* ax-gdb.c (gen_exp_binop_rest) [BINOP_SUBSCRIPT]: Error out if
[binutils-gdb.git] / gdb / target.h
blob7103ab26eeeae2564714aca9af29b81a0f4392e9
1 /* Interface between GDB and target environments, including files and processes
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 Contributed by Cygnus Support. Written by John Gilmore.
9 This file is part of GDB.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #if !defined (TARGET_H)
25 #define TARGET_H
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
39 /* This include file defines the interface between the main part
40 of the debugger, and the part which is target-specific, or
41 specific to the communications interface between us and the
42 target.
44 A TARGET is an interface between the debugger and a particular
45 kind of file or process. Targets can be STACKED in STRATA,
46 so that more than one target can potentially respond to a request.
47 In particular, memory accesses will walk down the stack of targets
48 until they find a target that is interested in handling that particular
49 address. STRATA are artificial boundaries on the stack, within
50 which particular kinds of targets live. Strata exist so that
51 people don't get confused by pushing e.g. a process target and then
52 a file target, and wondering why they can't see the current values
53 of variables any more (the file target is handling them and they
54 never get to the process target). So when you push a file target,
55 it goes into the file stratum, which is always below the process
56 stratum. */
58 #include "bfd.h"
59 #include "symtab.h"
60 #include "memattr.h"
61 #include "vec.h"
62 #include "gdb_signals.h"
64 enum strata
66 dummy_stratum, /* The lowest of the low */
67 file_stratum, /* Executable files, etc */
68 core_stratum, /* Core dump files */
69 process_stratum, /* Executing processes */
70 thread_stratum, /* Executing threads */
71 record_stratum, /* Support record debugging */
72 arch_stratum /* Architecture overrides */
75 enum thread_control_capabilities
77 tc_none = 0, /* Default: can't control thread execution. */
78 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 /* Stuff for target_wait. */
83 /* Generally, what has the program done? */
84 enum target_waitkind
86 /* The program has exited. The exit status is in value.integer. */
87 TARGET_WAITKIND_EXITED,
89 /* The program has stopped with a signal. Which signal is in
90 value.sig. */
91 TARGET_WAITKIND_STOPPED,
93 /* The program has terminated with a signal. Which signal is in
94 value.sig. */
95 TARGET_WAITKIND_SIGNALLED,
97 /* The program is letting us know that it dynamically loaded something
98 (e.g. it called load(2) on AIX). */
99 TARGET_WAITKIND_LOADED,
101 /* The program has forked. A "related" process' PTID is in
102 value.related_pid. I.e., if the child forks, value.related_pid
103 is the parent's ID. */
105 TARGET_WAITKIND_FORKED,
107 /* The program has vforked. A "related" process's PTID is in
108 value.related_pid. */
110 TARGET_WAITKIND_VFORKED,
112 /* The program has exec'ed a new executable file. The new file's
113 pathname is pointed to by value.execd_pathname. */
115 TARGET_WAITKIND_EXECD,
117 /* The program had previously vforked, and now the child is done
118 with the shared memory region, because it exec'ed or exited.
119 Note that the event is reported to the vfork parent. This is
120 only used if GDB did not stay attached to the vfork child,
121 otherwise, a TARGET_WAITKIND_EXECD or
122 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
123 has the same effect. */
124 TARGET_WAITKIND_VFORK_DONE,
126 /* The program has entered or returned from a system call. On
127 HP-UX, this is used in the hardware watchpoint implementation.
128 The syscall's unique integer ID number is in value.syscall_id */
130 TARGET_WAITKIND_SYSCALL_ENTRY,
131 TARGET_WAITKIND_SYSCALL_RETURN,
133 /* Nothing happened, but we stopped anyway. This perhaps should be handled
134 within target_wait, but I'm not sure target_wait should be resuming the
135 inferior. */
136 TARGET_WAITKIND_SPURIOUS,
138 /* An event has occured, but we should wait again.
139 Remote_async_wait() returns this when there is an event
140 on the inferior, but the rest of the world is not interested in
141 it. The inferior has not stopped, but has just sent some output
142 to the console, for instance. In this case, we want to go back
143 to the event loop and wait there for another event from the
144 inferior, rather than being stuck in the remote_async_wait()
145 function. This way the event loop is responsive to other events,
146 like for instance the user typing. */
147 TARGET_WAITKIND_IGNORE,
149 /* The target has run out of history information,
150 and cannot run backward any further. */
151 TARGET_WAITKIND_NO_HISTORY
154 struct target_waitstatus
156 enum target_waitkind kind;
158 /* Forked child pid, execd pathname, exit status, signal number or
159 syscall number. */
160 union
162 int integer;
163 enum target_signal sig;
164 ptid_t related_pid;
165 char *execd_pathname;
166 int syscall_number;
168 value;
171 /* Options that can be passed to target_wait. */
173 /* Return immediately if there's no event already queued. If this
174 options is not requested, target_wait blocks waiting for an
175 event. */
176 #define TARGET_WNOHANG 1
178 /* The structure below stores information about a system call.
179 It is basically used in the "catch syscall" command, and in
180 every function that gives information about a system call.
182 It's also good to mention that its fields represent everything
183 that we currently know about a syscall in GDB. */
184 struct syscall
186 /* The syscall number. */
187 int number;
189 /* The syscall name. */
190 const char *name;
193 /* Return a pretty printed form of target_waitstatus.
194 Space for the result is malloc'd, caller must free. */
195 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
197 /* Possible types of events that the inferior handler will have to
198 deal with. */
199 enum inferior_event_type
201 /* There is a request to quit the inferior, abandon it. */
202 INF_QUIT_REQ,
203 /* Process a normal inferior event which will result in target_wait
204 being called. */
205 INF_REG_EVENT,
206 /* Deal with an error on the inferior. */
207 INF_ERROR,
208 /* We are called because a timer went off. */
209 INF_TIMER,
210 /* We are called to do stuff after the inferior stops. */
211 INF_EXEC_COMPLETE,
212 /* We are called to do some stuff after the inferior stops, but we
213 are expected to reenter the proceed() and
214 handle_inferior_event() functions. This is used only in case of
215 'step n' like commands. */
216 INF_EXEC_CONTINUE
219 /* Target objects which can be transfered using target_read,
220 target_write, et cetera. */
222 enum target_object
224 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
225 TARGET_OBJECT_AVR,
226 /* SPU target specific transfer. See "spu-tdep.c". */
227 TARGET_OBJECT_SPU,
228 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
229 TARGET_OBJECT_MEMORY,
230 /* Memory, avoiding GDB's data cache and trusting the executable.
231 Target implementations of to_xfer_partial never need to handle
232 this object, and most callers should not use it. */
233 TARGET_OBJECT_RAW_MEMORY,
234 /* Memory known to be part of the target's stack. This is cached even
235 if it is not in a region marked as such, since it is known to be
236 "normal" RAM. */
237 TARGET_OBJECT_STACK_MEMORY,
238 /* Kernel Unwind Table. See "ia64-tdep.c". */
239 TARGET_OBJECT_UNWIND_TABLE,
240 /* Transfer auxilliary vector. */
241 TARGET_OBJECT_AUXV,
242 /* StackGhost cookie. See "sparc-tdep.c". */
243 TARGET_OBJECT_WCOOKIE,
244 /* Target memory map in XML format. */
245 TARGET_OBJECT_MEMORY_MAP,
246 /* Flash memory. This object can be used to write contents to
247 a previously erased flash memory. Using it without erasing
248 flash can have unexpected results. Addresses are physical
249 address on target, and not relative to flash start. */
250 TARGET_OBJECT_FLASH,
251 /* Available target-specific features, e.g. registers and coprocessors.
252 See "target-descriptions.c". ANNEX should never be empty. */
253 TARGET_OBJECT_AVAILABLE_FEATURES,
254 /* Currently loaded libraries, in XML format. */
255 TARGET_OBJECT_LIBRARIES,
256 /* Get OS specific data. The ANNEX specifies the type (running
257 processes, etc.). */
258 TARGET_OBJECT_OSDATA,
259 /* Extra signal info. Usually the contents of `siginfo_t' on unix
260 platforms. */
261 TARGET_OBJECT_SIGNAL_INFO,
262 /* The list of threads that are being debugged. */
263 TARGET_OBJECT_THREADS,
264 /* Possible future objects: TARGET_OBJECT_FILE, ... */
267 /* Enumeration of the kinds of traceframe searches that a target may
268 be able to perform. */
270 enum trace_find_type
272 tfind_number,
273 tfind_pc,
274 tfind_tp,
275 tfind_range,
276 tfind_outside,
279 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
280 OBJECT. The OFFSET, for a seekable object, specifies the
281 starting point. The ANNEX can be used to provide additional
282 data-specific information to the target.
284 Return the number of bytes actually transfered, or -1 if the
285 transfer is not supported or otherwise fails. Return of a positive
286 value less than LEN indicates that no further transfer is possible.
287 Unlike the raw to_xfer_partial interface, callers of these
288 functions do not need to retry partial transfers. */
290 extern LONGEST target_read (struct target_ops *ops,
291 enum target_object object,
292 const char *annex, gdb_byte *buf,
293 ULONGEST offset, LONGEST len);
295 extern LONGEST target_read_until_error (struct target_ops *ops,
296 enum target_object object,
297 const char *annex, gdb_byte *buf,
298 ULONGEST offset, LONGEST len);
300 extern LONGEST target_write (struct target_ops *ops,
301 enum target_object object,
302 const char *annex, const gdb_byte *buf,
303 ULONGEST offset, LONGEST len);
305 /* Similar to target_write, except that it also calls PROGRESS with
306 the number of bytes written and the opaque BATON after every
307 successful partial write (and before the first write). This is
308 useful for progress reporting and user interaction while writing
309 data. To abort the transfer, the progress callback can throw an
310 exception. */
312 LONGEST target_write_with_progress (struct target_ops *ops,
313 enum target_object object,
314 const char *annex, const gdb_byte *buf,
315 ULONGEST offset, LONGEST len,
316 void (*progress) (ULONGEST, void *),
317 void *baton);
319 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
320 be read using OPS. The return value will be -1 if the transfer
321 fails or is not supported; 0 if the object is empty; or the length
322 of the object otherwise. If a positive value is returned, a
323 sufficiently large buffer will be allocated using xmalloc and
324 returned in *BUF_P containing the contents of the object.
326 This method should be used for objects sufficiently small to store
327 in a single xmalloc'd buffer, when no fixed bound on the object's
328 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
329 through this function. */
331 extern LONGEST target_read_alloc (struct target_ops *ops,
332 enum target_object object,
333 const char *annex, gdb_byte **buf_p);
335 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
336 returned as a string, allocated using xmalloc. If an error occurs
337 or the transfer is unsupported, NULL is returned. Empty objects
338 are returned as allocated but empty strings. A warning is issued
339 if the result contains any embedded NUL bytes. */
341 extern char *target_read_stralloc (struct target_ops *ops,
342 enum target_object object,
343 const char *annex);
345 /* Wrappers to target read/write that perform memory transfers. They
346 throw an error if the memory transfer fails.
348 NOTE: cagney/2003-10-23: The naming schema is lifted from
349 "frame.h". The parameter order is lifted from get_frame_memory,
350 which in turn lifted it from read_memory. */
352 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
353 gdb_byte *buf, LONGEST len);
354 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
355 CORE_ADDR addr, int len,
356 enum bfd_endian byte_order);
358 struct thread_info; /* fwd decl for parameter list below: */
360 struct target_ops
362 struct target_ops *beneath; /* To the target under this one. */
363 char *to_shortname; /* Name this target type */
364 char *to_longname; /* Name for printing */
365 char *to_doc; /* Documentation. Does not include trailing
366 newline, and starts with a one-line descrip-
367 tion (probably similar to to_longname). */
368 /* Per-target scratch pad. */
369 void *to_data;
370 /* The open routine takes the rest of the parameters from the
371 command, and (if successful) pushes a new target onto the
372 stack. Targets should supply this routine, if only to provide
373 an error message. */
374 void (*to_open) (char *, int);
375 /* Old targets with a static target vector provide "to_close".
376 New re-entrant targets provide "to_xclose" and that is expected
377 to xfree everything (including the "struct target_ops"). */
378 void (*to_xclose) (struct target_ops *targ, int quitting);
379 void (*to_close) (int);
380 void (*to_attach) (struct target_ops *ops, char *, int);
381 void (*to_post_attach) (int);
382 void (*to_detach) (struct target_ops *ops, char *, int);
383 void (*to_disconnect) (struct target_ops *, char *, int);
384 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
385 ptid_t (*to_wait) (struct target_ops *,
386 ptid_t, struct target_waitstatus *, int);
387 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
388 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
389 void (*to_prepare_to_store) (struct regcache *);
391 /* Transfer LEN bytes of memory between GDB address MYADDR and
392 target address MEMADDR. If WRITE, transfer them to the target, else
393 transfer them from the target. TARGET is the target from which we
394 get this function.
396 Return value, N, is one of the following:
398 0 means that we can't handle this. If errno has been set, it is the
399 error which prevented us from doing it (FIXME: What about bfd_error?).
401 positive (call it N) means that we have transferred N bytes
402 starting at MEMADDR. We might be able to handle more bytes
403 beyond this length, but no promises.
405 negative (call its absolute value N) means that we cannot
406 transfer right at MEMADDR, but we could transfer at least
407 something at MEMADDR + N.
409 NOTE: cagney/2004-10-01: This has been entirely superseeded by
410 to_xfer_partial and inferior inheritance. */
412 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
413 int len, int write,
414 struct mem_attrib *attrib,
415 struct target_ops *target);
417 void (*to_files_info) (struct target_ops *);
418 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
419 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
420 int (*to_can_use_hw_breakpoint) (int, int, int);
421 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
422 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
423 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
424 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
425 int (*to_stopped_by_watchpoint) (void);
426 int to_have_steppable_watchpoint;
427 int to_have_continuable_watchpoint;
428 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
429 int (*to_watchpoint_addr_within_range) (struct target_ops *,
430 CORE_ADDR, CORE_ADDR, int);
431 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
432 void (*to_terminal_init) (void);
433 void (*to_terminal_inferior) (void);
434 void (*to_terminal_ours_for_output) (void);
435 void (*to_terminal_ours) (void);
436 void (*to_terminal_save_ours) (void);
437 void (*to_terminal_info) (char *, int);
438 void (*to_kill) (struct target_ops *);
439 void (*to_load) (char *, int);
440 int (*to_lookup_symbol) (char *, CORE_ADDR *);
441 void (*to_create_inferior) (struct target_ops *,
442 char *, char *, char **, int);
443 void (*to_post_startup_inferior) (ptid_t);
444 void (*to_acknowledge_created_inferior) (int);
445 void (*to_insert_fork_catchpoint) (int);
446 int (*to_remove_fork_catchpoint) (int);
447 void (*to_insert_vfork_catchpoint) (int);
448 int (*to_remove_vfork_catchpoint) (int);
449 int (*to_follow_fork) (struct target_ops *, int);
450 void (*to_insert_exec_catchpoint) (int);
451 int (*to_remove_exec_catchpoint) (int);
452 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
453 int (*to_has_exited) (int, int, int *);
454 void (*to_mourn_inferior) (struct target_ops *);
455 int (*to_can_run) (void);
456 void (*to_notice_signals) (ptid_t ptid);
457 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
458 void (*to_find_new_threads) (struct target_ops *);
459 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
460 char *(*to_extra_thread_info) (struct thread_info *);
461 void (*to_stop) (ptid_t);
462 void (*to_rcmd) (char *command, struct ui_file *output);
463 char *(*to_pid_to_exec_file) (int pid);
464 void (*to_log_command) (const char *);
465 struct target_section_table *(*to_get_section_table) (struct target_ops *);
466 enum strata to_stratum;
467 int (*to_has_all_memory) (struct target_ops *);
468 int (*to_has_memory) (struct target_ops *);
469 int (*to_has_stack) (struct target_ops *);
470 int (*to_has_registers) (struct target_ops *);
471 int (*to_has_execution) (struct target_ops *);
472 int to_has_thread_control; /* control thread execution */
473 int to_attach_no_wait;
474 /* ASYNC target controls */
475 int (*to_can_async_p) (void);
476 int (*to_is_async_p) (void);
477 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
478 int (*to_async_mask) (int);
479 int (*to_supports_non_stop) (void);
480 /* find_memory_regions support method for gcore */
481 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
482 unsigned long,
483 int, int, int,
484 void *),
485 void *);
486 /* make_corefile_notes support method for gcore */
487 char * (*to_make_corefile_notes) (bfd *, int *);
488 /* get_bookmark support method for bookmarks */
489 gdb_byte * (*to_get_bookmark) (char *, int);
490 /* goto_bookmark support method for bookmarks */
491 void (*to_goto_bookmark) (gdb_byte *, int);
492 /* Return the thread-local address at OFFSET in the
493 thread-local storage for the thread PTID and the shared library
494 or executable file given by OBJFILE. If that block of
495 thread-local storage hasn't been allocated yet, this function
496 may return an error. */
497 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
498 ptid_t ptid,
499 CORE_ADDR load_module_addr,
500 CORE_ADDR offset);
502 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
503 OBJECT. The OFFSET, for a seekable object, specifies the
504 starting point. The ANNEX can be used to provide additional
505 data-specific information to the target.
507 Return the number of bytes actually transfered, zero when no
508 further transfer is possible, and -1 when the transfer is not
509 supported. Return of a positive value smaller than LEN does
510 not indicate the end of the object, only the end of the
511 transfer; higher level code should continue transferring if
512 desired. This is handled in target.c.
514 The interface does not support a "retry" mechanism. Instead it
515 assumes that at least one byte will be transfered on each
516 successful call.
518 NOTE: cagney/2003-10-17: The current interface can lead to
519 fragmented transfers. Lower target levels should not implement
520 hacks, such as enlarging the transfer, in an attempt to
521 compensate for this. Instead, the target stack should be
522 extended so that it implements supply/collect methods and a
523 look-aside object cache. With that available, the lowest
524 target can safely and freely "push" data up the stack.
526 See target_read and target_write for more information. One,
527 and only one, of readbuf or writebuf must be non-NULL. */
529 LONGEST (*to_xfer_partial) (struct target_ops *ops,
530 enum target_object object, const char *annex,
531 gdb_byte *readbuf, const gdb_byte *writebuf,
532 ULONGEST offset, LONGEST len);
534 /* Returns the memory map for the target. A return value of NULL
535 means that no memory map is available. If a memory address
536 does not fall within any returned regions, it's assumed to be
537 RAM. The returned memory regions should not overlap.
539 The order of regions does not matter; target_memory_map will
540 sort regions by starting address. For that reason, this
541 function should not be called directly except via
542 target_memory_map.
544 This method should not cache data; if the memory map could
545 change unexpectedly, it should be invalidated, and higher
546 layers will re-fetch it. */
547 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
549 /* Erases the region of flash memory starting at ADDRESS, of
550 length LENGTH.
552 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
553 on flash block boundaries, as reported by 'to_memory_map'. */
554 void (*to_flash_erase) (struct target_ops *,
555 ULONGEST address, LONGEST length);
557 /* Finishes a flash memory write sequence. After this operation
558 all flash memory should be available for writing and the result
559 of reading from areas written by 'to_flash_write' should be
560 equal to what was written. */
561 void (*to_flash_done) (struct target_ops *);
563 /* Describe the architecture-specific features of this target.
564 Returns the description found, or NULL if no description
565 was available. */
566 const struct target_desc *(*to_read_description) (struct target_ops *ops);
568 /* Build the PTID of the thread on which a given task is running,
569 based on LWP and THREAD. These values are extracted from the
570 task Private_Data section of the Ada Task Control Block, and
571 their interpretation depends on the target. */
572 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
574 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
575 Return 0 if *READPTR is already at the end of the buffer.
576 Return -1 if there is insufficient buffer for a whole entry.
577 Return 1 if an entry was read into *TYPEP and *VALP. */
578 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
579 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
581 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
582 sequence of bytes in PATTERN with length PATTERN_LEN.
584 The result is 1 if found, 0 if not found, and -1 if there was an error
585 requiring halting of the search (e.g. memory read error).
586 If the pattern is found the address is recorded in FOUND_ADDRP. */
587 int (*to_search_memory) (struct target_ops *ops,
588 CORE_ADDR start_addr, ULONGEST search_space_len,
589 const gdb_byte *pattern, ULONGEST pattern_len,
590 CORE_ADDR *found_addrp);
592 /* Can target execute in reverse? */
593 int (*to_can_execute_reverse) (void);
595 /* Does this target support debugging multiple processes
596 simultaneously? */
597 int (*to_supports_multi_process) (void);
599 /* Determine current architecture of thread PTID.
601 The target is supposed to determine the architecture of the code where
602 the target is currently stopped at (on Cell, if a target is in spu_run,
603 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
604 This is architecture used to perform decr_pc_after_break adjustment,
605 and also determines the frame architecture of the innermost frame.
606 ptrace operations need to operate according to target_gdbarch.
608 The default implementation always returns target_gdbarch. */
609 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
611 /* Determine current address space of thread PTID.
613 The default implementation always returns the inferior's
614 address space. */
615 struct address_space *(*to_thread_address_space) (struct target_ops *,
616 ptid_t);
618 /* Tracepoint-related operations. */
620 /* Prepare the target for a tracing run. */
621 void (*to_trace_init) (void);
623 /* Send full details of a tracepoint to the target. */
624 void (*to_download_tracepoint) (struct breakpoint *t);
626 /* Send full details of a trace state variable to the target. */
627 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
629 /* Inform the target info of memory regions that are readonly
630 (such as text sections), and so it should return data from
631 those rather than look in the trace buffer. */
632 void (*to_trace_set_readonly_regions) (void);
634 /* Start a trace run. */
635 void (*to_trace_start) (void);
637 /* Get the current status of a tracing run. */
638 int (*to_get_trace_status) (struct trace_status *ts);
640 /* Stop a trace run. */
641 void (*to_trace_stop) (void);
643 /* Ask the target to find a trace frame of the given type TYPE,
644 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
645 number of the trace frame, and also the tracepoint number at
646 TPP. */
647 int (*to_trace_find) (enum trace_find_type type, int num,
648 ULONGEST addr1, ULONGEST addr2, int *tpp);
650 /* Get the value of the trace state variable number TSV, returning
651 1 if the value is known and writing the value itself into the
652 location pointed to by VAL, else returning 0. */
653 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
655 int (*to_save_trace_data) (char *filename);
657 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
659 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
661 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
662 ULONGEST offset, LONGEST len);
664 /* Set the target's tracing behavior in response to unexpected
665 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
666 void (*to_set_disconnected_tracing) (int val);
668 /* Return the processor core that thread PTID was last seen on.
669 This information is updated only when:
670 - update_thread_list is called
671 - thread stops
672 If the core cannot be determined -- either for the specified thread, or
673 right now, or in this debug session, or for this target -- return -1. */
674 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
676 int to_magic;
677 /* Need sub-structure for target machine related rather than comm related?
681 /* Magic number for checking ops size. If a struct doesn't end with this
682 number, somebody changed the declaration but didn't change all the
683 places that initialize one. */
685 #define OPS_MAGIC 3840
687 /* The ops structure for our "current" target process. This should
688 never be NULL. If there is no target, it points to the dummy_target. */
690 extern struct target_ops current_target;
692 /* Define easy words for doing these operations on our current target. */
694 #define target_shortname (current_target.to_shortname)
695 #define target_longname (current_target.to_longname)
697 /* Does whatever cleanup is required for a target that we are no
698 longer going to be calling. QUITTING indicates that GDB is exiting
699 and should not get hung on an error (otherwise it is important to
700 perform clean termination, even if it takes a while). This routine
701 is automatically always called when popping the target off the
702 target stack (to_beneath is undefined). Closing file descriptors
703 and freeing all memory allocated memory are typical things it
704 should do. */
706 void target_close (struct target_ops *targ, int quitting);
708 /* Attaches to a process on the target side. Arguments are as passed
709 to the `attach' command by the user. This routine can be called
710 when the target is not on the target-stack, if the target_can_run
711 routine returns 1; in that case, it must push itself onto the stack.
712 Upon exit, the target should be ready for normal operations, and
713 should be ready to deliver the status of the process immediately
714 (without waiting) to an upcoming target_wait call. */
716 void target_attach (char *, int);
718 /* Some targets don't generate traps when attaching to the inferior,
719 or their target_attach implementation takes care of the waiting.
720 These targets must set to_attach_no_wait. */
722 #define target_attach_no_wait \
723 (current_target.to_attach_no_wait)
725 /* The target_attach operation places a process under debugger control,
726 and stops the process.
728 This operation provides a target-specific hook that allows the
729 necessary bookkeeping to be performed after an attach completes. */
730 #define target_post_attach(pid) \
731 (*current_target.to_post_attach) (pid)
733 /* Takes a program previously attached to and detaches it.
734 The program may resume execution (some targets do, some don't) and will
735 no longer stop on signals, etc. We better not have left any breakpoints
736 in the program or it'll die when it hits one. ARGS is arguments
737 typed by the user (e.g. a signal to send the process). FROM_TTY
738 says whether to be verbose or not. */
740 extern void target_detach (char *, int);
742 /* Disconnect from the current target without resuming it (leaving it
743 waiting for a debugger). */
745 extern void target_disconnect (char *, int);
747 /* Resume execution of the target process PTID. STEP says whether to
748 single-step or to run free; SIGGNAL is the signal to be given to
749 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
750 pass TARGET_SIGNAL_DEFAULT. */
752 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
754 /* Wait for process pid to do something. PTID = -1 to wait for any
755 pid to do something. Return pid of child, or -1 in case of error;
756 store status through argument pointer STATUS. Note that it is
757 _NOT_ OK to throw_exception() out of target_wait() without popping
758 the debugging target from the stack; GDB isn't prepared to get back
759 to the prompt with a debugging target but without the frame cache,
760 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
761 options. */
763 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
764 int options);
766 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
768 extern void target_fetch_registers (struct regcache *regcache, int regno);
770 /* Store at least register REGNO, or all regs if REGNO == -1.
771 It can store as many registers as it wants to, so target_prepare_to_store
772 must have been previously called. Calls error() if there are problems. */
774 extern void target_store_registers (struct regcache *regcache, int regs);
776 /* Get ready to modify the registers array. On machines which store
777 individual registers, this doesn't need to do anything. On machines
778 which store all the registers in one fell swoop, this makes sure
779 that REGISTERS contains all the registers from the program being
780 debugged. */
782 #define target_prepare_to_store(regcache) \
783 (*current_target.to_prepare_to_store) (regcache)
785 /* Determine current address space of thread PTID. */
787 struct address_space *target_thread_address_space (ptid_t);
789 /* Returns true if this target can debug multiple processes
790 simultaneously. */
792 #define target_supports_multi_process() \
793 (*current_target.to_supports_multi_process) ()
795 /* Invalidate all target dcaches. */
796 extern void target_dcache_invalidate (void);
798 extern int target_read_string (CORE_ADDR, char **, int, int *);
800 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
802 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
804 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
805 int len);
807 /* Fetches the target's memory map. If one is found it is sorted
808 and returned, after some consistency checking. Otherwise, NULL
809 is returned. */
810 VEC(mem_region_s) *target_memory_map (void);
812 /* Erase the specified flash region. */
813 void target_flash_erase (ULONGEST address, LONGEST length);
815 /* Finish a sequence of flash operations. */
816 void target_flash_done (void);
818 /* Describes a request for a memory write operation. */
819 struct memory_write_request
821 /* Begining address that must be written. */
822 ULONGEST begin;
823 /* Past-the-end address. */
824 ULONGEST end;
825 /* The data to write. */
826 gdb_byte *data;
827 /* A callback baton for progress reporting for this request. */
828 void *baton;
830 typedef struct memory_write_request memory_write_request_s;
831 DEF_VEC_O(memory_write_request_s);
833 /* Enumeration specifying different flash preservation behaviour. */
834 enum flash_preserve_mode
836 flash_preserve,
837 flash_discard
840 /* Write several memory blocks at once. This version can be more
841 efficient than making several calls to target_write_memory, in
842 particular because it can optimize accesses to flash memory.
844 Moreover, this is currently the only memory access function in gdb
845 that supports writing to flash memory, and it should be used for
846 all cases where access to flash memory is desirable.
848 REQUESTS is the vector (see vec.h) of memory_write_request.
849 PRESERVE_FLASH_P indicates what to do with blocks which must be
850 erased, but not completely rewritten.
851 PROGRESS_CB is a function that will be periodically called to provide
852 feedback to user. It will be called with the baton corresponding
853 to the request currently being written. It may also be called
854 with a NULL baton, when preserved flash sectors are being rewritten.
856 The function returns 0 on success, and error otherwise. */
857 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
858 enum flash_preserve_mode preserve_flash_p,
859 void (*progress_cb) (ULONGEST, void *));
861 /* From infrun.c. */
863 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
865 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
867 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
869 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
871 /* Print a line about the current target. */
873 #define target_files_info() \
874 (*current_target.to_files_info) (&current_target)
876 /* Insert a breakpoint at address BP_TGT->placed_address in the target
877 machine. Result is 0 for success, or an errno value. */
879 #define target_insert_breakpoint(gdbarch, bp_tgt) \
880 (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt)
882 /* Remove a breakpoint at address BP_TGT->placed_address in the target
883 machine. Result is 0 for success, or an errno value. */
885 #define target_remove_breakpoint(gdbarch, bp_tgt) \
886 (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt)
888 /* Initialize the terminal settings we record for the inferior,
889 before we actually run the inferior. */
891 #define target_terminal_init() \
892 (*current_target.to_terminal_init) ()
894 /* Put the inferior's terminal settings into effect.
895 This is preparation for starting or resuming the inferior. */
897 extern void target_terminal_inferior (void);
899 /* Put some of our terminal settings into effect,
900 enough to get proper results from our output,
901 but do not change into or out of RAW mode
902 so that no input is discarded.
904 After doing this, either terminal_ours or terminal_inferior
905 should be called to get back to a normal state of affairs. */
907 #define target_terminal_ours_for_output() \
908 (*current_target.to_terminal_ours_for_output) ()
910 /* Put our terminal settings into effect.
911 First record the inferior's terminal settings
912 so they can be restored properly later. */
914 #define target_terminal_ours() \
915 (*current_target.to_terminal_ours) ()
917 /* Save our terminal settings.
918 This is called from TUI after entering or leaving the curses
919 mode. Since curses modifies our terminal this call is here
920 to take this change into account. */
922 #define target_terminal_save_ours() \
923 (*current_target.to_terminal_save_ours) ()
925 /* Print useful information about our terminal status, if such a thing
926 exists. */
928 #define target_terminal_info(arg, from_tty) \
929 (*current_target.to_terminal_info) (arg, from_tty)
931 /* Kill the inferior process. Make it go away. */
933 extern void target_kill (void);
935 /* Load an executable file into the target process. This is expected
936 to not only bring new code into the target process, but also to
937 update GDB's symbol tables to match.
939 ARG contains command-line arguments, to be broken down with
940 buildargv (). The first non-switch argument is the filename to
941 load, FILE; the second is a number (as parsed by strtoul (..., ...,
942 0)), which is an offset to apply to the load addresses of FILE's
943 sections. The target may define switches, or other non-switch
944 arguments, as it pleases. */
946 extern void target_load (char *arg, int from_tty);
948 /* Look up a symbol in the target's symbol table. NAME is the symbol
949 name. ADDRP is a CORE_ADDR * pointing to where the value of the
950 symbol should be returned. The result is 0 if successful, nonzero
951 if the symbol does not exist in the target environment. This
952 function should not call error() if communication with the target
953 is interrupted, since it is called from symbol reading, but should
954 return nonzero, possibly doing a complain(). */
956 #define target_lookup_symbol(name, addrp) \
957 (*current_target.to_lookup_symbol) (name, addrp)
959 /* Start an inferior process and set inferior_ptid to its pid.
960 EXEC_FILE is the file to run.
961 ALLARGS is a string containing the arguments to the program.
962 ENV is the environment vector to pass. Errors reported with error().
963 On VxWorks and various standalone systems, we ignore exec_file. */
965 void target_create_inferior (char *exec_file, char *args,
966 char **env, int from_tty);
968 /* Some targets (such as ttrace-based HPUX) don't allow us to request
969 notification of inferior events such as fork and vork immediately
970 after the inferior is created. (This because of how gdb gets an
971 inferior created via invoking a shell to do it. In such a scenario,
972 if the shell init file has commands in it, the shell will fork and
973 exec for each of those commands, and we will see each such fork
974 event. Very bad.)
976 Such targets will supply an appropriate definition for this function. */
978 #define target_post_startup_inferior(ptid) \
979 (*current_target.to_post_startup_inferior) (ptid)
981 /* On some targets, the sequence of starting up an inferior requires
982 some synchronization between gdb and the new inferior process, PID. */
984 #define target_acknowledge_created_inferior(pid) \
985 (*current_target.to_acknowledge_created_inferior) (pid)
987 /* On some targets, we can catch an inferior fork or vfork event when
988 it occurs. These functions insert/remove an already-created
989 catchpoint for such events. */
991 #define target_insert_fork_catchpoint(pid) \
992 (*current_target.to_insert_fork_catchpoint) (pid)
994 #define target_remove_fork_catchpoint(pid) \
995 (*current_target.to_remove_fork_catchpoint) (pid)
997 #define target_insert_vfork_catchpoint(pid) \
998 (*current_target.to_insert_vfork_catchpoint) (pid)
1000 #define target_remove_vfork_catchpoint(pid) \
1001 (*current_target.to_remove_vfork_catchpoint) (pid)
1003 /* If the inferior forks or vforks, this function will be called at
1004 the next resume in order to perform any bookkeeping and fiddling
1005 necessary to continue debugging either the parent or child, as
1006 requested, and releasing the other. Information about the fork
1007 or vfork event is available via get_last_target_status ().
1008 This function returns 1 if the inferior should not be resumed
1009 (i.e. there is another event pending). */
1011 int target_follow_fork (int follow_child);
1013 /* On some targets, we can catch an inferior exec event when it
1014 occurs. These functions insert/remove an already-created
1015 catchpoint for such events. */
1017 #define target_insert_exec_catchpoint(pid) \
1018 (*current_target.to_insert_exec_catchpoint) (pid)
1020 #define target_remove_exec_catchpoint(pid) \
1021 (*current_target.to_remove_exec_catchpoint) (pid)
1023 /* Syscall catch.
1025 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1026 If NEEDED is zero, it means the target can disable the mechanism to
1027 catch system calls because there are no more catchpoints of this type.
1029 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1030 being requested. In this case, both TABLE_SIZE and TABLE should
1031 be ignored.
1033 TABLE_SIZE is the number of elements in TABLE. It only matters if
1034 ANY_COUNT is zero.
1036 TABLE is an array of ints, indexed by syscall number. An element in
1037 this array is nonzero if that syscall should be caught. This argument
1038 only matters if ANY_COUNT is zero. */
1040 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1041 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1042 table_size, table)
1044 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1045 exit code of PID, if any. */
1047 #define target_has_exited(pid,wait_status,exit_status) \
1048 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1050 /* The debugger has completed a blocking wait() call. There is now
1051 some process event that must be processed. This function should
1052 be defined by those targets that require the debugger to perform
1053 cleanup or internal state changes in response to the process event. */
1055 /* The inferior process has died. Do what is right. */
1057 void target_mourn_inferior (void);
1059 /* Does target have enough data to do a run or attach command? */
1061 #define target_can_run(t) \
1062 ((t)->to_can_run) ()
1064 /* post process changes to signal handling in the inferior. */
1066 #define target_notice_signals(ptid) \
1067 (*current_target.to_notice_signals) (ptid)
1069 /* Check to see if a thread is still alive. */
1071 extern int target_thread_alive (ptid_t ptid);
1073 /* Query for new threads and add them to the thread list. */
1075 extern void target_find_new_threads (void);
1077 /* Make target stop in a continuable fashion. (For instance, under
1078 Unix, this should act like SIGSTOP). This function is normally
1079 used by GUIs to implement a stop button. */
1081 #define target_stop(ptid) (*current_target.to_stop) (ptid)
1083 /* Send the specified COMMAND to the target's monitor
1084 (shell,interpreter) for execution. The result of the query is
1085 placed in OUTBUF. */
1087 #define target_rcmd(command, outbuf) \
1088 (*current_target.to_rcmd) (command, outbuf)
1091 /* Does the target include all of memory, or only part of it? This
1092 determines whether we look up the target chain for other parts of
1093 memory if this target can't satisfy a request. */
1095 extern int target_has_all_memory_1 (void);
1096 #define target_has_all_memory target_has_all_memory_1 ()
1098 /* Does the target include memory? (Dummy targets don't.) */
1100 extern int target_has_memory_1 (void);
1101 #define target_has_memory target_has_memory_1 ()
1103 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1104 we start a process.) */
1106 extern int target_has_stack_1 (void);
1107 #define target_has_stack target_has_stack_1 ()
1109 /* Does the target have registers? (Exec files don't.) */
1111 extern int target_has_registers_1 (void);
1112 #define target_has_registers target_has_registers_1 ()
1114 /* Does the target have execution? Can we make it jump (through
1115 hoops), or pop its stack a few times? This means that the current
1116 target is currently executing; for some targets, that's the same as
1117 whether or not the target is capable of execution, but there are
1118 also targets which can be current while not executing. In that
1119 case this will become true after target_create_inferior or
1120 target_attach. */
1122 extern int target_has_execution_1 (void);
1123 #define target_has_execution target_has_execution_1 ()
1125 /* Default implementations for process_stratum targets. Return true
1126 if there's a selected inferior, false otherwise. */
1128 extern int default_child_has_all_memory (struct target_ops *ops);
1129 extern int default_child_has_memory (struct target_ops *ops);
1130 extern int default_child_has_stack (struct target_ops *ops);
1131 extern int default_child_has_registers (struct target_ops *ops);
1132 extern int default_child_has_execution (struct target_ops *ops);
1134 /* Can the target support the debugger control of thread execution?
1135 Can it lock the thread scheduler? */
1137 #define target_can_lock_scheduler \
1138 (current_target.to_has_thread_control & tc_schedlock)
1140 /* Should the target enable async mode if it is supported? Temporary
1141 cludge until async mode is a strict superset of sync mode. */
1142 extern int target_async_permitted;
1144 /* Can the target support asynchronous execution? */
1145 #define target_can_async_p() (current_target.to_can_async_p ())
1147 /* Is the target in asynchronous execution mode? */
1148 #define target_is_async_p() (current_target.to_is_async_p ())
1150 int target_supports_non_stop (void);
1152 /* Put the target in async mode with the specified callback function. */
1153 #define target_async(CALLBACK,CONTEXT) \
1154 (current_target.to_async ((CALLBACK), (CONTEXT)))
1156 /* This is to be used ONLY within call_function_by_hand(). It provides
1157 a workaround, to have inferior function calls done in sychronous
1158 mode, even though the target is asynchronous. After
1159 target_async_mask(0) is called, calls to target_can_async_p() will
1160 return FALSE , so that target_resume() will not try to start the
1161 target asynchronously. After the inferior stops, we IMMEDIATELY
1162 restore the previous nature of the target, by calling
1163 target_async_mask(1). After that, target_can_async_p() will return
1164 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1166 FIXME ezannoni 1999-12-13: we won't need this once we move
1167 the turning async on and off to the single execution commands,
1168 from where it is done currently, in remote_resume(). */
1170 #define target_async_mask(MASK) \
1171 (current_target.to_async_mask (MASK))
1173 /* Converts a process id to a string. Usually, the string just contains
1174 `process xyz', but on some systems it may contain
1175 `process xyz thread abc'. */
1177 extern char *target_pid_to_str (ptid_t ptid);
1179 extern char *normal_pid_to_str (ptid_t ptid);
1181 /* Return a short string describing extra information about PID,
1182 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1183 is okay. */
1185 #define target_extra_thread_info(TP) \
1186 (current_target.to_extra_thread_info (TP))
1188 /* Attempts to find the pathname of the executable file
1189 that was run to create a specified process.
1191 The process PID must be stopped when this operation is used.
1193 If the executable file cannot be determined, NULL is returned.
1195 Else, a pointer to a character string containing the pathname
1196 is returned. This string should be copied into a buffer by
1197 the client if the string will not be immediately used, or if
1198 it must persist. */
1200 #define target_pid_to_exec_file(pid) \
1201 (current_target.to_pid_to_exec_file) (pid)
1203 /* See the to_thread_architecture description in struct target_ops. */
1205 #define target_thread_architecture(ptid) \
1206 (current_target.to_thread_architecture (&current_target, ptid))
1209 * Iterator function for target memory regions.
1210 * Calls a callback function once for each memory region 'mapped'
1211 * in the child process. Defined as a simple macro rather than
1212 * as a function macro so that it can be tested for nullity.
1215 #define target_find_memory_regions(FUNC, DATA) \
1216 (current_target.to_find_memory_regions) (FUNC, DATA)
1219 * Compose corefile .note section.
1222 #define target_make_corefile_notes(BFD, SIZE_P) \
1223 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1225 /* Bookmark interfaces. */
1226 #define target_get_bookmark(ARGS, FROM_TTY) \
1227 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1229 #define target_goto_bookmark(ARG, FROM_TTY) \
1230 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1232 /* Hardware watchpoint interfaces. */
1234 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1235 write). Only the INFERIOR_PTID task is being queried. */
1237 #define target_stopped_by_watchpoint \
1238 (*current_target.to_stopped_by_watchpoint)
1240 /* Non-zero if we have steppable watchpoints */
1242 #define target_have_steppable_watchpoint \
1243 (current_target.to_have_steppable_watchpoint)
1245 /* Non-zero if we have continuable watchpoints */
1247 #define target_have_continuable_watchpoint \
1248 (current_target.to_have_continuable_watchpoint)
1250 /* Provide defaults for hardware watchpoint functions. */
1252 /* If the *_hw_beakpoint functions have not been defined
1253 elsewhere use the definitions in the target vector. */
1255 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1256 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1257 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1258 (including this one?). OTHERTYPE is who knows what... */
1260 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1261 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1263 #define target_region_ok_for_hw_watchpoint(addr, len) \
1264 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1267 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1268 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1269 success, non-zero for failure. */
1271 #define target_insert_watchpoint(addr, len, type) \
1272 (*current_target.to_insert_watchpoint) (addr, len, type)
1274 #define target_remove_watchpoint(addr, len, type) \
1275 (*current_target.to_remove_watchpoint) (addr, len, type)
1277 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1278 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1280 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1281 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1283 /* Return non-zero if target knows the data address which triggered this
1284 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1285 INFERIOR_PTID task is being queried. */
1286 #define target_stopped_data_address(target, addr_p) \
1287 (*target.to_stopped_data_address) (target, addr_p)
1289 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1290 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1292 /* Target can execute in reverse? */
1293 #define target_can_execute_reverse \
1294 (current_target.to_can_execute_reverse ? \
1295 current_target.to_can_execute_reverse () : 0)
1297 extern const struct target_desc *target_read_description (struct target_ops *);
1299 #define target_get_ada_task_ptid(lwp, tid) \
1300 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1302 /* Utility implementation of searching memory. */
1303 extern int simple_search_memory (struct target_ops* ops,
1304 CORE_ADDR start_addr,
1305 ULONGEST search_space_len,
1306 const gdb_byte *pattern,
1307 ULONGEST pattern_len,
1308 CORE_ADDR *found_addrp);
1310 /* Main entry point for searching memory. */
1311 extern int target_search_memory (CORE_ADDR start_addr,
1312 ULONGEST search_space_len,
1313 const gdb_byte *pattern,
1314 ULONGEST pattern_len,
1315 CORE_ADDR *found_addrp);
1317 /* Tracepoint-related operations. */
1319 #define target_trace_init() \
1320 (*current_target.to_trace_init) ()
1322 #define target_download_tracepoint(t) \
1323 (*current_target.to_download_tracepoint) (t)
1325 #define target_download_trace_state_variable(tsv) \
1326 (*current_target.to_download_trace_state_variable) (tsv)
1328 #define target_trace_start() \
1329 (*current_target.to_trace_start) ()
1331 #define target_trace_set_readonly_regions() \
1332 (*current_target.to_trace_set_readonly_regions) ()
1334 #define target_get_trace_status(ts) \
1335 (*current_target.to_get_trace_status) (ts)
1337 #define target_trace_stop() \
1338 (*current_target.to_trace_stop) ()
1340 #define target_trace_find(type,num,addr1,addr2,tpp) \
1341 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1343 #define target_get_trace_state_variable_value(tsv,val) \
1344 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1346 #define target_save_trace_data(filename) \
1347 (*current_target.to_save_trace_data) (filename)
1349 #define target_upload_tracepoints(utpp) \
1350 (*current_target.to_upload_tracepoints) (utpp)
1352 #define target_upload_trace_state_variables(utsvp) \
1353 (*current_target.to_upload_trace_state_variables) (utsvp)
1355 #define target_get_raw_trace_data(buf,offset,len) \
1356 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1358 #define target_set_disconnected_tracing(val) \
1359 (*current_target.to_set_disconnected_tracing) (val)
1361 /* Command logging facility. */
1363 #define target_log_command(p) \
1364 do \
1365 if (current_target.to_log_command) \
1366 (*current_target.to_log_command) (p); \
1367 while (0)
1370 extern int target_core_of_thread (ptid_t ptid);
1372 /* Routines for maintenance of the target structures...
1374 add_target: Add a target to the list of all possible targets.
1376 push_target: Make this target the top of the stack of currently used
1377 targets, within its particular stratum of the stack. Result
1378 is 0 if now atop the stack, nonzero if not on top (maybe
1379 should warn user).
1381 unpush_target: Remove this from the stack of currently used targets,
1382 no matter where it is on the list. Returns 0 if no
1383 change, 1 if removed from stack.
1385 pop_target: Remove the top thing on the stack of current targets. */
1387 extern void add_target (struct target_ops *);
1389 extern int push_target (struct target_ops *);
1391 extern int unpush_target (struct target_ops *);
1393 extern void target_pre_inferior (int);
1395 extern void target_preopen (int);
1397 extern void pop_target (void);
1399 /* Does whatever cleanup is required to get rid of all pushed targets.
1400 QUITTING is propagated to target_close; it indicates that GDB is
1401 exiting and should not get hung on an error (otherwise it is
1402 important to perform clean termination, even if it takes a
1403 while). */
1404 extern void pop_all_targets (int quitting);
1406 /* Like pop_all_targets, but pops only targets whose stratum is
1407 strictly above ABOVE_STRATUM. */
1408 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1410 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1411 CORE_ADDR offset);
1413 /* Struct target_section maps address ranges to file sections. It is
1414 mostly used with BFD files, but can be used without (e.g. for handling
1415 raw disks, or files not in formats handled by BFD). */
1417 struct target_section
1419 CORE_ADDR addr; /* Lowest address in section */
1420 CORE_ADDR endaddr; /* 1+highest address in section */
1422 struct bfd_section *the_bfd_section;
1424 bfd *bfd; /* BFD file pointer */
1427 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1429 struct target_section_table
1431 struct target_section *sections;
1432 struct target_section *sections_end;
1435 /* Return the "section" containing the specified address. */
1436 struct target_section *target_section_by_addr (struct target_ops *target,
1437 CORE_ADDR addr);
1439 /* Return the target section table this target (or the targets
1440 beneath) currently manipulate. */
1442 extern struct target_section_table *target_get_section_table
1443 (struct target_ops *target);
1445 /* From mem-break.c */
1447 extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1449 extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1451 extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1453 extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1456 /* From target.c */
1458 extern void initialize_targets (void);
1460 extern NORETURN void noprocess (void) ATTR_NORETURN;
1462 extern void target_require_runnable (void);
1464 extern void find_default_attach (struct target_ops *, char *, int);
1466 extern void find_default_create_inferior (struct target_ops *,
1467 char *, char *, char **, int);
1469 extern struct target_ops *find_run_target (void);
1471 extern struct target_ops *find_core_target (void);
1473 extern struct target_ops *find_target_beneath (struct target_ops *);
1475 /* Read OS data object of type TYPE from the target, and return it in
1476 XML format. The result is NUL-terminated and returned as a string,
1477 allocated using xmalloc. If an error occurs or the transfer is
1478 unsupported, NULL is returned. Empty objects are returned as
1479 allocated but empty strings. */
1481 extern char *target_get_osdata (const char *type);
1484 /* Stuff that should be shared among the various remote targets. */
1486 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1487 information (higher values, more information). */
1488 extern int remote_debug;
1490 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1491 extern int baud_rate;
1492 /* Timeout limit for response from target. */
1493 extern int remote_timeout;
1496 /* Functions for helping to write a native target. */
1498 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1499 extern void store_waitstatus (struct target_waitstatus *, int);
1501 /* These are in common/signals.c, but they're only used by gdb. */
1502 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1503 int);
1504 extern int default_target_signal_to_host (struct gdbarch *,
1505 enum target_signal);
1507 /* Convert from a number used in a GDB command to an enum target_signal. */
1508 extern enum target_signal target_signal_from_command (int);
1509 /* End of files in common/signals.c. */
1511 /* Set the show memory breakpoints mode to show, and installs a cleanup
1512 to restore it back to the current value. */
1513 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1516 /* Imported from machine dependent code */
1518 /* Blank target vector entries are initialized to target_ignore. */
1519 void target_ignore (void);
1521 extern struct target_ops deprecated_child_ops;
1523 #endif /* !defined (TARGET_H) */