
;
7043 if (dsc
->u
.block
.increment
)
7044 new_rn_val
+= regs_loaded
* 4;
7046 new_rn_val
-= regs_loaded
* 4;
7048 displaced_write_reg (regs
, dsc
, dsc
->u
.block
.rn
, new_rn_val
,
7053 /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
7054 in user-level code (in particular exception return, ldm rn, {...pc}^). */
7057 arm_copy_block_xfer (struct gdbarch
*gdbarch
, uint32_t insn
,
7058 struct regcache
*regs
,
7059 struct displaced_step_closure
*dsc
)
7061 int load
= bit (insn
, 20);
7062 int user
= bit (insn
, 22);
7063 int increment
= bit (insn
, 23);
7064 int before
= bit (insn
, 24);
7065 int writeback
= bit (insn
, 21);
7066 int rn
= bits (insn
, 16, 19);
7068 /* Block transfers which don't mention PC can be run directly
7070 if (rn
!= ARM_PC_REGNUM
&& (insn
& 0x8000) == 0)
7071 return arm_copy_unmodified (gdbarch
, insn
, "ldm/stm", dsc
);
7073 if (rn
== ARM_PC_REGNUM
)
7075 warning (_("displaced: Unpredictable LDM or STM with "
7076 "base register r15"));
7077 return arm_copy_unmodified (gdbarch
, insn
, "unpredictable ldm/stm", dsc
);
7080 if (debug_displaced
)
7081 fprintf_unfiltered (gdb_stdlog
, "displaced: copying block transfer insn "
7082 "%.8lx\n", (unsigned long) insn
);
7084 dsc
->u
.block
.xfer_addr
= displaced_read_reg (regs
, dsc
, rn
);
7085 dsc
->u
.block
.rn
= rn
;
7087 dsc
->u
.block
.load
= load
;
7088 dsc
->u
.block
.user
= user
;
7089 dsc
->u
.block
.increment
= increment
;
7090 dsc
->u
.block
.before
= before
;
7091 dsc
->u
.block
.writeback
= writeback
;
7092 dsc
->u
.block
.cond
= bits (insn
, 28, 31);
7094 dsc
->u
.block
.regmask
= insn
& 0xffff;
7098 if ((insn
& 0xffff) == 0xffff)
7100 /* LDM with a fully-populated register list. This case is
7101 particularly tricky. Implement for now by fully emulating the
7102 instruction (which might not behave perfectly in all cases, but
7103 these instructions should be rare enough for that not to matter
7105 dsc
->modinsn
[0] = ARM_NOP
;
7107 dsc
->cleanup
= &cleanup_block_load_all
;
7111 /* LDM of a list of registers which includes PC. Implement by
7112 rewriting the list of registers to be transferred into a
7113 contiguous chunk r0...rX before doing the transfer, then shuffling
7114 registers into the correct places in the cleanup routine. */
7115 unsigned int regmask
= insn
& 0xffff;
7116 unsigned int num_in_list
= bitcount (regmask
), new_regmask
, bit
= 1;
7117 unsigned int to
= 0, from
= 0, i
, new_rn
;
7119 for (i
= 0; i
< num_in_list
; i
++)
7120 dsc
->tmp
[i
] = displaced_read_reg (regs
, dsc
, i
);
7122 /* Writeback makes things complicated. We need to avoid clobbering
7123 the base register with one of the registers in our modified
7124 register list, but just using a different register can't work in
7127 ldm r14!, {r0-r13,pc}
7129 which would need to be rewritten as:
7133 but that can't work, because there's no free register for N.
7135 Solve this by turning off the writeback bit, and emulating
7136 writeback manually in the cleanup routine. */
7141 new_regmask
= (1 << num_in_list
) - 1;
7143 if (debug_displaced
)
7144 fprintf_unfiltered (gdb_stdlog
, _("displaced: LDM r%d%s, "
7145 "{..., pc}: original reg list %.4x, modified "
7146 "list %.4x\n"), rn
, writeback
? "!" : "",
7147 (int) insn
& 0xffff, new_regmask
);
7149 dsc
->modinsn
[0] = (insn
& ~0xffff) | (new_regmask
& 0xffff);
7151 dsc
->cleanup
= &cleanup_block_load_pc
;
7156 /* STM of a list of registers which includes PC. Run the instruction
7157 as-is, but out of line: this will store the wrong value for the PC,
7158 so we must manually fix up the memory in the cleanup routine.
7159 Doing things this way has the advantage that we can auto-detect
7160 the offset of the PC write (which is architecture-dependent) in
7161 the cleanup routine. */
7162 dsc
->modinsn
[0] = insn
;
7164 dsc
->cleanup
= &cleanup_block_store_pc
;
7171 thumb2_copy_block_xfer (struct gdbarch
*gdbarch
, uint16_t insn1
, uint16_t insn2
,
7172 struct regcache
*regs
,
7173 struct displaced_step_closure
*dsc
)
7175 int rn
= bits (insn1
, 0, 3);
7176 int load
= bit (insn1
, 4);
7177 int writeback
= bit (insn1
, 5);
7179 /* Block transfers which don't mention PC can be run directly
7181 if (rn
!= ARM_PC_REGNUM
&& (insn2
& 0x8000) == 0)
7182 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
, "ldm/stm", dsc
);
7184 if (rn
== ARM_PC_REGNUM
)
7186 warning (_("displaced: Unpredictable LDM or STM with "
7187 "base register r15"));
7188 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
7189 "unpredictable ldm/stm", dsc
);
7192 if (debug_displaced
)
7193 fprintf_unfiltered (gdb_stdlog
, "displaced: copying block transfer insn "
7194 "%.4x%.4x\n", insn1
, insn2
);
7196 /* Clear bit 13, since it should be always zero. */
7197 dsc
->u
.block
.regmask
= (insn2
& 0xdfff);
7198 dsc
->u
.block
.rn
= rn
;
7200 dsc
->u
.block
.load
= load
;
7201 dsc
->u
.block
.user
= 0;
7202 dsc
->u
.block
.increment
= bit (insn1
, 7);
7203 dsc
->u
.block
.before
= bit (insn1
, 8);
7204 dsc
->u
.block
.writeback
= writeback
;
7205 dsc
->u
.block
.cond
= INST_AL
;
7206 dsc
->u
.block
.xfer_addr
= displaced_read_reg (regs
, dsc
, rn
);
7210 if (dsc
->u
.block
.regmask
== 0xffff)
7212 /* This branch is impossible to happen. */
7217 unsigned int regmask
= dsc
->u
.block
.regmask
;
7218 unsigned int num_in_list
= bitcount (regmask
), new_regmask
, bit
= 1;
7219 unsigned int to
= 0, from
= 0, i
, new_rn
;
7221 for (i
= 0; i
< num_in_list
; i
++)
7222 dsc
->tmp
[i
] = displaced_read_reg (regs
, dsc
, i
);
7227 new_regmask
= (1 << num_in_list
) - 1;
7229 if (debug_displaced
)
7230 fprintf_unfiltered (gdb_stdlog
, _("displaced: LDM r%d%s, "
7231 "{..., pc}: original reg list %.4x, modified "
7232 "list %.4x\n"), rn
, writeback
? "!" : "",
7233 (int) dsc
->u
.block
.regmask
, new_regmask
);
7235 dsc
->modinsn
[0] = insn1
;
7236 dsc
->modinsn
[1] = (new_regmask
& 0xffff);
7239 dsc
->cleanup
= &cleanup_block_load_pc
;
7244 dsc
->modinsn
[0] = insn1
;
7245 dsc
->modinsn
[1] = insn2
;
7247 dsc
->cleanup
= &cleanup_block_store_pc
;
7252 /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
7253 for Linux, where some SVC instructions must be treated specially. */
7256 cleanup_svc (struct gdbarch
*gdbarch
, struct regcache
*regs
,
7257 struct displaced_step_closure
*dsc
)
7259 CORE_ADDR resume_addr
= dsc
->insn_addr
+ dsc
->insn_size
;
7261 if (debug_displaced
)
7262 fprintf_unfiltered (gdb_stdlog
, "displaced: cleanup for svc, resume at "
7263 "%.8lx\n", (unsigned long) resume_addr
);
7265 displaced_write_reg (regs
, dsc
, ARM_PC_REGNUM
, resume_addr
, BRANCH_WRITE_PC
);
7269 /* Common copy routine for svc instruciton. */
7272 install_svc (struct gdbarch
*gdbarch
, struct regcache
*regs
,
7273 struct displaced_step_closure
*dsc
)
7275 /* Preparation: none.
7276 Insn: unmodified svc.
7277 Cleanup: pc <- insn_addr + insn_size. */
7279 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
7281 dsc
->wrote_to_pc
= 1;
7283 /* Allow OS-specific code to override SVC handling. */
7284 if (dsc
->u
.svc
.copy_svc_os
)
7285 return dsc
->u
.svc
.copy_svc_os (gdbarch
, regs
, dsc
);
7288 dsc
->cleanup
= &cleanup_svc
;
7294 arm_copy_svc (struct gdbarch
*gdbarch
, uint32_t insn
,
7295 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
7298 if (debug_displaced
)
7299 fprintf_unfiltered (gdb_stdlog
, "displaced: copying svc insn %.8lx\n",
7300 (unsigned long) insn
);
7302 dsc
->modinsn
[0] = insn
;
7304 return install_svc (gdbarch
, regs
, dsc
);
7308 thumb_copy_svc (struct gdbarch
*gdbarch
, uint16_t insn
,
7309 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
7312 if (debug_displaced
)
7313 fprintf_unfiltered (gdb_stdlog
, "displaced: copying svc insn %.4x\n",
7316 dsc
->modinsn
[0] = insn
;
7318 return install_svc (gdbarch
, regs
, dsc
);
7321 /* Copy undefined instructions. */
7324 arm_copy_undef (struct gdbarch
*gdbarch
, uint32_t insn
,
7325 struct displaced_step_closure
*dsc
)
7327 if (debug_displaced
)
7328 fprintf_unfiltered (gdb_stdlog
,
7329 "displaced: copying undefined insn %.8lx\n",
7330 (unsigned long) insn
);
7332 dsc
->modinsn
[0] = insn
;
7338 thumb_32bit_copy_undef (struct gdbarch
*gdbarch
, uint16_t insn1
, uint16_t insn2
,
7339 struct displaced_step_closure
*dsc
)
7342 if (debug_displaced
)
7343 fprintf_unfiltered (gdb_stdlog
, "displaced: copying undefined insn "
7344 "%.4x %.4x\n", (unsigned short) insn1
,
7345 (unsigned short) insn2
);
7347 dsc
->modinsn
[0] = insn1
;
7348 dsc
->modinsn
[1] = insn2
;
7354 /* Copy unpredictable instructions. */
7357 arm_copy_unpred (struct gdbarch
*gdbarch
, uint32_t insn
,
7358 struct displaced_step_closure
*dsc
)
7360 if (debug_displaced
)
7361 fprintf_unfiltered (gdb_stdlog
, "displaced: copying unpredictable insn "
7362 "%.8lx\n", (unsigned long) insn
);
7364 dsc
->modinsn
[0] = insn
;
7369 /* The decode_* functions are instruction decoding helpers. They mostly follow
7370 the presentation in the ARM ARM. */
7373 arm_decode_misc_memhint_neon (struct gdbarch
*gdbarch
, uint32_t insn
,
7374 struct regcache
*regs
,
7375 struct displaced_step_closure
*dsc
)
7377 unsigned int op1
= bits (insn
, 20, 26), op2
= bits (insn
, 4, 7);
7378 unsigned int rn
= bits (insn
, 16, 19);
7380 if (op1
== 0x10 && (op2
& 0x2) == 0x0 && (rn
& 0xe) == 0x0)
7381 return arm_copy_unmodified (gdbarch
, insn
, "cps", dsc
);
7382 else if (op1
== 0x10 && op2
== 0x0 && (rn
& 0xe) == 0x1)
7383 return arm_copy_unmodified (gdbarch
, insn
, "setend", dsc
);
7384 else if ((op1
& 0x60) == 0x20)
7385 return arm_copy_unmodified (gdbarch
, insn
, "neon dataproc", dsc
);
7386 else if ((op1
& 0x71) == 0x40)
7387 return arm_copy_unmodified (gdbarch
, insn
, "neon elt/struct load/store",
7389 else if ((op1
& 0x77) == 0x41)
7390 return arm_copy_unmodified (gdbarch
, insn
, "unallocated mem hint", dsc
);
7391 else if ((op1
& 0x77) == 0x45)
7392 return arm_copy_preload (gdbarch
, insn
, regs
, dsc
); /* pli. */
7393 else if ((op1
& 0x77) == 0x51)
7396 return arm_copy_preload (gdbarch
, insn
, regs
, dsc
); /* pld/pldw. */
7398 return arm_copy_unpred (gdbarch
, insn
, dsc
);
7400 else if ((op1
& 0x77) == 0x55)
7401 return arm_copy_preload (gdbarch
, insn
, regs
, dsc
); /* pld/pldw. */
7402 else if (op1
== 0x57)
7405 case 0x1: return arm_copy_unmodified (gdbarch
, insn
, "clrex", dsc
);
7406 case 0x4: return arm_copy_unmodified (gdbarch
, insn
, "dsb", dsc
);
7407 case 0x5: return arm_copy_unmodified (gdbarch
, insn
, "dmb", dsc
);
7408 case 0x6: return arm_copy_unmodified (gdbarch
, insn
, "isb", dsc
);
7409 default: return arm_copy_unpred (gdbarch
, insn
, dsc
);
7411 else if ((op1
& 0x63) == 0x43)
7412 return arm_copy_unpred (gdbarch
, insn
, dsc
);
7413 else if ((op2
& 0x1) == 0x0)
7414 switch (op1
& ~0x80)
7417 return arm_copy_unmodified (gdbarch
, insn
, "unallocated mem hint", dsc
);
7419 return arm_copy_preload_reg (gdbarch
, insn
, regs
, dsc
); /* pli reg. */
7420 case 0x71: case 0x75:
7422 return arm_copy_preload_reg (gdbarch
, insn
, regs
, dsc
);
7423 case 0x63: case 0x67: case 0x73: case 0x77:
7424 return arm_copy_unpred (gdbarch
, insn
, dsc
);
7426 return arm_copy_undef (gdbarch
, insn
, dsc
);
7429 return arm_copy_undef (gdbarch
, insn
, dsc
); /* Probably unreachable. */
7433 arm_decode_unconditional (struct gdbarch
*gdbarch
, uint32_t insn
,
7434 struct regcache
*regs
,
7435 struct displaced_step_closure
*dsc
)
7437 if (bit (insn
, 27) == 0)
7438 return arm_decode_misc_memhint_neon (gdbarch
, insn
, regs
, dsc
);
7439 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
7440 else switch (((insn
& 0x7000000) >> 23) | ((insn
& 0x100000) >> 20))
7443 return arm_copy_unmodified (gdbarch
, insn
, "srs", dsc
);
7446 return arm_copy_unmodified (gdbarch
, insn
, "rfe", dsc
);
7448 case 0x4: case 0x5: case 0x6: case 0x7:
7449 return arm_copy_b_bl_blx (gdbarch
, insn
, regs
, dsc
);
7452 switch ((insn
& 0xe00000) >> 21)
7454 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
7456 return arm_copy_copro_load_store (gdbarch
, insn
, regs
, dsc
);
7459 return arm_copy_unmodified (gdbarch
, insn
, "mcrr/mcrr2", dsc
);
7462 return arm_copy_undef (gdbarch
, insn
, dsc
);
7467 int rn_f
= (bits (insn
, 16, 19) == 0xf);
7468 switch ((insn
& 0xe00000) >> 21)
7471 /* ldc/ldc2 imm (undefined for rn == pc). */
7472 return rn_f
? arm_copy_undef (gdbarch
, insn
, dsc
)
7473 : arm_copy_copro_load_store (gdbarch
, insn
, regs
, dsc
);
7476 return arm_copy_unmodified (gdbarch
, insn
, "mrrc/mrrc2", dsc
);
7478 case 0x4: case 0x5: case 0x6: case 0x7:
7479 /* ldc/ldc2 lit (undefined for rn != pc). */
7480 return rn_f
? arm_copy_copro_load_store (gdbarch
, insn
, regs
, dsc
)
7481 : arm_copy_undef (gdbarch
, insn
, dsc
);
7484 return arm_copy_undef (gdbarch
, insn
, dsc
);
7489 return arm_copy_unmodified (gdbarch
, insn
, "stc/stc2", dsc
);
7492 if (bits (insn
, 16, 19) == 0xf)
7494 return arm_copy_copro_load_store (gdbarch
, insn
, regs
, dsc
);
7496 return arm_copy_undef (gdbarch
, insn
, dsc
);
7500 return arm_copy_unmodified (gdbarch
, insn
, "mcr/mcr2", dsc
);
7502 return arm_copy_unmodified (gdbarch
, insn
, "cdp/cdp2", dsc
);
7506 return arm_copy_unmodified (gdbarch
, insn
, "mrc/mrc2", dsc
);
7508 return arm_copy_unmodified (gdbarch
, insn
, "cdp/cdp2", dsc
);
7511 return arm_copy_undef (gdbarch
, insn
, dsc
);
7515 /* Decode miscellaneous instructions in dp/misc encoding space. */
7518 arm_decode_miscellaneous (struct gdbarch
*gdbarch
, uint32_t insn
,
7519 struct regcache
*regs
,
7520 struct displaced_step_closure
*dsc
)
7522 unsigned int op2
= bits (insn
, 4, 6);
7523 unsigned int op
= bits (insn
, 21, 22);
7524 unsigned int op1
= bits (insn
, 16, 19);
7529 return arm_copy_unmodified (gdbarch
, insn
, "mrs/msr", dsc
);
7532 if (op
== 0x1) /* bx. */
7533 return arm_copy_bx_blx_reg (gdbarch
, insn
, regs
, dsc
);
7535 return arm_copy_unmodified (gdbarch
, insn
, "clz", dsc
);
7537 return arm_copy_undef (gdbarch
, insn
, dsc
);
7541 /* Not really supported. */
7542 return arm_copy_unmodified (gdbarch
, insn
, "bxj", dsc
);
7544 return arm_copy_undef (gdbarch
, insn
, dsc
);
7548 return arm_copy_bx_blx_reg (gdbarch
, insn
,
7549 regs
, dsc
); /* blx register. */
7551 return arm_copy_undef (gdbarch
, insn
, dsc
);
7554 return arm_copy_unmodified (gdbarch
, insn
, "saturating add/sub", dsc
);
7558 return arm_copy_unmodified (gdbarch
, insn
, "bkpt", dsc
);
7560 /* Not really supported. */
7561 return arm_copy_unmodified (gdbarch
, insn
, "smc", dsc
);
7564 return arm_copy_undef (gdbarch
, insn
, dsc
);
7569 arm_decode_dp_misc (struct gdbarch
*gdbarch
, uint32_t insn
,
7570 struct regcache
*regs
,
7571 struct displaced_step_closure
*dsc
)
7574 switch (bits (insn
, 20, 24))
7577 return arm_copy_unmodified (gdbarch
, insn
, "movw", dsc
);
7580 return arm_copy_unmodified (gdbarch
, insn
, "movt", dsc
);
7582 case 0x12: case 0x16:
7583 return arm_copy_unmodified (gdbarch
, insn
, "msr imm", dsc
);
7586 return arm_copy_alu_imm (gdbarch
, insn
, regs
, dsc
);
7590 uint32_t op1
= bits (insn
, 20, 24), op2
= bits (insn
, 4, 7);
7592 if ((op1
& 0x19) != 0x10 && (op2
& 0x1) == 0x0)
7593 return arm_copy_alu_reg (gdbarch
, insn
, regs
, dsc
);
7594 else if ((op1
& 0x19) != 0x10 && (op2
& 0x9) == 0x1)
7595 return arm_copy_alu_shifted_reg (gdbarch
, insn
, regs
, dsc
);
7596 else if ((op1
& 0x19) == 0x10 && (op2
& 0x8) == 0x0)
7597 return arm_decode_miscellaneous (gdbarch
, insn
, regs
, dsc
);
7598 else if ((op1
& 0x19) == 0x10 && (op2
& 0x9) == 0x8)
7599 return arm_copy_unmodified (gdbarch
, insn
, "halfword mul/mla", dsc
);
7600 else if ((op1
& 0x10) == 0x00 && op2
== 0x9)
7601 return arm_copy_unmodified (gdbarch
, insn
, "mul/mla", dsc
);
7602 else if ((op1
& 0x10) == 0x10 && op2
== 0x9)
7603 return arm_copy_unmodified (gdbarch
, insn
, "synch", dsc
);
7604 else if (op2
== 0xb || (op2
& 0xd) == 0xd)
7605 /* 2nd arg means "unpriveleged". */
7606 return arm_copy_extra_ld_st (gdbarch
, insn
, (op1
& 0x12) == 0x02, regs
,
7610 /* Should be unreachable. */
7615 arm_decode_ld_st_word_ubyte (struct gdbarch
*gdbarch
, uint32_t insn
,
7616 struct regcache
*regs
,
7617 struct displaced_step_closure
*dsc
)
7619 int a
= bit (insn
, 25), b
= bit (insn
, 4);
7620 uint32_t op1
= bits (insn
, 20, 24);
7621 int rn_f
= bits (insn
, 16, 19) == 0xf;
7623 if ((!a
&& (op1
& 0x05) == 0x00 && (op1
& 0x17) != 0x02)
7624 || (a
&& (op1
& 0x05) == 0x00 && (op1
& 0x17) != 0x02 && !b
))
7625 return arm_copy_ldr_str_ldrb_strb (gdbarch
, insn
, regs
, dsc
, 0, 4, 0);
7626 else if ((!a
&& (op1
& 0x17) == 0x02)
7627 || (a
&& (op1
& 0x17) == 0x02 && !b
))
7628 return arm_copy_ldr_str_ldrb_strb (gdbarch
, insn
, regs
, dsc
, 0, 4, 1);
7629 else if ((!a
&& (op1
& 0x05) == 0x01 && (op1
& 0x17) != 0x03)
7630 || (a
&& (op1
& 0x05) == 0x01 && (op1
& 0x17) != 0x03 && !b
))
7631 return arm_copy_ldr_str_ldrb_strb (gdbarch
, insn
, regs
, dsc
, 1, 4, 0);
7632 else if ((!a
&& (op1
& 0x17) == 0x03)
7633 || (a
&& (op1
& 0x17) == 0x03 && !b
))
7634 return arm_copy_ldr_str_ldrb_strb (gdbarch
, insn
, regs
, dsc
, 1, 4, 1);
7635 else if ((!a
&& (op1
& 0x05) == 0x04 && (op1
& 0x17) != 0x06)
7636 || (a
&& (op1
& 0x05) == 0x04 && (op1
& 0x17) != 0x06 && !b
))
7637 return arm_copy_ldr_str_ldrb_strb (gdbarch
, insn
, regs
, dsc
, 0, 1, 0);
7638 else if ((!a
&& (op1
& 0x17) == 0x06)
7639 || (a
&& (op1
& 0x17) == 0x06 && !b
))
7640 return arm_copy_ldr_str_ldrb_strb (gdbarch
, insn
, regs
, dsc
, 0, 1, 1);
7641 else if ((!a
&& (op1
& 0x05) == 0x05 && (op1
& 0x17) != 0x07)
7642 || (a
&& (op1
& 0x05) == 0x05 && (op1
& 0x17) != 0x07 && !b
))
7643 return arm_copy_ldr_str_ldrb_strb (gdbarch
, insn
, regs
, dsc
, 1, 1, 0);
7644 else if ((!a
&& (op1
& 0x17) == 0x07)
7645 || (a
&& (op1
& 0x17) == 0x07 && !b
))
7646 return arm_copy_ldr_str_ldrb_strb (gdbarch
, insn
, regs
, dsc
, 1, 1, 1);
7648 /* Should be unreachable. */
7653 arm_decode_media (struct gdbarch
*gdbarch
, uint32_t insn
,
7654 struct displaced_step_closure
*dsc
)
7656 switch (bits (insn
, 20, 24))
7658 case 0x00: case 0x01: case 0x02: case 0x03:
7659 return arm_copy_unmodified (gdbarch
, insn
, "parallel add/sub signed", dsc
);
7661 case 0x04: case 0x05: case 0x06: case 0x07:
7662 return arm_copy_unmodified (gdbarch
, insn
, "parallel add/sub unsigned", dsc
);
7664 case 0x08: case 0x09: case 0x0a: case 0x0b:
7665 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
7666 return arm_copy_unmodified (gdbarch
, insn
,
7667 "decode/pack/unpack/saturate/reverse", dsc
);
7670 if (bits (insn
, 5, 7) == 0) /* op2. */
7672 if (bits (insn
, 12, 15) == 0xf)
7673 return arm_copy_unmodified (gdbarch
, insn
, "usad8", dsc
);
7675 return arm_copy_unmodified (gdbarch
, insn
, "usada8", dsc
);
7678 return arm_copy_undef (gdbarch
, insn
, dsc
);
7680 case 0x1a: case 0x1b:
7681 if (bits (insn
, 5, 6) == 0x2) /* op2[1:0]. */
7682 return arm_copy_unmodified (gdbarch
, insn
, "sbfx", dsc
);
7684 return arm_copy_undef (gdbarch
, insn
, dsc
);
7686 case 0x1c: case 0x1d:
7687 if (bits (insn
, 5, 6) == 0x0) /* op2[1:0]. */
7689 if (bits (insn
, 0, 3) == 0xf)
7690 return arm_copy_unmodified (gdbarch
, insn
, "bfc", dsc
);
7692 return arm_copy_unmodified (gdbarch
, insn
, "bfi", dsc
);
7695 return arm_copy_undef (gdbarch
, insn
, dsc
);
7697 case 0x1e: case 0x1f:
7698 if (bits (insn
, 5, 6) == 0x2) /* op2[1:0]. */
7699 return arm_copy_unmodified (gdbarch
, insn
, "ubfx", dsc
);
7701 return arm_copy_undef (gdbarch
, insn
, dsc
);
7704 /* Should be unreachable. */
7709 arm_decode_b_bl_ldmstm (struct gdbarch
*gdbarch
, int32_t insn
,
7710 struct regcache
*regs
,
7711 struct displaced_step_closure
*dsc
)
7714 return arm_copy_b_bl_blx (gdbarch
, insn
, regs
, dsc
);
7716 return arm_copy_block_xfer (gdbarch
, insn
, regs
, dsc
);
7720 arm_decode_ext_reg_ld_st (struct gdbarch
*gdbarch
, uint32_t insn
,
7721 struct regcache
*regs
,
7722 struct displaced_step_closure
*dsc
)
7724 unsigned int opcode
= bits (insn
, 20, 24);
7728 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
7729 return arm_copy_unmodified (gdbarch
, insn
, "vfp/neon mrrc/mcrr", dsc
);
7731 case 0x08: case 0x0a: case 0x0c: case 0x0e:
7732 case 0x12: case 0x16:
7733 return arm_copy_unmodified (gdbarch
, insn
, "vfp/neon vstm/vpush", dsc
);
7735 case 0x09: case 0x0b: case 0x0d: case 0x0f:
7736 case 0x13: case 0x17:
7737 return arm_copy_unmodified (gdbarch
, insn
, "vfp/neon vldm/vpop", dsc
);
7739 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
7740 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
7741 /* Note: no writeback for these instructions. Bit 25 will always be
7742 zero though (via caller), so the following works OK. */
7743 return arm_copy_copro_load_store (gdbarch
, insn
, regs
, dsc
);
7746 /* Should be unreachable. */
7750 /* Decode shifted register instructions. */
7753 thumb2_decode_dp_shift_reg (struct gdbarch
*gdbarch
, uint16_t insn1
,
7754 uint16_t insn2
, struct regcache
*regs
,
7755 struct displaced_step_closure
*dsc
)
7757 /* PC is only allowed to be used in instruction MOV. */
7759 unsigned int op
= bits (insn1
, 5, 8);
7760 unsigned int rn
= bits (insn1
, 0, 3);
7762 if (op
== 0x2 && rn
== 0xf) /* MOV */
7763 return thumb2_copy_alu_imm (gdbarch
, insn1
, insn2
, regs
, dsc
);
7765 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
7766 "dp (shift reg)", dsc
);
7770 /* Decode extension register load/store. Exactly the same as
7771 arm_decode_ext_reg_ld_st. */
7774 thumb2_decode_ext_reg_ld_st (struct gdbarch
*gdbarch
, uint16_t insn1
,
7775 uint16_t insn2
, struct regcache
*regs
,
7776 struct displaced_step_closure
*dsc
)
7778 unsigned int opcode
= bits (insn1
, 4, 8);
7782 case 0x04: case 0x05:
7783 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
7784 "vfp/neon vmov", dsc
);
7786 case 0x08: case 0x0c: /* 01x00 */
7787 case 0x0a: case 0x0e: /* 01x10 */
7788 case 0x12: case 0x16: /* 10x10 */
7789 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
7790 "vfp/neon vstm/vpush", dsc
);
7792 case 0x09: case 0x0d: /* 01x01 */
7793 case 0x0b: case 0x0f: /* 01x11 */
7794 case 0x13: case 0x17: /* 10x11 */
7795 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
7796 "vfp/neon vldm/vpop", dsc
);
7798 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
7799 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
7801 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
7802 return thumb2_copy_copro_load_store (gdbarch
, insn1
, insn2
, regs
, dsc
);
7805 /* Should be unreachable. */
7810 arm_decode_svc_copro (struct gdbarch
*gdbarch
, uint32_t insn
, CORE_ADDR to
,
7811 struct regcache
*regs
, struct displaced_step_closure
*dsc
)
7813 unsigned int op1
= bits (insn
, 20, 25);
7814 int op
= bit (insn
, 4);
7815 unsigned int coproc
= bits (insn
, 8, 11);
7816 unsigned int rn
= bits (insn
, 16, 19);
7818 if ((op1
& 0x20) == 0x00 && (op1
& 0x3a) != 0x00 && (coproc
& 0xe) == 0xa)
7819 return arm_decode_ext_reg_ld_st (gdbarch
, insn
, regs
, dsc
);
7820 else if ((op1
& 0x21) == 0x00 && (op1
& 0x3a) != 0x00
7821 && (coproc
& 0xe) != 0xa)
7823 return arm_copy_copro_load_store (gdbarch
, insn
, regs
, dsc
);
7824 else if ((op1
& 0x21) == 0x01 && (op1
& 0x3a) != 0x00
7825 && (coproc
& 0xe) != 0xa)
7826 /* ldc/ldc2 imm/lit. */
7827 return arm_copy_copro_load_store (gdbarch
, insn
, regs
, dsc
);
7828 else if ((op1
& 0x3e) == 0x00)
7829 return arm_copy_undef (gdbarch
, insn
, dsc
);
7830 else if ((op1
& 0x3e) == 0x04 && (coproc
& 0xe) == 0xa)
7831 return arm_copy_unmodified (gdbarch
, insn
, "neon 64bit xfer", dsc
);
7832 else if (op1
== 0x04 && (coproc
& 0xe) != 0xa)
7833 return arm_copy_unmodified (gdbarch
, insn
, "mcrr/mcrr2", dsc
);
7834 else if (op1
== 0x05 && (coproc
& 0xe) != 0xa)
7835 return arm_copy_unmodified (gdbarch
, insn
, "mrrc/mrrc2", dsc
);
7836 else if ((op1
& 0x30) == 0x20 && !op
)
7838 if ((coproc
& 0xe) == 0xa)
7839 return arm_copy_unmodified (gdbarch
, insn
, "vfp dataproc", dsc
);
7841 return arm_copy_unmodified (gdbarch
, insn
, "cdp/cdp2", dsc
);
7843 else if ((op1
& 0x30) == 0x20 && op
)
7844 return arm_copy_unmodified (gdbarch
, insn
, "neon 8/16/32 bit xfer", dsc
);
7845 else if ((op1
& 0x31) == 0x20 && op
&& (coproc
& 0xe) != 0xa)
7846 return arm_copy_unmodified (gdbarch
, insn
, "mcr/mcr2", dsc
);
7847 else if ((op1
& 0x31) == 0x21 && op
&& (coproc
& 0xe) != 0xa)
7848 return arm_copy_unmodified (gdbarch
, insn
, "mrc/mrc2", dsc
);
7849 else if ((op1
& 0x30) == 0x30)
7850 return arm_copy_svc (gdbarch
, insn
, regs
, dsc
);
7852 return arm_copy_undef (gdbarch
, insn
, dsc
); /* Possibly unreachable. */
7856 thumb2_decode_svc_copro (struct gdbarch
*gdbarch
, uint16_t insn1
,
7857 uint16_t insn2
, struct regcache
*regs
,
7858 struct displaced_step_closure
*dsc
)
7860 unsigned int coproc
= bits (insn2
, 8, 11);
7861 unsigned int op1
= bits (insn1
, 4, 9);
7862 unsigned int bit_5_8
= bits (insn1
, 5, 8);
7863 unsigned int bit_9
= bit (insn1
, 9);
7864 unsigned int bit_4
= bit (insn1
, 4);
7865 unsigned int rn
= bits (insn1
, 0, 3);
7870 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
7871 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
7873 else if (bit_5_8
== 0) /* UNDEFINED. */
7874 return thumb_32bit_copy_undef (gdbarch
, insn1
, insn2
, dsc
);
7877 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
7878 if ((coproc
& 0xe) == 0xa)
7879 return thumb2_decode_ext_reg_ld_st (gdbarch
, insn1
, insn2
, regs
,
7881 else /* coproc is not 101x. */
7883 if (bit_4
== 0) /* STC/STC2. */
7884 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
7886 else /* LDC/LDC2 {literal, immeidate}. */
7887 return thumb2_copy_copro_load_store (gdbarch
, insn1
, insn2
,
7893 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
, "coproc", dsc
);
7899 install_pc_relative (struct gdbarch
*gdbarch
, struct regcache
*regs
,
7900 struct displaced_step_closure
*dsc
, int rd
)
7906 Preparation: Rd <- PC
7912 int val
= displaced_read_reg (regs
, dsc
, ARM_PC_REGNUM
);
7913 displaced_write_reg (regs
, dsc
, rd
, val
, CANNOT_WRITE_PC
);
7917 thumb_copy_pc_relative_16bit (struct gdbarch
*gdbarch
, struct regcache
*regs
,
7918 struct displaced_step_closure
*dsc
,
7919 int rd
, unsigned int imm
)
7922 /* Encoding T2: ADDS Rd, #imm */
7923 dsc
->modinsn
[0] = (0x3000 | (rd
<< 8) | imm
);
7925 install_pc_relative (gdbarch
, regs
, dsc
, rd
);
7931 thumb_decode_pc_relative_16bit (struct gdbarch
*gdbarch
, uint16_t insn
,
7932 struct regcache
*regs
,
7933 struct displaced_step_closure
*dsc
)
7935 unsigned int rd
= bits (insn
, 8, 10);
7936 unsigned int imm8
= bits (insn
, 0, 7);
7938 if (debug_displaced
)
7939 fprintf_unfiltered (gdb_stdlog
,
7940 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7943 return thumb_copy_pc_relative_16bit (gdbarch
, regs
, dsc
, rd
, imm8
);
7947 thumb_copy_pc_relative_32bit (struct gdbarch
*gdbarch
, uint16_t insn1
,
7948 uint16_t insn2
, struct regcache
*regs
,
7949 struct displaced_step_closure
*dsc
)
7951 unsigned int rd
= bits (insn2
, 8, 11);
7952 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7953 extract raw immediate encoding rather than computing immediate. When
7954 generating ADD or SUB instruction, we can simply perform OR operation to
7955 set immediate into ADD. */
7956 unsigned int imm_3_8
= insn2
& 0x70ff;
7957 unsigned int imm_i
= insn1
& 0x0400; /* Clear all bits except bit 10. */
7959 if (debug_displaced
)
7960 fprintf_unfiltered (gdb_stdlog
,
7961 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7962 rd
, imm_i
, imm_3_8
, insn1
, insn2
);
7964 if (bit (insn1
, 7)) /* Encoding T2 */
7966 /* Encoding T3: SUB Rd, Rd, #imm */
7967 dsc
->modinsn
[0] = (0xf1a0 | rd
| imm_i
);
7968 dsc
->modinsn
[1] = ((rd
<< 8) | imm_3_8
);
7970 else /* Encoding T3 */
7972 /* Encoding T3: ADD Rd, Rd, #imm */
7973 dsc
->modinsn
[0] = (0xf100 | rd
| imm_i
);
7974 dsc
->modinsn
[1] = ((rd
<< 8) | imm_3_8
);
7978 install_pc_relative (gdbarch
, regs
, dsc
, rd
);
7984 thumb_copy_16bit_ldr_literal (struct gdbarch
*gdbarch
, unsigned short insn1
,
7985 struct regcache
*regs
,
7986 struct displaced_step_closure
*dsc
)
7988 unsigned int rt
= bits (insn1
, 8, 10);
7990 int imm8
= (bits (insn1
, 0, 7) << 2);
7991 CORE_ADDR from
= dsc
->insn_addr
;
7997 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7999 Insn: LDR R0, [R2, R3];
8000 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
8002 if (debug_displaced
)
8003 fprintf_unfiltered (gdb_stdlog
,
8004 "displaced: copying thumb ldr r%d [pc #%d]\n"
8007 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 0);
8008 dsc
->tmp
[2] = displaced_read_reg (regs
, dsc
, 2);
8009 dsc
->tmp
[3] = displaced_read_reg (regs
, dsc
, 3);
8010 pc
= displaced_read_reg (regs
, dsc
, ARM_PC_REGNUM
);
8011 /* The assembler calculates the required value of the offset from the
8012 Align(PC,4) value of this instruction to the label. */
8013 pc
= pc
& 0xfffffffc;
8015 displaced_write_reg (regs
, dsc
, 2, pc
, CANNOT_WRITE_PC
);
8016 displaced_write_reg (regs
, dsc
, 3, imm8
, CANNOT_WRITE_PC
);
8019 dsc
->u
.ldst
.xfersize
= 4;
8021 dsc
->u
.ldst
.immed
= 0;
8022 dsc
->u
.ldst
.writeback
= 0;
8023 dsc
->u
.ldst
.restore_r4
= 0;
8025 dsc
->modinsn
[0] = 0x58d0; /* ldr r0, [r2, r3]*/
8027 dsc
->cleanup
= &cleanup_load
;
8032 /* Copy Thumb cbnz/cbz insruction. */
8035 thumb_copy_cbnz_cbz (struct gdbarch
*gdbarch
, uint16_t insn1
,
8036 struct regcache
*regs
,
8037 struct displaced_step_closure
*dsc
)
8039 int non_zero
= bit (insn1
, 11);
8040 unsigned int imm5
= (bit (insn1
, 9) << 6) | (bits (insn1
, 3, 7) << 1);
8041 CORE_ADDR from
= dsc
->insn_addr
;
8042 int rn
= bits (insn1
, 0, 2);
8043 int rn_val
= displaced_read_reg (regs
, dsc
, rn
);
8045 dsc
->u
.branch
.cond
= (rn_val
&& non_zero
) || (!rn_val
&& !non_zero
);
8046 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
8047 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
8048 condition is false, let it be, cleanup_branch will do nothing. */
8049 if (dsc
->u
.branch
.cond
)
8051 dsc
->u
.branch
.cond
= INST_AL
;
8052 dsc
->u
.branch
.dest
= from
+ 4 + imm5
;
8055 dsc
->u
.branch
.dest
= from
+ 2;
8057 dsc
->u
.branch
.link
= 0;
8058 dsc
->u
.branch
.exchange
= 0;
8060 if (debug_displaced
)
8061 fprintf_unfiltered (gdb_stdlog
, "displaced: copying %s [r%d = 0x%x]"
8062 " insn %.4x to %.8lx\n", non_zero
? "cbnz" : "cbz",
8063 rn
, rn_val
, insn1
, dsc
->u
.branch
.dest
);
8065 dsc
->modinsn
[0] = THUMB_NOP
;
8067 dsc
->cleanup
= &cleanup_branch
;
8071 /* Copy Table Branch Byte/Halfword */
8073 thumb2_copy_table_branch (struct gdbarch
*gdbarch
, uint16_t insn1
,
8074 uint16_t insn2
, struct regcache
*regs
,
8075 struct displaced_step_closure
*dsc
)
8077 ULONGEST rn_val
, rm_val
;
8078 int is_tbh
= bit (insn2
, 4);
8079 CORE_ADDR halfwords
= 0;
8080 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
8082 rn_val
= displaced_read_reg (regs
, dsc
, bits (insn1
, 0, 3));
8083 rm_val
= displaced_read_reg (regs
, dsc
, bits (insn2
, 0, 3));
8089 target_read_memory (rn_val
+ 2 * rm_val
, buf
, 2);
8090 halfwords
= extract_unsigned_integer (buf
, 2, byte_order
);
8096 target_read_memory (rn_val
+ rm_val
, buf
, 1);
8097 halfwords
= extract_unsigned_integer (buf
, 1, byte_order
);
8100 if (debug_displaced
)
8101 fprintf_unfiltered (gdb_stdlog
, "displaced: %s base 0x%x offset 0x%x"
8102 " offset 0x%x\n", is_tbh
? "tbh" : "tbb",
8103 (unsigned int) rn_val
, (unsigned int) rm_val
,
8104 (unsigned int) halfwords
);
8106 dsc
->u
.branch
.cond
= INST_AL
;
8107 dsc
->u
.branch
.link
= 0;
8108 dsc
->u
.branch
.exchange
= 0;
8109 dsc
->u
.branch
.dest
= dsc
->insn_addr
+ 4 + 2 * halfwords
;
8111 dsc
->cleanup
= &cleanup_branch
;
8117 cleanup_pop_pc_16bit_all (struct gdbarch
*gdbarch
, struct regcache
*regs
,
8118 struct displaced_step_closure
*dsc
)
8121 int val
= displaced_read_reg (regs
, dsc
, 7);
8122 displaced_write_reg (regs
, dsc
, ARM_PC_REGNUM
, val
, BX_WRITE_PC
);
8125 val
= displaced_read_reg (regs
, dsc
, 8);
8126 displaced_write_reg (regs
, dsc
, 7, val
, CANNOT_WRITE_PC
);
8129 displaced_write_reg (regs
, dsc
, 8, dsc
->tmp
[0], CANNOT_WRITE_PC
);
8134 thumb_copy_pop_pc_16bit (struct gdbarch
*gdbarch
, unsigned short insn1
,
8135 struct regcache
*regs
,
8136 struct displaced_step_closure
*dsc
)
8138 dsc
->u
.block
.regmask
= insn1
& 0x00ff;
8140 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
8143 (1) register list is full, that is, r0-r7 are used.
8144 Prepare: tmp[0] <- r8
8146 POP {r0, r1, ...., r6, r7}; remove PC from reglist
8147 MOV r8, r7; Move value of r7 to r8;
8148 POP {r7}; Store PC value into r7.
8150 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
8152 (2) register list is not full, supposing there are N registers in
8153 register list (except PC, 0 <= N <= 7).
8154 Prepare: for each i, 0 - N, tmp[i] <- ri.
8156 POP {r0, r1, ...., rN};
8158 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
8159 from tmp[] properly.
8161 if (debug_displaced
)
8162 fprintf_unfiltered (gdb_stdlog
,
8163 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
8164 dsc
->u
.block
.regmask
, insn1
);
8166 if (dsc
->u
.block
.regmask
== 0xff)
8168 dsc
->tmp
[0] = displaced_read_reg (regs
, dsc
, 8);
8170 dsc
->modinsn
[0] = (insn1
& 0xfeff); /* POP {r0,r1,...,r6, r7} */
8171 dsc
->modinsn
[1] = 0x46b8; /* MOV r8, r7 */
8172 dsc
->modinsn
[2] = 0xbc80; /* POP {r7} */
8175 dsc
->cleanup
= &cleanup_pop_pc_16bit_all
;
8179 unsigned int num_in_list
= bitcount (dsc
->u
.block
.regmask
);
8180 unsigned int new_regmask
, bit
= 1;
8181 unsigned int to
= 0, from
= 0, i
, new_rn
;
8183 for (i
= 0; i
< num_in_list
+ 1; i
++)
8184 dsc
->tmp
[i
] = displaced_read_reg (regs
, dsc
, i
);
8186 new_regmask
= (1 << (num_in_list
+ 1)) - 1;
8188 if (debug_displaced
)
8189 fprintf_unfiltered (gdb_stdlog
, _("displaced: POP "
8190 "{..., pc}: original reg list %.4x,"
8191 " modified list %.4x\n"),
8192 (int) dsc
->u
.block
.regmask
, new_regmask
);
8194 dsc
->u
.block
.regmask
|= 0x8000;
8195 dsc
->u
.block
.writeback
= 0;
8196 dsc
->u
.block
.cond
= INST_AL
;
8198 dsc
->modinsn
[0] = (insn1
& ~0x1ff) | (new_regmask
& 0xff);
8200 dsc
->cleanup
= &cleanup_block_load_pc
;
8207 thumb_process_displaced_16bit_insn (struct gdbarch
*gdbarch
, uint16_t insn1
,
8208 struct regcache
*regs
,
8209 struct displaced_step_closure
*dsc
)
8211 unsigned short op_bit_12_15
= bits (insn1
, 12, 15);
8212 unsigned short op_bit_10_11
= bits (insn1
, 10, 11);
8215 /* 16-bit thumb instructions. */
8216 switch (op_bit_12_15
)
8218 /* Shift (imme), add, subtract, move and compare. */
8219 case 0: case 1: case 2: case 3:
8220 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
,
8221 "shift/add/sub/mov/cmp",
8225 switch (op_bit_10_11
)
8227 case 0: /* Data-processing */
8228 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
,
8232 case 1: /* Special data instructions and branch and exchange. */
8234 unsigned short op
= bits (insn1
, 7, 9);
8235 if (op
== 6 || op
== 7) /* BX or BLX */
8236 err
= thumb_copy_bx_blx_reg (gdbarch
, insn1
, regs
, dsc
);
8237 else if (bits (insn1
, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
8238 err
= thumb_copy_alu_reg (gdbarch
, insn1
, regs
, dsc
);
8240 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "special data",
8244 default: /* LDR (literal) */
8245 err
= thumb_copy_16bit_ldr_literal (gdbarch
, insn1
, regs
, dsc
);
8248 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
8249 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "ldr/str", dsc
);
8252 if (op_bit_10_11
< 2) /* Generate PC-relative address */
8253 err
= thumb_decode_pc_relative_16bit (gdbarch
, insn1
, regs
, dsc
);
8254 else /* Generate SP-relative address */
8255 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "sp-relative", dsc
);
8257 case 11: /* Misc 16-bit instructions */
8259 switch (bits (insn1
, 8, 11))
8261 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
8262 err
= thumb_copy_cbnz_cbz (gdbarch
, insn1
, regs
, dsc
);
8264 case 12: case 13: /* POP */
8265 if (bit (insn1
, 8)) /* PC is in register list. */
8266 err
= thumb_copy_pop_pc_16bit (gdbarch
, insn1
, regs
, dsc
);
8268 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "pop", dsc
);
8270 case 15: /* If-Then, and hints */
8271 if (bits (insn1
, 0, 3))
8272 /* If-Then makes up to four following instructions conditional.
8273 IT instruction itself is not conditional, so handle it as a
8274 common unmodified instruction. */
8275 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "If-Then",
8278 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "hints", dsc
);
8281 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "misc", dsc
);
8286 if (op_bit_10_11
< 2) /* Store multiple registers */
8287 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "stm", dsc
);
8288 else /* Load multiple registers */
8289 err
= thumb_copy_unmodified_16bit (gdbarch
, insn1
, "ldm", dsc
);
8291 case 13: /* Conditional branch and supervisor call */
8292 if (bits (insn1
, 9, 11) != 7) /* conditional branch */
8293 err
= thumb_copy_b (gdbarch
, insn1
, dsc
);
8295 err
= thumb_copy_svc (gdbarch
, insn1
, regs
, dsc
);
8297 case 14: /* Unconditional branch */
8298 err
= thumb_copy_b (gdbarch
, insn1
, dsc
);
8305 internal_error (__FILE__
, __LINE__
,
8306 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
8310 decode_thumb_32bit_ld_mem_hints (struct gdbarch
*gdbarch
,
8311 uint16_t insn1
, uint16_t insn2
,
8312 struct regcache
*regs
,
8313 struct displaced_step_closure
*dsc
)
8315 int rt
= bits (insn2
, 12, 15);
8316 int rn
= bits (insn1
, 0, 3);
8317 int op1
= bits (insn1
, 7, 8);
8320 switch (bits (insn1
, 5, 6))
8322 case 0: /* Load byte and memory hints */
8323 if (rt
== 0xf) /* PLD/PLI */
8326 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
8327 return thumb2_copy_preload (gdbarch
, insn1
, insn2
, regs
, dsc
);
8329 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8334 if (rn
== 0xf) /* LDRB/LDRSB (literal) */
8335 return thumb2_copy_load_literal (gdbarch
, insn1
, insn2
, regs
, dsc
,
8338 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8339 "ldrb{reg, immediate}/ldrbt",
8344 case 1: /* Load halfword and memory hints. */
8345 if (rt
== 0xf) /* PLD{W} and Unalloc memory hint. */
8346 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8347 "pld/unalloc memhint", dsc
);
8351 return thumb2_copy_load_literal (gdbarch
, insn1
, insn2
, regs
, dsc
,
8354 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8358 case 2: /* Load word */
8360 int insn2_bit_8_11
= bits (insn2
, 8, 11);
8363 return thumb2_copy_load_literal (gdbarch
, insn1
, insn2
, regs
, dsc
, 4);
8364 else if (op1
== 0x1) /* Encoding T3 */
8365 return thumb2_copy_load_reg_imm (gdbarch
, insn1
, insn2
, regs
, dsc
,
8367 else /* op1 == 0x0 */
8369 if (insn2_bit_8_11
== 0xc || (insn2_bit_8_11
& 0x9) == 0x9)
8370 /* LDR (immediate) */
8371 return thumb2_copy_load_reg_imm (gdbarch
, insn1
, insn2
, regs
,
8372 dsc
, bit (insn2
, 8), 1);
8373 else if (insn2_bit_8_11
== 0xe) /* LDRT */
8374 return thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8377 /* LDR (register) */
8378 return thumb2_copy_load_reg_imm (gdbarch
, insn1
, insn2
, regs
,
8384 return thumb_32bit_copy_undef (gdbarch
, insn1
, insn2
, dsc
);
8391 thumb_process_displaced_32bit_insn (struct gdbarch
*gdbarch
, uint16_t insn1
,
8392 uint16_t insn2
, struct regcache
*regs
,
8393 struct displaced_step_closure
*dsc
)
8396 unsigned short op
= bit (insn2
, 15);
8397 unsigned int op1
= bits (insn1
, 11, 12);
8403 switch (bits (insn1
, 9, 10))
8408 /* Load/store {dual, execlusive}, table branch. */
8409 if (bits (insn1
, 7, 8) == 1 && bits (insn1
, 4, 5) == 1
8410 && bits (insn2
, 5, 7) == 0)
8411 err
= thumb2_copy_table_branch (gdbarch
, insn1
, insn2
, regs
,
8414 /* PC is not allowed to use in load/store {dual, exclusive}
8416 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8417 "load/store dual/ex", dsc
);
8419 else /* load/store multiple */
8421 switch (bits (insn1
, 7, 8))
8423 case 0: case 3: /* SRS, RFE */
8424 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8427 case 1: case 2: /* LDM/STM/PUSH/POP */
8428 err
= thumb2_copy_block_xfer (gdbarch
, insn1
, insn2
, regs
, dsc
);
8435 /* Data-processing (shift register). */
8436 err
= thumb2_decode_dp_shift_reg (gdbarch
, insn1
, insn2
, regs
,
8439 default: /* Coprocessor instructions. */
8440 err
= thumb2_decode_svc_copro (gdbarch
, insn1
, insn2
, regs
, dsc
);
8445 case 2: /* op1 = 2 */
8446 if (op
) /* Branch and misc control. */
8448 if (bit (insn2
, 14) /* BLX/BL */
8449 || bit (insn2
, 12) /* Unconditional branch */
8450 || (bits (insn1
, 7, 9) != 0x7)) /* Conditional branch */
8451 err
= thumb2_copy_b_bl_blx (gdbarch
, insn1
, insn2
, regs
, dsc
);
8453 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8458 if (bit (insn1
, 9)) /* Data processing (plain binary imm). */
8460 int op
= bits (insn1
, 4, 8);
8461 int rn
= bits (insn1
, 0, 3);
8462 if ((op
== 0 || op
== 0xa) && rn
== 0xf)
8463 err
= thumb_copy_pc_relative_32bit (gdbarch
, insn1
, insn2
,
8466 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8469 else /* Data processing (modified immeidate) */
8470 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8474 case 3: /* op1 = 3 */
8475 switch (bits (insn1
, 9, 10))
8479 err
= decode_thumb_32bit_ld_mem_hints (gdbarch
, insn1
, insn2
,
8481 else /* NEON Load/Store and Store single data item */
8482 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8483 "neon elt/struct load/store",
8486 case 1: /* op1 = 3, bits (9, 10) == 1 */
8487 switch (bits (insn1
, 7, 8))
8489 case 0: case 1: /* Data processing (register) */
8490 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8493 case 2: /* Multiply and absolute difference */
8494 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8495 "mul/mua/diff", dsc
);
8497 case 3: /* Long multiply and divide */
8498 err
= thumb_copy_unmodified_32bit (gdbarch
, insn1
, insn2
,
8503 default: /* Coprocessor instructions */
8504 err
= thumb2_decode_svc_copro (gdbarch
, insn1
, insn2
, regs
, dsc
);
8513 internal_error (__FILE__
, __LINE__
,
8514 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
8519 thumb_process_displaced_insn (struct gdbarch
*gdbarch
, CORE_ADDR from
,
8520 CORE_ADDR to
, struct regcache
*regs
,
8521 struct displaced_step_closure
*dsc
)
8523 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
8525 = read_memory_unsigned_integer (from
, 2, byte_order_for_code
);
8527 if (debug_displaced
)
8528 fprintf_unfiltered (gdb_stdlog
, "displaced: process thumb insn %.4x "
8529 "at %.8lx\n", insn1
, (unsigned long) from
);
8532 dsc
->insn_size
= thumb_insn_size (insn1
);
8533 if (thumb_insn_size (insn1
) == 4)
8536 = read_memory_unsigned_integer (from
+ 2, 2, byte_order_for_code
);
8537 thumb_process_displaced_32bit_insn (gdbarch
, insn1
, insn2
, regs
, dsc
);
8540 thumb_process_displaced_16bit_insn (gdbarch
, insn1
, regs
, dsc
);
8544 arm_process_displaced_insn (struct gdbarch
*gdbarch
, CORE_ADDR from
,
8545 CORE_ADDR to
, struct regcache
*regs
,
8546 struct displaced_step_closure
*dsc
)
8549 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
8552 /* Most displaced instructions use a 1-instruction scratch space, so set this
8553 here and override below if/when necessary. */
8555 dsc
->insn_addr
= from
;
8556 dsc
->scratch_base
= to
;
8557 dsc
->cleanup
= NULL
;
8558 dsc
->wrote_to_pc
= 0;
8560 if (!displaced_in_arm_mode (regs
))
8561 return thumb_process_displaced_insn (gdbarch
, from
, to
, regs
, dsc
);
8565 insn
= read_memory_unsigned_integer (from
, 4, byte_order_for_code
);
8566 if (debug_displaced
)
8567 fprintf_unfiltered (gdb_stdlog
, "displaced: stepping insn %.8lx "
8568 "at %.8lx\n", (unsigned long) insn
,
8569 (unsigned long) from
);
8571 if ((insn
& 0xf0000000) == 0xf0000000)
8572 err
= arm_decode_unconditional (gdbarch
, insn
, regs
, dsc
);
8573 else switch (((insn
& 0x10) >> 4) | ((insn
& 0xe000000) >> 24))
8575 case 0x0: case 0x1: case 0x2: case 0x3:
8576 err
= arm_decode_dp_misc (gdbarch
, insn
, regs
, dsc
);
8579 case 0x4: case 0x5: case 0x6:
8580 err
= arm_decode_ld_st_word_ubyte (gdbarch
, insn
, regs
, dsc
);
8584 err
= arm_decode_media (gdbarch
, insn
, dsc
);
8587 case 0x8: case 0x9: case 0xa: case 0xb:
8588 err
= arm_decode_b_bl_ldmstm (gdbarch
, insn
, regs
, dsc
);
8591 case 0xc: case 0xd: case 0xe: case 0xf:
8592 err
= arm_decode_svc_copro (gdbarch
, insn
, to
, regs
, dsc
);
8597 internal_error (__FILE__
, __LINE__
,
8598 _("arm_process_displaced_insn: Instruction decode error"));
8601 /* Actually set up the scratch space for a displaced instruction. */
8604 arm_displaced_init_closure (struct gdbarch
*gdbarch
, CORE_ADDR from
,
8605 CORE_ADDR to
, struct displaced_step_closure
*dsc
)
8607 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
8608 unsigned int i
, len
, offset
;
8609 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
8610 int size
= dsc
->is_thumb
? 2 : 4;
8611 const gdb_byte
*bkp_insn
;
8614 /* Poke modified instruction(s). */
8615 for (i
= 0; i
< dsc
->numinsns
; i
++)
8617 if (debug_displaced
)
8619 fprintf_unfiltered (gdb_stdlog
, "displaced: writing insn ");
8621 fprintf_unfiltered (gdb_stdlog
, "%.8lx",
8624 fprintf_unfiltered (gdb_stdlog
, "%.4x",
8625 (unsigned short)dsc
->modinsn
[i
]);
8627 fprintf_unfiltered (gdb_stdlog
, " at %.8lx\n",
8628 (unsigned long) to
+ offset
);
8631 write_memory_unsigned_integer (to
+ offset
, size
,
8632 byte_order_for_code
,
8637 /* Choose the correct breakpoint instruction. */
8640 bkp_insn
= tdep
->thumb_breakpoint
;
8641 len
= tdep
->thumb_breakpoint_size
;
8645 bkp_insn
= tdep
->arm_breakpoint
;
8646 len
= tdep
->arm_breakpoint_size
;
8649 /* Put breakpoint afterwards. */
8650 write_memory (to
+ offset
, bkp_insn
, len
);
8652 if (debug_displaced
)
8653 fprintf_unfiltered (gdb_stdlog
, "displaced: copy %s->%s: ",
8654 paddress (gdbarch
, from
), paddress (gdbarch
, to
));
8657 /* Entry point for copying an instruction into scratch space for displaced
8660 struct displaced_step_closure
*
8661 arm_displaced_step_copy_insn (struct gdbarch
*gdbarch
,
8662 CORE_ADDR from
, CORE_ADDR to
,
8663 struct regcache
*regs
)
8665 struct displaced_step_closure
*dsc
8666 = xmalloc (sizeof (struct displaced_step_closure
));
8667 arm_process_displaced_insn (gdbarch
, from
, to
, regs
, dsc
);
8668 arm_displaced_init_closure (gdbarch
, from
, to
, dsc
);
8673 /* Entry point for cleaning things up after a displaced instruction has been
8677 arm_displaced_step_fixup (struct gdbarch
*gdbarch
,
8678 struct displaced_step_closure
*dsc
,
8679 CORE_ADDR from
, CORE_ADDR to
,
8680 struct regcache
*regs
)
8683 dsc
->cleanup (gdbarch
, regs
, dsc
);
8685 if (!dsc
->wrote_to_pc
)
8686 regcache_cooked_write_unsigned (regs
, ARM_PC_REGNUM
,
8687 dsc
->insn_addr
+ dsc
->insn_size
);
8691 #include "bfd-in2.h"
8692 #include "libcoff.h"
8695 gdb_print_insn_arm (bfd_vma memaddr
, disassemble_info
*info
)
8697 struct gdbarch
*gdbarch
= info
->application_data
;
8699 if (arm_pc_is_thumb (gdbarch
, memaddr
))
8701 static asymbol
*asym
;
8702 static combined_entry_type ce
;
8703 static struct coff_symbol_struct csym
;
8704 static struct bfd fake_bfd
;
8705 static bfd_target fake_target
;
8707 if (csym
.native
== NULL
)
8709 /* Create a fake symbol vector containing a Thumb symbol.
8710 This is solely so that the code in print_insn_little_arm()
8711 and print_insn_big_arm() in opcodes/arm-dis.c will detect
8712 the presence of a Thumb symbol and switch to decoding
8713 Thumb instructions. */
8715 fake_target
.flavour
= bfd_target_coff_flavour
;
8716 fake_bfd
.xvec
= &fake_target
;
8717 ce
.u
.syment
.n_sclass
= C_THUMBEXTFUNC
;
8719 csym
.symbol
.the_bfd
= &fake_bfd
;
8720 csym
.symbol
.name
= "fake";
8721 asym
= (asymbol
*) & csym
;
8724 memaddr
= UNMAKE_THUMB_ADDR (memaddr
);
8725 info
->symbols
= &asym
;
8728 info
->symbols
= NULL
;
8730 if (info
->endian
== BFD_ENDIAN_BIG
)
8731 return print_insn_big_arm (memaddr
, info
);
8733 return print_insn_little_arm (memaddr
, info
);
8736 /* The following define instruction sequences that will cause ARM
8737 cpu's to take an undefined instruction trap. These are used to
8738 signal a breakpoint to GDB.
8740 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
8741 modes. A different instruction is required for each mode. The ARM
8742 cpu's can also be big or little endian. Thus four different
8743 instructions are needed to support all cases.
8745 Note: ARMv4 defines several new instructions that will take the
8746 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
8747 not in fact add the new instructions. The new undefined
8748 instructions in ARMv4 are all instructions that had no defined
8749 behaviour in earlier chips. There is no guarantee that they will
8750 raise an exception, but may be treated as NOP's. In practice, it
8751 may only safe to rely on instructions matching:
8753 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
8754 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
8755 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
8757 Even this may only true if the condition predicate is true. The
8758 following use a condition predicate of ALWAYS so it is always TRUE.
8760 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
8761 and NetBSD all use a software interrupt rather than an undefined
8762 instruction to force a trap. This can be handled by by the
8763 abi-specific code during establishment of the gdbarch vector. */
8765 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
8766 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
8767 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
8768 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
8770 static const gdb_byte arm_default_arm_le_breakpoint
[] = ARM_LE_BREAKPOINT
;
8771 static const gdb_byte arm_default_arm_be_breakpoint
[] = ARM_BE_BREAKPOINT
;
8772 static const gdb_byte arm_default_thumb_le_breakpoint
[] = THUMB_LE_BREAKPOINT
;
8773 static const gdb_byte arm_default_thumb_be_breakpoint
[] = THUMB_BE_BREAKPOINT
;
8775 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
8776 the program counter value to determine whether a 16-bit or 32-bit
8777 breakpoint should be used. It returns a pointer to a string of
8778 bytes that encode a breakpoint instruction, stores the length of
8779 the string to *lenptr, and adjusts the program counter (if
8780 necessary) to point to the actual memory location where the
8781 breakpoint should be inserted. */
8783 static const unsigned char *
8784 arm_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
, int *lenptr
)
8786 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
8787 enum bfd_endian byte_order_for_code
= gdbarch_byte_order_for_code (gdbarch
);
8789 if (arm_pc_is_thumb (gdbarch
, *pcptr
))
8791 *pcptr
= UNMAKE_THUMB_ADDR (*pcptr
);
8793 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
8794 check whether we are replacing a 32-bit instruction. */
8795 if (tdep
->thumb2_breakpoint
!= NULL
)
8798 if (target_read_memory (*pcptr
, buf
, 2) == 0)
8800 unsigned short inst1
;
8801 inst1
= extract_unsigned_integer (buf
, 2, byte_order_for_code
);
8802 if (thumb_insn_size (inst1
) == 4)
8804 *lenptr
= tdep
->thumb2_breakpoint_size
;
8805 return tdep
->thumb2_breakpoint
;
8810 *lenptr
= tdep
->thumb_breakpoint_size
;
8811 return tdep
->thumb_breakpoint
;
8815 *lenptr
= tdep
->arm_breakpoint_size
;
8816 return tdep
->arm_breakpoint
;
8821 arm_remote_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
,
8824 arm_breakpoint_from_pc (gdbarch
, pcptr
, kindptr
);
8826 if (arm_pc_is_thumb (gdbarch
, *pcptr
) && *kindptr
== 4)
8827 /* The documented magic value for a 32-bit Thumb-2 breakpoint, so
8828 that this is not confused with a 32-bit ARM breakpoint. */
8832 /* Extract from an array REGBUF containing the (raw) register state a
8833 function return value of type TYPE, and copy that, in virtual
8834 format, into VALBUF. */
8837 arm_extract_return_value (struct type
*type
, struct regcache
*regs
,
8840 struct gdbarch
*gdbarch
= get_regcache_arch (regs
);
8841 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
8843 if (TYPE_CODE_FLT
== TYPE_CODE (type
))
8845 switch (gdbarch_tdep (gdbarch
)->fp_model
)
8849 /* The value is in register F0 in internal format. We need to
8850 extract the raw value and then convert it to the desired
8852 bfd_byte tmpbuf
[FP_REGISTER_SIZE
];
8854 regcache_cooked_read (regs
, ARM_F0_REGNUM
, tmpbuf
);
8855 convert_from_extended (floatformat_from_type (type
), tmpbuf
,
8856 valbuf
, gdbarch_byte_order (gdbarch
));
8860 case ARM_FLOAT_SOFT_FPA
:
8861 case ARM_FLOAT_SOFT_VFP
:
8862 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8863 not using the VFP ABI code. */
8865 regcache_cooked_read (regs
, ARM_A1_REGNUM
, valbuf
);
8866 if (TYPE_LENGTH (type
) > 4)
8867 regcache_cooked_read (regs
, ARM_A1_REGNUM
+ 1,
8868 valbuf
+ INT_REGISTER_SIZE
);
8872 internal_error (__FILE__
, __LINE__
,
8873 _("arm_extract_return_value: "
8874 "Floating point model not supported"));
8878 else if (TYPE_CODE (type
) == TYPE_CODE_INT
8879 || TYPE_CODE (type
) == TYPE_CODE_CHAR
8880 || TYPE_CODE (type
) == TYPE_CODE_BOOL
8881 || TYPE_CODE (type
) == TYPE_CODE_PTR
8882 || TYPE_CODE (type
) == TYPE_CODE_REF
8883 || TYPE_CODE (type
) == TYPE_CODE_ENUM
)
8885 /* If the type is a plain integer, then the access is
8886 straight-forward. Otherwise we have to play around a bit
8888 int len
= TYPE_LENGTH (type
);
8889 int regno
= ARM_A1_REGNUM
;
8894 /* By using store_unsigned_integer we avoid having to do
8895 anything special for small big-endian values. */
8896 regcache_cooked_read_unsigned (regs
, regno
++, &tmp
);
8897 store_unsigned_integer (valbuf
,
8898 (len
> INT_REGISTER_SIZE
8899 ? INT_REGISTER_SIZE
: len
),
8901 len
-= INT_REGISTER_SIZE
;
8902 valbuf
+= INT_REGISTER_SIZE
;
8907 /* For a structure or union the behaviour is as if the value had
8908 been stored to word-aligned memory and then loaded into
8909 registers with 32-bit load instruction(s). */
8910 int len
= TYPE_LENGTH (type
);
8911 int regno
= ARM_A1_REGNUM
;
8912 bfd_byte tmpbuf
[INT_REGISTER_SIZE
];
8916 regcache_cooked_read (regs
, regno
++, tmpbuf
);
8917 memcpy (valbuf
, tmpbuf
,
8918 len
> INT_REGISTER_SIZE
? INT_REGISTER_SIZE
: len
);
8919 len
-= INT_REGISTER_SIZE
;
8920 valbuf
+= INT_REGISTER_SIZE
;
8926 /* Will a function return an aggregate type in memory or in a
8927 register? Return 0 if an aggregate type can be returned in a
8928 register, 1 if it must be returned in memory. */
8931 arm_return_in_memory (struct gdbarch
*gdbarch
, struct type
*type
)
8934 enum type_code code
;
8936 CHECK_TYPEDEF (type
);
8938 /* In the ARM ABI, "integer" like aggregate types are returned in
8939 registers. For an aggregate type to be integer like, its size
8940 must be less than or equal to INT_REGISTER_SIZE and the
8941 offset of each addressable subfield must be zero. Note that bit
8942 fields are not addressable, and all addressable subfields of
8943 unions always start at offset zero.
8945 This function is based on the behaviour of GCC 2.95.1.
8946 See: gcc/arm.c: arm_return_in_memory() for details.
8948 Note: All versions of GCC before GCC 2.95.2 do not set up the
8949 parameters correctly for a function returning the following
8950 structure: struct { float f;}; This should be returned in memory,
8951 not a register. Richard Earnshaw sent me a patch, but I do not
8952 know of any way to detect if a function like the above has been
8953 compiled with the correct calling convention. */
8955 /* All aggregate types that won't fit in a register must be returned
8957 if (TYPE_LENGTH (type
) > INT_REGISTER_SIZE
)
8962 /* The AAPCS says all aggregates not larger than a word are returned
8964 if (gdbarch_tdep (gdbarch
)->arm_abi
!= ARM_ABI_APCS
)
8967 /* The only aggregate types that can be returned in a register are
8968 structs and unions. Arrays must be returned in memory. */
8969 code
= TYPE_CODE (type
);
8970 if ((TYPE_CODE_STRUCT
!= code
) && (TYPE_CODE_UNION
!= code
))
8975 /* Assume all other aggregate types can be returned in a register.
8976 Run a check for structures, unions and arrays. */
8979 if ((TYPE_CODE_STRUCT
== code
) || (TYPE_CODE_UNION
== code
))
8982 /* Need to check if this struct/union is "integer" like. For
8983 this to be true, its size must be less than or equal to
8984 INT_REGISTER_SIZE and the offset of each addressable
8985 subfield must be zero. Note that bit fields are not
8986 addressable, and unions always start at offset zero. If any
8987 of the subfields is a floating point type, the struct/union
8988 cannot be an integer type. */
8990 /* For each field in the object, check:
8991 1) Is it FP? --> yes, nRc = 1;
8992 2) Is it addressable (bitpos != 0) and
8993 not packed (bitsize == 0)?
8997 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
8999 enum type_code field_type_code
;
9000 field_type_code
= TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type
,
9003 /* Is it a floating point type field? */
9004 if (field_type_code
== TYPE_CODE_FLT
)
9010 /* If bitpos != 0, then we have to care about it. */
9011 if (TYPE_FIELD_BITPOS (type
, i
) != 0)
9013 /* Bitfields are not addressable. If the field bitsize is
9014 zero, then the field is not packed. Hence it cannot be
9015 a bitfield or any other packed type. */
9016 if (TYPE_FIELD_BITSIZE (type
, i
) == 0)
9028 /* Write into appropriate registers a function return value of type
9029 TYPE, given in virtual format. */
9032 arm_store_return_value (struct type
*type
, struct regcache
*regs
,
9033 const gdb_byte
*valbuf
)
9035 struct gdbarch
*gdbarch
= get_regcache_arch (regs
);
9036 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
9038 if (TYPE_CODE (type
) == TYPE_CODE_FLT
)
9040 gdb_byte buf
[MAX_REGISTER_SIZE
];
9042 switch (gdbarch_tdep (gdbarch
)->fp_model
)
9046 convert_to_extended (floatformat_from_type (type
), buf
, valbuf
,
9047 gdbarch_byte_order (gdbarch
));
9048 regcache_cooked_write (regs
, ARM_F0_REGNUM
, buf
);
9051 case ARM_FLOAT_SOFT_FPA
:
9052 case ARM_FLOAT_SOFT_VFP
:
9053 /* ARM_FLOAT_VFP can arise if this is a variadic function so
9054 not using the VFP ABI code. */
9056 regcache_cooked_write (regs
, ARM_A1_REGNUM
, valbuf
);
9057 if (TYPE_LENGTH (type
) > 4)
9058 regcache_cooked_write (regs
, ARM_A1_REGNUM
+ 1,
9059 valbuf
+ INT_REGISTER_SIZE
);
9063 internal_error (__FILE__
, __LINE__
,
9064 _("arm_store_return_value: Floating "
9065 "point model not supported"));
9069 else if (TYPE_CODE (type
) == TYPE_CODE_INT
9070 || TYPE_CODE (type
) == TYPE_CODE_CHAR
9071 || TYPE_CODE (type
) == TYPE_CODE_BOOL
9072 || TYPE_CODE (type
) == TYPE_CODE_PTR
9073 || TYPE_CODE (type
) == TYPE_CODE_REF
9074 || TYPE_CODE (type
) == TYPE_CODE_ENUM
)
9076 if (TYPE_LENGTH (type
) <= 4)
9078 /* Values of one word or less are zero/sign-extended and
9080 bfd_byte tmpbuf
[INT_REGISTER_SIZE
];
9081 LONGEST val
= unpack_long (type
, valbuf
);
9083 store_signed_integer (tmpbuf
, INT_REGISTER_SIZE
, byte_order
, val
);
9084 regcache_cooked_write (regs
, ARM_A1_REGNUM
, tmpbuf
);
9088 /* Integral values greater than one word are stored in consecutive
9089 registers starting with r0. This will always be a multiple of
9090 the regiser size. */
9091 int len
= TYPE_LENGTH (type
);
9092 int regno
= ARM_A1_REGNUM
;
9096 regcache_cooked_write (regs
, regno
++, valbuf
);
9097 len
-= INT_REGISTER_SIZE
;
9098 valbuf
+= INT_REGISTER_SIZE
;
9104 /* For a structure or union the behaviour is as if the value had
9105 been stored to word-aligned memory and then loaded into
9106 registers with 32-bit load instruction(s). */
9107 int len
= TYPE_LENGTH (type
);
9108 int regno
= ARM_A1_REGNUM
;
9109 bfd_byte tmpbuf
[INT_REGISTER_SIZE
];
9113 memcpy (tmpbuf
, valbuf
,
9114 len
> INT_REGISTER_SIZE
? INT_REGISTER_SIZE
: len
);
9115 regcache_cooked_write (regs
, regno
++, tmpbuf
);
9116 len
-= INT_REGISTER_SIZE
;
9117 valbuf
+= INT_REGISTER_SIZE
;
9123 /* Handle function return values. */
9125 static enum return_value_convention
9126 arm_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
9127 struct type
*valtype
, struct regcache
*regcache
,
9128 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
9130 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
9131 struct type
*func_type
= function
? value_type (function
) : NULL
;
9132 enum arm_vfp_cprc_base_type vfp_base_type
;
9135 if (arm_vfp_abi_for_function (gdbarch
, func_type
)
9136 && arm_vfp_call_candidate (valtype
, &vfp_base_type
, &vfp_base_count
))
9138 int reg_char
= arm_vfp_cprc_reg_char (vfp_base_type
);
9139 int unit_length
= arm_vfp_cprc_unit_length (vfp_base_type
);
9141 for (i
= 0; i
< vfp_base_count
; i
++)
9143 if (reg_char
== 'q')
9146 arm_neon_quad_write (gdbarch
, regcache
, i
,
9147 writebuf
+ i
* unit_length
);
9150 arm_neon_quad_read (gdbarch
, regcache
, i
,
9151 readbuf
+ i
* unit_length
);
9158 xsnprintf (name_buf
, sizeof (name_buf
), "%c%d", reg_char
, i
);
9159 regnum
= user_reg_map_name_to_regnum (gdbarch
, name_buf
,
9162 regcache_cooked_write (regcache
, regnum
,
9163 writebuf
+ i
* unit_length
);
9165 regcache_cooked_read (regcache
, regnum
,
9166 readbuf
+ i
* unit_length
);
9169 return RETURN_VALUE_REGISTER_CONVENTION
;
9172 if (TYPE_CODE (valtype
) == TYPE_CODE_STRUCT
9173 || TYPE_CODE (valtype
) == TYPE_CODE_UNION
9174 || TYPE_CODE (valtype
) == TYPE_CODE_ARRAY
)
9176 if (tdep
->struct_return
== pcc_struct_return
9177 || arm_return_in_memory (gdbarch
, valtype
))
9178 return RETURN_VALUE_STRUCT_CONVENTION
;
9181 /* AAPCS returns complex types longer than a register in memory. */
9182 if (tdep
->arm_abi
!= ARM_ABI_APCS
9183 && TYPE_CODE (valtype
) == TYPE_CODE_COMPLEX
9184 && TYPE_LENGTH (valtype
) > INT_REGISTER_SIZE
)
9185 return RETURN_VALUE_STRUCT_CONVENTION
;
9188 arm_store_return_value (valtype
, regcache
, writebuf
);
9191 arm_extract_return_value (valtype
, regcache
, readbuf
);
9193 return RETURN_VALUE_REGISTER_CONVENTION
;
9198 arm_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
9200 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
9201 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
9202 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
9204 gdb_byte buf
[INT_REGISTER_SIZE
];
9206 jb_addr
= get_frame_register_unsigned (frame
, ARM_A1_REGNUM
);
9208 if (target_read_memory (jb_addr
+ tdep
->jb_pc
* tdep
->jb_elt_size
, buf
,
9212 *pc
= extract_unsigned_integer (buf
, INT_REGISTER_SIZE
, byte_order
);
9216 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
9217 return the target PC. Otherwise return 0. */
9220 arm_skip_stub (struct frame_info
*frame
, CORE_ADDR pc
)
9224 CORE_ADDR start_addr
;
9226 /* Find the starting address and name of the function containing the PC. */
9227 if (find_pc_partial_function (pc
, &name
, &start_addr
, NULL
) == 0)
9230 /* If PC is in a Thumb call or return stub, return the address of the
9231 target PC, which is in a register. The thunk functions are called
9232 _call_via_xx, where x is the register name. The possible names
9233 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
9234 functions, named __ARM_call_via_r[0-7]. */
9235 if (strncmp (name
, "_call_via_", 10) == 0
9236 || strncmp (name
, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0)
9238 /* Use the name suffix to determine which register contains the
9240 static char *table
[15] =
9241 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
9242 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
9245 int offset
= strlen (name
) - 2;
9247 for (regno
= 0; regno
<= 14; regno
++)
9248 if (strcmp (&name
[offset
], table
[regno
]) == 0)
9249 return get_frame_register_unsigned (frame
, regno
);
9252 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
9253 non-interworking calls to foo. We could decode the stubs
9254 to find the target but it's easier to use the symbol table. */
9255 namelen
= strlen (name
);
9256 if (name
[0] == '_' && name
[1] == '_'
9257 && ((namelen
> 2 + strlen ("_from_thumb")
9258 && strncmp (name
+ namelen
- strlen ("_from_thumb"), "_from_thumb",
9259 strlen ("_from_thumb")) == 0)
9260 || (namelen
> 2 + strlen ("_from_arm")
9261 && strncmp (name
+ namelen
- strlen ("_from_arm"), "_from_arm",
9262 strlen ("_from_arm")) == 0)))
9265 int target_len
= namelen
- 2;
9266 struct bound_minimal_symbol minsym
;
9267 struct objfile
*objfile
;
9268 struct obj_section
*sec
;
9270 if (name
[namelen
- 1] == 'b')
9271 target_len
-= strlen ("_from_thumb");
9273 target_len
-= strlen ("_from_arm");
9275 target_name
= alloca (target_len
+ 1);
9276 memcpy (target_name
, name
+ 2, target_len
);
9277 target_name
[target_len
] = '\0';
9279 sec
= find_pc_section (pc
);
9280 objfile
= (sec
== NULL
) ? NULL
: sec
->objfile
;
9281 minsym
= lookup_minimal_symbol (target_name
, NULL
, objfile
);
9282 if (minsym
.minsym
!= NULL
)
9283 return BMSYMBOL_VALUE_ADDRESS (minsym
);
9288 return 0; /* not a stub */
9292 set_arm_command (char *args
, int from_tty
)
9294 printf_unfiltered (_("\
9295 \"set arm\" must be followed by an apporpriate subcommand.\n"));
9296 help_list (setarmcmdlist
, "set arm ", all_commands
, gdb_stdout
);
9300 show_arm_command (char *args
, int from_tty
)
9302 cmd_show_list (showarmcmdlist
, from_tty
, "");
9306 arm_update_current_architecture (void)
9308 struct gdbarch_info info
;
9310 /* If the current architecture is not ARM, we have nothing to do. */
9311 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch
!= bfd_arch_arm
)
9314 /* Update the architecture. */
9315 gdbarch_info_init (&info
);
9317 if (!gdbarch_update_p (info
))
9318 internal_error (__FILE__
, __LINE__
, _("could not update architecture"));
9322 set_fp_model_sfunc (char *args
, int from_tty
,
9323 struct cmd_list_element
*c
)
9325 enum arm_float_model fp_model
;
9327 for (fp_model
= ARM_FLOAT_AUTO
; fp_model
!= ARM_FLOAT_LAST
; fp_model
++)
9328 if (strcmp (current_fp_model
, fp_model_strings
[fp_model
]) == 0)
9330 arm_fp_model
= fp_model
;
9334 if (fp_model
== ARM_FLOAT_LAST
)
9335 internal_error (__FILE__
, __LINE__
, _("Invalid fp model accepted: %s."),
9338 arm_update_current_architecture ();
9342 show_fp_model (struct ui_file
*file
, int from_tty
,
9343 struct cmd_list_element
*c
, const char *value
)
9345 struct gdbarch_tdep
*tdep
= gdbarch_tdep (target_gdbarch ());
9347 if (arm_fp_model
== ARM_FLOAT_AUTO
9348 && gdbarch_bfd_arch_info (target_gdbarch ())->arch
== bfd_arch_arm
)
9349 fprintf_filtered (file
, _("\
9350 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
9351 fp_model_strings
[tdep
->fp_model
]);
9353 fprintf_filtered (file
, _("\
9354 The current ARM floating point model is \"%s\".\n"),
9355 fp_model_strings
[arm_fp_model
]);
9359 arm_set_abi (char *args
, int from_tty
,
9360 struct cmd_list_element
*c
)
9362 enum arm_abi_kind arm_abi
;
9364 for (arm_abi
= ARM_ABI_AUTO
; arm_abi
!= ARM_ABI_LAST
; arm_abi
++)
9365 if (strcmp (arm_abi_string
, arm_abi_strings
[arm_abi
]) == 0)
9367 arm_abi_global
= arm_abi
;
9371 if (arm_abi
== ARM_ABI_LAST
)
9372 internal_error (__FILE__
, __LINE__
, _("Invalid ABI accepted: %s."),
9375 arm_update_current_architecture ();
9379 arm_show_abi (struct ui_file
*file
, int from_tty
,
9380 struct cmd_list_element
*c
, const char *value
)
9382 struct gdbarch_tdep
*tdep
= gdbarch_tdep (target_gdbarch ());
9384 if (arm_abi_global
== ARM_ABI_AUTO
9385 && gdbarch_bfd_arch_info (target_gdbarch ())->arch
== bfd_arch_arm
)
9386 fprintf_filtered (file
, _("\
9387 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
9388 arm_abi_strings
[tdep
->arm_abi
]);
9390 fprintf_filtered (file
, _("The current ARM ABI is \"%s\".\n"),
9395 arm_show_fallback_mode (struct ui_file
*file
, int from_tty
,
9396 struct cmd_list_element
*c
, const char *value
)
9398 fprintf_filtered (file
,
9399 _("The current execution mode assumed "
9400 "(when symbols are unavailable) is \"%s\".\n"),
9401 arm_fallback_mode_string
);
9405 arm_show_force_mode (struct ui_file
*file
, int from_tty
,
9406 struct cmd_list_element
*c
, const char *value
)
9408 struct gdbarch_tdep
*tdep
= gdbarch_tdep (target_gdbarch ());
9410 fprintf_filtered (file
,
9411 _("The current execution mode assumed "
9412 "(even when symbols are available) is \"%s\".\n"),
9413 arm_force_mode_string
);
9416 /* If the user changes the register disassembly style used for info
9417 register and other commands, we have to also switch the style used
9418 in opcodes for disassembly output. This function is run in the "set
9419 arm disassembly" command, and does that. */
9422 set_disassembly_style_sfunc (char *args
, int from_tty
,
9423 struct cmd_list_element
*c
)
9425 set_disassembly_style ();
9428 /* Return the ARM register name corresponding to register I. */
9430 arm_register_name (struct gdbarch
*gdbarch
, int i
)
9432 const int num_regs
= gdbarch_num_regs (gdbarch
);
9434 if (gdbarch_tdep (gdbarch
)->have_vfp_pseudos
9435 && i
>= num_regs
&& i
< num_regs
+ 32)
9437 static const char *const vfp_pseudo_names
[] = {
9438 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
9439 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
9440 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
9441 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
9444 return vfp_pseudo_names
[i
- num_regs
];
9447 if (gdbarch_tdep (gdbarch
)->have_neon_pseudos
9448 && i
>= num_regs
+ 32 && i
< num_regs
+ 32 + 16)
9450 static const char *const neon_pseudo_names
[] = {
9451 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
9452 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
9455 return neon_pseudo_names
[i
- num_regs
- 32];
9458 if (i
>= ARRAY_SIZE (arm_register_names
))
9459 /* These registers are only supported on targets which supply
9460 an XML description. */
9463 return arm_register_names
[i
];
9467 set_disassembly_style (void)
9471 /* Find the style that the user wants. */
9472 for (current
= 0; current
< num_disassembly_options
; current
++)
9473 if (disassembly_style
== valid_disassembly_styles
[current
])
9475 gdb_assert (current
< num_disassembly_options
);
9477 /* Synchronize the disassembler. */
9478 set_arm_regname_option (current
);
9481 /* Test whether the coff symbol specific value corresponds to a Thumb
9485 coff_sym_is_thumb (int val
)
9487 return (val
== C_THUMBEXT
9488 || val
== C_THUMBSTAT
9489 || val
== C_THUMBEXTFUNC
9490 || val
== C_THUMBSTATFUNC
9491 || val
== C_THUMBLABEL
);
9494 /* arm_coff_make_msymbol_special()
9495 arm_elf_make_msymbol_special()
9497 These functions test whether the COFF or ELF symbol corresponds to
9498 an address in thumb code, and set a "special" bit in a minimal
9499 symbol to indicate that it does. */
9502 arm_elf_make_msymbol_special(asymbol
*sym
, struct minimal_symbol
*msym
)
9504 if (ARM_SYM_BRANCH_TYPE (&((elf_symbol_type
*)sym
)->internal_elf_sym
)
9505 == ST_BRANCH_TO_THUMB
)
9506 MSYMBOL_SET_SPECIAL (msym
);
9510 arm_coff_make_msymbol_special(int val
, struct minimal_symbol
*msym
)
9512 if (coff_sym_is_thumb (val
))
9513 MSYMBOL_SET_SPECIAL (msym
);
9517 arm_objfile_data_free (struct objfile
*objfile
, void *arg
)
9519 struct arm_per_objfile
*data
= arg
;
9522 for (i
= 0; i
< objfile
->obfd
->section_count
; i
++)
9523 VEC_free (arm_mapping_symbol_s
, data
->section_maps
[i
]);
9527 arm_record_special_symbol (struct gdbarch
*gdbarch
, struct objfile
*objfile
,
9530 const char *name
= bfd_asymbol_name (sym
);
9531 struct arm_per_objfile
*data
;
9532 VEC(arm_mapping_symbol_s
) **map_p
;
9533 struct arm_mapping_symbol new_map_sym
;
9535 gdb_assert (name
[0] == '$');
9536 if (name
[1] != 'a' && name
[1] != 't' && name
[1] != 'd')
9539 data
= objfile_data (objfile
, arm_objfile_data_key
);
9542 data
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
,
9543 struct arm_per_objfile
);
9544 set_objfile_data (objfile
, arm_objfile_data_key
, data
);
9545 data
->section_maps
= OBSTACK_CALLOC (&objfile
->objfile_obstack
,
9546 objfile
->obfd
->section_count
,
9547 VEC(arm_mapping_symbol_s
) *);
9549 map_p
= &data
->section_maps
[bfd_get_section (sym
)->index
];
9551 new_map_sym
.value
= sym
->value
;
9552 new_map_sym
.type
= name
[1];
9554 /* Assume that most mapping symbols appear in order of increasing
9555 value. If they were randomly distributed, it would be faster to
9556 always push here and then sort at first use. */
9557 if (!VEC_empty (arm_mapping_symbol_s
, *map_p
))
9559 struct arm_mapping_symbol
*prev_map_sym
;
9561 prev_map_sym
= VEC_last (arm_mapping_symbol_s
, *map_p
);
9562 if (prev_map_sym
->value
>= sym
->value
)
9565 idx
= VEC_lower_bound (arm_mapping_symbol_s
, *map_p
, &new_map_sym
,
9566 arm_compare_mapping_symbols
);
9567 VEC_safe_insert (arm_mapping_symbol_s
, *map_p
, idx
, &new_map_sym
);
9572 VEC_safe_push (arm_mapping_symbol_s
, *map_p
, &new_map_sym
);
9576 arm_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
9578 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
9579 regcache_cooked_write_unsigned (regcache
, ARM_PC_REGNUM
, pc
);
9581 /* If necessary, set the T bit. */
9584 ULONGEST val
, t_bit
;
9585 regcache_cooked_read_unsigned (regcache
, ARM_PS_REGNUM
, &val
);
9586 t_bit
= arm_psr_thumb_bit (gdbarch
);
9587 if (arm_pc_is_thumb (gdbarch
, pc
))
9588 regcache_cooked_write_unsigned (regcache
, ARM_PS_REGNUM
,
9591 regcache_cooked_write_unsigned (regcache
, ARM_PS_REGNUM
,
9596 /* Read the contents of a NEON quad register, by reading from two
9597 double registers. This is used to implement the quad pseudo
9598 registers, and for argument passing in case the quad registers are
9599 missing; vectors are passed in quad registers when using the VFP
9600 ABI, even if a NEON unit is not present. REGNUM is the index of
9601 the quad register, in [0, 15]. */
9603 static enum register_status
9604 arm_neon_quad_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
9605 int regnum
, gdb_byte
*buf
)
9608 gdb_byte reg_buf
[8];
9609 int offset
, double_regnum
;
9610 enum register_status status
;
9612 xsnprintf (name_buf
, sizeof (name_buf
), "d%d", regnum
<< 1);
9613 double_regnum
= user_reg_map_name_to_regnum (gdbarch
, name_buf
,
9616 /* d0 is always the least significant half of q0. */
9617 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
9622 status
= regcache_raw_read (regcache
, double_regnum
, reg_buf
);
9623 if (status
!= REG_VALID
)
9625 memcpy (buf
+ offset
, reg_buf
, 8);
9627 offset
= 8 - offset
;
9628 status
= regcache_raw_read (regcache
, double_regnum
+ 1, reg_buf
);
9629 if (status
!= REG_VALID
)
9631 memcpy (buf
+ offset
, reg_buf
, 8);
9636 static enum register_status
9637 arm_pseudo_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
9638 int regnum
, gdb_byte
*buf
)
9640 const int num_regs
= gdbarch_num_regs (gdbarch
);
9642 gdb_byte reg_buf
[8];
9643 int offset
, double_regnum
;
9645 gdb_assert (regnum
>= num_regs
);
9648 if (gdbarch_tdep (gdbarch
)->have_neon_pseudos
&& regnum
>= 32 && regnum
< 48)
9649 /* Quad-precision register. */
9650 return arm_neon_quad_read (gdbarch
, regcache
, regnum
- 32, buf
);
9653 enum register_status status
;
9655 /* Single-precision register. */
9656 gdb_assert (regnum
< 32);
9658 /* s0 is always the least significant half of d0. */
9659 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
9660 offset
= (regnum
& 1) ? 0 : 4;
9662 offset
= (regnum
& 1) ? 4 : 0;
9664 xsnprintf (name_buf
, sizeof (name_buf
), "d%d", regnum
>> 1);
9665 double_regnum
= user_reg_map_name_to_regnum (gdbarch
, name_buf
,
9668 status
= regcache_raw_read (regcache
, double_regnum
, reg_buf
);
9669 if (status
== REG_VALID
)
9670 memcpy (buf
, reg_buf
+ offset
, 4);
9675 /* Store the contents of BUF to a NEON quad register, by writing to
9676 two double registers. This is used to implement the quad pseudo
9677 registers, and for argument passing in case the quad registers are
9678 missing; vectors are passed in quad registers when using the VFP
9679 ABI, even if a NEON unit is not present. REGNUM is the index
9680 of the quad register, in [0, 15]. */
9683 arm_neon_quad_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
9684 int regnum
, const gdb_byte
*buf
)
9687 int offset
, double_regnum
;
9689 xsnprintf (name_buf
, sizeof (name_buf
), "d%d", regnum
<< 1);
9690 double_regnum
= user_reg_map_name_to_regnum (gdbarch
, name_buf
,
9693 /* d0 is always the least significant half of q0. */
9694 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
9699 regcache_raw_write (regcache
, double_regnum
, buf
+ offset
);
9700 offset
= 8 - offset
;
9701 regcache_raw_write (regcache
, double_regnum
+ 1, buf
+ offset
);
9705 arm_pseudo_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
9706 int regnum
, const gdb_byte
*buf
)
9708 const int num_regs
= gdbarch_num_regs (gdbarch
);
9710 gdb_byte reg_buf
[8];
9711 int offset
, double_regnum
;
9713 gdb_assert (regnum
>= num_regs
);
9716 if (gdbarch_tdep (gdbarch
)->have_neon_pseudos
&& regnum
>= 32 && regnum
< 48)
9717 /* Quad-precision register. */
9718 arm_neon_quad_write (gdbarch
, regcache
, regnum
- 32, buf
);
9721 /* Single-precision register. */
9722 gdb_assert (regnum
< 32);
9724 /* s0 is always the least significant half of d0. */
9725 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
9726 offset
= (regnum
& 1) ? 0 : 4;
9728 offset
= (regnum
& 1) ? 4 : 0;
9730 xsnprintf (name_buf
, sizeof (name_buf
), "d%d", regnum
>> 1);
9731 double_regnum
= user_reg_map_name_to_regnum (gdbarch
, name_buf
,
9734 regcache_raw_read (regcache
, double_regnum
, reg_buf
);
9735 memcpy (reg_buf
+ offset
, buf
, 4);
9736 regcache_raw_write (regcache
, double_regnum
, reg_buf
);
9740 static struct value
*
9741 value_of_arm_user_reg (struct frame_info
*frame
, const void *baton
)
9743 const int *reg_p
= baton
;
9744 return value_of_register (*reg_p
, frame
);
9747 static enum gdb_osabi
9748 arm_elf_osabi_sniffer (bfd
*abfd
)
9750 unsigned int elfosabi
;
9751 enum gdb_osabi osabi
= GDB_OSABI_UNKNOWN
;
9753 elfosabi
= elf_elfheader (abfd
)->e_ident
[EI_OSABI
];
9755 if (elfosabi
== ELFOSABI_ARM
)
9756 /* GNU tools use this value. Check note sections in this case,
9758 bfd_map_over_sections (abfd
,
9759 generic_elf_osabi_sniff_abi_tag_sections
,
9762 /* Anything else will be handled by the generic ELF sniffer. */
9767 arm_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
9768 struct reggroup
*group
)
9770 /* FPS register's type is INT, but belongs to float_reggroup. Beside
9771 this, FPS register belongs to save_regroup, restore_reggroup, and
9772 all_reggroup, of course. */
9773 if (regnum
== ARM_FPS_REGNUM
)
9774 return (group
== float_reggroup
9775 || group
== save_reggroup
9776 || group
== restore_reggroup
9777 || group
== all_reggroup
);
9779 return default_register_reggroup_p (gdbarch
, regnum
, group
);
9783 /* For backward-compatibility we allow two 'g' packet lengths with
9784 the remote protocol depending on whether FPA registers are
9785 supplied. M-profile targets do not have FPA registers, but some
9786 stubs already exist in the wild which use a 'g' packet which
9787 supplies them albeit with dummy values. The packet format which
9788 includes FPA registers should be considered deprecated for
9789 M-profile targets. */
9792 arm_register_g_packet_guesses (struct gdbarch
*gdbarch
)
9794 if (gdbarch_tdep (gdbarch
)->is_m
)
9796 /* If we know from the executable this is an M-profile target,
9797 cater for remote targets whose register set layout is the
9798 same as the FPA layout. */
9799 register_remote_g_packet_guess (gdbarch
,
9800 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
9801 (16 * INT_REGISTER_SIZE
)
9802 + (8 * FP_REGISTER_SIZE
)
9803 + (2 * INT_REGISTER_SIZE
),
9804 tdesc_arm_with_m_fpa_layout
);
9806 /* The regular M-profile layout. */
9807 register_remote_g_packet_guess (gdbarch
,
9808 /* r0-r12,sp,lr,pc; xpsr */
9809 (16 * INT_REGISTER_SIZE
)
9810 + INT_REGISTER_SIZE
,
9813 /* M-profile plus M4F VFP. */
9814 register_remote_g_packet_guess (gdbarch
,
9815 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
9816 (16 * INT_REGISTER_SIZE
)
9817 + (16 * VFP_REGISTER_SIZE
)
9818 + (2 * INT_REGISTER_SIZE
),
9819 tdesc_arm_with_m_vfp_d16
);
9822 /* Otherwise we don't have a useful guess. */
9826 /* Initialize the current architecture based on INFO. If possible,
9827 re-use an architecture from ARCHES, which is a list of
9828 architectures already created during this debugging session.
9830 Called e.g. at program startup, when reading a core file, and when
9831 reading a binary file. */
9833 static struct gdbarch
*
9834 arm_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
9836 struct gdbarch_tdep
*tdep
;
9837 struct gdbarch
*gdbarch
;
9838 struct gdbarch_list
*best_arch
;
9839 enum arm_abi_kind arm_abi
= arm_abi_global
;
9840 enum arm_float_model fp_model
= arm_fp_model
;
9841 struct tdesc_arch_data
*tdesc_data
= NULL
;
9843 int have_vfp_registers
= 0, have_vfp_pseudos
= 0, have_neon_pseudos
= 0;
9845 int have_fpa_registers
= 1;
9846 const struct target_desc
*tdesc
= info
.target_desc
;
9848 /* If we have an object to base this architecture on, try to determine
9851 if (arm_abi
== ARM_ABI_AUTO
&& info
.abfd
!= NULL
)
9853 int ei_osabi
, e_flags
;
9855 switch (bfd_get_flavour (info
.abfd
))
9857 case bfd_target_aout_flavour
:
9858 /* Assume it's an old APCS-style ABI. */
9859 arm_abi
= ARM_ABI_APCS
;
9862 case bfd_target_coff_flavour
:
9863 /* Assume it's an old APCS-style ABI. */
9865 arm_abi
= ARM_ABI_APCS
;
9868 case bfd_target_elf_flavour
:
9869 ei_osabi
= elf_elfheader (info
.abfd
)->e_ident
[EI_OSABI
];
9870 e_flags
= elf_elfheader (info
.abfd
)->e_flags
;
9872 if (ei_osabi
== ELFOSABI_ARM
)
9874 /* GNU tools used to use this value, but do not for EABI
9875 objects. There's nowhere to tag an EABI version
9876 anyway, so assume APCS. */
9877 arm_abi
= ARM_ABI_APCS
;
9879 else if (ei_osabi
== ELFOSABI_NONE
)
9881 int eabi_ver
= EF_ARM_EABI_VERSION (e_flags
);
9882 int attr_arch
, attr_profile
;
9886 case EF_ARM_EABI_UNKNOWN
:
9887 /* Assume GNU tools. */
9888 arm_abi
= ARM_ABI_APCS
;
9891 case EF_ARM_EABI_VER4
:
9892 case EF_ARM_EABI_VER5
:
9893 arm_abi
= ARM_ABI_AAPCS
;
9894 /* EABI binaries default to VFP float ordering.
9895 They may also contain build attributes that can
9896 be used to identify if the VFP argument-passing
9898 if (fp_model
== ARM_FLOAT_AUTO
)
9901 switch (bfd_elf_get_obj_attr_int (info
.abfd
,
9906 /* "The user intended FP parameter/result
9907 passing to conform to AAPCS, base
9909 fp_model
= ARM_FLOAT_SOFT_VFP
;
9912 /* "The user intended FP parameter/result
9913 passing to conform to AAPCS, VFP
9915 fp_model
= ARM_FLOAT_VFP
;
9918 /* "The user intended FP parameter/result
9919 passing to conform to tool chain-specific
9920 conventions" - we don't know any such
9921 conventions, so leave it as "auto". */
9924 /* Attribute value not mentioned in the
9925 October 2008 ABI, so leave it as
9930 fp_model
= ARM_FLOAT_SOFT_VFP
;
9936 /* Leave it as "auto". */
9937 warning (_("unknown ARM EABI version 0x%x"), eabi_ver
);
9942 /* Detect M-profile programs. This only works if the
9943 executable file includes build attributes; GCC does
9944 copy them to the executable, but e.g. RealView does
9946 attr_arch
= bfd_elf_get_obj_attr_int (info
.abfd
, OBJ_ATTR_PROC
,
9948 attr_profile
= bfd_elf_get_obj_attr_int (info
.abfd
,
9950 Tag_CPU_arch_profile
);
9951 /* GCC specifies the profile for v6-M; RealView only
9952 specifies the profile for architectures starting with
9953 V7 (as opposed to architectures with a tag
9954 numerically greater than TAG_CPU_ARCH_V7). */
9955 if (!tdesc_has_registers (tdesc
)
9956 && (attr_arch
== TAG_CPU_ARCH_V6_M
9957 || attr_arch
== TAG_CPU_ARCH_V6S_M
9958 || attr_profile
== 'M'))
9963 if (fp_model
== ARM_FLOAT_AUTO
)
9965 int e_flags
= elf_elfheader (info
.abfd
)->e_flags
;
9967 switch (e_flags
& (EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
))
9970 /* Leave it as "auto". Strictly speaking this case
9971 means FPA, but almost nobody uses that now, and
9972 many toolchains fail to set the appropriate bits
9973 for the floating-point model they use. */
9975 case EF_ARM_SOFT_FLOAT
:
9976 fp_model
= ARM_FLOAT_SOFT_FPA
;
9978 case EF_ARM_VFP_FLOAT
:
9979 fp_model
= ARM_FLOAT_VFP
;
9981 case EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
:
9982 fp_model
= ARM_FLOAT_SOFT_VFP
;
9987 if (e_flags
& EF_ARM_BE8
)
9988 info
.byte_order_for_code
= BFD_ENDIAN_LITTLE
;
9993 /* Leave it as "auto". */
9998 /* Check any target description for validity. */
9999 if (tdesc_has_registers (tdesc
))
10001 /* For most registers we require GDB's default names; but also allow
10002 the numeric names for sp / lr / pc, as a convenience. */
10003 static const char *const arm_sp_names
[] = { "r13", "sp", NULL
};
10004 static const char *const arm_lr_names
[] = { "r14", "lr", NULL
};
10005 static const char *const arm_pc_names
[] = { "r15", "pc", NULL
};
10007 const struct tdesc_feature
*feature
;
10010 feature
= tdesc_find_feature (tdesc
,
10011 "org.gnu.gdb.arm.core");
10012 if (feature
== NULL
)
10014 feature
= tdesc_find_feature (tdesc
,
10015 "org.gnu.gdb.arm.m-profile");
10016 if (feature
== NULL
)
10022 tdesc_data
= tdesc_data_alloc ();
10025 for (i
= 0; i
< ARM_SP_REGNUM
; i
++)
10026 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
, i
,
10027 arm_register_names
[i
]);
10028 valid_p
&= tdesc_numbered_register_choices (feature
, tdesc_data
,
10031 valid_p
&= tdesc_numbered_register_choices (feature
, tdesc_data
,
10034 valid_p
&= tdesc_numbered_register_choices (feature
, tdesc_data
,
10038 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
10039 ARM_PS_REGNUM
, "xpsr");
10041 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
10042 ARM_PS_REGNUM
, "cpsr");
10046 tdesc_data_cleanup (tdesc_data
);
10050 feature
= tdesc_find_feature (tdesc
,
10051 "org.gnu.gdb.arm.fpa");
10052 if (feature
!= NULL
)
10055 for (i
= ARM_F0_REGNUM
; i
<= ARM_FPS_REGNUM
; i
++)
10056 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
, i
,
10057 arm_register_names
[i
]);
10060 tdesc_data_cleanup (tdesc_data
);
10065 have_fpa_registers
= 0;
10067 feature
= tdesc_find_feature (tdesc
,
10068 "org.gnu.gdb.xscale.iwmmxt");
10069 if (feature
!= NULL
)
10071 static const char *const iwmmxt_names
[] = {
10072 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
10073 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
10074 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
10075 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
10079 for (i
= ARM_WR0_REGNUM
; i
<= ARM_WR15_REGNUM
; i
++)
10081 &= tdesc_numbered_register (feature
, tdesc_data
, i
,
10082 iwmmxt_names
[i
- ARM_WR0_REGNUM
]);
10084 /* Check for the control registers, but do not fail if they
10086 for (i
= ARM_WC0_REGNUM
; i
<= ARM_WCASF_REGNUM
; i
++)
10087 tdesc_numbered_register (feature
, tdesc_data
, i
,
10088 iwmmxt_names
[i
- ARM_WR0_REGNUM
]);
10090 for (i
= ARM_WCGR0_REGNUM
; i
<= ARM_WCGR3_REGNUM
; i
++)
10092 &= tdesc_numbered_register (feature
, tdesc_data
, i
,
10093 iwmmxt_names
[i
- ARM_WR0_REGNUM
]);
10097 tdesc_data_cleanup (tdesc_data
);
10102 /* If we have a VFP unit, check whether the single precision registers
10103 are present. If not, then we will synthesize them as pseudo
10105 feature
= tdesc_find_feature (tdesc
,
10106 "org.gnu.gdb.arm.vfp");
10107 if (feature
!= NULL
)
10109 static const char *const vfp_double_names
[] = {
10110 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
10111 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
10112 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
10113 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
10116 /* Require the double precision registers. There must be either
10119 for (i
= 0; i
< 32; i
++)
10121 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
10123 vfp_double_names
[i
]);
10127 if (!valid_p
&& i
== 16)
10130 /* Also require FPSCR. */
10131 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
10132 ARM_FPSCR_REGNUM
, "fpscr");
10135 tdesc_data_cleanup (tdesc_data
);
10139 if (tdesc_unnumbered_register (feature
, "s0") == 0)
10140 have_vfp_pseudos
= 1;
10142 have_vfp_registers
= 1;
10144 /* If we have VFP, also check for NEON. The architecture allows
10145 NEON without VFP (integer vector operations only), but GDB
10146 does not support that. */
10147 feature
= tdesc_find_feature (tdesc
,
10148 "org.gnu.gdb.arm.neon");
10149 if (feature
!= NULL
)
10151 /* NEON requires 32 double-precision registers. */
10154 tdesc_data_cleanup (tdesc_data
);
10158 /* If there are quad registers defined by the stub, use
10159 their type; otherwise (normally) provide them with
10160 the default type. */
10161 if (tdesc_unnumbered_register (feature
, "q0") == 0)
10162 have_neon_pseudos
= 1;
10169 /* If there is already a candidate, use it. */
10170 for (best_arch
= gdbarch_list_lookup_by_info (arches
, &info
);
10172 best_arch
= gdbarch_list_lookup_by_info (best_arch
->next
, &info
))
10174 if (arm_abi
!= ARM_ABI_AUTO
10175 && arm_abi
!= gdbarch_tdep (best_arch
->gdbarch
)->arm_abi
)
10178 if (fp_model
!= ARM_FLOAT_AUTO
10179 && fp_model
!= gdbarch_tdep (best_arch
->gdbarch
)->fp_model
)
10182 /* There are various other properties in tdep that we do not
10183 need to check here: those derived from a target description,
10184 since gdbarches with a different target description are
10185 automatically disqualified. */
10187 /* Do check is_m, though, since it might come from the binary. */
10188 if (is_m
!= gdbarch_tdep (best_arch
->gdbarch
)->is_m
)
10191 /* Found a match. */
10195 if (best_arch
!= NULL
)
10197 if (tdesc_data
!= NULL
)
10198 tdesc_data_cleanup (tdesc_data
);
10199 return best_arch
->gdbarch
;
10202 tdep
= xcalloc (1, sizeof (struct gdbarch_tdep
));
10203 gdbarch
= gdbarch_alloc (&info
, tdep
);
10205 /* Record additional information about the architecture we are defining.
10206 These are gdbarch discriminators, like the OSABI. */
10207 tdep
->arm_abi
= arm_abi
;
10208 tdep
->fp_model
= fp_model
;
10210 tdep
->have_fpa_registers
= have_fpa_registers
;
10211 tdep
->have_vfp_registers
= have_vfp_registers
;
10212 tdep
->have_vfp_pseudos
= have_vfp_pseudos
;
10213 tdep
->have_neon_pseudos
= have_neon_pseudos
;
10214 tdep
->have_neon
= have_neon
;
10216 arm_register_g_packet_guesses (gdbarch
);
10219 switch (info
.byte_order_for_code
)
10221 case BFD_ENDIAN_BIG
:
10222 tdep
->arm_breakpoint
= arm_default_arm_be_breakpoint
;
10223 tdep
->arm_breakpoint_size
= sizeof (arm_default_arm_be_breakpoint
);
10224 tdep
->thumb_breakpoint
= arm_default_thumb_be_breakpoint
;
10225 tdep
->thumb_breakpoint_size
= sizeof (arm_default_thumb_be_breakpoint
);
10229 case BFD_ENDIAN_LITTLE
:
10230 tdep
->arm_breakpoint
= arm_default_arm_le_breakpoint
;
10231 tdep
->arm_breakpoint_size
= sizeof (arm_default_arm_le_breakpoint
);
10232 tdep
->thumb_breakpoint
= arm_default_thumb_le_breakpoint
;
10233 tdep
->thumb_breakpoint_size
= sizeof (arm_default_thumb_le_breakpoint
);
10238 internal_error (__FILE__
, __LINE__
,
10239 _("arm_gdbarch_init: bad byte order for float format"));
10242 /* On ARM targets char defaults to unsigned. */
10243 set_gdbarch_char_signed (gdbarch
, 0);
10245 /* Note: for displaced stepping, this includes the breakpoint, and one word
10246 of additional scratch space. This setting isn't used for anything beside
10247 displaced stepping at present. */
10248 set_gdbarch_max_insn_length (gdbarch
, 4 * DISPLACED_MODIFIED_INSNS
);
10250 /* This should be low enough for everything. */
10251 tdep
->lowest_pc
= 0x20;
10252 tdep
->jb_pc
= -1; /* Longjump support not enabled by default. */
10254 /* The default, for both APCS and AAPCS, is to return small
10255 structures in registers. */
10256 tdep
->struct_return
= reg_struct_return
;
10258 set_gdbarch_push_dummy_call (gdbarch
, arm_push_dummy_call
);
10259 set_gdbarch_frame_align (gdbarch
, arm_frame_align
);
10261 set_gdbarch_write_pc (gdbarch
, arm_write_pc
);
10263 /* Frame handling. */
10264 set_gdbarch_dummy_id (gdbarch
, arm_dummy_id
);
10265 set_gdbarch_unwind_pc (gdbarch
, arm_unwind_pc
);
10266 set_gdbarch_unwind_sp (gdbarch
, arm_unwind_sp
);
10268 frame_base_set_default (gdbarch
, &arm_normal_base
);
10270 /* Address manipulation. */
10271 set_gdbarch_addr_bits_remove (gdbarch
, arm_addr_bits_remove
);
10273 /* Advance PC across function entry code. */
10274 set_gdbarch_skip_prologue (gdbarch
, arm_skip_prologue
);
10276 /* Detect whether PC is in function epilogue. */
10277 set_gdbarch_in_function_epilogue_p (gdbarch
, arm_in_function_epilogue_p
);
10279 /* Skip trampolines. */
10280 set_gdbarch_skip_trampoline_code (gdbarch
, arm_skip_stub
);
10282 /* The stack grows downward. */
10283 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
10285 /* Breakpoint manipulation. */
10286 set_gdbarch_breakpoint_from_pc (gdbarch
, arm_breakpoint_from_pc
);
10287 set_gdbarch_remote_breakpoint_from_pc (gdbarch
,
10288 arm_remote_breakpoint_from_pc
);
10290 /* Information about registers, etc. */
10291 set_gdbarch_sp_regnum (gdbarch
, ARM_SP_REGNUM
);
10292 set_gdbarch_pc_regnum (gdbarch
, ARM_PC_REGNUM
);
10293 set_gdbarch_num_regs (gdbarch
, ARM_NUM_REGS
);
10294 set_gdbarch_register_type (gdbarch
, arm_register_type
);
10295 set_gdbarch_register_reggroup_p (gdbarch
, arm_register_reggroup_p
);
10297 /* This "info float" is FPA-specific. Use the generic version if we
10298 do not have FPA. */
10299 if (gdbarch_tdep (gdbarch
)->have_fpa_registers
)
10300 set_gdbarch_print_float_info (gdbarch
, arm_print_float_info
);
10302 /* Internal <-> external register number maps. */
10303 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, arm_dwarf_reg_to_regnum
);
10304 set_gdbarch_register_sim_regno (gdbarch
, arm_register_sim_regno
);
10306 set_gdbarch_register_name (gdbarch
, arm_register_name
);
10308 /* Returning results. */
10309 set_gdbarch_return_value (gdbarch
, arm_return_value
);
10312 set_gdbarch_print_insn (gdbarch
, gdb_print_insn_arm
);
10314 /* Minsymbol frobbing. */
10315 set_gdbarch_elf_make_msymbol_special (gdbarch
, arm_elf_make_msymbol_special
);
10316 set_gdbarch_coff_make_msymbol_special (gdbarch
,
10317 arm_coff_make_msymbol_special
);
10318 set_gdbarch_record_special_symbol (gdbarch
, arm_record_special_symbol
);
10320 /* Thumb-2 IT block support. */
10321 set_gdbarch_adjust_breakpoint_address (gdbarch
,
10322 arm_adjust_breakpoint_address
);
10324 /* Virtual tables. */
10325 set_gdbarch_vbit_in_delta (gdbarch
, 1);
10327 /* Hook in the ABI-specific overrides, if they have been registered. */
10328 gdbarch_init_osabi (info
, gdbarch
);
10330 dwarf2_frame_set_init_reg (gdbarch
, arm_dwarf2_frame_init_reg
);
10332 /* Add some default predicates. */
10334 frame_unwind_append_unwinder (gdbarch
, &arm_m_exception_unwind
);
10335 frame_unwind_append_unwinder (gdbarch
, &arm_stub_unwind
);
10336 dwarf2_append_unwinders (gdbarch
);
10337 frame_unwind_append_unwinder (gdbarch
, &arm_exidx_unwind
);
10338 frame_unwind_append_unwinder (gdbarch
, &arm_prologue_unwind
);
10340 /* Now we have tuned the configuration, set a few final things,
10341 based on what the OS ABI has told us. */
10343 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
10344 binaries are always marked. */
10345 if (tdep
->arm_abi
== ARM_ABI_AUTO
)
10346 tdep
->arm_abi
= ARM_ABI_APCS
;
10348 /* Watchpoints are not steppable. */
10349 set_gdbarch_have_nonsteppable_watchpoint (gdbarch
, 1);
10351 /* We used to default to FPA for generic ARM, but almost nobody
10352 uses that now, and we now provide a way for the user to force
10353 the model. So default to the most useful variant. */
10354 if (tdep
->fp_model
== ARM_FLOAT_AUTO
)
10355 tdep
->fp_model
= ARM_FLOAT_SOFT_FPA
;
10357 if (tdep
->jb_pc
>= 0)
10358 set_gdbarch_get_longjmp_target (gdbarch
, arm_get_longjmp_target
);
10360 /* Floating point sizes and format. */
10361 set_gdbarch_float_format (gdbarch
, floatformats_ieee_single
);
10362 if (tdep
->fp_model
== ARM_FLOAT_SOFT_FPA
|| tdep
->fp_model
== ARM_FLOAT_FPA
)
10364 set_gdbarch_double_format
10365 (gdbarch
, floatformats_ieee_double_littlebyte_bigword
);
10366 set_gdbarch_long_double_format
10367 (gdbarch
, floatformats_ieee_double_littlebyte_bigword
);
10371 set_gdbarch_double_format (gdbarch
, floatformats_ieee_double
);
10372 set_gdbarch_long_double_format (gdbarch
, floatformats_ieee_double
);
10375 if (have_vfp_pseudos
)
10377 /* NOTE: These are the only pseudo registers used by
10378 the ARM target at the moment. If more are added, a
10379 little more care in numbering will be needed. */
10381 int num_pseudos
= 32;
10382 if (have_neon_pseudos
)
10384 set_gdbarch_num_pseudo_regs (gdbarch
, num_pseudos
);
10385 set_gdbarch_pseudo_register_read (gdbarch
, arm_pseudo_read
);
10386 set_gdbarch_pseudo_register_write (gdbarch
, arm_pseudo_write
);
10391 set_tdesc_pseudo_register_name (gdbarch
, arm_register_name
);
10393 tdesc_use_registers (gdbarch
, tdesc
, tdesc_data
);
10395 /* Override tdesc_register_type to adjust the types of VFP
10396 registers for NEON. */
10397 set_gdbarch_register_type (gdbarch
, arm_register_type
);
10400 /* Add standard register aliases. We add aliases even for those
10401 nanes which are used by the current architecture - it's simpler,
10402 and does no harm, since nothing ever lists user registers. */
10403 for (i
= 0; i
< ARRAY_SIZE (arm_register_aliases
); i
++)
10404 user_reg_add (gdbarch
, arm_register_aliases
[i
].name
,
10405 value_of_arm_user_reg
, &arm_register_aliases
[i
].regnum
);
10411 arm_dump_tdep (struct gdbarch
*gdbarch
, struct ui_file
*file
)
10413 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
10418 fprintf_unfiltered (file
, _("arm_dump_tdep: Lowest pc = 0x%lx"),
10419 (unsigned long) tdep
->lowest_pc
);
10422 extern initialize_file_ftype _initialize_arm_tdep
; /* -Wmissing-prototypes */
10425 _initialize_arm_tdep (void)
10427 struct ui_file
*stb
;
10429 struct cmd_list_element
*new_set
, *new_show
;
10430 const char *setname
;
10431 const char *setdesc
;
10432 const char *const *regnames
;
10434 static char *helptext
;
10435 char regdesc
[1024], *rdptr
= regdesc
;
10436 size_t rest
= sizeof (regdesc
);
10438 gdbarch_register (bfd_arch_arm
, arm_gdbarch_init
, arm_dump_tdep
);
10440 arm_objfile_data_key
10441 = register_objfile_data_with_cleanup (NULL
, arm_objfile_data_free
);
10443 /* Add ourselves to objfile event chain. */
10444 observer_attach_new_objfile (arm_exidx_new_objfile
);
10446 = register_objfile_data_with_cleanup (NULL
, arm_exidx_data_free
);
10448 /* Register an ELF OS ABI sniffer for ARM binaries. */
10449 gdbarch_register_osabi_sniffer (bfd_arch_arm
,
10450 bfd_target_elf_flavour
,
10451 arm_elf_osabi_sniffer
);
10453 /* Initialize the standard target descriptions. */
10454 initialize_tdesc_arm_with_m ();
10455 initialize_tdesc_arm_with_m_fpa_layout ();
10456 initialize_tdesc_arm_with_m_vfp_d16 ();
10457 initialize_tdesc_arm_with_iwmmxt ();
10458 initialize_tdesc_arm_with_vfpv2 ();
10459 initialize_tdesc_arm_with_vfpv3 ();
10460 initialize_tdesc_arm_with_neon ();
10462 /* Get the number of possible sets of register names defined in opcodes. */
10463 num_disassembly_options
= get_arm_regname_num_options ();
10465 /* Add root prefix command for all "set arm"/"show arm" commands. */
10466 add_prefix_cmd ("arm", no_class
, set_arm_command
,
10467 _("Various ARM-specific commands."),
10468 &setarmcmdlist
, "set arm ", 0, &setlist
);
10470 add_prefix_cmd ("arm", no_class
, show_arm_command
,
10471 _("Various ARM-specific commands."),
10472 &showarmcmdlist
, "show arm ", 0, &showlist
);
10474 /* Sync the opcode insn printer with our register viewer. */
10475 parse_arm_disassembler_option ("reg-names-std");
10477 /* Initialize the array that will be passed to
10478 add_setshow_enum_cmd(). */
10479 valid_disassembly_styles
10480 = xmalloc ((num_disassembly_options
+ 1) * sizeof (char *));
10481 for (i
= 0; i
< num_disassembly_options
; i
++)
10483 numregs
= get_arm_regnames (i
, &setname
, &setdesc
, ®names
);
10484 valid_disassembly_styles
[i
] = setname
;
10485 length
= snprintf (rdptr
, rest
, "%s - %s\n", setname
, setdesc
);
10488 /* When we find the default names, tell the disassembler to use
10490 if (!strcmp (setname
, "std"))
10492 disassembly_style
= setname
;
10493 set_arm_regname_option (i
);
10496 /* Mark the end of valid options. */
10497 valid_disassembly_styles
[num_disassembly_options
] = NULL
;
10499 /* Create the help text. */
10500 stb
= mem_fileopen ();
10501 fprintf_unfiltered (stb
, "%s%s%s",
10502 _("The valid values are:\n"),
10504 _("The default is \"std\"."));
10505 helptext
= ui_file_xstrdup (stb
, NULL
);
10506 ui_file_delete (stb
);
10508 add_setshow_enum_cmd("disassembler", no_class
,
10509 valid_disassembly_styles
, &disassembly_style
,
10510 _("Set the disassembly style."),
10511 _("Show the disassembly style."),
10513 set_disassembly_style_sfunc
,
10514 NULL
, /* FIXME: i18n: The disassembly style is
10516 &setarmcmdlist
, &showarmcmdlist
);
10518 add_setshow_boolean_cmd ("apcs32", no_class
, &arm_apcs_32
,
10519 _("Set usage of ARM 32-bit mode."),
10520 _("Show usage of ARM 32-bit mode."),
10521 _("When off, a 26-bit PC will be used."),
10523 NULL
, /* FIXME: i18n: Usage of ARM 32-bit
10525 &setarmcmdlist
, &showarmcmdlist
);
10527 /* Add a command to allow the user to force the FPU model. */
10528 add_setshow_enum_cmd ("fpu", no_class
, fp_model_strings
, ¤t_fp_model
,
10529 _("Set the floating point type."),
10530 _("Show the floating point type."),
10531 _("auto - Determine the FP typefrom the OS-ABI.\n\
10532 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
10533 fpa - FPA co-processor (GCC compiled).\n\
10534 softvfp - Software FP with pure-endian doubles.\n\
10535 vfp - VFP co-processor."),
10536 set_fp_model_sfunc
, show_fp_model
,
10537 &setarmcmdlist
, &showarmcmdlist
);
10539 /* Add a command to allow the user to force the ABI. */
10540 add_setshow_enum_cmd ("abi", class_support
, arm_abi_strings
, &arm_abi_string
,
10542 _("Show the ABI."),
10543 NULL
, arm_set_abi
, arm_show_abi
,
10544 &setarmcmdlist
, &showarmcmdlist
);
10546 /* Add two commands to allow the user to force the assumed
10548 add_setshow_enum_cmd ("fallback-mode", class_support
,
10549 arm_mode_strings
, &arm_fallback_mode_string
,
10550 _("Set the mode assumed when symbols are unavailable."),
10551 _("Show the mode assumed when symbols are unavailable."),
10552 NULL
, NULL
, arm_show_fallback_mode
,
10553 &setarmcmdlist
, &showarmcmdlist
);
10554 add_setshow_enum_cmd ("force-mode", class_support
,
10555 arm_mode_strings
, &arm_force_mode_string
,
10556 _("Set the mode assumed even when symbols are available."),
10557 _("Show the mode assumed even when symbols are available."),
10558 NULL
, NULL
, arm_show_force_mode
,
10559 &setarmcmdlist
, &showarmcmdlist
);
10561 /* Debugging flag. */
10562 add_setshow_boolean_cmd ("arm", class_maintenance
, &arm_debug
,
10563 _("Set ARM debugging."),
10564 _("Show ARM debugging."),
10565 _("When on, arm-specific debugging is enabled."),
10567 NULL
, /* FIXME: i18n: "ARM debugging is %s. */
10568 &setdebuglist
, &showdebuglist
);
10571 /* ARM-reversible process record data structures. */
10573 #define ARM_INSN_SIZE_BYTES 4
10574 #define THUMB_INSN_SIZE_BYTES 2
10575 #define THUMB2_INSN_SIZE_BYTES 4
10578 #define INSN_S_L_BIT_NUM 20
10580 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
10583 unsigned int reg_len = LENGTH; \
10586 REGS = XNEWVEC (uint32_t, reg_len); \
10587 memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
10592 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
10595 unsigned int mem_len = LENGTH; \
10598 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
10599 memcpy(&MEMS->len, &RECORD_BUF[0], \
10600 sizeof(struct arm_mem_r) * LENGTH); \
10605 /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
10606 #define INSN_RECORDED(ARM_RECORD) \
10607 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
10609 /* ARM memory record structure. */
10612 uint32_t len
; /* Record length. */
10613 uint32_t addr
; /* Memory address. */
10616 /* ARM instruction record contains opcode of current insn
10617 and execution state (before entry to decode_insn()),
10618 contains list of to-be-modified registers and
10619 memory blocks (on return from decode_insn()). */
10621 typedef struct insn_decode_record_t
10623 struct gdbarch
*gdbarch
;
10624 struct regcache
*regcache
;
10625 CORE_ADDR this_addr
; /* Address of the insn being decoded. */
10626 uint32_t arm_insn
; /* Should accommodate thumb. */
10627 uint32_t cond
; /* Condition code. */
10628 uint32_t opcode
; /* Insn opcode. */
10629 uint32_t decode
; /* Insn decode bits. */
10630 uint32_t mem_rec_count
; /* No of mem records. */
10631 uint32_t reg_rec_count
; /* No of reg records. */
10632 uint32_t *arm_regs
; /* Registers to be saved for this record. */
10633 struct arm_mem_r
*arm_mems
; /* Memory to be saved for this record. */
10634 } insn_decode_record
;
10637 /* Checks ARM SBZ and SBO mandatory fields. */
10640 sbo_sbz (uint32_t insn
, uint32_t bit_num
, uint32_t len
, uint32_t sbo
)
10642 uint32_t ones
= bits (insn
, bit_num
- 1, (bit_num
-1) + (len
- 1));
10661 enum arm_record_result
10663 ARM_RECORD_SUCCESS
= 0,
10664 ARM_RECORD_FAILURE
= 1
10671 } arm_record_strx_t
;
10682 arm_record_strx (insn_decode_record
*arm_insn_r
, uint32_t *record_buf
,
10683 uint32_t *record_buf_mem
, arm_record_strx_t str_type
)
10686 struct regcache
*reg_cache
= arm_insn_r
->regcache
;
10687 ULONGEST u_regval
[2]= {0};
10689 uint32_t reg_src1
= 0, reg_src2
= 0;
10690 uint32_t immed_high
= 0, immed_low
= 0,offset_8
= 0, tgt_mem_addr
= 0;
10691 uint32_t opcode1
= 0;
10693 arm_insn_r
->opcode
= bits (arm_insn_r
->arm_insn
, 21, 24);
10694 arm_insn_r
->decode
= bits (arm_insn_r
->arm_insn
, 4, 7);
10695 opcode1
= bits (arm_insn_r
->arm_insn
, 20, 24);
10698 if (14 == arm_insn_r
->opcode
|| 10 == arm_insn_r
->opcode
)
10700 /* 1) Handle misc store, immediate offset. */
10701 immed_low
= bits (arm_insn_r
->arm_insn
, 0, 3);
10702 immed_high
= bits (arm_insn_r
->arm_insn
, 8, 11);
10703 reg_src1
= bits (arm_insn_r
->arm_insn
, 16, 19);
10704 regcache_raw_read_unsigned (reg_cache
, reg_src1
,
10706 if (ARM_PC_REGNUM
== reg_src1
)
10708 /* If R15 was used as Rn, hence current PC+8. */
10709 u_regval
[0] = u_regval
[0] + 8;
10711 offset_8
= (immed_high
<< 4) | immed_low
;
10712 /* Calculate target store address. */
10713 if (14 == arm_insn_r
->opcode
)
10715 tgt_mem_addr
= u_regval
[0] + offset_8
;
10719 tgt_mem_addr
= u_regval
[0] - offset_8
;
10721 if (ARM_RECORD_STRH
== str_type
)
10723 record_buf_mem
[0] = 2;
10724 record_buf_mem
[1] = tgt_mem_addr
;
10725 arm_insn_r
->mem_rec_count
= 1;
10727 else if (ARM_RECORD_STRD
== str_type
)
10729 record_buf_mem
[0] = 4;
10730 record_buf_mem
[1] = tgt_mem_addr
;
10731 record_buf_mem
[2] = 4;
10732 record_buf_mem
[3] = tgt_mem_addr
+ 4;
10733 arm_insn_r
->mem_rec_count
= 2;
10736 else if (12 == arm_insn_r
->opcode
|| 8 == arm_insn_r
->opcode
)
10738 /* 2) Store, register offset. */
10740 reg_src1
= bits (arm_insn_r
->arm_insn
, 0, 3);
10742 reg_src2
= bits (arm_insn_r
->arm_insn
, 16, 19);
10743 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
[0]);
10744 regcache_raw_read_unsigned (reg_cache
, reg_src2
, &u_regval
[1]);
10745 if (15 == reg_src2
)
10747 /* If R15 was used as Rn, hence current PC+8. */
10748 u_regval
[0] = u_regval
[0] + 8;
10750 /* Calculate target store address, Rn +/- Rm, register offset. */
10751 if (12 == arm_insn_r
->opcode
)
10753 tgt_mem_addr
= u_regval
[0] + u_regval
[1];
10757 tgt_mem_addr
= u_regval
[1] - u_regval
[0];
10759 if (ARM_RECORD_STRH
== str_type
)
10761 record_buf_mem
[0] = 2;
10762 record_buf_mem
[1] = tgt_mem_addr
;
10763 arm_insn_r
->mem_rec_count
= 1;
10765 else if (ARM_RECORD_STRD
== str_type
)
10767 record_buf_mem
[0] = 4;
10768 record_buf_mem
[1] = tgt_mem_addr
;
10769 record_buf_mem
[2] = 4;
10770 record_buf_mem
[3] = tgt_mem_addr
+ 4;
10771 arm_insn_r
->mem_rec_count
= 2;
10774 else if (11 == arm_insn_r
->opcode
|| 15 == arm_insn_r
->opcode
10775 || 2 == arm_insn_r
->opcode
|| 6 == arm_insn_r
->opcode
)
10777 /* 3) Store, immediate pre-indexed. */
10778 /* 5) Store, immediate post-indexed. */
10779 immed_low
= bits (arm_insn_r
->arm_insn
, 0, 3);
10780 immed_high
= bits (arm_insn_r
->arm_insn
, 8, 11);
10781 offset_8
= (immed_high
<< 4) | immed_low
;
10782 reg_src1
= bits (arm_insn_r
->arm_insn
, 16, 19);
10783 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
[0]);
10784 /* Calculate target store address, Rn +/- Rm, register offset. */
10785 if (15 == arm_insn_r
->opcode
|| 6 == arm_insn_r
->opcode
)
10787 tgt_mem_addr
= u_regval
[0] + offset_8
;
10791 tgt_mem_addr
= u_regval
[0] - offset_8
;
10793 if (ARM_RECORD_STRH
== str_type
)
10795 record_buf_mem
[0] = 2;
10796 record_buf_mem
[1] = tgt_mem_addr
;
10797 arm_insn_r
->mem_rec_count
= 1;
10799 else if (ARM_RECORD_STRD
== str_type
)
10801 record_buf_mem
[0] = 4;
10802 record_buf_mem
[1] = tgt_mem_addr
;
10803 record_buf_mem
[2] = 4;
10804 record_buf_mem
[3] = tgt_mem_addr
+ 4;
10805 arm_insn_r
->mem_rec_count
= 2;
10807 /* Record Rn also as it changes. */
10808 *(record_buf
) = bits (arm_insn_r
->arm_insn
, 16, 19);
10809 arm_insn_r
->reg_rec_count
= 1;
10811 else if (9 == arm_insn_r
->opcode
|| 13 == arm_insn_r
->opcode
10812 || 0 == arm_insn_r
->opcode
|| 4 == arm_insn_r
->opcode
)
10814 /* 4) Store, register pre-indexed. */
10815 /* 6) Store, register post -indexed. */
10816 reg_src1
= bits (arm_insn_r
->arm_insn
, 0, 3);
10817 reg_src2
= bits (arm_insn_r
->arm_insn
, 16, 19);
10818 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
[0]);
10819 regcache_raw_read_unsigned (reg_cache
, reg_src2
, &u_regval
[1]);
10820 /* Calculate target store address, Rn +/- Rm, register offset. */
10821 if (13 == arm_insn_r
->opcode
|| 4 == arm_insn_r
->opcode
)
10823 tgt_mem_addr
= u_regval
[0] + u_regval
[1];
10827 tgt_mem_addr
= u_regval
[1] - u_regval
[0];
10829 if (ARM_RECORD_STRH
== str_type
)
10831 record_buf_mem
[0] = 2;
10832 record_buf_mem
[1] = tgt_mem_addr
;
10833 arm_insn_r
->mem_rec_count
= 1;
10835 else if (ARM_RECORD_STRD
== str_type
)
10837 record_buf_mem
[0] = 4;
10838 record_buf_mem
[1] = tgt_mem_addr
;
10839 record_buf_mem
[2] = 4;
10840 record_buf_mem
[3] = tgt_mem_addr
+ 4;
10841 arm_insn_r
->mem_rec_count
= 2;
10843 /* Record Rn also as it changes. */
10844 *(record_buf
) = bits (arm_insn_r
->arm_insn
, 16, 19);
10845 arm_insn_r
->reg_rec_count
= 1;
10850 /* Handling ARM extension space insns. */
10853 arm_record_extension_space (insn_decode_record
*arm_insn_r
)
10855 uint32_t ret
= 0; /* Return value: -1:record failure ; 0:success */
10856 uint32_t opcode1
= 0, opcode2
= 0, insn_op1
= 0;
10857 uint32_t record_buf
[8], record_buf_mem
[8];
10858 uint32_t reg_src1
= 0;
10859 uint32_t immed_high
= 0, immed_low
= 0,offset_8
= 0, tgt_mem_addr
= 0;
10860 struct regcache
*reg_cache
= arm_insn_r
->regcache
;
10861 ULONGEST u_regval
= 0;
10863 gdb_assert (!INSN_RECORDED(arm_insn_r
));
10864 /* Handle unconditional insn extension space. */
10866 opcode1
= bits (arm_insn_r
->arm_insn
, 20, 27);
10867 opcode2
= bits (arm_insn_r
->arm_insn
, 4, 7);
10868 if (arm_insn_r
->cond
)
10870 /* PLD has no affect on architectural state, it just affects
10872 if (5 == ((opcode1
& 0xE0) >> 5))
10875 record_buf
[0] = ARM_PS_REGNUM
;
10876 record_buf
[1] = ARM_LR_REGNUM
;
10877 arm_insn_r
->reg_rec_count
= 2;
10879 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10883 opcode1
= bits (arm_insn_r
->arm_insn
, 25, 27);
10884 if (3 == opcode1
&& bit (arm_insn_r
->arm_insn
, 4))
10887 /* Undefined instruction on ARM V5; need to handle if later
10888 versions define it. */
10891 opcode1
= bits (arm_insn_r
->arm_insn
, 24, 27);
10892 opcode2
= bits (arm_insn_r
->arm_insn
, 4, 7);
10893 insn_op1
= bits (arm_insn_r
->arm_insn
, 20, 23);
10895 /* Handle arithmetic insn extension space. */
10896 if (!opcode1
&& 9 == opcode2
&& 1 != arm_insn_r
->cond
10897 && !INSN_RECORDED(arm_insn_r
))
10899 /* Handle MLA(S) and MUL(S). */
10900 if (0 <= insn_op1
&& 3 >= insn_op1
)
10902 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
10903 record_buf
[1] = ARM_PS_REGNUM
;
10904 arm_insn_r
->reg_rec_count
= 2;
10906 else if (4 <= insn_op1
&& 15 >= insn_op1
)
10908 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10909 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 16, 19);
10910 record_buf
[1] = bits (arm_insn_r
->arm_insn
, 12, 15);
10911 record_buf
[2] = ARM_PS_REGNUM
;
10912 arm_insn_r
->reg_rec_count
= 3;
10916 opcode1
= bits (arm_insn_r
->arm_insn
, 26, 27);
10917 opcode2
= bits (arm_insn_r
->arm_insn
, 23, 24);
10918 insn_op1
= bits (arm_insn_r
->arm_insn
, 21, 22);
10920 /* Handle control insn extension space. */
10922 if (!opcode1
&& 2 == opcode2
&& !bit (arm_insn_r
->arm_insn
, 20)
10923 && 1 != arm_insn_r
->cond
&& !INSN_RECORDED(arm_insn_r
))
10925 if (!bit (arm_insn_r
->arm_insn
,25))
10927 if (!bits (arm_insn_r
->arm_insn
, 4, 7))
10929 if ((0 == insn_op1
) || (2 == insn_op1
))
10932 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
10933 arm_insn_r
->reg_rec_count
= 1;
10935 else if (1 == insn_op1
)
10937 /* CSPR is going to be changed. */
10938 record_buf
[0] = ARM_PS_REGNUM
;
10939 arm_insn_r
->reg_rec_count
= 1;
10941 else if (3 == insn_op1
)
10943 /* SPSR is going to be changed. */
10944 /* We need to get SPSR value, which is yet to be done. */
10945 printf_unfiltered (_("Process record does not support "
10946 "instruction 0x%0x at address %s.\n"),
10947 arm_insn_r
->arm_insn
,
10948 paddress (arm_insn_r
->gdbarch
,
10949 arm_insn_r
->this_addr
));
10953 else if (1 == bits (arm_insn_r
->arm_insn
, 4, 7))
10958 record_buf
[0] = ARM_PS_REGNUM
;
10959 arm_insn_r
->reg_rec_count
= 1;
10961 else if (3 == insn_op1
)
10964 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
10965 arm_insn_r
->reg_rec_count
= 1;
10968 else if (3 == bits (arm_insn_r
->arm_insn
, 4, 7))
10971 record_buf
[0] = ARM_PS_REGNUM
;
10972 record_buf
[1] = ARM_LR_REGNUM
;
10973 arm_insn_r
->reg_rec_count
= 2;
10975 else if (5 == bits (arm_insn_r
->arm_insn
, 4, 7))
10977 /* QADD, QSUB, QDADD, QDSUB */
10978 record_buf
[0] = ARM_PS_REGNUM
;
10979 record_buf
[1] = bits (arm_insn_r
->arm_insn
, 12, 15);
10980 arm_insn_r
->reg_rec_count
= 2;
10982 else if (7 == bits (arm_insn_r
->arm_insn
, 4, 7))
10985 record_buf
[0] = ARM_PS_REGNUM
;
10986 record_buf
[1] = ARM_LR_REGNUM
;
10987 arm_insn_r
->reg_rec_count
= 2;
10989 /* Save SPSR also;how? */
10990 printf_unfiltered (_("Process record does not support "
10991 "instruction 0x%0x at address %s.\n"),
10992 arm_insn_r
->arm_insn
,
10993 paddress (arm_insn_r
->gdbarch
, arm_insn_r
->this_addr
));
10996 else if(8 == bits (arm_insn_r
->arm_insn
, 4, 7)
10997 || 10 == bits (arm_insn_r
->arm_insn
, 4, 7)
10998 || 12 == bits (arm_insn_r
->arm_insn
, 4, 7)
10999 || 14 == bits (arm_insn_r
->arm_insn
, 4, 7)
11002 if (0 == insn_op1
|| 1 == insn_op1
)
11004 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
11005 /* We dont do optimization for SMULW<y> where we
11007 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11008 record_buf
[1] = ARM_PS_REGNUM
;
11009 arm_insn_r
->reg_rec_count
= 2;
11011 else if (2 == insn_op1
)
11014 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11015 record_buf
[1] = bits (arm_insn_r
->arm_insn
, 16, 19);
11016 arm_insn_r
->reg_rec_count
= 2;
11018 else if (3 == insn_op1
)
11021 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11022 arm_insn_r
->reg_rec_count
= 1;
11028 /* MSR : immediate form. */
11031 /* CSPR is going to be changed. */
11032 record_buf
[0] = ARM_PS_REGNUM
;
11033 arm_insn_r
->reg_rec_count
= 1;
11035 else if (3 == insn_op1
)
11037 /* SPSR is going to be changed. */
11038 /* we need to get SPSR value, which is yet to be done */
11039 printf_unfiltered (_("Process record does not support "
11040 "instruction 0x%0x at address %s.\n"),
11041 arm_insn_r
->arm_insn
,
11042 paddress (arm_insn_r
->gdbarch
,
11043 arm_insn_r
->this_addr
));
11049 opcode1
= bits (arm_insn_r
->arm_insn
, 25, 27);
11050 opcode2
= bits (arm_insn_r
->arm_insn
, 20, 24);
11051 insn_op1
= bits (arm_insn_r
->arm_insn
, 5, 6);
11053 /* Handle load/store insn extension space. */
11055 if (!opcode1
&& bit (arm_insn_r
->arm_insn
, 7)
11056 && bit (arm_insn_r
->arm_insn
, 4) && 1 != arm_insn_r
->cond
11057 && !INSN_RECORDED(arm_insn_r
))
11062 /* These insn, changes register and memory as well. */
11063 /* SWP or SWPB insn. */
11064 /* Get memory address given by Rn. */
11065 reg_src1
= bits (arm_insn_r
->arm_insn
, 16, 19);
11066 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
);
11067 /* SWP insn ?, swaps word. */
11068 if (8 == arm_insn_r
->opcode
)
11070 record_buf_mem
[0] = 4;
11074 /* SWPB insn, swaps only byte. */
11075 record_buf_mem
[0] = 1;
11077 record_buf_mem
[1] = u_regval
;
11078 arm_insn_r
->mem_rec_count
= 1;
11079 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11080 arm_insn_r
->reg_rec_count
= 1;
11082 else if (1 == insn_op1
&& !bit (arm_insn_r
->arm_insn
, 20))
11085 arm_record_strx(arm_insn_r
, &record_buf
[0], &record_buf_mem
[0],
11088 else if (2 == insn_op1
&& !bit (arm_insn_r
->arm_insn
, 20))
11091 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11092 record_buf
[1] = record_buf
[0] + 1;
11093 arm_insn_r
->reg_rec_count
= 2;
11095 else if (3 == insn_op1
&& !bit (arm_insn_r
->arm_insn
, 20))
11098 arm_record_strx(arm_insn_r
, &record_buf
[0], &record_buf_mem
[0],
11101 else if (bit (arm_insn_r
->arm_insn
, 20) && insn_op1
<= 3)
11103 /* LDRH, LDRSB, LDRSH. */
11104 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11105 arm_insn_r
->reg_rec_count
= 1;
11110 opcode1
= bits (arm_insn_r
->arm_insn
, 23, 27);
11111 if (24 == opcode1
&& bit (arm_insn_r
->arm_insn
, 21)
11112 && !INSN_RECORDED(arm_insn_r
))
11115 /* Handle coprocessor insn extension space. */
11118 /* To be done for ARMv5 and later; as of now we return -1. */
11120 printf_unfiltered (_("Process record does not support instruction x%0x "
11121 "at address %s.\n"),arm_insn_r
->arm_insn
,
11122 paddress (arm_insn_r
->gdbarch
, arm_insn_r
->this_addr
));
11125 REG_ALLOC (arm_insn_r
->arm_regs
, arm_insn_r
->reg_rec_count
, record_buf
);
11126 MEM_ALLOC (arm_insn_r
->arm_mems
, arm_insn_r
->mem_rec_count
, record_buf_mem
);
11131 /* Handling opcode 000 insns. */
11134 arm_record_data_proc_misc_ld_str (insn_decode_record
*arm_insn_r
)
11136 struct regcache
*reg_cache
= arm_insn_r
->regcache
;
11137 uint32_t record_buf
[8], record_buf_mem
[8];
11138 ULONGEST u_regval
[2] = {0};
11140 uint32_t reg_src1
= 0, reg_src2
= 0, reg_dest
= 0;
11141 uint32_t immed_high
= 0, immed_low
= 0, offset_8
= 0, tgt_mem_addr
= 0;
11142 uint32_t opcode1
= 0;
11144 arm_insn_r
->opcode
= bits (arm_insn_r
->arm_insn
, 21, 24);
11145 arm_insn_r
->decode
= bits (arm_insn_r
->arm_insn
, 4, 7);
11146 opcode1
= bits (arm_insn_r
->arm_insn
, 20, 24);
11148 /* Data processing insn /multiply insn. */
11149 if (9 == arm_insn_r
->decode
11150 && ((4 <= arm_insn_r
->opcode
&& 7 >= arm_insn_r
->opcode
)
11151 || (0 == arm_insn_r
->opcode
|| 1 == arm_insn_r
->opcode
)))
11153 /* Handle multiply instructions. */
11154 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
11155 if (0 == arm_insn_r
->opcode
|| 1 == arm_insn_r
->opcode
)
11157 /* Handle MLA and MUL. */
11158 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 16, 19);
11159 record_buf
[1] = ARM_PS_REGNUM
;
11160 arm_insn_r
->reg_rec_count
= 2;
11162 else if (4 <= arm_insn_r
->opcode
&& 7 >= arm_insn_r
->opcode
)
11164 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
11165 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 16, 19);
11166 record_buf
[1] = bits (arm_insn_r
->arm_insn
, 12, 15);
11167 record_buf
[2] = ARM_PS_REGNUM
;
11168 arm_insn_r
->reg_rec_count
= 3;
11171 else if (bit (arm_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
)
11172 && (11 == arm_insn_r
->decode
|| 13 == arm_insn_r
->decode
))
11174 /* Handle misc load insns, as 20th bit (L = 1). */
11175 /* LDR insn has a capability to do branching, if
11176 MOV LR, PC is precceded by LDR insn having Rn as R15
11177 in that case, it emulates branch and link insn, and hence we
11178 need to save CSPR and PC as well. I am not sure this is right
11179 place; as opcode = 010 LDR insn make this happen, if R15 was
11181 reg_dest
= bits (arm_insn_r
->arm_insn
, 12, 15);
11182 if (15 != reg_dest
)
11184 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11185 arm_insn_r
->reg_rec_count
= 1;
11189 record_buf
[0] = reg_dest
;
11190 record_buf
[1] = ARM_PS_REGNUM
;
11191 arm_insn_r
->reg_rec_count
= 2;
11194 else if ((9 == arm_insn_r
->opcode
|| 11 == arm_insn_r
->opcode
)
11195 && sbo_sbz (arm_insn_r
->arm_insn
, 5, 12, 0)
11196 && sbo_sbz (arm_insn_r
->arm_insn
, 13, 4, 1)
11197 && 2 == bits (arm_insn_r
->arm_insn
, 20, 21))
11199 /* Handle MSR insn. */
11200 if (9 == arm_insn_r
->opcode
)
11202 /* CSPR is going to be changed. */
11203 record_buf
[0] = ARM_PS_REGNUM
;
11204 arm_insn_r
->reg_rec_count
= 1;
11208 /* SPSR is going to be changed. */
11209 /* How to read SPSR value? */
11210 printf_unfiltered (_("Process record does not support instruction "
11211 "0x%0x at address %s.\n"),
11212 arm_insn_r
->arm_insn
,
11213 paddress (arm_insn_r
->gdbarch
, arm_insn_r
->this_addr
));
11217 else if (9 == arm_insn_r
->decode
11218 && (8 == arm_insn_r
->opcode
|| 10 == arm_insn_r
->opcode
)
11219 && !bit (arm_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
))
11221 /* Handling SWP, SWPB. */
11222 /* These insn, changes register and memory as well. */
11223 /* SWP or SWPB insn. */
11225 reg_src1
= bits (arm_insn_r
->arm_insn
, 16, 19);
11226 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
[0]);
11227 /* SWP insn ?, swaps word. */
11228 if (8 == arm_insn_r
->opcode
)
11230 record_buf_mem
[0] = 4;
11234 /* SWPB insn, swaps only byte. */
11235 record_buf_mem
[0] = 1;
11237 record_buf_mem
[1] = u_regval
[0];
11238 arm_insn_r
->mem_rec_count
= 1;
11239 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11240 arm_insn_r
->reg_rec_count
= 1;
11242 else if (3 == arm_insn_r
->decode
&& 0x12 == opcode1
11243 && sbo_sbz (arm_insn_r
->arm_insn
, 9, 12, 1))
11245 /* Handle BLX, branch and link/exchange. */
11246 if (9 == arm_insn_r
->opcode
)
11248 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
11249 and R14 stores the return address. */
11250 record_buf
[0] = ARM_PS_REGNUM
;
11251 record_buf
[1] = ARM_LR_REGNUM
;
11252 arm_insn_r
->reg_rec_count
= 2;
11255 else if (7 == arm_insn_r
->decode
&& 0x12 == opcode1
)
11257 /* Handle enhanced software breakpoint insn, BKPT. */
11258 /* CPSR is changed to be executed in ARM state, disabling normal
11259 interrupts, entering abort mode. */
11260 /* According to high vector configuration PC is set. */
11261 /* user hit breakpoint and type reverse, in
11262 that case, we need to go back with previous CPSR and
11263 Program Counter. */
11264 record_buf
[0] = ARM_PS_REGNUM
;
11265 record_buf
[1] = ARM_LR_REGNUM
;
11266 arm_insn_r
->reg_rec_count
= 2;
11268 /* Save SPSR also; how? */
11269 printf_unfiltered (_("Process record does not support instruction "
11270 "0x%0x at address %s.\n"),arm_insn_r
->arm_insn
,
11271 paddress (arm_insn_r
->gdbarch
,
11272 arm_insn_r
->this_addr
));
11275 else if (11 == arm_insn_r
->decode
11276 && !bit (arm_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
))
11278 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
11280 /* Handle str(x) insn */
11281 arm_record_strx(arm_insn_r
, &record_buf
[0], &record_buf_mem
[0],
11284 else if (1 == arm_insn_r
->decode
&& 0x12 == opcode1
11285 && sbo_sbz (arm_insn_r
->arm_insn
, 9, 12, 1))
11287 /* Handle BX, branch and link/exchange. */
11288 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
11289 record_buf
[0] = ARM_PS_REGNUM
;
11290 arm_insn_r
->reg_rec_count
= 1;
11292 else if (1 == arm_insn_r
->decode
&& 0x16 == opcode1
11293 && sbo_sbz (arm_insn_r
->arm_insn
, 9, 4, 1)
11294 && sbo_sbz (arm_insn_r
->arm_insn
, 17, 4, 1))
11296 /* Count leading zeros: CLZ. */
11297 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11298 arm_insn_r
->reg_rec_count
= 1;
11300 else if (!bit (arm_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
)
11301 && (8 == arm_insn_r
->opcode
|| 10 == arm_insn_r
->opcode
)
11302 && sbo_sbz (arm_insn_r
->arm_insn
, 17, 4, 1)
11303 && sbo_sbz (arm_insn_r
->arm_insn
, 1, 12, 0)
11306 /* Handle MRS insn. */
11307 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11308 arm_insn_r
->reg_rec_count
= 1;
11310 else if (arm_insn_r
->opcode
<= 15)
11312 /* Normal data processing insns. */
11313 /* Out of 11 shifter operands mode, all the insn modifies destination
11314 register, which is specified by 13-16 decode. */
11315 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11316 record_buf
[1] = ARM_PS_REGNUM
;
11317 arm_insn_r
->reg_rec_count
= 2;
11324 REG_ALLOC (arm_insn_r
->arm_regs
, arm_insn_r
->reg_rec_count
, record_buf
);
11325 MEM_ALLOC (arm_insn_r
->arm_mems
, arm_insn_r
->mem_rec_count
, record_buf_mem
);
11329 /* Handling opcode 001 insns. */
11332 arm_record_data_proc_imm (insn_decode_record
*arm_insn_r
)
11334 uint32_t record_buf
[8], record_buf_mem
[8];
11336 arm_insn_r
->opcode
= bits (arm_insn_r
->arm_insn
, 21, 24);
11337 arm_insn_r
->decode
= bits (arm_insn_r
->arm_insn
, 4, 7);
11339 if ((9 == arm_insn_r
->opcode
|| 11 == arm_insn_r
->opcode
)
11340 && 2 == bits (arm_insn_r
->arm_insn
, 20, 21)
11341 && sbo_sbz (arm_insn_r
->arm_insn
, 13, 4, 1)
11344 /* Handle MSR insn. */
11345 if (9 == arm_insn_r
->opcode
)
11347 /* CSPR is going to be changed. */
11348 record_buf
[0] = ARM_PS_REGNUM
;
11349 arm_insn_r
->reg_rec_count
= 1;
11353 /* SPSR is going to be changed. */
11356 else if (arm_insn_r
->opcode
<= 15)
11358 /* Normal data processing insns. */
11359 /* Out of 11 shifter operands mode, all the insn modifies destination
11360 register, which is specified by 13-16 decode. */
11361 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11362 record_buf
[1] = ARM_PS_REGNUM
;
11363 arm_insn_r
->reg_rec_count
= 2;
11370 REG_ALLOC (arm_insn_r
->arm_regs
, arm_insn_r
->reg_rec_count
, record_buf
);
11371 MEM_ALLOC (arm_insn_r
->arm_mems
, arm_insn_r
->mem_rec_count
, record_buf_mem
);
11375 /* Handling opcode 010 insns. */
11378 arm_record_ld_st_imm_offset (insn_decode_record
*arm_insn_r
)
11380 struct regcache
*reg_cache
= arm_insn_r
->regcache
;
11382 uint32_t reg_src1
= 0 , reg_dest
= 0;
11383 uint32_t offset_12
= 0, tgt_mem_addr
= 0;
11384 uint32_t record_buf
[8], record_buf_mem
[8];
11386 ULONGEST u_regval
= 0;
11388 arm_insn_r
->opcode
= bits (arm_insn_r
->arm_insn
, 21, 24);
11389 arm_insn_r
->decode
= bits (arm_insn_r
->arm_insn
, 4, 7);
11391 if (bit (arm_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
))
11393 reg_dest
= bits (arm_insn_r
->arm_insn
, 12, 15);
11394 /* LDR insn has a capability to do branching, if
11395 MOV LR, PC is precedded by LDR insn having Rn as R15
11396 in that case, it emulates branch and link insn, and hence we
11397 need to save CSPR and PC as well. */
11398 if (ARM_PC_REGNUM
!= reg_dest
)
11400 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11401 arm_insn_r
->reg_rec_count
= 1;
11405 record_buf
[0] = reg_dest
;
11406 record_buf
[1] = ARM_PS_REGNUM
;
11407 arm_insn_r
->reg_rec_count
= 2;
11412 /* Store, immediate offset, immediate pre-indexed,
11413 immediate post-indexed. */
11414 reg_src1
= bits (arm_insn_r
->arm_insn
, 16, 19);
11415 offset_12
= bits (arm_insn_r
->arm_insn
, 0, 11);
11416 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
);
11418 if (bit (arm_insn_r
->arm_insn
, 23))
11420 tgt_mem_addr
= u_regval
+ offset_12
;
11424 tgt_mem_addr
= u_regval
- offset_12
;
11427 switch (arm_insn_r
->opcode
)
11441 record_buf_mem
[0] = 4;
11456 record_buf_mem
[0] = 1;
11460 gdb_assert_not_reached ("no decoding pattern found");
11463 record_buf_mem
[1] = tgt_mem_addr
;
11464 arm_insn_r
->mem_rec_count
= 1;
11466 if (9 == arm_insn_r
->opcode
|| 11 == arm_insn_r
->opcode
11467 || 13 == arm_insn_r
->opcode
|| 15 == arm_insn_r
->opcode
11468 || 0 == arm_insn_r
->opcode
|| 2 == arm_insn_r
->opcode
11469 || 4 == arm_insn_r
->opcode
|| 6 == arm_insn_r
->opcode
11470 || 1 == arm_insn_r
->opcode
|| 3 == arm_insn_r
->opcode
11471 || 5 == arm_insn_r
->opcode
|| 7 == arm_insn_r
->opcode
11474 /* We are handling pre-indexed mode; post-indexed mode;
11475 where Rn is going to be changed. */
11476 record_buf
[0] = reg_src1
;
11477 arm_insn_r
->reg_rec_count
= 1;
11481 REG_ALLOC (arm_insn_r
->arm_regs
, arm_insn_r
->reg_rec_count
, record_buf
);
11482 MEM_ALLOC (arm_insn_r
->arm_mems
, arm_insn_r
->mem_rec_count
, record_buf_mem
);
11486 /* Handling opcode 011 insns. */
11489 arm_record_ld_st_reg_offset (insn_decode_record
*arm_insn_r
)
11491 struct regcache
*reg_cache
= arm_insn_r
->regcache
;
11493 uint32_t shift_imm
= 0;
11494 uint32_t reg_src1
= 0, reg_src2
= 0, reg_dest
= 0;
11495 uint32_t offset_12
= 0, tgt_mem_addr
= 0;
11496 uint32_t record_buf
[8], record_buf_mem
[8];
11499 ULONGEST u_regval
[2];
11501 arm_insn_r
->opcode
= bits (arm_insn_r
->arm_insn
, 21, 24);
11502 arm_insn_r
->decode
= bits (arm_insn_r
->arm_insn
, 4, 7);
11504 /* Handle enhanced store insns and LDRD DSP insn,
11505 order begins according to addressing modes for store insns
11509 if (bit (arm_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
))
11511 reg_dest
= bits (arm_insn_r
->arm_insn
, 12, 15);
11512 /* LDR insn has a capability to do branching, if
11513 MOV LR, PC is precedded by LDR insn having Rn as R15
11514 in that case, it emulates branch and link insn, and hence we
11515 need to save CSPR and PC as well. */
11516 if (15 != reg_dest
)
11518 record_buf
[0] = bits (arm_insn_r
->arm_insn
, 12, 15);
11519 arm_insn_r
->reg_rec_count
= 1;
11523 record_buf
[0] = reg_dest
;
11524 record_buf
[1] = ARM_PS_REGNUM
;
11525 arm_insn_r
->reg_rec_count
= 2;
11530 if (! bits (arm_insn_r
->arm_insn
, 4, 11))
11532 /* Store insn, register offset and register pre-indexed,
11533 register post-indexed. */
11535 reg_src1
= bits (arm_insn_r
->arm_insn
, 0, 3);
11537 reg_src2
= bits (arm_insn_r
->arm_insn
, 16, 19);
11538 regcache_raw_read_unsigned (reg_cache
, reg_src1
11540 regcache_raw_read_unsigned (reg_cache
, reg_src2
11542 if (15 == reg_src2
)
11544 /* If R15 was used as Rn, hence current PC+8. */
11545 /* Pre-indexed mode doesnt reach here ; illegal insn. */
11546 u_regval
[0] = u_regval
[0] + 8;
11548 /* Calculate target store address, Rn +/- Rm, register offset. */
11550 if (bit (arm_insn_r
->arm_insn
, 23))
11552 tgt_mem_addr
= u_regval
[0] + u_regval
[1];
11556 tgt_mem_addr
= u_regval
[1] - u_regval
[0];
11559 switch (arm_insn_r
->opcode
)
11573 record_buf_mem
[0] = 4;
11588 record_buf_mem
[0] = 1;
11592 gdb_assert_not_reached ("no decoding pattern found");
11595 record_buf_mem
[1] = tgt_mem_addr
;
11596 arm_insn_r
->mem_rec_count
= 1;
11598 if (9 == arm_insn_r
->opcode
|| 11 == arm_insn_r
->opcode
11599 || 13 == arm_insn_r
->opcode
|| 15 == arm_insn_r
->opcode
11600 || 0 == arm_insn_r
->opcode
|| 2 == arm_insn_r
->opcode
11601 || 4 == arm_insn_r
->opcode
|| 6 == arm_insn_r
->opcode
11602 || 1 == arm_insn_r
->opcode
|| 3 == arm_insn_r
->opcode
11603 || 5 == arm_insn_r
->opcode
|| 7 == arm_insn_r
->opcode
11606 /* Rn is going to be changed in pre-indexed mode and
11607 post-indexed mode as well. */
11608 record_buf
[0] = reg_src2
;
11609 arm_insn_r
->reg_rec_count
= 1;
11614 /* Store insn, scaled register offset; scaled pre-indexed. */
11615 offset_12
= bits (arm_insn_r
->arm_insn
, 5, 6);
11617 reg_src1
= bits (arm_insn_r
->arm_insn
, 0, 3);
11619 reg_src2
= bits (arm_insn_r
->arm_insn
, 16, 19);
11620 /* Get shift_imm. */
11621 shift_imm
= bits (arm_insn_r
->arm_insn
, 7, 11);
11622 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
[0]);
11623 regcache_raw_read_signed (reg_cache
, reg_src1
, &s_word
);
11624 regcache_raw_read_unsigned (reg_cache
, reg_src2
, &u_regval
[1]);
11625 /* Offset_12 used as shift. */
11629 /* Offset_12 used as index. */
11630 offset_12
= u_regval
[0] << shift_imm
;
11634 offset_12
= (!shift_imm
)?0:u_regval
[0] >> shift_imm
;
11640 if (bit (u_regval
[0], 31))
11642 offset_12
= 0xFFFFFFFF;
11651 /* This is arithmetic shift. */
11652 offset_12
= s_word
>> shift_imm
;
11659 regcache_raw_read_unsigned (reg_cache
, ARM_PS_REGNUM
,
11661 /* Get C flag value and shift it by 31. */
11662 offset_12
= (((bit (u_regval
[1], 29)) << 31) \
11663 | (u_regval
[0]) >> 1);
11667 offset_12
= (u_regval
[0] >> shift_imm
) \
11669 (sizeof(uint32_t) - shift_imm
));
11674 gdb_assert_not_reached ("no decoding pattern found");
11678 regcache_raw_read_unsigned (reg_cache
, reg_src2
, &u_regval
[1]);
11680 if (bit (arm_insn_r
->arm_insn
, 23))
11682 tgt_mem_addr
= u_regval
[1] + offset_12
;
11686 tgt_mem_addr
= u_regval
[1] - offset_12
;
11689 switch (arm_insn_r
->opcode
)
11703 record_buf_mem
[0] = 4;
11718 record_buf_mem
[0] = 1;
11722 gdb_assert_not_reached ("no decoding pattern found");
11725 record_buf_mem
[1] = tgt_mem_addr
;
11726 arm_insn_r
->mem_rec_count
= 1;
11728 if (9 == arm_insn_r
->opcode
|| 11 == arm_insn_r
->opcode
11729 || 13 == arm_insn_r
->opcode
|| 15 == arm_insn_r
->opcode
11730 || 0 == arm_insn_r
->opcode
|| 2 == arm_insn_r
->opcode
11731 || 4 == arm_insn_r
->opcode
|| 6 == arm_insn_r
->opcode
11732 || 1 == arm_insn_r
->opcode
|| 3 == arm_insn_r
->opcode
11733 || 5 == arm_insn_r
->opcode
|| 7 == arm_insn_r
->opcode
11736 /* Rn is going to be changed in register scaled pre-indexed
11737 mode,and scaled post indexed mode. */
11738 record_buf
[0] = reg_src2
;
11739 arm_insn_r
->reg_rec_count
= 1;
11744 REG_ALLOC (arm_insn_r
->arm_regs
, arm_insn_r
->reg_rec_count
, record_buf
);
11745 MEM_ALLOC (arm_insn_r
->arm_mems
, arm_insn_r
->mem_rec_count
, record_buf_mem
);
11749 /* Handling opcode 100 insns. */
11752 arm_record_ld_st_multiple (insn_decode_record
*arm_insn_r
)
11754 struct regcache
*reg_cache
= arm_insn_r
->regcache
;
11756 uint32_t register_list
[16] = {0}, register_count
= 0, register_bits
= 0;
11757 uint32_t reg_src1
= 0, addr_mode
= 0, no_of_regs
= 0;
11758 uint32_t start_address
= 0, index
= 0;
11759 uint32_t record_buf
[24], record_buf_mem
[48];
11761 ULONGEST u_regval
[2] = {0};
11763 /* This mode is exclusively for load and store multiple. */
11764 /* Handle incremenrt after/before and decrment after.before mode;
11765 Rn is changing depending on W bit, but as of now we store Rn too
11766 without optimization. */
11768 if (bit (arm_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
))
11770 /* LDM (1,2,3) where LDM (3) changes CPSR too. */
11772 if (bit (arm_insn_r
->arm_insn
, 20) && !bit (arm_insn_r
->arm_insn
, 22))
11774 register_bits
= bits (arm_insn_r
->arm_insn
, 0, 15);
11779 register_bits
= bits (arm_insn_r
->arm_insn
, 0, 14);
11783 reg_src1
= bits (arm_insn_r
->arm_insn
, 16, 19);
11784 while (register_bits
)
11786 if (register_bits
& 0x00000001)
11787 record_buf
[index
++] = register_count
;
11788 register_bits
= register_bits
>> 1;
11792 /* Extra space for Base Register and CPSR; wihtout optimization. */
11793 record_buf
[index
++] = reg_src1
;
11794 record_buf
[index
++] = ARM_PS_REGNUM
;
11795 arm_insn_r
->reg_rec_count
= index
;
11799 /* It handles both STM(1) and STM(2). */
11800 addr_mode
= bits (arm_insn_r
->arm_insn
, 23, 24);
11802 register_bits
= bits (arm_insn_r
->arm_insn
, 0, 15);
11804 reg_src1
= bits (arm_insn_r
->arm_insn
, 16, 19);
11805 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
[0]);
11806 while (register_bits
)
11808 if (register_bits
& 0x00000001)
11810 register_bits
= register_bits
>> 1;
11815 /* Decrement after. */
11817 start_address
= (u_regval
[0]) - (register_count
* 4) + 4;
11818 arm_insn_r
->mem_rec_count
= register_count
;
11819 while (register_count
)
11821 record_buf_mem
[(register_count
* 2) - 1] = start_address
;
11822 record_buf_mem
[(register_count
* 2) - 2] = 4;
11823 start_address
= start_address
+ 4;
11828 /* Increment after. */
11830 start_address
= u_regval
[0];
11831 arm_insn_r
->mem_rec_count
= register_count
;
11832 while (register_count
)
11834 record_buf_mem
[(register_count
* 2) - 1] = start_address
;
11835 record_buf_mem
[(register_count
* 2) - 2] = 4;
11836 start_address
= start_address
+ 4;
11841 /* Decrement before. */
11844 start_address
= (u_regval
[0]) - (register_count
* 4);
11845 arm_insn_r
->mem_rec_count
= register_count
;
11846 while (register_count
)
11848 record_buf_mem
[(register_count
* 2) - 1] = start_address
;
11849 record_buf_mem
[(register_count
* 2) - 2] = 4;
11850 start_address
= start_address
+ 4;
11855 /* Increment before. */
11857 start_address
= u_regval
[0] + 4;
11858 arm_insn_r
->mem_rec_count
= register_count
;
11859 while (register_count
)
11861 record_buf_mem
[(register_count
* 2) - 1] = start_address
;
11862 record_buf_mem
[(register_count
* 2) - 2] = 4;
11863 start_address
= start_address
+ 4;
11869 gdb_assert_not_reached ("no decoding pattern found");
11873 /* Base register also changes; based on condition and W bit. */
11874 /* We save it anyway without optimization. */
11875 record_buf
[0] = reg_src1
;
11876 arm_insn_r
->reg_rec_count
= 1;
11879 REG_ALLOC (arm_insn_r
->arm_regs
, arm_insn_r
->reg_rec_count
, record_buf
);
11880 MEM_ALLOC (arm_insn_r
->arm_mems
, arm_insn_r
->mem_rec_count
, record_buf_mem
);
11884 /* Handling opcode 101 insns. */
11887 arm_record_b_bl (insn_decode_record
*arm_insn_r
)
11889 uint32_t record_buf
[8];
11891 /* Handle B, BL, BLX(1) insns. */
11892 /* B simply branches so we do nothing here. */
11893 /* Note: BLX(1) doesnt fall here but instead it falls into
11894 extension space. */
11895 if (bit (arm_insn_r
->arm_insn
, 24))
11897 record_buf
[0] = ARM_LR_REGNUM
;
11898 arm_insn_r
->reg_rec_count
= 1;
11901 REG_ALLOC (arm_insn_r
->arm_regs
, arm_insn_r
->reg_rec_count
, record_buf
);
11906 /* Handling opcode 110 insns. */
11909 arm_record_unsupported_insn (insn_decode_record
*arm_insn_r
)
11911 printf_unfiltered (_("Process record does not support instruction "
11912 "0x%0x at address %s.\n"),arm_insn_r
->arm_insn
,
11913 paddress (arm_insn_r
->gdbarch
, arm_insn_r
->this_addr
));
11918 /* Handling opcode 111 insns. */
11921 arm_record_coproc_data_proc (insn_decode_record
*arm_insn_r
)
11923 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arm_insn_r
->gdbarch
);
11924 struct regcache
*reg_cache
= arm_insn_r
->regcache
;
11925 uint32_t ret
= 0; /* function return value: -1:record failure ; 0:success */
11926 ULONGEST u_regval
= 0;
11928 arm_insn_r
->opcode
= bits (arm_insn_r
->arm_insn
, 24, 27);
11930 /* Handle arm SWI/SVC system call instructions. */
11931 if (15 == arm_insn_r
->opcode
)
11933 if (tdep
->arm_syscall_record
!= NULL
)
11935 ULONGEST svc_operand
, svc_number
;
11937 svc_operand
= (0x00ffffff & arm_insn_r
->arm_insn
);
11939 if (svc_operand
) /* OABI. */
11940 svc_number
= svc_operand
- 0x900000;
11942 regcache_raw_read_unsigned (reg_cache
, 7, &svc_number
);
11944 ret
= tdep
->arm_syscall_record (reg_cache
, svc_number
);
11948 printf_unfiltered (_("no syscall record support\n"));
11954 arm_record_unsupported_insn (arm_insn_r
);
11961 /* Handling opcode 000 insns. */
11964 thumb_record_shift_add_sub (insn_decode_record
*thumb_insn_r
)
11966 uint32_t record_buf
[8];
11967 uint32_t reg_src1
= 0;
11969 reg_src1
= bits (thumb_insn_r
->arm_insn
, 0, 2);
11971 record_buf
[0] = ARM_PS_REGNUM
;
11972 record_buf
[1] = reg_src1
;
11973 thumb_insn_r
->reg_rec_count
= 2;
11975 REG_ALLOC (thumb_insn_r
->arm_regs
, thumb_insn_r
->reg_rec_count
, record_buf
);
11981 /* Handling opcode 001 insns. */
11984 thumb_record_add_sub_cmp_mov (insn_decode_record
*thumb_insn_r
)
11986 uint32_t record_buf
[8];
11987 uint32_t reg_src1
= 0;
11989 reg_src1
= bits (thumb_insn_r
->arm_insn
, 8, 10);
11991 record_buf
[0] = ARM_PS_REGNUM
;
11992 record_buf
[1] = reg_src1
;
11993 thumb_insn_r
->reg_rec_count
= 2;
11995 REG_ALLOC (thumb_insn_r
->arm_regs
, thumb_insn_r
->reg_rec_count
, record_buf
);
12000 /* Handling opcode 010 insns. */
12003 thumb_record_ld_st_reg_offset (insn_decode_record
*thumb_insn_r
)
12005 struct regcache
*reg_cache
= thumb_insn_r
->regcache
;
12006 uint32_t record_buf
[8], record_buf_mem
[8];
12008 uint32_t reg_src1
= 0, reg_src2
= 0;
12009 uint32_t opcode1
= 0, opcode2
= 0, opcode3
= 0;
12011 ULONGEST u_regval
[2] = {0};
12013 opcode1
= bits (thumb_insn_r
->arm_insn
, 10, 12);
12015 if (bit (thumb_insn_r
->arm_insn
, 12))
12017 /* Handle load/store register offset. */
12018 opcode2
= bits (thumb_insn_r
->arm_insn
, 9, 10);
12019 if (opcode2
>= 12 && opcode2
<= 15)
12021 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
12022 reg_src1
= bits (thumb_insn_r
->arm_insn
,0, 2);
12023 record_buf
[0] = reg_src1
;
12024 thumb_insn_r
->reg_rec_count
= 1;
12026 else if (opcode2
>= 8 && opcode2
<= 10)
12028 /* STR(2), STRB(2), STRH(2) . */
12029 reg_src1
= bits (thumb_insn_r
->arm_insn
, 3, 5);
12030 reg_src2
= bits (thumb_insn_r
->arm_insn
, 6, 8);
12031 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
[0]);
12032 regcache_raw_read_unsigned (reg_cache
, reg_src2
, &u_regval
[1]);
12034 record_buf_mem
[0] = 4; /* STR (2). */
12035 else if (10 == opcode2
)
12036 record_buf_mem
[0] = 1; /* STRB (2). */
12037 else if (9 == opcode2
)
12038 record_buf_mem
[0] = 2; /* STRH (2). */
12039 record_buf_mem
[1] = u_regval
[0] + u_regval
[1];
12040 thumb_insn_r
->mem_rec_count
= 1;
12043 else if (bit (thumb_insn_r
->arm_insn
, 11))
12045 /* Handle load from literal pool. */
12047 reg_src1
= bits (thumb_insn_r
->arm_insn
, 8, 10);
12048 record_buf
[0] = reg_src1
;
12049 thumb_insn_r
->reg_rec_count
= 1;
12053 opcode2
= bits (thumb_insn_r
->arm_insn
, 8, 9);
12054 opcode3
= bits (thumb_insn_r
->arm_insn
, 0, 2);
12055 if ((3 == opcode2
) && (!opcode3
))
12057 /* Branch with exchange. */
12058 record_buf
[0] = ARM_PS_REGNUM
;
12059 thumb_insn_r
->reg_rec_count
= 1;
12063 /* Format 8; special data processing insns. */
12064 reg_src1
= bits (thumb_insn_r
->arm_insn
, 0, 2);
12065 record_buf
[0] = ARM_PS_REGNUM
;
12066 record_buf
[1] = reg_src1
;
12067 thumb_insn_r
->reg_rec_count
= 2;
12072 /* Format 5; data processing insns. */
12073 reg_src1
= bits (thumb_insn_r
->arm_insn
, 0, 2);
12074 if (bit (thumb_insn_r
->arm_insn
, 7))
12076 reg_src1
= reg_src1
+ 8;
12078 record_buf
[0] = ARM_PS_REGNUM
;
12079 record_buf
[1] = reg_src1
;
12080 thumb_insn_r
->reg_rec_count
= 2;
12083 REG_ALLOC (thumb_insn_r
->arm_regs
, thumb_insn_r
->reg_rec_count
, record_buf
);
12084 MEM_ALLOC (thumb_insn_r
->arm_mems
, thumb_insn_r
->mem_rec_count
,
12090 /* Handling opcode 001 insns. */
12093 thumb_record_ld_st_imm_offset (insn_decode_record
*thumb_insn_r
)
12095 struct regcache
*reg_cache
= thumb_insn_r
->regcache
;
12096 uint32_t record_buf
[8], record_buf_mem
[8];
12098 uint32_t reg_src1
= 0;
12099 uint32_t opcode
= 0, immed_5
= 0;
12101 ULONGEST u_regval
= 0;
12103 opcode
= bits (thumb_insn_r
->arm_insn
, 11, 12);
12108 reg_src1
= bits (thumb_insn_r
->arm_insn
, 0, 2);
12109 record_buf
[0] = reg_src1
;
12110 thumb_insn_r
->reg_rec_count
= 1;
12115 reg_src1
= bits (thumb_insn_r
->arm_insn
, 3, 5);
12116 immed_5
= bits (thumb_insn_r
->arm_insn
, 6, 10);
12117 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
);
12118 record_buf_mem
[0] = 4;
12119 record_buf_mem
[1] = u_regval
+ (immed_5
* 4);
12120 thumb_insn_r
->mem_rec_count
= 1;
12123 REG_ALLOC (thumb_insn_r
->arm_regs
, thumb_insn_r
->reg_rec_count
, record_buf
);
12124 MEM_ALLOC (thumb_insn_r
->arm_mems
, thumb_insn_r
->mem_rec_count
,
12130 /* Handling opcode 100 insns. */
12133 thumb_record_ld_st_stack (insn_decode_record
*thumb_insn_r
)
12135 struct regcache
*reg_cache
= thumb_insn_r
->regcache
;
12136 uint32_t record_buf
[8], record_buf_mem
[8];
12138 uint32_t reg_src1
= 0;
12139 uint32_t opcode
= 0, immed_8
= 0, immed_5
= 0;
12141 ULONGEST u_regval
= 0;
12143 opcode
= bits (thumb_insn_r
->arm_insn
, 11, 12);
12148 reg_src1
= bits (thumb_insn_r
->arm_insn
, 8, 10);
12149 record_buf
[0] = reg_src1
;
12150 thumb_insn_r
->reg_rec_count
= 1;
12152 else if (1 == opcode
)
12155 reg_src1
= bits (thumb_insn_r
->arm_insn
, 0, 2);
12156 record_buf
[0] = reg_src1
;
12157 thumb_insn_r
->reg_rec_count
= 1;
12159 else if (2 == opcode
)
12162 immed_8
= bits (thumb_insn_r
->arm_insn
, 0, 7);
12163 regcache_raw_read_unsigned (reg_cache
, ARM_SP_REGNUM
, &u_regval
);
12164 record_buf_mem
[0] = 4;
12165 record_buf_mem
[1] = u_regval
+ (immed_8
* 4);
12166 thumb_insn_r
->mem_rec_count
= 1;
12168 else if (0 == opcode
)
12171 immed_5
= bits (thumb_insn_r
->arm_insn
, 6, 10);
12172 reg_src1
= bits (thumb_insn_r
->arm_insn
, 3, 5);
12173 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
);
12174 record_buf_mem
[0] = 2;
12175 record_buf_mem
[1] = u_regval
+ (immed_5
* 2);
12176 thumb_insn_r
->mem_rec_count
= 1;
12179 REG_ALLOC (thumb_insn_r
->arm_regs
, thumb_insn_r
->reg_rec_count
, record_buf
);
12180 MEM_ALLOC (thumb_insn_r
->arm_mems
, thumb_insn_r
->mem_rec_count
,
12186 /* Handling opcode 101 insns. */
12189 thumb_record_misc (insn_decode_record
*thumb_insn_r
)
12191 struct regcache
*reg_cache
= thumb_insn_r
->regcache
;
12193 uint32_t opcode
= 0, opcode1
= 0, opcode2
= 0;
12194 uint32_t register_bits
= 0, register_count
= 0;
12195 uint32_t register_list
[8] = {0}, index
= 0, start_address
= 0;
12196 uint32_t record_buf
[24], record_buf_mem
[48];
12199 ULONGEST u_regval
= 0;
12201 opcode
= bits (thumb_insn_r
->arm_insn
, 11, 12);
12202 opcode1
= bits (thumb_insn_r
->arm_insn
, 8, 12);
12203 opcode2
= bits (thumb_insn_r
->arm_insn
, 9, 12);
12208 register_bits
= bits (thumb_insn_r
->arm_insn
, 0, 7);
12209 while (register_bits
)
12211 if (register_bits
& 0x00000001)
12212 record_buf
[index
++] = register_count
;
12213 register_bits
= register_bits
>> 1;
12216 record_buf
[index
++] = ARM_PS_REGNUM
;
12217 record_buf
[index
++] = ARM_SP_REGNUM
;
12218 thumb_insn_r
->reg_rec_count
= index
;
12220 else if (10 == opcode2
)
12223 register_bits
= bits (thumb_insn_r
->arm_insn
, 0, 7);
12224 regcache_raw_read_unsigned (reg_cache
, ARM_SP_REGNUM
, &u_regval
);
12225 while (register_bits
)
12227 if (register_bits
& 0x00000001)
12229 register_bits
= register_bits
>> 1;
12231 start_address
= u_regval
- \
12232 (4 * (bit (thumb_insn_r
->arm_insn
, 8) + register_count
));
12233 thumb_insn_r
->mem_rec_count
= register_count
;
12234 while (register_count
)
12236 record_buf_mem
[(register_count
* 2) - 1] = start_address
;
12237 record_buf_mem
[(register_count
* 2) - 2] = 4;
12238 start_address
= start_address
+ 4;
12241 record_buf
[0] = ARM_SP_REGNUM
;
12242 thumb_insn_r
->reg_rec_count
= 1;
12244 else if (0x1E == opcode1
)
12247 /* Handle enhanced software breakpoint insn, BKPT. */
12248 /* CPSR is changed to be executed in ARM state, disabling normal
12249 interrupts, entering abort mode. */
12250 /* According to high vector configuration PC is set. */
12251 /* User hits breakpoint and type reverse, in that case, we need to go back with
12252 previous CPSR and Program Counter. */
12253 record_buf
[0] = ARM_PS_REGNUM
;
12254 record_buf
[1] = ARM_LR_REGNUM
;
12255 thumb_insn_r
->reg_rec_count
= 2;
12256 /* We need to save SPSR value, which is not yet done. */
12257 printf_unfiltered (_("Process record does not support instruction "
12258 "0x%0x at address %s.\n"),
12259 thumb_insn_r
->arm_insn
,
12260 paddress (thumb_insn_r
->gdbarch
,
12261 thumb_insn_r
->this_addr
));
12264 else if ((0 == opcode
) || (1 == opcode
))
12266 /* ADD(5), ADD(6). */
12267 reg_src1
= bits (thumb_insn_r
->arm_insn
, 8, 10);
12268 record_buf
[0] = reg_src1
;
12269 thumb_insn_r
->reg_rec_count
= 1;
12271 else if (2 == opcode
)
12273 /* ADD(7), SUB(4). */
12274 reg_src1
= bits (thumb_insn_r
->arm_insn
, 8, 10);
12275 record_buf
[0] = ARM_SP_REGNUM
;
12276 thumb_insn_r
->reg_rec_count
= 1;
12279 REG_ALLOC (thumb_insn_r
->arm_regs
, thumb_insn_r
->reg_rec_count
, record_buf
);
12280 MEM_ALLOC (thumb_insn_r
->arm_mems
, thumb_insn_r
->mem_rec_count
,
12286 /* Handling opcode 110 insns. */
12289 thumb_record_ldm_stm_swi (insn_decode_record
*thumb_insn_r
)
12291 struct gdbarch_tdep
*tdep
= gdbarch_tdep (thumb_insn_r
->gdbarch
);
12292 struct regcache
*reg_cache
= thumb_insn_r
->regcache
;
12294 uint32_t ret
= 0; /* function return value: -1:record failure ; 0:success */
12295 uint32_t reg_src1
= 0;
12296 uint32_t opcode1
= 0, opcode2
= 0, register_bits
= 0, register_count
= 0;
12297 uint32_t register_list
[8] = {0}, index
= 0, start_address
= 0;
12298 uint32_t record_buf
[24], record_buf_mem
[48];
12300 ULONGEST u_regval
= 0;
12302 opcode1
= bits (thumb_insn_r
->arm_insn
, 8, 12);
12303 opcode2
= bits (thumb_insn_r
->arm_insn
, 11, 12);
12309 register_bits
= bits (thumb_insn_r
->arm_insn
, 0, 7);
12311 reg_src1
= bits (thumb_insn_r
->arm_insn
, 8, 10);
12312 while (register_bits
)
12314 if (register_bits
& 0x00000001)
12315 record_buf
[index
++] = register_count
;
12316 register_bits
= register_bits
>> 1;
12319 record_buf
[index
++] = reg_src1
;
12320 thumb_insn_r
->reg_rec_count
= index
;
12322 else if (0 == opcode2
)
12324 /* It handles both STMIA. */
12325 register_bits
= bits (thumb_insn_r
->arm_insn
, 0, 7);
12327 reg_src1
= bits (thumb_insn_r
->arm_insn
, 8, 10);
12328 regcache_raw_read_unsigned (reg_cache
, reg_src1
, &u_regval
);
12329 while (register_bits
)
12331 if (register_bits
& 0x00000001)
12333 register_bits
= register_bits
>> 1;
12335 start_address
= u_regval
;
12336 thumb_insn_r
->mem_rec_count
= register_count
;
12337 while (register_count
)
12339 record_buf_mem
[(register_count
* 2) - 1] = start_address
;
12340 record_buf_mem
[(register_count
* 2) - 2] = 4;
12341 start_address
= start_address
+ 4;
12345 else if (0x1F == opcode1
)
12347 /* Handle arm syscall insn. */
12348 if (tdep
->arm_syscall_record
!= NULL
)
12350 regcache_raw_read_unsigned (reg_cache
, 7, &u_regval
);
12351 ret
= tdep
->arm_syscall_record (reg_cache
, u_regval
);
12355 printf_unfiltered (_("no syscall record support\n"));
12360 /* B (1), conditional branch is automatically taken care in process_record,
12361 as PC is saved there. */
12363 REG_ALLOC (thumb_insn_r
->arm_regs
, thumb_insn_r
->reg_rec_count
, record_buf
);
12364 MEM_ALLOC (thumb_insn_r
->arm_mems
, thumb_insn_r
->mem_rec_count
,
12370 /* Handling opcode 111 insns. */
12373 thumb_record_branch (insn_decode_record
*thumb_insn_r
)
12375 uint32_t record_buf
[8];
12376 uint32_t bits_h
= 0;
12378 bits_h
= bits (thumb_insn_r
->arm_insn
, 11, 12);
12380 if (2 == bits_h
|| 3 == bits_h
)
12383 record_buf
[0] = ARM_LR_REGNUM
;
12384 thumb_insn_r
->reg_rec_count
= 1;
12386 else if (1 == bits_h
)
12389 record_buf
[0] = ARM_PS_REGNUM
;
12390 record_buf
[1] = ARM_LR_REGNUM
;
12391 thumb_insn_r
->reg_rec_count
= 2;
12394 /* B(2) is automatically taken care in process_record, as PC is
12397 REG_ALLOC (thumb_insn_r
->arm_regs
, thumb_insn_r
->reg_rec_count
, record_buf
);
12402 /* Handler for thumb2 load/store multiple instructions. */
12405 thumb2_record_ld_st_multiple (insn_decode_record
*thumb2_insn_r
)
12407 struct regcache
*reg_cache
= thumb2_insn_r
->regcache
;
12409 uint32_t reg_rn
, op
;
12410 uint32_t register_bits
= 0, register_count
= 0;
12411 uint32_t index
= 0, start_address
= 0;
12412 uint32_t record_buf
[24], record_buf_mem
[48];
12414 ULONGEST u_regval
= 0;
12416 reg_rn
= bits (thumb2_insn_r
->arm_insn
, 16, 19);
12417 op
= bits (thumb2_insn_r
->arm_insn
, 23, 24);
12419 if (0 == op
|| 3 == op
)
12421 if (bit (thumb2_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
))
12423 /* Handle RFE instruction. */
12424 record_buf
[0] = ARM_PS_REGNUM
;
12425 thumb2_insn_r
->reg_rec_count
= 1;
12429 /* Handle SRS instruction after reading banked SP. */
12430 return arm_record_unsupported_insn (thumb2_insn_r
);
12433 else if (1 == op
|| 2 == op
)
12435 if (bit (thumb2_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
))
12437 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12438 register_bits
= bits (thumb2_insn_r
->arm_insn
, 0, 15);
12439 while (register_bits
)
12441 if (register_bits
& 0x00000001)
12442 record_buf
[index
++] = register_count
;
12445 register_bits
= register_bits
>> 1;
12447 record_buf
[index
++] = reg_rn
;
12448 record_buf
[index
++] = ARM_PS_REGNUM
;
12449 thumb2_insn_r
->reg_rec_count
= index
;
12453 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12454 register_bits
= bits (thumb2_insn_r
->arm_insn
, 0, 15);
12455 regcache_raw_read_unsigned (reg_cache
, reg_rn
, &u_regval
);
12456 while (register_bits
)
12458 if (register_bits
& 0x00000001)
12461 register_bits
= register_bits
>> 1;
12466 /* Start address calculation for LDMDB/LDMEA. */
12467 start_address
= u_regval
;
12471 /* Start address calculation for LDMDB/LDMEA. */
12472 start_address
= u_regval
- register_count
* 4;
12475 thumb2_insn_r
->mem_rec_count
= register_count
;
12476 while (register_count
)
12478 record_buf_mem
[register_count
* 2 - 1] = start_address
;
12479 record_buf_mem
[register_count
* 2 - 2] = 4;
12480 start_address
= start_address
+ 4;
12483 record_buf
[0] = reg_rn
;
12484 record_buf
[1] = ARM_PS_REGNUM
;
12485 thumb2_insn_r
->reg_rec_count
= 2;
12489 MEM_ALLOC (thumb2_insn_r
->arm_mems
, thumb2_insn_r
->mem_rec_count
,
12491 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12493 return ARM_RECORD_SUCCESS
;
12496 /* Handler for thumb2 load/store (dual/exclusive) and table branch
12500 thumb2_record_ld_st_dual_ex_tbb (insn_decode_record
*thumb2_insn_r
)
12502 struct regcache
*reg_cache
= thumb2_insn_r
->regcache
;
12504 uint32_t reg_rd
, reg_rn
, offset_imm
;
12505 uint32_t reg_dest1
, reg_dest2
;
12506 uint32_t address
, offset_addr
;
12507 uint32_t record_buf
[8], record_buf_mem
[8];
12508 uint32_t op1
, op2
, op3
;
12511 ULONGEST u_regval
[2];
12513 op1
= bits (thumb2_insn_r
->arm_insn
, 23, 24);
12514 op2
= bits (thumb2_insn_r
->arm_insn
, 20, 21);
12515 op3
= bits (thumb2_insn_r
->arm_insn
, 4, 7);
12517 if (bit (thumb2_insn_r
->arm_insn
, INSN_S_L_BIT_NUM
))
12519 if(!(1 == op1
&& 1 == op2
&& (0 == op3
|| 1 == op3
)))
12521 reg_dest1
= bits (thumb2_insn_r
->arm_insn
, 12, 15);
12522 record_buf
[0] = reg_dest1
;
12523 record_buf
[1] = ARM_PS_REGNUM
;
12524 thumb2_insn_r
->reg_rec_count
= 2;
12527 if (3 == op2
|| (op1
& 2) || (1 == op1
&& 1 == op2
&& 7 == op3
))
12529 reg_dest2
= bits (thumb2_insn_r
->arm_insn
, 8, 11);
12530 record_buf
[2] = reg_dest2
;
12531 thumb2_insn_r
->reg_rec_count
= 3;
12536 reg_rn
= bits (thumb2_insn_r
->arm_insn
, 16, 19);
12537 regcache_raw_read_unsigned (reg_cache
, reg_rn
, &u_regval
[0]);
12539 if (0 == op1
&& 0 == op2
)
12541 /* Handle STREX. */
12542 offset_imm
= bits (thumb2_insn_r
->arm_insn
, 0, 7);
12543 address
= u_regval
[0] + (offset_imm
* 4);
12544 record_buf_mem
[0] = 4;
12545 record_buf_mem
[1] = address
;
12546 thumb2_insn_r
->mem_rec_count
= 1;
12547 reg_rd
= bits (thumb2_insn_r
->arm_insn
, 0, 3);
12548 record_buf
[0] = reg_rd
;
12549 thumb2_insn_r
->reg_rec_count
= 1;
12551 else if (1 == op1
&& 0 == op2
)
12553 reg_rd
= bits (thumb2_insn_r
->arm_insn
, 0, 3);
12554 record_buf
[0] = reg_rd
;
12555 thumb2_insn_r
->reg_rec_count
= 1;
12556 address
= u_regval
[0];
12557 record_buf_mem
[1] = address
;
12561 /* Handle STREXB. */
12562 record_buf_mem
[0] = 1;
12563 thumb2_insn_r
->mem_rec_count
= 1;
12567 /* Handle STREXH. */
12568 record_buf_mem
[0] = 2 ;
12569 thumb2_insn_r
->mem_rec_count
= 1;
12573 /* Handle STREXD. */
12574 address
= u_regval
[0];
12575 record_buf_mem
[0] = 4;
12576 record_buf_mem
[2] = 4;
12577 record_buf_mem
[3] = address
+ 4;
12578 thumb2_insn_r
->mem_rec_count
= 2;
12583 offset_imm
= bits (thumb2_insn_r
->arm_insn
, 0, 7);
12585 if (bit (thumb2_insn_r
->arm_insn
, 24))
12587 if (bit (thumb2_insn_r
->arm_insn
, 23))
12588 offset_addr
= u_regval
[0] + (offset_imm
* 4);
12590 offset_addr
= u_regval
[0] - (offset_imm
* 4);
12592 address
= offset_addr
;
12595 address
= u_regval
[0];
12597 record_buf_mem
[0] = 4;
12598 record_buf_mem
[1] = address
;
12599 record_buf_mem
[2] = 4;
12600 record_buf_mem
[3] = address
+ 4;
12601 thumb2_insn_r
->mem_rec_count
= 2;
12602 record_buf
[0] = reg_rn
;
12603 thumb2_insn_r
->reg_rec_count
= 1;
12607 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12609 MEM_ALLOC (thumb2_insn_r
->arm_mems
, thumb2_insn_r
->mem_rec_count
,
12611 return ARM_RECORD_SUCCESS
;
12614 /* Handler for thumb2 data processing (shift register and modified immediate)
12618 thumb2_record_data_proc_sreg_mimm (insn_decode_record
*thumb2_insn_r
)
12620 uint32_t reg_rd
, op
;
12621 uint32_t record_buf
[8];
12623 op
= bits (thumb2_insn_r
->arm_insn
, 21, 24);
12624 reg_rd
= bits (thumb2_insn_r
->arm_insn
, 8, 11);
12626 if ((0 == op
|| 4 == op
|| 8 == op
|| 13 == op
) && 15 == reg_rd
)
12628 record_buf
[0] = ARM_PS_REGNUM
;
12629 thumb2_insn_r
->reg_rec_count
= 1;
12633 record_buf
[0] = reg_rd
;
12634 record_buf
[1] = ARM_PS_REGNUM
;
12635 thumb2_insn_r
->reg_rec_count
= 2;
12638 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12640 return ARM_RECORD_SUCCESS
;
12643 /* Generic handler for thumb2 instructions which effect destination and PS
12647 thumb2_record_ps_dest_generic (insn_decode_record
*thumb2_insn_r
)
12650 uint32_t record_buf
[8];
12652 reg_rd
= bits (thumb2_insn_r
->arm_insn
, 8, 11);
12654 record_buf
[0] = reg_rd
;
12655 record_buf
[1] = ARM_PS_REGNUM
;
12656 thumb2_insn_r
->reg_rec_count
= 2;
12658 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12660 return ARM_RECORD_SUCCESS
;
12663 /* Handler for thumb2 branch and miscellaneous control instructions. */
12666 thumb2_record_branch_misc_cntrl (insn_decode_record
*thumb2_insn_r
)
12668 uint32_t op
, op1
, op2
;
12669 uint32_t record_buf
[8];
12671 op
= bits (thumb2_insn_r
->arm_insn
, 20, 26);
12672 op1
= bits (thumb2_insn_r
->arm_insn
, 12, 14);
12673 op2
= bits (thumb2_insn_r
->arm_insn
, 8, 11);
12675 /* Handle MSR insn. */
12676 if (!(op1
& 0x2) && 0x38 == op
)
12680 /* CPSR is going to be changed. */
12681 record_buf
[0] = ARM_PS_REGNUM
;
12682 thumb2_insn_r
->reg_rec_count
= 1;
12686 arm_record_unsupported_insn(thumb2_insn_r
);
12690 else if (4 == (op1
& 0x5) || 5 == (op1
& 0x5))
12693 record_buf
[0] = ARM_PS_REGNUM
;
12694 record_buf
[1] = ARM_LR_REGNUM
;
12695 thumb2_insn_r
->reg_rec_count
= 2;
12698 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12700 return ARM_RECORD_SUCCESS
;
12703 /* Handler for thumb2 store single data item instructions. */
12706 thumb2_record_str_single_data (insn_decode_record
*thumb2_insn_r
)
12708 struct regcache
*reg_cache
= thumb2_insn_r
->regcache
;
12710 uint32_t reg_rn
, reg_rm
, offset_imm
, shift_imm
;
12711 uint32_t address
, offset_addr
;
12712 uint32_t record_buf
[8], record_buf_mem
[8];
12715 ULONGEST u_regval
[2];
12717 op1
= bits (thumb2_insn_r
->arm_insn
, 21, 23);
12718 op2
= bits (thumb2_insn_r
->arm_insn
, 6, 11);
12719 reg_rn
= bits (thumb2_insn_r
->arm_insn
, 16, 19);
12720 regcache_raw_read_unsigned (reg_cache
, reg_rn
, &u_regval
[0]);
12722 if (bit (thumb2_insn_r
->arm_insn
, 23))
12725 offset_imm
= bits (thumb2_insn_r
->arm_insn
, 0, 11);
12726 offset_addr
= u_regval
[0] + offset_imm
;
12727 address
= offset_addr
;
12732 if ((0 == op1
|| 1 == op1
|| 2 == op1
) && !(op2
& 0x20))
12734 /* Handle STRB (register). */
12735 reg_rm
= bits (thumb2_insn_r
->arm_insn
, 0, 3);
12736 regcache_raw_read_unsigned (reg_cache
, reg_rm
, &u_regval
[1]);
12737 shift_imm
= bits (thumb2_insn_r
->arm_insn
, 4, 5);
12738 offset_addr
= u_regval
[1] << shift_imm
;
12739 address
= u_regval
[0] + offset_addr
;
12743 offset_imm
= bits (thumb2_insn_r
->arm_insn
, 0, 7);
12744 if (bit (thumb2_insn_r
->arm_insn
, 10))
12746 if (bit (thumb2_insn_r
->arm_insn
, 9))
12747 offset_addr
= u_regval
[0] + offset_imm
;
12749 offset_addr
= u_regval
[0] - offset_imm
;
12751 address
= offset_addr
;
12754 address
= u_regval
[0];
12760 /* Store byte instructions. */
12763 record_buf_mem
[0] = 1;
12765 /* Store half word instructions. */
12768 record_buf_mem
[0] = 2;
12770 /* Store word instructions. */
12773 record_buf_mem
[0] = 4;
12777 gdb_assert_not_reached ("no decoding pattern found");
12781 record_buf_mem
[1] = address
;
12782 thumb2_insn_r
->mem_rec_count
= 1;
12783 record_buf
[0] = reg_rn
;
12784 thumb2_insn_r
->reg_rec_count
= 1;
12786 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12788 MEM_ALLOC (thumb2_insn_r
->arm_mems
, thumb2_insn_r
->mem_rec_count
,
12790 return ARM_RECORD_SUCCESS
;
12793 /* Handler for thumb2 load memory hints instructions. */
12796 thumb2_record_ld_mem_hints (insn_decode_record
*thumb2_insn_r
)
12798 uint32_t record_buf
[8];
12799 uint32_t reg_rt
, reg_rn
;
12801 reg_rt
= bits (thumb2_insn_r
->arm_insn
, 12, 15);
12802 reg_rn
= bits (thumb2_insn_r
->arm_insn
, 16, 19);
12804 if (ARM_PC_REGNUM
!= reg_rt
)
12806 record_buf
[0] = reg_rt
;
12807 record_buf
[1] = reg_rn
;
12808 record_buf
[2] = ARM_PS_REGNUM
;
12809 thumb2_insn_r
->reg_rec_count
= 3;
12811 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12813 return ARM_RECORD_SUCCESS
;
12816 return ARM_RECORD_FAILURE
;
12819 /* Handler for thumb2 load word instructions. */
12822 thumb2_record_ld_word (insn_decode_record
*thumb2_insn_r
)
12824 uint32_t opcode1
= 0, opcode2
= 0;
12825 uint32_t record_buf
[8];
12827 record_buf
[0] = bits (thumb2_insn_r
->arm_insn
, 12, 15);
12828 record_buf
[1] = ARM_PS_REGNUM
;
12829 thumb2_insn_r
->reg_rec_count
= 2;
12831 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12833 return ARM_RECORD_SUCCESS
;
12836 /* Handler for thumb2 long multiply, long multiply accumulate, and
12837 divide instructions. */
12840 thumb2_record_lmul_lmla_div (insn_decode_record
*thumb2_insn_r
)
12842 uint32_t opcode1
= 0, opcode2
= 0;
12843 uint32_t record_buf
[8];
12844 uint32_t reg_src1
= 0;
12846 opcode1
= bits (thumb2_insn_r
->arm_insn
, 20, 22);
12847 opcode2
= bits (thumb2_insn_r
->arm_insn
, 4, 7);
12849 if (0 == opcode1
|| 2 == opcode1
|| (opcode1
>= 4 && opcode1
<= 6))
12851 /* Handle SMULL, UMULL, SMULAL. */
12852 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12853 record_buf
[0] = bits (thumb2_insn_r
->arm_insn
, 16, 19);
12854 record_buf
[1] = bits (thumb2_insn_r
->arm_insn
, 12, 15);
12855 record_buf
[2] = ARM_PS_REGNUM
;
12856 thumb2_insn_r
->reg_rec_count
= 3;
12858 else if (1 == opcode1
|| 3 == opcode2
)
12860 /* Handle SDIV and UDIV. */
12861 record_buf
[0] = bits (thumb2_insn_r
->arm_insn
, 16, 19);
12862 record_buf
[1] = bits (thumb2_insn_r
->arm_insn
, 12, 15);
12863 record_buf
[2] = ARM_PS_REGNUM
;
12864 thumb2_insn_r
->reg_rec_count
= 3;
12867 return ARM_RECORD_FAILURE
;
12869 REG_ALLOC (thumb2_insn_r
->arm_regs
, thumb2_insn_r
->reg_rec_count
,
12871 return ARM_RECORD_SUCCESS
;
12874 /* Decodes thumb2 instruction type and invokes its record handler. */
12876 static unsigned int
12877 thumb2_record_decode_insn_handler (insn_decode_record
*thumb2_insn_r
)
12879 uint32_t op
, op1
, op2
;
12881 op
= bit (thumb2_insn_r
->arm_insn
, 15);
12882 op1
= bits (thumb2_insn_r
->arm_insn
, 27, 28);
12883 op2
= bits (thumb2_insn_r
->arm_insn
, 20, 26);
12887 if (!(op2
& 0x64 ))
12889 /* Load/store multiple instruction. */
12890 return thumb2_record_ld_st_multiple (thumb2_insn_r
);
12892 else if (!((op2
& 0x64) ^ 0x04))
12894 /* Load/store (dual/exclusive) and table branch instruction. */
12895 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r
);
12897 else if (!((op2
& 0x20) ^ 0x20))
12899 /* Data-processing (shifted register). */
12900 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r
);
12902 else if (op2
& 0x40)
12904 /* Co-processor instructions. */
12905 arm_record_unsupported_insn (thumb2_insn_r
);
12908 else if (op1
== 0x02)
12912 /* Branches and miscellaneous control instructions. */
12913 return thumb2_record_branch_misc_cntrl (thumb2_insn_r
);
12915 else if (op2
& 0x20)
12917 /* Data-processing (plain binary immediate) instruction. */
12918 return thumb2_record_ps_dest_generic (thumb2_insn_r
);
12922 /* Data-processing (modified immediate). */
12923 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r
);
12926 else if (op1
== 0x03)
12928 if (!(op2
& 0x71 ))
12930 /* Store single data item. */
12931 return thumb2_record_str_single_data (thumb2_insn_r
);
12933 else if (!((op2
& 0x71) ^ 0x10))
12935 /* Advanced SIMD or structure load/store instructions. */
12936 return arm_record_unsupported_insn (thumb2_insn_r
);
12938 else if (!((op2
& 0x67) ^ 0x01))
12940 /* Load byte, memory hints instruction. */
12941 return thumb2_record_ld_mem_hints (thumb2_insn_r
);
12943 else if (!((op2
& 0x67) ^ 0x03))
12945 /* Load halfword, memory hints instruction. */
12946 return thumb2_record_ld_mem_hints (thumb2_insn_r
);
12948 else if (!((op2
& 0x67) ^ 0x05))
12950 /* Load word instruction. */
12951 return thumb2_record_ld_word (thumb2_insn_r
);
12953 else if (!((op2
& 0x70) ^ 0x20))
12955 /* Data-processing (register) instruction. */
12956 return thumb2_record_ps_dest_generic (thumb2_insn_r
);
12958 else if (!((op2
& 0x78) ^ 0x30))
12960 /* Multiply, multiply accumulate, abs diff instruction. */
12961 return thumb2_record_ps_dest_generic (thumb2_insn_r
);
12963 else if (!((op2
& 0x78) ^ 0x38))
12965 /* Long multiply, long multiply accumulate, and divide. */
12966 return thumb2_record_lmul_lmla_div (thumb2_insn_r
);
12968 else if (op2
& 0x40)
12970 /* Co-processor instructions. */
12971 return arm_record_unsupported_insn (thumb2_insn_r
);
12978 /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12979 and positive val on fauilure. */
12982 extract_arm_insn (insn_decode_record
*insn_record
, uint32_t insn_size
)
12984 gdb_byte buf
[insn_size
];
12986 memset (&buf
[0], 0, insn_size
);
12988 if (target_read_memory (insn_record
->this_addr
, &buf
[0], insn_size
))
12990 insn_record
->arm_insn
= (uint32_t) extract_unsigned_integer (&buf
[0],
12992 gdbarch_byte_order (insn_record
->gdbarch
));
12996 typedef int (*sti_arm_hdl_fp_t
) (insn_decode_record
*);
12998 /* Decode arm/thumb insn depending on condition cods and opcodes; and
13002 decode_insn (insn_decode_record
*arm_record
, record_type_t record_type
,
13003 uint32_t insn_size
)
13006 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm instruction. */
13007 static const sti_arm_hdl_fp_t
const arm_handle_insn
[8] =
13009 arm_record_data_proc_misc_ld_str
, /* 000. */
13010 arm_record_data_proc_imm
, /* 001. */
13011 arm_record_ld_st_imm_offset
, /* 010. */
13012 arm_record_ld_st_reg_offset
, /* 011. */
13013 arm_record_ld_st_multiple
, /* 100. */
13014 arm_record_b_bl
, /* 101. */
13015 arm_record_unsupported_insn
, /* 110. */
13016 arm_record_coproc_data_proc
/* 111. */
13019 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb instruction. */
13020 static const sti_arm_hdl_fp_t
const thumb_handle_insn
[8] =
13022 thumb_record_shift_add_sub
, /* 000. */
13023 thumb_record_add_sub_cmp_mov
, /* 001. */
13024 thumb_record_ld_st_reg_offset
, /* 010. */
13025 thumb_record_ld_st_imm_offset
, /* 011. */
13026 thumb_record_ld_st_stack
, /* 100. */
13027 thumb_record_misc
, /* 101. */
13028 thumb_record_ldm_stm_swi
, /* 110. */
13029 thumb_record_branch
/* 111. */
13032 uint32_t ret
= 0; /* return value: negative:failure 0:success. */
13033 uint32_t insn_id
= 0;
13035 if (extract_arm_insn (arm_record
, insn_size
))
13039 printf_unfiltered (_("Process record: error reading memory at "
13040 "addr %s len = %d.\n"),
13041 paddress (arm_record
->gdbarch
, arm_record
->this_addr
), insn_size
);
13045 else if (ARM_RECORD
== record_type
)
13047 arm_record
->cond
= bits (arm_record
->arm_insn
, 28, 31);
13048 insn_id
= bits (arm_record
->arm_insn
, 25, 27);
13049 ret
= arm_record_extension_space (arm_record
);
13050 /* If this insn has fallen into extension space
13051 then we need not decode it anymore. */
13052 if (ret
!= -1 && !INSN_RECORDED(arm_record
))
13054 ret
= arm_handle_insn
[insn_id
] (arm_record
);
13057 else if (THUMB_RECORD
== record_type
)
13059 /* As thumb does not have condition codes, we set negative. */
13060 arm_record
->cond
= -1;
13061 insn_id
= bits (arm_record
->arm_insn
, 13, 15);
13062 ret
= thumb_handle_insn
[insn_id
] (arm_record
);
13064 else if (THUMB2_RECORD
== record_type
)
13066 /* As thumb does not have condition codes, we set negative. */
13067 arm_record
->cond
= -1;
13069 /* Swap first half of 32bit thumb instruction with second half. */
13070 arm_record
->arm_insn
13071 = (arm_record
->arm_insn
>> 16) | (arm_record
->arm_insn
<< 16);
13073 insn_id
= thumb2_record_decode_insn_handler (arm_record
);
13075 if (insn_id
!= ARM_RECORD_SUCCESS
)
13077 arm_record_unsupported_insn (arm_record
);
13083 /* Throw assertion. */
13084 gdb_assert_not_reached ("not a valid instruction, could not decode");
13091 /* Cleans up local record registers and memory allocations. */
13094 deallocate_reg_mem (insn_decode_record
*record
)
13096 xfree (record
->arm_regs
);
13097 xfree (record
->arm_mems
);
13101 /* Parse the current instruction and record the values of the registers and
13102 memory that will be changed in current instruction to record_arch_list".
13103 Return -1 if something is wrong. */
13106 arm_process_record (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
13107 CORE_ADDR insn_addr
)
13110 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
13111 uint32_t no_of_rec
= 0;
13112 uint32_t ret
= 0; /* return value: -1:record failure ; 0:success */
13113 ULONGEST t_bit
= 0, insn_id
= 0;
13115 ULONGEST u_regval
= 0;
13117 insn_decode_record arm_record
;
13119 memset (&arm_record
, 0, sizeof (insn_decode_record
));
13120 arm_record
.regcache
= regcache
;
13121 arm_record
.this_addr
= insn_addr
;
13122 arm_record
.gdbarch
= gdbarch
;
13125 if (record_debug
> 1)
13127 fprintf_unfiltered (gdb_stdlog
, "Process record: arm_process_record "
13129 paddress (gdbarch
, arm_record
.this_addr
));
13132 if (extract_arm_insn (&arm_record
, 2))
13136 printf_unfiltered (_("Process record: error reading memory at "
13137 "addr %s len = %d.\n"),
13138 paddress (arm_record
.gdbarch
,
13139 arm_record
.this_addr
), 2);
13144 /* Check the insn, whether it is thumb or arm one. */
13146 t_bit
= arm_psr_thumb_bit (arm_record
.gdbarch
);
13147 regcache_raw_read_unsigned (arm_record
.regcache
, ARM_PS_REGNUM
, &u_regval
);
13150 if (!(u_regval
& t_bit
))
13152 /* We are decoding arm insn. */
13153 ret
= decode_insn (&arm_record
, ARM_RECORD
, ARM_INSN_SIZE_BYTES
);
13157 insn_id
= bits (arm_record
.arm_insn
, 11, 15);
13158 /* is it thumb2 insn? */
13159 if ((0x1D == insn_id
) || (0x1E == insn_id
) || (0x1F == insn_id
))
13161 ret
= decode_insn (&arm_record
, THUMB2_RECORD
,
13162 THUMB2_INSN_SIZE_BYTES
);
13166 /* We are decoding thumb insn. */
13167 ret
= decode_insn (&arm_record
, THUMB_RECORD
, THUMB_INSN_SIZE_BYTES
);
13173 /* Record registers. */
13174 record_full_arch_list_add_reg (arm_record
.regcache
, ARM_PC_REGNUM
);
13175 if (arm_record
.arm_regs
)
13177 for (no_of_rec
= 0; no_of_rec
< arm_record
.reg_rec_count
; no_of_rec
++)
13179 if (record_full_arch_list_add_reg
13180 (arm_record
.regcache
, arm_record
.arm_regs
[no_of_rec
]))
13184 /* Record memories. */
13185 if (arm_record
.arm_mems
)
13187 for (no_of_rec
= 0; no_of_rec
< arm_record
.mem_rec_count
; no_of_rec
++)
13189 if (record_full_arch_list_add_mem
13190 ((CORE_ADDR
)arm_record
.arm_mems
[no_of_rec
].addr
,
13191 arm_record
.arm_mems
[no_of_rec
].len
))
13196 if (record_full_arch_list_add_end ())
13201 deallocate_reg_mem (&arm_record
);