1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
53 #include "gdb_string.h"
57 #include "cp-support.h"
59 #include "gdb_assert.h"
62 #include "macroscope.h"
65 #include "parser-defs.h"
67 /* Prototypes for local functions */
69 static void rbreak_command (char *, int);
71 static void types_info (char *, int);
73 static void functions_info (char *, int);
75 static void variables_info (char *, int);
77 static void sources_info (char *, int);
79 static int find_line_common (struct linetable
*, int, int *, int);
81 static struct symbol
*lookup_symbol_aux (const char *name
,
82 const struct block
*block
,
83 const domain_enum domain
,
84 enum language language
,
85 struct field_of_this_result
*is_a_field_of_this
);
88 struct symbol
*lookup_symbol_aux_local (const char *name
,
89 const struct block
*block
,
90 const domain_enum domain
,
91 enum language language
);
94 struct symbol
*lookup_symbol_aux_symtabs (int block_index
,
96 const domain_enum domain
);
99 struct symbol
*lookup_symbol_aux_quick (struct objfile
*objfile
,
102 const domain_enum domain
);
104 void _initialize_symtab (void);
108 /* When non-zero, print debugging messages related to symtab creation. */
109 int symtab_create_debug
= 0;
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ
= 0;
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
120 const char multiple_symbols_ask
[] = "ask";
121 const char multiple_symbols_all
[] = "all";
122 const char multiple_symbols_cancel
[] = "cancel";
123 static const char *const multiple_symbols_modes
[] =
125 multiple_symbols_ask
,
126 multiple_symbols_all
,
127 multiple_symbols_cancel
,
130 static const char *multiple_symbols_mode
= multiple_symbols_all
;
132 /* Read-only accessor to AUTO_SELECT_MODE. */
135 multiple_symbols_select_mode (void)
137 return multiple_symbols_mode
;
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
144 const struct block
*block_found
;
146 /* See whether FILENAME matches SEARCH_NAME using the rule that we
147 advertise to the user. (The manual's description of linespecs
148 describes what we advertise). Returns true if they match, false
152 compare_filenames_for_search (const char *filename
, const char *search_name
)
154 int len
= strlen (filename
);
155 size_t search_len
= strlen (search_name
);
157 if (len
< search_len
)
160 /* The tail of FILENAME must match. */
161 if (FILENAME_CMP (filename
+ len
- search_len
, search_name
) != 0)
164 /* Either the names must completely match, or the character
165 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
169 cannot match FILENAME "/path//dir/file.c" - as user has requested
170 absolute path. The sama applies for "c:\file.c" possibly
171 incorrectly hypothetically matching "d:\dir\c:\file.c".
173 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
174 compatible with SEARCH_NAME "file.c". In such case a compiler had
175 to put the "c:file.c" name into debug info. Such compatibility
176 works only on GDB built for DOS host. */
177 return (len
== search_len
178 || (!IS_ABSOLUTE_PATH (search_name
)
179 && IS_DIR_SEPARATOR (filename
[len
- search_len
- 1]))
180 || (HAS_DRIVE_SPEC (filename
)
181 && STRIP_DRIVE_SPEC (filename
) == &filename
[len
- search_len
]));
184 /* Check for a symtab of a specific name by searching some symtabs.
185 This is a helper function for callbacks of iterate_over_symtabs.
187 If NAME is not absolute, then REAL_PATH is NULL
188 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
190 The return value, NAME, REAL_PATH, CALLBACK, and DATA
191 are identical to the `map_symtabs_matching_filename' method of
192 quick_symbol_functions.
194 FIRST and AFTER_LAST indicate the range of symtabs to search.
195 AFTER_LAST is one past the last symtab to search; NULL means to
196 search until the end of the list. */
199 iterate_over_some_symtabs (const char *name
,
200 const char *real_path
,
201 int (*callback
) (struct symtab
*symtab
,
204 struct symtab
*first
,
205 struct symtab
*after_last
)
207 struct symtab
*s
= NULL
;
208 const char* base_name
= lbasename (name
);
210 for (s
= first
; s
!= NULL
&& s
!= after_last
; s
= s
->next
)
212 if (compare_filenames_for_search (s
->filename
, name
))
214 if (callback (s
, data
))
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name
, lbasename (s
->filename
)) != 0)
225 if (compare_filenames_for_search (symtab_to_fullname (s
), name
))
227 if (callback (s
, data
))
232 /* If the user gave us an absolute path, try to find the file in
233 this symtab and use its absolute path. */
234 if (real_path
!= NULL
)
236 const char *fullname
= symtab_to_fullname (s
);
238 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
239 gdb_assert (IS_ABSOLUTE_PATH (name
));
240 if (FILENAME_CMP (real_path
, fullname
) == 0)
242 if (callback (s
, data
))
252 /* Check for a symtab of a specific name; first in symtabs, then in
253 psymtabs. *If* there is no '/' in the name, a match after a '/'
254 in the symtab filename will also work.
256 Calls CALLBACK with each symtab that is found and with the supplied
257 DATA. If CALLBACK returns true, the search stops. */
260 iterate_over_symtabs (const char *name
,
261 int (*callback
) (struct symtab
*symtab
,
265 struct objfile
*objfile
;
266 char *real_path
= NULL
;
267 struct cleanup
*cleanups
= make_cleanup (null_cleanup
, NULL
);
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name
))
273 real_path
= gdb_realpath (name
);
274 make_cleanup (xfree
, real_path
);
275 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
278 ALL_OBJFILES (objfile
)
280 if (iterate_over_some_symtabs (name
, real_path
, callback
, data
,
281 objfile
->symtabs
, NULL
))
283 do_cleanups (cleanups
);
288 /* Same search rules as above apply here, but now we look thru the
291 ALL_OBJFILES (objfile
)
294 && objfile
->sf
->qf
->map_symtabs_matching_filename (objfile
,
300 do_cleanups (cleanups
);
305 do_cleanups (cleanups
);
308 /* The callback function used by lookup_symtab. */
311 lookup_symtab_callback (struct symtab
*symtab
, void *data
)
313 struct symtab
**result_ptr
= data
;
315 *result_ptr
= symtab
;
319 /* A wrapper for iterate_over_symtabs that returns the first matching
323 lookup_symtab (const char *name
)
325 struct symtab
*result
= NULL
;
327 iterate_over_symtabs (name
, lookup_symtab_callback
, &result
);
332 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
333 full method name, which consist of the class name (from T), the unadorned
334 method name from METHOD_ID, and the signature for the specific overload,
335 specified by SIGNATURE_ID. Note that this function is g++ specific. */
338 gdb_mangle_name (struct type
*type
, int method_id
, int signature_id
)
340 int mangled_name_len
;
342 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, method_id
);
343 struct fn_field
*method
= &f
[signature_id
];
344 const char *field_name
= TYPE_FN_FIELDLIST_NAME (type
, method_id
);
345 const char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, signature_id
);
346 const char *newname
= type_name_no_tag (type
);
348 /* Does the form of physname indicate that it is the full mangled name
349 of a constructor (not just the args)? */
350 int is_full_physname_constructor
;
353 int is_destructor
= is_destructor_name (physname
);
354 /* Need a new type prefix. */
355 char *const_prefix
= method
->is_const
? "C" : "";
356 char *volatile_prefix
= method
->is_volatile
? "V" : "";
358 int len
= (newname
== NULL
? 0 : strlen (newname
));
360 /* Nothing to do if physname already contains a fully mangled v3 abi name
361 or an operator name. */
362 if ((physname
[0] == '_' && physname
[1] == 'Z')
363 || is_operator_name (field_name
))
364 return xstrdup (physname
);
366 is_full_physname_constructor
= is_constructor_name (physname
);
368 is_constructor
= is_full_physname_constructor
369 || (newname
&& strcmp (field_name
, newname
) == 0);
372 is_destructor
= (strncmp (physname
, "__dt", 4) == 0);
374 if (is_destructor
|| is_full_physname_constructor
)
376 mangled_name
= (char *) xmalloc (strlen (physname
) + 1);
377 strcpy (mangled_name
, physname
);
383 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
385 else if (physname
[0] == 't' || physname
[0] == 'Q')
387 /* The physname for template and qualified methods already includes
389 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
395 xsnprintf (buf
, sizeof (buf
), "__%s%s%d", const_prefix
,
396 volatile_prefix
, len
);
398 mangled_name_len
= ((is_constructor
? 0 : strlen (field_name
))
399 + strlen (buf
) + len
+ strlen (physname
) + 1);
401 mangled_name
= (char *) xmalloc (mangled_name_len
);
403 mangled_name
[0] = '\0';
405 strcpy (mangled_name
, field_name
);
407 strcat (mangled_name
, buf
);
408 /* If the class doesn't have a name, i.e. newname NULL, then we just
409 mangle it using 0 for the length of the class. Thus it gets mangled
410 as something starting with `::' rather than `classname::'. */
412 strcat (mangled_name
, newname
);
414 strcat (mangled_name
, physname
);
415 return (mangled_name
);
418 /* Initialize the cplus_specific structure. 'cplus_specific' should
419 only be allocated for use with cplus symbols. */
422 symbol_init_cplus_specific (struct general_symbol_info
*gsymbol
,
423 struct obstack
*obstack
)
425 /* A language_specific structure should not have been previously
427 gdb_assert (gsymbol
->language_specific
.cplus_specific
== NULL
);
428 gdb_assert (obstack
!= NULL
);
430 gsymbol
->language_specific
.cplus_specific
=
431 OBSTACK_ZALLOC (obstack
, struct cplus_specific
);
434 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
435 correctly allocated. For C++ symbols a cplus_specific struct is
436 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
437 OBJFILE can be NULL. */
440 symbol_set_demangled_name (struct general_symbol_info
*gsymbol
,
442 struct obstack
*obstack
)
444 if (gsymbol
->language
== language_cplus
)
446 if (gsymbol
->language_specific
.cplus_specific
== NULL
)
447 symbol_init_cplus_specific (gsymbol
, obstack
);
449 gsymbol
->language_specific
.cplus_specific
->demangled_name
= name
;
451 else if (gsymbol
->language
== language_ada
)
455 gsymbol
->ada_mangled
= 0;
456 gsymbol
->language_specific
.obstack
= obstack
;
460 gsymbol
->ada_mangled
= 1;
461 gsymbol
->language_specific
.mangled_lang
.demangled_name
= name
;
465 gsymbol
->language_specific
.mangled_lang
.demangled_name
= name
;
468 /* Return the demangled name of GSYMBOL. */
471 symbol_get_demangled_name (const struct general_symbol_info
*gsymbol
)
473 if (gsymbol
->language
== language_cplus
)
475 if (gsymbol
->language_specific
.cplus_specific
!= NULL
)
476 return gsymbol
->language_specific
.cplus_specific
->demangled_name
;
480 else if (gsymbol
->language
== language_ada
)
482 if (!gsymbol
->ada_mangled
)
487 return gsymbol
->language_specific
.mangled_lang
.demangled_name
;
491 /* Initialize the language dependent portion of a symbol
492 depending upon the language for the symbol. */
495 symbol_set_language (struct general_symbol_info
*gsymbol
,
496 enum language language
,
497 struct obstack
*obstack
)
499 gsymbol
->language
= language
;
500 if (gsymbol
->language
== language_d
501 || gsymbol
->language
== language_go
502 || gsymbol
->language
== language_java
503 || gsymbol
->language
== language_objc
504 || gsymbol
->language
== language_fortran
)
506 symbol_set_demangled_name (gsymbol
, NULL
, obstack
);
508 else if (gsymbol
->language
== language_ada
)
510 gdb_assert (gsymbol
->ada_mangled
== 0);
511 gsymbol
->language_specific
.obstack
= obstack
;
513 else if (gsymbol
->language
== language_cplus
)
514 gsymbol
->language_specific
.cplus_specific
= NULL
;
517 memset (&gsymbol
->language_specific
, 0,
518 sizeof (gsymbol
->language_specific
));
522 /* Functions to initialize a symbol's mangled name. */
524 /* Objects of this type are stored in the demangled name hash table. */
525 struct demangled_name_entry
531 /* Hash function for the demangled name hash. */
534 hash_demangled_name_entry (const void *data
)
536 const struct demangled_name_entry
*e
= data
;
538 return htab_hash_string (e
->mangled
);
541 /* Equality function for the demangled name hash. */
544 eq_demangled_name_entry (const void *a
, const void *b
)
546 const struct demangled_name_entry
*da
= a
;
547 const struct demangled_name_entry
*db
= b
;
549 return strcmp (da
->mangled
, db
->mangled
) == 0;
552 /* Create the hash table used for demangled names. Each hash entry is
553 a pair of strings; one for the mangled name and one for the demangled
554 name. The entry is hashed via just the mangled name. */
557 create_demangled_names_hash (struct objfile
*objfile
)
559 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
560 The hash table code will round this up to the next prime number.
561 Choosing a much larger table size wastes memory, and saves only about
562 1% in symbol reading. */
564 objfile
->demangled_names_hash
= htab_create_alloc
565 (256, hash_demangled_name_entry
, eq_demangled_name_entry
,
566 NULL
, xcalloc
, xfree
);
569 /* Try to determine the demangled name for a symbol, based on the
570 language of that symbol. If the language is set to language_auto,
571 it will attempt to find any demangling algorithm that works and
572 then set the language appropriately. The returned name is allocated
573 by the demangler and should be xfree'd. */
576 symbol_find_demangled_name (struct general_symbol_info
*gsymbol
,
579 char *demangled
= NULL
;
581 if (gsymbol
->language
== language_unknown
)
582 gsymbol
->language
= language_auto
;
584 if (gsymbol
->language
== language_objc
585 || gsymbol
->language
== language_auto
)
588 objc_demangle (mangled
, 0);
589 if (demangled
!= NULL
)
591 gsymbol
->language
= language_objc
;
595 if (gsymbol
->language
== language_cplus
596 || gsymbol
->language
== language_auto
)
599 gdb_demangle (mangled
, DMGL_PARAMS
| DMGL_ANSI
);
600 if (demangled
!= NULL
)
602 gsymbol
->language
= language_cplus
;
606 if (gsymbol
->language
== language_java
)
609 gdb_demangle (mangled
,
610 DMGL_PARAMS
| DMGL_ANSI
| DMGL_JAVA
);
611 if (demangled
!= NULL
)
613 gsymbol
->language
= language_java
;
617 if (gsymbol
->language
== language_d
618 || gsymbol
->language
== language_auto
)
620 demangled
= d_demangle(mangled
, 0);
621 if (demangled
!= NULL
)
623 gsymbol
->language
= language_d
;
627 /* FIXME(dje): Continually adding languages here is clumsy.
628 Better to just call la_demangle if !auto, and if auto then call
629 a utility routine that tries successive languages in turn and reports
630 which one it finds. I realize the la_demangle options may be different
631 for different languages but there's already a FIXME for that. */
632 if (gsymbol
->language
== language_go
633 || gsymbol
->language
== language_auto
)
635 demangled
= go_demangle (mangled
, 0);
636 if (demangled
!= NULL
)
638 gsymbol
->language
= language_go
;
643 /* We could support `gsymbol->language == language_fortran' here to provide
644 module namespaces also for inferiors with only minimal symbol table (ELF
645 symbols). Just the mangling standard is not standardized across compilers
646 and there is no DW_AT_producer available for inferiors with only the ELF
647 symbols to check the mangling kind. */
651 /* Set both the mangled and demangled (if any) names for GSYMBOL based
652 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
653 objfile's obstack; but if COPY_NAME is 0 and if NAME is
654 NUL-terminated, then this function assumes that NAME is already
655 correctly saved (either permanently or with a lifetime tied to the
656 objfile), and it will not be copied.
658 The hash table corresponding to OBJFILE is used, and the memory
659 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
660 so the pointer can be discarded after calling this function. */
662 /* We have to be careful when dealing with Java names: when we run
663 into a Java minimal symbol, we don't know it's a Java symbol, so it
664 gets demangled as a C++ name. This is unfortunate, but there's not
665 much we can do about it: but when demangling partial symbols and
666 regular symbols, we'd better not reuse the wrong demangled name.
667 (See PR gdb/1039.) We solve this by putting a distinctive prefix
668 on Java names when storing them in the hash table. */
670 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
671 don't mind the Java prefix so much: different languages have
672 different demangling requirements, so it's only natural that we
673 need to keep language data around in our demangling cache. But
674 it's not good that the minimal symbol has the wrong demangled name.
675 Unfortunately, I can't think of any easy solution to that
678 #define JAVA_PREFIX "##JAVA$$"
679 #define JAVA_PREFIX_LEN 8
682 symbol_set_names (struct general_symbol_info
*gsymbol
,
683 const char *linkage_name
, int len
, int copy_name
,
684 struct objfile
*objfile
)
686 struct demangled_name_entry
**slot
;
687 /* A 0-terminated copy of the linkage name. */
688 const char *linkage_name_copy
;
689 /* A copy of the linkage name that might have a special Java prefix
690 added to it, for use when looking names up in the hash table. */
691 const char *lookup_name
;
692 /* The length of lookup_name. */
694 struct demangled_name_entry entry
;
696 if (gsymbol
->language
== language_ada
)
698 /* In Ada, we do the symbol lookups using the mangled name, so
699 we can save some space by not storing the demangled name.
701 As a side note, we have also observed some overlap between
702 the C++ mangling and Ada mangling, similarly to what has
703 been observed with Java. Because we don't store the demangled
704 name with the symbol, we don't need to use the same trick
707 gsymbol
->name
= linkage_name
;
710 char *name
= obstack_alloc (&objfile
->objfile_obstack
, len
+ 1);
712 memcpy (name
, linkage_name
, len
);
714 gsymbol
->name
= name
;
716 symbol_set_demangled_name (gsymbol
, NULL
, &objfile
->objfile_obstack
);
721 if (objfile
->demangled_names_hash
== NULL
)
722 create_demangled_names_hash (objfile
);
724 /* The stabs reader generally provides names that are not
725 NUL-terminated; most of the other readers don't do this, so we
726 can just use the given copy, unless we're in the Java case. */
727 if (gsymbol
->language
== language_java
)
731 lookup_len
= len
+ JAVA_PREFIX_LEN
;
732 alloc_name
= alloca (lookup_len
+ 1);
733 memcpy (alloc_name
, JAVA_PREFIX
, JAVA_PREFIX_LEN
);
734 memcpy (alloc_name
+ JAVA_PREFIX_LEN
, linkage_name
, len
);
735 alloc_name
[lookup_len
] = '\0';
737 lookup_name
= alloc_name
;
738 linkage_name_copy
= alloc_name
+ JAVA_PREFIX_LEN
;
740 else if (linkage_name
[len
] != '\0')
745 alloc_name
= alloca (lookup_len
+ 1);
746 memcpy (alloc_name
, linkage_name
, len
);
747 alloc_name
[lookup_len
] = '\0';
749 lookup_name
= alloc_name
;
750 linkage_name_copy
= alloc_name
;
755 lookup_name
= linkage_name
;
756 linkage_name_copy
= linkage_name
;
759 entry
.mangled
= lookup_name
;
760 slot
= ((struct demangled_name_entry
**)
761 htab_find_slot (objfile
->demangled_names_hash
,
764 /* If this name is not in the hash table, add it. */
766 /* A C version of the symbol may have already snuck into the table.
767 This happens to, e.g., main.init (__go_init_main). Cope. */
768 || (gsymbol
->language
== language_go
769 && (*slot
)->demangled
[0] == '\0'))
771 char *demangled_name
= symbol_find_demangled_name (gsymbol
,
773 int demangled_len
= demangled_name
? strlen (demangled_name
) : 0;
775 /* Suppose we have demangled_name==NULL, copy_name==0, and
776 lookup_name==linkage_name. In this case, we already have the
777 mangled name saved, and we don't have a demangled name. So,
778 you might think we could save a little space by not recording
779 this in the hash table at all.
781 It turns out that it is actually important to still save such
782 an entry in the hash table, because storing this name gives
783 us better bcache hit rates for partial symbols. */
784 if (!copy_name
&& lookup_name
== linkage_name
)
786 *slot
= obstack_alloc (&objfile
->objfile_obstack
,
787 offsetof (struct demangled_name_entry
,
789 + demangled_len
+ 1);
790 (*slot
)->mangled
= lookup_name
;
796 /* If we must copy the mangled name, put it directly after
797 the demangled name so we can have a single
799 *slot
= obstack_alloc (&objfile
->objfile_obstack
,
800 offsetof (struct demangled_name_entry
,
802 + lookup_len
+ demangled_len
+ 2);
803 mangled_ptr
= &((*slot
)->demangled
[demangled_len
+ 1]);
804 strcpy (mangled_ptr
, lookup_name
);
805 (*slot
)->mangled
= mangled_ptr
;
808 if (demangled_name
!= NULL
)
810 strcpy ((*slot
)->demangled
, demangled_name
);
811 xfree (demangled_name
);
814 (*slot
)->demangled
[0] = '\0';
817 gsymbol
->name
= (*slot
)->mangled
+ lookup_len
- len
;
818 if ((*slot
)->demangled
[0] != '\0')
819 symbol_set_demangled_name (gsymbol
, (*slot
)->demangled
,
820 &objfile
->objfile_obstack
);
822 symbol_set_demangled_name (gsymbol
, NULL
, &objfile
->objfile_obstack
);
825 /* Return the source code name of a symbol. In languages where
826 demangling is necessary, this is the demangled name. */
829 symbol_natural_name (const struct general_symbol_info
*gsymbol
)
831 switch (gsymbol
->language
)
838 case language_fortran
:
839 if (symbol_get_demangled_name (gsymbol
) != NULL
)
840 return symbol_get_demangled_name (gsymbol
);
843 return ada_decode_symbol (gsymbol
);
847 return gsymbol
->name
;
850 /* Return the demangled name for a symbol based on the language for
851 that symbol. If no demangled name exists, return NULL. */
854 symbol_demangled_name (const struct general_symbol_info
*gsymbol
)
856 const char *dem_name
= NULL
;
858 switch (gsymbol
->language
)
865 case language_fortran
:
866 dem_name
= symbol_get_demangled_name (gsymbol
);
869 dem_name
= ada_decode_symbol (gsymbol
);
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
883 symbol_search_name (const struct general_symbol_info
*gsymbol
)
885 if (gsymbol
->language
== language_ada
)
886 return gsymbol
->name
;
888 return symbol_natural_name (gsymbol
);
891 /* Initialize the structure fields to zero values. */
894 init_sal (struct symtab_and_line
*sal
)
902 sal
->explicit_pc
= 0;
903 sal
->explicit_line
= 0;
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
913 matching_obj_sections (struct obj_section
*obj_first
,
914 struct obj_section
*obj_second
)
916 asection
*first
= obj_first
? obj_first
->the_bfd_section
: NULL
;
917 asection
*second
= obj_second
? obj_second
->the_bfd_section
: NULL
;
920 /* If they're the same section, then they match. */
924 /* If either is NULL, give up. */
925 if (first
== NULL
|| second
== NULL
)
928 /* This doesn't apply to absolute symbols. */
929 if (first
->owner
== NULL
|| second
->owner
== NULL
)
932 /* If they're in the same object file, they must be different sections. */
933 if (first
->owner
== second
->owner
)
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
940 if (bfd_get_section_size (first
) != bfd_get_section_size (second
))
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first
->owner
, first
)
945 - bfd_get_start_address (first
->owner
)
946 != bfd_get_section_vma (second
->owner
, second
)
947 - bfd_get_start_address (second
->owner
))
950 if (bfd_get_section_name (first
->owner
, first
) == NULL
951 || bfd_get_section_name (second
->owner
, second
) == NULL
952 || strcmp (bfd_get_section_name (first
->owner
, first
),
953 bfd_get_section_name (second
->owner
, second
)) != 0)
956 /* Otherwise check that they are in corresponding objfiles. */
959 if (obj
->obfd
== first
->owner
)
961 gdb_assert (obj
!= NULL
);
963 if (obj
->separate_debug_objfile
!= NULL
964 && obj
->separate_debug_objfile
->obfd
== second
->owner
)
966 if (obj
->separate_debug_objfile_backlink
!= NULL
967 && obj
->separate_debug_objfile_backlink
->obfd
== second
->owner
)
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc
, struct obj_section
*section
)
976 struct objfile
*objfile
;
977 struct minimal_symbol
*msymbol
;
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
).minsym
;
984 && (MSYMBOL_TYPE (msymbol
) == mst_data
985 || MSYMBOL_TYPE (msymbol
) == mst_bss
986 || MSYMBOL_TYPE (msymbol
) == mst_abs
987 || MSYMBOL_TYPE (msymbol
) == mst_file_data
988 || MSYMBOL_TYPE (msymbol
) == mst_file_bss
))
991 ALL_OBJFILES (objfile
)
993 struct symtab
*result
= NULL
;
996 result
= objfile
->sf
->qf
->find_pc_sect_symtab (objfile
, msymbol
,
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1009 fixup_section (struct general_symbol_info
*ginfo
,
1010 CORE_ADDR addr
, struct objfile
*objfile
)
1012 struct minimal_symbol
*msym
;
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym
= lookup_minimal_symbol_by_pc_name (addr
, ginfo
->name
, objfile
);
1021 ginfo
->section
= SYMBOL_SECTION (msym
);
1024 /* Static, function-local variables do appear in the linker
1025 (minimal) symbols, but are frequently given names that won't
1026 be found via lookup_minimal_symbol(). E.g., it has been
1027 observed in frv-uclinux (ELF) executables that a static,
1028 function-local variable named "foo" might appear in the
1029 linker symbols as "foo.6" or "foo.3". Thus, there is no
1030 point in attempting to extend the lookup-by-name mechanism to
1031 handle this case due to the fact that there can be multiple
1034 So, instead, search the section table when lookup by name has
1035 failed. The ``addr'' and ``endaddr'' fields may have already
1036 been relocated. If so, the relocation offset (i.e. the
1037 ANOFFSET value) needs to be subtracted from these values when
1038 performing the comparison. We unconditionally subtract it,
1039 because, when no relocation has been performed, the ANOFFSET
1040 value will simply be zero.
1042 The address of the symbol whose section we're fixing up HAS
1043 NOT BEEN adjusted (relocated) yet. It can't have been since
1044 the section isn't yet known and knowing the section is
1045 necessary in order to add the correct relocation value. In
1046 other words, we wouldn't even be in this function (attempting
1047 to compute the section) if it were already known.
1049 Note that it is possible to search the minimal symbols
1050 (subtracting the relocation value if necessary) to find the
1051 matching minimal symbol, but this is overkill and much less
1052 efficient. It is not necessary to find the matching minimal
1053 symbol, only its section.
1055 Note that this technique (of doing a section table search)
1056 can fail when unrelocated section addresses overlap. For
1057 this reason, we still attempt a lookup by name prior to doing
1058 a search of the section table. */
1060 struct obj_section
*s
;
1063 ALL_OBJFILE_OSECTIONS (objfile
, s
)
1065 int idx
= s
- objfile
->sections
;
1066 CORE_ADDR offset
= ANOFFSET (objfile
->section_offsets
, idx
);
1071 if (obj_section_addr (s
) - offset
<= addr
1072 && addr
< obj_section_endaddr (s
) - offset
)
1074 ginfo
->section
= idx
;
1079 /* If we didn't find the section, assume it is in the first
1080 section. If there is no allocated section, then it hardly
1081 matters what we pick, so just pick zero. */
1085 ginfo
->section
= fallback
;
1090 fixup_symbol_section (struct symbol
*sym
, struct objfile
*objfile
)
1097 /* We either have an OBJFILE, or we can get at it from the sym's
1098 symtab. Anything else is a bug. */
1099 gdb_assert (objfile
|| SYMBOL_SYMTAB (sym
));
1101 if (objfile
== NULL
)
1102 objfile
= SYMBOL_SYMTAB (sym
)->objfile
;
1104 if (SYMBOL_OBJ_SECTION (objfile
, sym
))
1107 /* We should have an objfile by now. */
1108 gdb_assert (objfile
);
1110 switch (SYMBOL_CLASS (sym
))
1114 addr
= SYMBOL_VALUE_ADDRESS (sym
);
1117 addr
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
1121 /* Nothing else will be listed in the minsyms -- no use looking
1126 fixup_section (&sym
->ginfo
, addr
, objfile
);
1131 /* Compute the demangled form of NAME as used by the various symbol
1132 lookup functions. The result is stored in *RESULT_NAME. Returns a
1133 cleanup which can be used to clean up the result.
1135 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1136 Normally, Ada symbol lookups are performed using the encoded name
1137 rather than the demangled name, and so it might seem to make sense
1138 for this function to return an encoded version of NAME.
1139 Unfortunately, we cannot do this, because this function is used in
1140 circumstances where it is not appropriate to try to encode NAME.
1141 For instance, when displaying the frame info, we demangle the name
1142 of each parameter, and then perform a symbol lookup inside our
1143 function using that demangled name. In Ada, certain functions
1144 have internally-generated parameters whose name contain uppercase
1145 characters. Encoding those name would result in those uppercase
1146 characters to become lowercase, and thus cause the symbol lookup
1150 demangle_for_lookup (const char *name
, enum language lang
,
1151 const char **result_name
)
1153 char *demangled_name
= NULL
;
1154 const char *modified_name
= NULL
;
1155 struct cleanup
*cleanup
= make_cleanup (null_cleanup
, 0);
1157 modified_name
= name
;
1159 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1160 lookup, so we can always binary search. */
1161 if (lang
== language_cplus
)
1163 demangled_name
= gdb_demangle (name
, DMGL_ANSI
| DMGL_PARAMS
);
1166 modified_name
= demangled_name
;
1167 make_cleanup (xfree
, demangled_name
);
1171 /* If we were given a non-mangled name, canonicalize it
1172 according to the language (so far only for C++). */
1173 demangled_name
= cp_canonicalize_string (name
);
1176 modified_name
= demangled_name
;
1177 make_cleanup (xfree
, demangled_name
);
1181 else if (lang
== language_java
)
1183 demangled_name
= gdb_demangle (name
,
1184 DMGL_ANSI
| DMGL_PARAMS
| DMGL_JAVA
);
1187 modified_name
= demangled_name
;
1188 make_cleanup (xfree
, demangled_name
);
1191 else if (lang
== language_d
)
1193 demangled_name
= d_demangle (name
, 0);
1196 modified_name
= demangled_name
;
1197 make_cleanup (xfree
, demangled_name
);
1200 else if (lang
== language_go
)
1202 demangled_name
= go_demangle (name
, 0);
1205 modified_name
= demangled_name
;
1206 make_cleanup (xfree
, demangled_name
);
1210 *result_name
= modified_name
;
1214 /* Find the definition for a specified symbol name NAME
1215 in domain DOMAIN, visible from lexical block BLOCK.
1216 Returns the struct symbol pointer, or zero if no symbol is found.
1217 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1218 NAME is a field of the current implied argument `this'. If so set
1219 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1220 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1221 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1223 /* This function (or rather its subordinates) have a bunch of loops and
1224 it would seem to be attractive to put in some QUIT's (though I'm not really
1225 sure whether it can run long enough to be really important). But there
1226 are a few calls for which it would appear to be bad news to quit
1227 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1228 that there is C++ code below which can error(), but that probably
1229 doesn't affect these calls since they are looking for a known
1230 variable and thus can probably assume it will never hit the C++
1234 lookup_symbol_in_language (const char *name
, const struct block
*block
,
1235 const domain_enum domain
, enum language lang
,
1236 struct field_of_this_result
*is_a_field_of_this
)
1238 const char *modified_name
;
1239 struct symbol
*returnval
;
1240 struct cleanup
*cleanup
= demangle_for_lookup (name
, lang
, &modified_name
);
1242 returnval
= lookup_symbol_aux (modified_name
, block
, domain
, lang
,
1243 is_a_field_of_this
);
1244 do_cleanups (cleanup
);
1249 /* Behave like lookup_symbol_in_language, but performed with the
1250 current language. */
1253 lookup_symbol (const char *name
, const struct block
*block
,
1255 struct field_of_this_result
*is_a_field_of_this
)
1257 return lookup_symbol_in_language (name
, block
, domain
,
1258 current_language
->la_language
,
1259 is_a_field_of_this
);
1262 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1263 found, or NULL if not found. */
1266 lookup_language_this (const struct language_defn
*lang
,
1267 const struct block
*block
)
1269 if (lang
->la_name_of_this
== NULL
|| block
== NULL
)
1276 sym
= lookup_block_symbol (block
, lang
->la_name_of_this
, VAR_DOMAIN
);
1279 block_found
= block
;
1282 if (BLOCK_FUNCTION (block
))
1284 block
= BLOCK_SUPERBLOCK (block
);
1290 /* Given TYPE, a structure/union,
1291 return 1 if the component named NAME from the ultimate target
1292 structure/union is defined, otherwise, return 0. */
1295 check_field (struct type
*type
, const char *name
,
1296 struct field_of_this_result
*is_a_field_of_this
)
1300 /* The type may be a stub. */
1301 CHECK_TYPEDEF (type
);
1303 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
1305 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
1307 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
1309 is_a_field_of_this
->type
= type
;
1310 is_a_field_of_this
->field
= &TYPE_FIELD (type
, i
);
1315 /* C++: If it was not found as a data field, then try to return it
1316 as a pointer to a method. */
1318 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; --i
)
1320 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type
, i
), name
) == 0)
1322 is_a_field_of_this
->type
= type
;
1323 is_a_field_of_this
->fn_field
= &TYPE_FN_FIELDLIST (type
, i
);
1328 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
1329 if (check_field (TYPE_BASECLASS (type
, i
), name
, is_a_field_of_this
))
1335 /* Behave like lookup_symbol except that NAME is the natural name
1336 (e.g., demangled name) of the symbol that we're looking for. */
1338 static struct symbol
*
1339 lookup_symbol_aux (const char *name
, const struct block
*block
,
1340 const domain_enum domain
, enum language language
,
1341 struct field_of_this_result
*is_a_field_of_this
)
1344 const struct language_defn
*langdef
;
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later. If we don't set it, the contents of
1349 is_a_field_of_this are undefined. */
1350 if (is_a_field_of_this
!= NULL
)
1351 memset (is_a_field_of_this
, 0, sizeof (*is_a_field_of_this
));
1353 /* Search specified block and its superiors. Don't search
1354 STATIC_BLOCK or GLOBAL_BLOCK. */
1356 sym
= lookup_symbol_aux_local (name
, block
, domain
, language
);
1360 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1361 check to see if NAME is a field of `this'. */
1363 langdef
= language_def (language
);
1365 /* Don't do this check if we are searching for a struct. It will
1366 not be found by check_field, but will be found by other
1368 if (is_a_field_of_this
!= NULL
&& domain
!= STRUCT_DOMAIN
)
1370 struct symbol
*sym
= lookup_language_this (langdef
, block
);
1374 struct type
*t
= sym
->type
;
1376 /* I'm not really sure that type of this can ever
1377 be typedefed; just be safe. */
1379 if (TYPE_CODE (t
) == TYPE_CODE_PTR
1380 || TYPE_CODE (t
) == TYPE_CODE_REF
)
1381 t
= TYPE_TARGET_TYPE (t
);
1383 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
1384 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
1385 error (_("Internal error: `%s' is not an aggregate"),
1386 langdef
->la_name_of_this
);
1388 if (check_field (t
, name
, is_a_field_of_this
))
1393 /* Now do whatever is appropriate for LANGUAGE to look
1394 up static and global variables. */
1396 sym
= langdef
->la_lookup_symbol_nonlocal (name
, block
, domain
);
1400 /* Now search all static file-level symbols. Not strictly correct,
1401 but more useful than an error. */
1403 return lookup_static_symbol_aux (name
, domain
);
1406 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1407 first, then check the psymtabs. If a psymtab indicates the existence of the
1408 desired name as a file-level static, then do psymtab-to-symtab conversion on
1409 the fly and return the found symbol. */
1412 lookup_static_symbol_aux (const char *name
, const domain_enum domain
)
1414 struct objfile
*objfile
;
1417 sym
= lookup_symbol_aux_symtabs (STATIC_BLOCK
, name
, domain
);
1421 ALL_OBJFILES (objfile
)
1423 sym
= lookup_symbol_aux_quick (objfile
, STATIC_BLOCK
, name
, domain
);
1431 /* Check to see if the symbol is defined in BLOCK or its superiors.
1432 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1434 static struct symbol
*
1435 lookup_symbol_aux_local (const char *name
, const struct block
*block
,
1436 const domain_enum domain
,
1437 enum language language
)
1440 const struct block
*static_block
= block_static_block (block
);
1441 const char *scope
= block_scope (block
);
1443 /* Check if either no block is specified or it's a global block. */
1445 if (static_block
== NULL
)
1448 while (block
!= static_block
)
1450 sym
= lookup_symbol_aux_block (name
, block
, domain
);
1454 if (language
== language_cplus
|| language
== language_fortran
)
1456 sym
= cp_lookup_symbol_imports_or_template (scope
, name
, block
,
1462 if (BLOCK_FUNCTION (block
) != NULL
&& block_inlined_p (block
))
1464 block
= BLOCK_SUPERBLOCK (block
);
1467 /* We've reached the edge of the function without finding a result. */
1472 /* Look up OBJFILE to BLOCK. */
1475 lookup_objfile_from_block (const struct block
*block
)
1477 struct objfile
*obj
;
1483 block
= block_global_block (block
);
1484 /* Go through SYMTABS. */
1485 ALL_SYMTABS (obj
, s
)
1486 if (block
== BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
))
1488 if (obj
->separate_debug_objfile_backlink
)
1489 obj
= obj
->separate_debug_objfile_backlink
;
1497 /* Look up a symbol in a block; if found, fixup the symbol, and set
1498 block_found appropriately. */
1501 lookup_symbol_aux_block (const char *name
, const struct block
*block
,
1502 const domain_enum domain
)
1506 sym
= lookup_block_symbol (block
, name
, domain
);
1509 block_found
= block
;
1510 return fixup_symbol_section (sym
, NULL
);
1516 /* Check all global symbols in OBJFILE in symtabs and
1520 lookup_global_symbol_from_objfile (const struct objfile
*main_objfile
,
1522 const domain_enum domain
)
1524 const struct objfile
*objfile
;
1526 struct blockvector
*bv
;
1527 const struct block
*block
;
1530 for (objfile
= main_objfile
;
1532 objfile
= objfile_separate_debug_iterate (main_objfile
, objfile
))
1534 /* Go through symtabs. */
1535 ALL_OBJFILE_PRIMARY_SYMTABS (objfile
, s
)
1537 bv
= BLOCKVECTOR (s
);
1538 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
1539 sym
= lookup_block_symbol (block
, name
, domain
);
1542 block_found
= block
;
1543 return fixup_symbol_section (sym
, (struct objfile
*)objfile
);
1547 sym
= lookup_symbol_aux_quick ((struct objfile
*) objfile
, GLOBAL_BLOCK
,
1556 /* Check to see if the symbol is defined in one of the OBJFILE's
1557 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1558 depending on whether or not we want to search global symbols or
1561 static struct symbol
*
1562 lookup_symbol_aux_objfile (struct objfile
*objfile
, int block_index
,
1563 const char *name
, const domain_enum domain
)
1565 struct symbol
*sym
= NULL
;
1566 struct blockvector
*bv
;
1567 const struct block
*block
;
1570 ALL_OBJFILE_PRIMARY_SYMTABS (objfile
, s
)
1572 bv
= BLOCKVECTOR (s
);
1573 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
1574 sym
= lookup_block_symbol (block
, name
, domain
);
1577 block_found
= block
;
1578 return fixup_symbol_section (sym
, objfile
);
1585 /* Same as lookup_symbol_aux_objfile, except that it searches all
1586 objfiles. Return the first match found. */
1588 static struct symbol
*
1589 lookup_symbol_aux_symtabs (int block_index
, const char *name
,
1590 const domain_enum domain
)
1593 struct objfile
*objfile
;
1595 ALL_OBJFILES (objfile
)
1597 sym
= lookup_symbol_aux_objfile (objfile
, block_index
, name
, domain
);
1605 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1606 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1607 and all related objfiles. */
1609 static struct symbol
*
1610 lookup_symbol_in_objfile_from_linkage_name (struct objfile
*objfile
,
1611 const char *linkage_name
,
1614 enum language lang
= current_language
->la_language
;
1615 const char *modified_name
;
1616 struct cleanup
*cleanup
= demangle_for_lookup (linkage_name
, lang
,
1618 struct objfile
*main_objfile
, *cur_objfile
;
1620 if (objfile
->separate_debug_objfile_backlink
)
1621 main_objfile
= objfile
->separate_debug_objfile_backlink
;
1623 main_objfile
= objfile
;
1625 for (cur_objfile
= main_objfile
;
1627 cur_objfile
= objfile_separate_debug_iterate (main_objfile
, cur_objfile
))
1631 sym
= lookup_symbol_aux_objfile (cur_objfile
, GLOBAL_BLOCK
,
1632 modified_name
, domain
);
1634 sym
= lookup_symbol_aux_objfile (cur_objfile
, STATIC_BLOCK
,
1635 modified_name
, domain
);
1638 do_cleanups (cleanup
);
1643 do_cleanups (cleanup
);
1647 /* A helper function that throws an exception when a symbol was found
1648 in a psymtab but not in a symtab. */
1650 static void ATTRIBUTE_NORETURN
1651 error_in_psymtab_expansion (int kind
, const char *name
, struct symtab
*symtab
)
1654 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1655 %s may be an inlined function, or may be a template function\n \
1656 (if a template, try specifying an instantiation: %s<type>)."),
1657 kind
== GLOBAL_BLOCK
? "global" : "static",
1658 name
, symtab_to_filename_for_display (symtab
), name
, name
);
1661 /* A helper function for lookup_symbol_aux that interfaces with the
1662 "quick" symbol table functions. */
1664 static struct symbol
*
1665 lookup_symbol_aux_quick (struct objfile
*objfile
, int kind
,
1666 const char *name
, const domain_enum domain
)
1668 struct symtab
*symtab
;
1669 struct blockvector
*bv
;
1670 const struct block
*block
;
1675 symtab
= objfile
->sf
->qf
->lookup_symbol (objfile
, kind
, name
, domain
);
1679 bv
= BLOCKVECTOR (symtab
);
1680 block
= BLOCKVECTOR_BLOCK (bv
, kind
);
1681 sym
= lookup_block_symbol (block
, name
, domain
);
1683 error_in_psymtab_expansion (kind
, name
, symtab
);
1684 return fixup_symbol_section (sym
, objfile
);
1687 /* A default version of lookup_symbol_nonlocal for use by languages
1688 that can't think of anything better to do. This implements the C
1692 basic_lookup_symbol_nonlocal (const char *name
,
1693 const struct block
*block
,
1694 const domain_enum domain
)
1698 /* NOTE: carlton/2003-05-19: The comments below were written when
1699 this (or what turned into this) was part of lookup_symbol_aux;
1700 I'm much less worried about these questions now, since these
1701 decisions have turned out well, but I leave these comments here
1704 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1705 not it would be appropriate to search the current global block
1706 here as well. (That's what this code used to do before the
1707 is_a_field_of_this check was moved up.) On the one hand, it's
1708 redundant with the lookup_symbol_aux_symtabs search that happens
1709 next. On the other hand, if decode_line_1 is passed an argument
1710 like filename:var, then the user presumably wants 'var' to be
1711 searched for in filename. On the third hand, there shouldn't be
1712 multiple global variables all of which are named 'var', and it's
1713 not like decode_line_1 has ever restricted its search to only
1714 global variables in a single filename. All in all, only
1715 searching the static block here seems best: it's correct and it's
1718 /* NOTE: carlton/2002-12-05: There's also a possible performance
1719 issue here: if you usually search for global symbols in the
1720 current file, then it would be slightly better to search the
1721 current global block before searching all the symtabs. But there
1722 are other factors that have a much greater effect on performance
1723 than that one, so I don't think we should worry about that for
1726 sym
= lookup_symbol_static (name
, block
, domain
);
1730 return lookup_symbol_global (name
, block
, domain
);
1733 /* Lookup a symbol in the static block associated to BLOCK, if there
1734 is one; do nothing if BLOCK is NULL or a global block. */
1737 lookup_symbol_static (const char *name
,
1738 const struct block
*block
,
1739 const domain_enum domain
)
1741 const struct block
*static_block
= block_static_block (block
);
1743 if (static_block
!= NULL
)
1744 return lookup_symbol_aux_block (name
, static_block
, domain
);
1749 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1751 struct global_sym_lookup_data
1753 /* The name of the symbol we are searching for. */
1756 /* The domain to use for our search. */
1759 /* The field where the callback should store the symbol if found.
1760 It should be initialized to NULL before the search is started. */
1761 struct symbol
*result
;
1764 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1765 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1766 OBJFILE. The arguments for the search are passed via CB_DATA,
1767 which in reality is a pointer to struct global_sym_lookup_data. */
1770 lookup_symbol_global_iterator_cb (struct objfile
*objfile
,
1773 struct global_sym_lookup_data
*data
=
1774 (struct global_sym_lookup_data
*) cb_data
;
1776 gdb_assert (data
->result
== NULL
);
1778 data
->result
= lookup_symbol_aux_objfile (objfile
, GLOBAL_BLOCK
,
1779 data
->name
, data
->domain
);
1780 if (data
->result
== NULL
)
1781 data
->result
= lookup_symbol_aux_quick (objfile
, GLOBAL_BLOCK
,
1782 data
->name
, data
->domain
);
1784 /* If we found a match, tell the iterator to stop. Otherwise,
1786 return (data
->result
!= NULL
);
1789 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1793 lookup_symbol_global (const char *name
,
1794 const struct block
*block
,
1795 const domain_enum domain
)
1797 struct symbol
*sym
= NULL
;
1798 struct objfile
*objfile
= NULL
;
1799 struct global_sym_lookup_data lookup_data
;
1801 /* Call library-specific lookup procedure. */
1802 objfile
= lookup_objfile_from_block (block
);
1803 if (objfile
!= NULL
)
1804 sym
= solib_global_lookup (objfile
, name
, domain
);
1808 memset (&lookup_data
, 0, sizeof (lookup_data
));
1809 lookup_data
.name
= name
;
1810 lookup_data
.domain
= domain
;
1811 gdbarch_iterate_over_objfiles_in_search_order
1812 (objfile
!= NULL
? get_objfile_arch (objfile
) : target_gdbarch (),
1813 lookup_symbol_global_iterator_cb
, &lookup_data
, objfile
);
1815 return lookup_data
.result
;
1819 symbol_matches_domain (enum language symbol_language
,
1820 domain_enum symbol_domain
,
1823 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1824 A Java class declaration also defines a typedef for the class.
1825 Similarly, any Ada type declaration implicitly defines a typedef. */
1826 if (symbol_language
== language_cplus
1827 || symbol_language
== language_d
1828 || symbol_language
== language_java
1829 || symbol_language
== language_ada
)
1831 if ((domain
== VAR_DOMAIN
|| domain
== STRUCT_DOMAIN
)
1832 && symbol_domain
== STRUCT_DOMAIN
)
1835 /* For all other languages, strict match is required. */
1836 return (symbol_domain
== domain
);
1839 /* Look up a type named NAME in the struct_domain. The type returned
1840 must not be opaque -- i.e., must have at least one field
1844 lookup_transparent_type (const char *name
)
1846 return current_language
->la_lookup_transparent_type (name
);
1849 /* A helper for basic_lookup_transparent_type that interfaces with the
1850 "quick" symbol table functions. */
1852 static struct type
*
1853 basic_lookup_transparent_type_quick (struct objfile
*objfile
, int kind
,
1856 struct symtab
*symtab
;
1857 struct blockvector
*bv
;
1858 struct block
*block
;
1863 symtab
= objfile
->sf
->qf
->lookup_symbol (objfile
, kind
, name
, STRUCT_DOMAIN
);
1867 bv
= BLOCKVECTOR (symtab
);
1868 block
= BLOCKVECTOR_BLOCK (bv
, kind
);
1869 sym
= lookup_block_symbol (block
, name
, STRUCT_DOMAIN
);
1871 error_in_psymtab_expansion (kind
, name
, symtab
);
1873 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)))
1874 return SYMBOL_TYPE (sym
);
1879 /* The standard implementation of lookup_transparent_type. This code
1880 was modeled on lookup_symbol -- the parts not relevant to looking
1881 up types were just left out. In particular it's assumed here that
1882 types are available in struct_domain and only at file-static or
1886 basic_lookup_transparent_type (const char *name
)
1889 struct symtab
*s
= NULL
;
1890 struct blockvector
*bv
;
1891 struct objfile
*objfile
;
1892 struct block
*block
;
1895 /* Now search all the global symbols. Do the symtab's first, then
1896 check the psymtab's. If a psymtab indicates the existence
1897 of the desired name as a global, then do psymtab-to-symtab
1898 conversion on the fly and return the found symbol. */
1900 ALL_OBJFILES (objfile
)
1902 ALL_OBJFILE_PRIMARY_SYMTABS (objfile
, s
)
1904 bv
= BLOCKVECTOR (s
);
1905 block
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
1906 sym
= lookup_block_symbol (block
, name
, STRUCT_DOMAIN
);
1907 if (sym
&& !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)))
1909 return SYMBOL_TYPE (sym
);
1914 ALL_OBJFILES (objfile
)
1916 t
= basic_lookup_transparent_type_quick (objfile
, GLOBAL_BLOCK
, name
);
1921 /* Now search the static file-level symbols.
1922 Not strictly correct, but more useful than an error.
1923 Do the symtab's first, then
1924 check the psymtab's. If a psymtab indicates the existence
1925 of the desired name as a file-level static, then do psymtab-to-symtab
1926 conversion on the fly and return the found symbol. */
1928 ALL_OBJFILES (objfile
)
1930 ALL_OBJFILE_PRIMARY_SYMTABS (objfile
, s
)
1932 bv
= BLOCKVECTOR (s
);
1933 block
= BLOCKVECTOR_BLOCK (bv
, STATIC_BLOCK
);
1934 sym
= lookup_block_symbol (block
, name
, STRUCT_DOMAIN
);
1935 if (sym
&& !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)))
1937 return SYMBOL_TYPE (sym
);
1942 ALL_OBJFILES (objfile
)
1944 t
= basic_lookup_transparent_type_quick (objfile
, STATIC_BLOCK
, name
);
1949 return (struct type
*) 0;
1952 /* Search BLOCK for symbol NAME in DOMAIN.
1954 Note that if NAME is the demangled form of a C++ symbol, we will fail
1955 to find a match during the binary search of the non-encoded names, but
1956 for now we don't worry about the slight inefficiency of looking for
1957 a match we'll never find, since it will go pretty quick. Once the
1958 binary search terminates, we drop through and do a straight linear
1959 search on the symbols. Each symbol which is marked as being a ObjC/C++
1960 symbol (language_cplus or language_objc set) has both the encoded and
1961 non-encoded names tested for a match. */
1964 lookup_block_symbol (const struct block
*block
, const char *name
,
1965 const domain_enum domain
)
1967 struct block_iterator iter
;
1970 if (!BLOCK_FUNCTION (block
))
1972 for (sym
= block_iter_name_first (block
, name
, &iter
);
1974 sym
= block_iter_name_next (name
, &iter
))
1976 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
1977 SYMBOL_DOMAIN (sym
), domain
))
1984 /* Note that parameter symbols do not always show up last in the
1985 list; this loop makes sure to take anything else other than
1986 parameter symbols first; it only uses parameter symbols as a
1987 last resort. Note that this only takes up extra computation
1990 struct symbol
*sym_found
= NULL
;
1992 for (sym
= block_iter_name_first (block
, name
, &iter
);
1994 sym
= block_iter_name_next (name
, &iter
))
1996 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
1997 SYMBOL_DOMAIN (sym
), domain
))
2000 if (!SYMBOL_IS_ARGUMENT (sym
))
2006 return (sym_found
); /* Will be NULL if not found. */
2010 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2012 For each symbol that matches, CALLBACK is called. The symbol and
2013 DATA are passed to the callback.
2015 If CALLBACK returns zero, the iteration ends. Otherwise, the
2016 search continues. */
2019 iterate_over_symbols (const struct block
*block
, const char *name
,
2020 const domain_enum domain
,
2021 symbol_found_callback_ftype
*callback
,
2024 struct block_iterator iter
;
2027 for (sym
= block_iter_name_first (block
, name
, &iter
);
2029 sym
= block_iter_name_next (name
, &iter
))
2031 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
2032 SYMBOL_DOMAIN (sym
), domain
))
2034 if (!callback (sym
, data
))
2040 /* Find the symtab associated with PC and SECTION. Look through the
2041 psymtabs and read in another symtab if necessary. */
2044 find_pc_sect_symtab (CORE_ADDR pc
, struct obj_section
*section
)
2047 struct blockvector
*bv
;
2048 struct symtab
*s
= NULL
;
2049 struct symtab
*best_s
= NULL
;
2050 struct objfile
*objfile
;
2051 CORE_ADDR distance
= 0;
2052 struct minimal_symbol
*msymbol
;
2054 /* If we know that this is not a text address, return failure. This is
2055 necessary because we loop based on the block's high and low code
2056 addresses, which do not include the data ranges, and because
2057 we call find_pc_sect_psymtab which has a similar restriction based
2058 on the partial_symtab's texthigh and textlow. */
2059 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
).minsym
;
2061 && (MSYMBOL_TYPE (msymbol
) == mst_data
2062 || MSYMBOL_TYPE (msymbol
) == mst_bss
2063 || MSYMBOL_TYPE (msymbol
) == mst_abs
2064 || MSYMBOL_TYPE (msymbol
) == mst_file_data
2065 || MSYMBOL_TYPE (msymbol
) == mst_file_bss
))
2068 /* Search all symtabs for the one whose file contains our address, and which
2069 is the smallest of all the ones containing the address. This is designed
2070 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2071 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2072 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2074 This happens for native ecoff format, where code from included files
2075 gets its own symtab. The symtab for the included file should have
2076 been read in already via the dependency mechanism.
2077 It might be swifter to create several symtabs with the same name
2078 like xcoff does (I'm not sure).
2080 It also happens for objfiles that have their functions reordered.
2081 For these, the symtab we are looking for is not necessarily read in. */
2083 ALL_PRIMARY_SYMTABS (objfile
, s
)
2085 bv
= BLOCKVECTOR (s
);
2086 b
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
2088 if (BLOCK_START (b
) <= pc
2089 && BLOCK_END (b
) > pc
2091 || BLOCK_END (b
) - BLOCK_START (b
) < distance
))
2093 /* For an objfile that has its functions reordered,
2094 find_pc_psymtab will find the proper partial symbol table
2095 and we simply return its corresponding symtab. */
2096 /* In order to better support objfiles that contain both
2097 stabs and coff debugging info, we continue on if a psymtab
2099 if ((objfile
->flags
& OBJF_REORDERED
) && objfile
->sf
)
2101 struct symtab
*result
;
2104 = objfile
->sf
->qf
->find_pc_sect_symtab (objfile
,
2113 struct block_iterator iter
;
2114 struct symbol
*sym
= NULL
;
2116 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
2118 fixup_symbol_section (sym
, objfile
);
2119 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile
, sym
),
2124 continue; /* No symbol in this symtab matches
2127 distance
= BLOCK_END (b
) - BLOCK_START (b
);
2135 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2137 ALL_OBJFILES (objfile
)
2139 struct symtab
*result
;
2143 result
= objfile
->sf
->qf
->find_pc_sect_symtab (objfile
,
2154 /* Find the symtab associated with PC. Look through the psymtabs and read
2155 in another symtab if necessary. Backward compatibility, no section. */
2158 find_pc_symtab (CORE_ADDR pc
)
2160 return find_pc_sect_symtab (pc
, find_pc_mapped_section (pc
));
2164 /* Find the source file and line number for a given PC value and SECTION.
2165 Return a structure containing a symtab pointer, a line number,
2166 and a pc range for the entire source line.
2167 The value's .pc field is NOT the specified pc.
2168 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2169 use the line that ends there. Otherwise, in that case, the line
2170 that begins there is used. */
2172 /* The big complication here is that a line may start in one file, and end just
2173 before the start of another file. This usually occurs when you #include
2174 code in the middle of a subroutine. To properly find the end of a line's PC
2175 range, we must search all symtabs associated with this compilation unit, and
2176 find the one whose first PC is closer than that of the next line in this
2179 /* If it's worth the effort, we could be using a binary search. */
2181 struct symtab_and_line
2182 find_pc_sect_line (CORE_ADDR pc
, struct obj_section
*section
, int notcurrent
)
2185 struct linetable
*l
;
2188 struct linetable_entry
*item
;
2189 struct symtab_and_line val
;
2190 struct blockvector
*bv
;
2191 struct bound_minimal_symbol msymbol
;
2192 struct minimal_symbol
*mfunsym
;
2193 struct objfile
*objfile
;
2195 /* Info on best line seen so far, and where it starts, and its file. */
2197 struct linetable_entry
*best
= NULL
;
2198 CORE_ADDR best_end
= 0;
2199 struct symtab
*best_symtab
= 0;
2201 /* Store here the first line number
2202 of a file which contains the line at the smallest pc after PC.
2203 If we don't find a line whose range contains PC,
2204 we will use a line one less than this,
2205 with a range from the start of that file to the first line's pc. */
2206 struct linetable_entry
*alt
= NULL
;
2208 /* Info on best line seen in this file. */
2210 struct linetable_entry
*prev
;
2212 /* If this pc is not from the current frame,
2213 it is the address of the end of a call instruction.
2214 Quite likely that is the start of the following statement.
2215 But what we want is the statement containing the instruction.
2216 Fudge the pc to make sure we get that. */
2218 init_sal (&val
); /* initialize to zeroes */
2220 val
.pspace
= current_program_space
;
2222 /* It's tempting to assume that, if we can't find debugging info for
2223 any function enclosing PC, that we shouldn't search for line
2224 number info, either. However, GAS can emit line number info for
2225 assembly files --- very helpful when debugging hand-written
2226 assembly code. In such a case, we'd have no debug info for the
2227 function, but we would have line info. */
2232 /* elz: added this because this function returned the wrong
2233 information if the pc belongs to a stub (import/export)
2234 to call a shlib function. This stub would be anywhere between
2235 two functions in the target, and the line info was erroneously
2236 taken to be the one of the line before the pc. */
2238 /* RT: Further explanation:
2240 * We have stubs (trampolines) inserted between procedures.
2242 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2243 * exists in the main image.
2245 * In the minimal symbol table, we have a bunch of symbols
2246 * sorted by start address. The stubs are marked as "trampoline",
2247 * the others appear as text. E.g.:
2249 * Minimal symbol table for main image
2250 * main: code for main (text symbol)
2251 * shr1: stub (trampoline symbol)
2252 * foo: code for foo (text symbol)
2254 * Minimal symbol table for "shr1" image:
2256 * shr1: code for shr1 (text symbol)
2259 * So the code below is trying to detect if we are in the stub
2260 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2261 * and if found, do the symbolization from the real-code address
2262 * rather than the stub address.
2264 * Assumptions being made about the minimal symbol table:
2265 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2266 * if we're really in the trampoline.s If we're beyond it (say
2267 * we're in "foo" in the above example), it'll have a closer
2268 * symbol (the "foo" text symbol for example) and will not
2269 * return the trampoline.
2270 * 2. lookup_minimal_symbol_text() will find a real text symbol
2271 * corresponding to the trampoline, and whose address will
2272 * be different than the trampoline address. I put in a sanity
2273 * check for the address being the same, to avoid an
2274 * infinite recursion.
2276 msymbol
= lookup_minimal_symbol_by_pc (pc
);
2277 if (msymbol
.minsym
!= NULL
)
2278 if (MSYMBOL_TYPE (msymbol
.minsym
) == mst_solib_trampoline
)
2281 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol
.minsym
),
2283 if (mfunsym
== NULL
)
2284 /* I eliminated this warning since it is coming out
2285 * in the following situation:
2286 * gdb shmain // test program with shared libraries
2287 * (gdb) break shr1 // function in shared lib
2288 * Warning: In stub for ...
2289 * In the above situation, the shared lib is not loaded yet,
2290 * so of course we can't find the real func/line info,
2291 * but the "break" still works, and the warning is annoying.
2292 * So I commented out the warning. RT */
2293 /* warning ("In stub for %s; unable to find real function/line info",
2294 SYMBOL_LINKAGE_NAME (msymbol)); */
2297 else if (SYMBOL_VALUE_ADDRESS (mfunsym
)
2298 == SYMBOL_VALUE_ADDRESS (msymbol
.minsym
))
2299 /* Avoid infinite recursion */
2300 /* See above comment about why warning is commented out. */
2301 /* warning ("In stub for %s; unable to find real function/line info",
2302 SYMBOL_LINKAGE_NAME (msymbol)); */
2306 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym
), 0);
2310 s
= find_pc_sect_symtab (pc
, section
);
2313 /* If no symbol information, return previous pc. */
2320 bv
= BLOCKVECTOR (s
);
2321 objfile
= s
->objfile
;
2323 /* Look at all the symtabs that share this blockvector.
2324 They all have the same apriori range, that we found was right;
2325 but they have different line tables. */
2327 ALL_OBJFILE_SYMTABS (objfile
, s
)
2329 if (BLOCKVECTOR (s
) != bv
)
2332 /* Find the best line in this symtab. */
2339 /* I think len can be zero if the symtab lacks line numbers
2340 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2341 I'm not sure which, and maybe it depends on the symbol
2347 item
= l
->item
; /* Get first line info. */
2349 /* Is this file's first line closer than the first lines of other files?
2350 If so, record this file, and its first line, as best alternate. */
2351 if (item
->pc
> pc
&& (!alt
|| item
->pc
< alt
->pc
))
2354 for (i
= 0; i
< len
; i
++, item
++)
2356 /* Leave prev pointing to the linetable entry for the last line
2357 that started at or before PC. */
2364 /* At this point, prev points at the line whose start addr is <= pc, and
2365 item points at the next line. If we ran off the end of the linetable
2366 (pc >= start of the last line), then prev == item. If pc < start of
2367 the first line, prev will not be set. */
2369 /* Is this file's best line closer than the best in the other files?
2370 If so, record this file, and its best line, as best so far. Don't
2371 save prev if it represents the end of a function (i.e. line number
2372 0) instead of a real line. */
2374 if (prev
&& prev
->line
&& (!best
|| prev
->pc
> best
->pc
))
2379 /* Discard BEST_END if it's before the PC of the current BEST. */
2380 if (best_end
<= best
->pc
)
2384 /* If another line (denoted by ITEM) is in the linetable and its
2385 PC is after BEST's PC, but before the current BEST_END, then
2386 use ITEM's PC as the new best_end. */
2387 if (best
&& i
< len
&& item
->pc
> best
->pc
2388 && (best_end
== 0 || best_end
> item
->pc
))
2389 best_end
= item
->pc
;
2394 /* If we didn't find any line number info, just return zeros.
2395 We used to return alt->line - 1 here, but that could be
2396 anywhere; if we don't have line number info for this PC,
2397 don't make some up. */
2400 else if (best
->line
== 0)
2402 /* If our best fit is in a range of PC's for which no line
2403 number info is available (line number is zero) then we didn't
2404 find any valid line information. */
2409 val
.symtab
= best_symtab
;
2410 val
.line
= best
->line
;
2412 if (best_end
&& (!alt
|| best_end
< alt
->pc
))
2417 val
.end
= BLOCK_END (BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
));
2419 val
.section
= section
;
2423 /* Backward compatibility (no section). */
2425 struct symtab_and_line
2426 find_pc_line (CORE_ADDR pc
, int notcurrent
)
2428 struct obj_section
*section
;
2430 section
= find_pc_overlay (pc
);
2431 if (pc_in_unmapped_range (pc
, section
))
2432 pc
= overlay_mapped_address (pc
, section
);
2433 return find_pc_sect_line (pc
, section
, notcurrent
);
2436 /* Find line number LINE in any symtab whose name is the same as
2439 If found, return the symtab that contains the linetable in which it was
2440 found, set *INDEX to the index in the linetable of the best entry
2441 found, and set *EXACT_MATCH nonzero if the value returned is an
2444 If not found, return NULL. */
2447 find_line_symtab (struct symtab
*symtab
, int line
,
2448 int *index
, int *exact_match
)
2450 int exact
= 0; /* Initialized here to avoid a compiler warning. */
2452 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2456 struct linetable
*best_linetable
;
2457 struct symtab
*best_symtab
;
2459 /* First try looking it up in the given symtab. */
2460 best_linetable
= LINETABLE (symtab
);
2461 best_symtab
= symtab
;
2462 best_index
= find_line_common (best_linetable
, line
, &exact
, 0);
2463 if (best_index
< 0 || !exact
)
2465 /* Didn't find an exact match. So we better keep looking for
2466 another symtab with the same name. In the case of xcoff,
2467 multiple csects for one source file (produced by IBM's FORTRAN
2468 compiler) produce multiple symtabs (this is unavoidable
2469 assuming csects can be at arbitrary places in memory and that
2470 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2472 /* BEST is the smallest linenumber > LINE so far seen,
2473 or 0 if none has been seen so far.
2474 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2477 struct objfile
*objfile
;
2480 if (best_index
>= 0)
2481 best
= best_linetable
->item
[best_index
].line
;
2485 ALL_OBJFILES (objfile
)
2488 objfile
->sf
->qf
->expand_symtabs_with_fullname (objfile
,
2489 symtab_to_fullname (symtab
));
2492 ALL_SYMTABS (objfile
, s
)
2494 struct linetable
*l
;
2497 if (FILENAME_CMP (symtab
->filename
, s
->filename
) != 0)
2499 if (FILENAME_CMP (symtab_to_fullname (symtab
),
2500 symtab_to_fullname (s
)) != 0)
2503 ind
= find_line_common (l
, line
, &exact
, 0);
2513 if (best
== 0 || l
->item
[ind
].line
< best
)
2515 best
= l
->item
[ind
].line
;
2528 *index
= best_index
;
2530 *exact_match
= exact
;
2535 /* Given SYMTAB, returns all the PCs function in the symtab that
2536 exactly match LINE. Returns NULL if there are no exact matches,
2537 but updates BEST_ITEM in this case. */
2540 find_pcs_for_symtab_line (struct symtab
*symtab
, int line
,
2541 struct linetable_entry
**best_item
)
2544 VEC (CORE_ADDR
) *result
= NULL
;
2546 /* First, collect all the PCs that are at this line. */
2552 idx
= find_line_common (LINETABLE (symtab
), line
, &was_exact
, start
);
2558 struct linetable_entry
*item
= &LINETABLE (symtab
)->item
[idx
];
2560 if (*best_item
== NULL
|| item
->line
< (*best_item
)->line
)
2566 VEC_safe_push (CORE_ADDR
, result
, LINETABLE (symtab
)->item
[idx
].pc
);
2574 /* Set the PC value for a given source file and line number and return true.
2575 Returns zero for invalid line number (and sets the PC to 0).
2576 The source file is specified with a struct symtab. */
2579 find_line_pc (struct symtab
*symtab
, int line
, CORE_ADDR
*pc
)
2581 struct linetable
*l
;
2588 symtab
= find_line_symtab (symtab
, line
, &ind
, NULL
);
2591 l
= LINETABLE (symtab
);
2592 *pc
= l
->item
[ind
].pc
;
2599 /* Find the range of pc values in a line.
2600 Store the starting pc of the line into *STARTPTR
2601 and the ending pc (start of next line) into *ENDPTR.
2602 Returns 1 to indicate success.
2603 Returns 0 if could not find the specified line. */
2606 find_line_pc_range (struct symtab_and_line sal
, CORE_ADDR
*startptr
,
2609 CORE_ADDR startaddr
;
2610 struct symtab_and_line found_sal
;
2613 if (startaddr
== 0 && !find_line_pc (sal
.symtab
, sal
.line
, &startaddr
))
2616 /* This whole function is based on address. For example, if line 10 has
2617 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2618 "info line *0x123" should say the line goes from 0x100 to 0x200
2619 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2620 This also insures that we never give a range like "starts at 0x134
2621 and ends at 0x12c". */
2623 found_sal
= find_pc_sect_line (startaddr
, sal
.section
, 0);
2624 if (found_sal
.line
!= sal
.line
)
2626 /* The specified line (sal) has zero bytes. */
2627 *startptr
= found_sal
.pc
;
2628 *endptr
= found_sal
.pc
;
2632 *startptr
= found_sal
.pc
;
2633 *endptr
= found_sal
.end
;
2638 /* Given a line table and a line number, return the index into the line
2639 table for the pc of the nearest line whose number is >= the specified one.
2640 Return -1 if none is found. The value is >= 0 if it is an index.
2641 START is the index at which to start searching the line table.
2643 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2646 find_line_common (struct linetable
*l
, int lineno
,
2647 int *exact_match
, int start
)
2652 /* BEST is the smallest linenumber > LINENO so far seen,
2653 or 0 if none has been seen so far.
2654 BEST_INDEX identifies the item for it. */
2656 int best_index
= -1;
2667 for (i
= start
; i
< len
; i
++)
2669 struct linetable_entry
*item
= &(l
->item
[i
]);
2671 if (item
->line
== lineno
)
2673 /* Return the first (lowest address) entry which matches. */
2678 if (item
->line
> lineno
&& (best
== 0 || item
->line
< best
))
2685 /* If we got here, we didn't get an exact match. */
2690 find_pc_line_pc_range (CORE_ADDR pc
, CORE_ADDR
*startptr
, CORE_ADDR
*endptr
)
2692 struct symtab_and_line sal
;
2694 sal
= find_pc_line (pc
, 0);
2697 return sal
.symtab
!= 0;
2700 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2701 address for that function that has an entry in SYMTAB's line info
2702 table. If such an entry cannot be found, return FUNC_ADDR
2706 skip_prologue_using_lineinfo (CORE_ADDR func_addr
, struct symtab
*symtab
)
2708 CORE_ADDR func_start
, func_end
;
2709 struct linetable
*l
;
2712 /* Give up if this symbol has no lineinfo table. */
2713 l
= LINETABLE (symtab
);
2717 /* Get the range for the function's PC values, or give up if we
2718 cannot, for some reason. */
2719 if (!find_pc_partial_function (func_addr
, NULL
, &func_start
, &func_end
))
2722 /* Linetable entries are ordered by PC values, see the commentary in
2723 symtab.h where `struct linetable' is defined. Thus, the first
2724 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2725 address we are looking for. */
2726 for (i
= 0; i
< l
->nitems
; i
++)
2728 struct linetable_entry
*item
= &(l
->item
[i
]);
2730 /* Don't use line numbers of zero, they mark special entries in
2731 the table. See the commentary on symtab.h before the
2732 definition of struct linetable. */
2733 if (item
->line
> 0 && func_start
<= item
->pc
&& item
->pc
< func_end
)
2740 /* Given a function symbol SYM, find the symtab and line for the start
2742 If the argument FUNFIRSTLINE is nonzero, we want the first line
2743 of real code inside the function. */
2745 struct symtab_and_line
2746 find_function_start_sal (struct symbol
*sym
, int funfirstline
)
2748 struct symtab_and_line sal
;
2750 fixup_symbol_section (sym
, NULL
);
2751 sal
= find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)),
2752 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym
), sym
), 0);
2754 /* We always should have a line for the function start address.
2755 If we don't, something is odd. Create a plain SAL refering
2756 just the PC and hope that skip_prologue_sal (if requested)
2757 can find a line number for after the prologue. */
2758 if (sal
.pc
< BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)))
2761 sal
.pspace
= current_program_space
;
2762 sal
.pc
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
2763 sal
.section
= SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym
), sym
);
2767 skip_prologue_sal (&sal
);
2772 /* Adjust SAL to the first instruction past the function prologue.
2773 If the PC was explicitly specified, the SAL is not changed.
2774 If the line number was explicitly specified, at most the SAL's PC
2775 is updated. If SAL is already past the prologue, then do nothing. */
2778 skip_prologue_sal (struct symtab_and_line
*sal
)
2781 struct symtab_and_line start_sal
;
2782 struct cleanup
*old_chain
;
2783 CORE_ADDR pc
, saved_pc
;
2784 struct obj_section
*section
;
2786 struct objfile
*objfile
;
2787 struct gdbarch
*gdbarch
;
2788 struct block
*b
, *function_block
;
2789 int force_skip
, skip
;
2791 /* Do not change the SAL if PC was specified explicitly. */
2792 if (sal
->explicit_pc
)
2795 old_chain
= save_current_space_and_thread ();
2796 switch_to_program_space_and_thread (sal
->pspace
);
2798 sym
= find_pc_sect_function (sal
->pc
, sal
->section
);
2801 fixup_symbol_section (sym
, NULL
);
2803 pc
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
2804 section
= SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym
), sym
);
2805 name
= SYMBOL_LINKAGE_NAME (sym
);
2806 objfile
= SYMBOL_SYMTAB (sym
)->objfile
;
2810 struct bound_minimal_symbol msymbol
2811 = lookup_minimal_symbol_by_pc_section (sal
->pc
, sal
->section
);
2813 if (msymbol
.minsym
== NULL
)
2815 do_cleanups (old_chain
);
2819 objfile
= msymbol
.objfile
;
2820 pc
= SYMBOL_VALUE_ADDRESS (msymbol
.minsym
);
2821 section
= SYMBOL_OBJ_SECTION (objfile
, msymbol
.minsym
);
2822 name
= SYMBOL_LINKAGE_NAME (msymbol
.minsym
);
2825 gdbarch
= get_objfile_arch (objfile
);
2827 /* Process the prologue in two passes. In the first pass try to skip the
2828 prologue (SKIP is true) and verify there is a real need for it (indicated
2829 by FORCE_SKIP). If no such reason was found run a second pass where the
2830 prologue is not skipped (SKIP is false). */
2835 /* Be conservative - allow direct PC (without skipping prologue) only if we
2836 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2837 have to be set by the caller so we use SYM instead. */
2838 if (sym
&& SYMBOL_SYMTAB (sym
)->locations_valid
)
2846 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2847 so that gdbarch_skip_prologue has something unique to work on. */
2848 if (section_is_overlay (section
) && !section_is_mapped (section
))
2849 pc
= overlay_unmapped_address (pc
, section
);
2851 /* Skip "first line" of function (which is actually its prologue). */
2852 pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
2854 pc
= gdbarch_skip_prologue (gdbarch
, pc
);
2856 /* For overlays, map pc back into its mapped VMA range. */
2857 pc
= overlay_mapped_address (pc
, section
);
2859 /* Calculate line number. */
2860 start_sal
= find_pc_sect_line (pc
, section
, 0);
2862 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2863 line is still part of the same function. */
2864 if (skip
&& start_sal
.pc
!= pc
2865 && (sym
? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)) <= start_sal
.end
2866 && start_sal
.end
< BLOCK_END (SYMBOL_BLOCK_VALUE (sym
)))
2867 : (lookup_minimal_symbol_by_pc_section (start_sal
.end
, section
).minsym
2868 == lookup_minimal_symbol_by_pc_section (pc
, section
).minsym
)))
2870 /* First pc of next line */
2872 /* Recalculate the line number (might not be N+1). */
2873 start_sal
= find_pc_sect_line (pc
, section
, 0);
2876 /* On targets with executable formats that don't have a concept of
2877 constructors (ELF with .init has, PE doesn't), gcc emits a call
2878 to `__main' in `main' between the prologue and before user
2880 if (gdbarch_skip_main_prologue_p (gdbarch
)
2881 && name
&& strcmp_iw (name
, "main") == 0)
2883 pc
= gdbarch_skip_main_prologue (gdbarch
, pc
);
2884 /* Recalculate the line number (might not be N+1). */
2885 start_sal
= find_pc_sect_line (pc
, section
, 0);
2889 while (!force_skip
&& skip
--);
2891 /* If we still don't have a valid source line, try to find the first
2892 PC in the lineinfo table that belongs to the same function. This
2893 happens with COFF debug info, which does not seem to have an
2894 entry in lineinfo table for the code after the prologue which has
2895 no direct relation to source. For example, this was found to be
2896 the case with the DJGPP target using "gcc -gcoff" when the
2897 compiler inserted code after the prologue to make sure the stack
2899 if (!force_skip
&& sym
&& start_sal
.symtab
== NULL
)
2901 pc
= skip_prologue_using_lineinfo (pc
, SYMBOL_SYMTAB (sym
));
2902 /* Recalculate the line number. */
2903 start_sal
= find_pc_sect_line (pc
, section
, 0);
2906 do_cleanups (old_chain
);
2908 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2909 forward SAL to the end of the prologue. */
2914 sal
->section
= section
;
2916 /* Unless the explicit_line flag was set, update the SAL line
2917 and symtab to correspond to the modified PC location. */
2918 if (sal
->explicit_line
)
2921 sal
->symtab
= start_sal
.symtab
;
2922 sal
->line
= start_sal
.line
;
2923 sal
->end
= start_sal
.end
;
2925 /* Check if we are now inside an inlined function. If we can,
2926 use the call site of the function instead. */
2927 b
= block_for_pc_sect (sal
->pc
, sal
->section
);
2928 function_block
= NULL
;
2931 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
2933 else if (BLOCK_FUNCTION (b
) != NULL
)
2935 b
= BLOCK_SUPERBLOCK (b
);
2937 if (function_block
!= NULL
2938 && SYMBOL_LINE (BLOCK_FUNCTION (function_block
)) != 0)
2940 sal
->line
= SYMBOL_LINE (BLOCK_FUNCTION (function_block
));
2941 sal
->symtab
= SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block
));
2945 /* If P is of the form "operator[ \t]+..." where `...' is
2946 some legitimate operator text, return a pointer to the
2947 beginning of the substring of the operator text.
2948 Otherwise, return "". */
2951 operator_chars (char *p
, char **end
)
2954 if (strncmp (p
, "operator", 8))
2958 /* Don't get faked out by `operator' being part of a longer
2960 if (isalpha (*p
) || *p
== '_' || *p
== '$' || *p
== '\0')
2963 /* Allow some whitespace between `operator' and the operator symbol. */
2964 while (*p
== ' ' || *p
== '\t')
2967 /* Recognize 'operator TYPENAME'. */
2969 if (isalpha (*p
) || *p
== '_' || *p
== '$')
2973 while (isalnum (*q
) || *q
== '_' || *q
== '$')
2982 case '\\': /* regexp quoting */
2985 if (p
[2] == '=') /* 'operator\*=' */
2987 else /* 'operator\*' */
2991 else if (p
[1] == '[')
2994 error (_("mismatched quoting on brackets, "
2995 "try 'operator\\[\\]'"));
2996 else if (p
[2] == '\\' && p
[3] == ']')
2998 *end
= p
+ 4; /* 'operator\[\]' */
3002 error (_("nothing is allowed between '[' and ']'"));
3006 /* Gratuitous qoute: skip it and move on. */
3028 if (p
[0] == '-' && p
[1] == '>')
3030 /* Struct pointer member operator 'operator->'. */
3033 *end
= p
+ 3; /* 'operator->*' */
3036 else if (p
[2] == '\\')
3038 *end
= p
+ 4; /* Hopefully 'operator->\*' */
3043 *end
= p
+ 2; /* 'operator->' */
3047 if (p
[1] == '=' || p
[1] == p
[0])
3058 error (_("`operator ()' must be specified "
3059 "without whitespace in `()'"));
3064 error (_("`operator ?:' must be specified "
3065 "without whitespace in `?:'"));
3070 error (_("`operator []' must be specified "
3071 "without whitespace in `[]'"));
3075 error (_("`operator %s' not supported"), p
);
3084 /* Cache to watch for file names already seen by filename_seen. */
3086 struct filename_seen_cache
3088 /* Table of files seen so far. */
3090 /* Initial size of the table. It automagically grows from here. */
3091 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3094 /* filename_seen_cache constructor. */
3096 static struct filename_seen_cache
*
3097 create_filename_seen_cache (void)
3099 struct filename_seen_cache
*cache
;
3101 cache
= XNEW (struct filename_seen_cache
);
3102 cache
->tab
= htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE
,
3103 filename_hash
, filename_eq
,
3104 NULL
, xcalloc
, xfree
);
3109 /* Empty the cache, but do not delete it. */
3112 clear_filename_seen_cache (struct filename_seen_cache
*cache
)
3114 htab_empty (cache
->tab
);
3117 /* filename_seen_cache destructor.
3118 This takes a void * argument as it is generally used as a cleanup. */
3121 delete_filename_seen_cache (void *ptr
)
3123 struct filename_seen_cache
*cache
= ptr
;
3125 htab_delete (cache
->tab
);
3129 /* If FILE is not already in the table of files in CACHE, return zero;
3130 otherwise return non-zero. Optionally add FILE to the table if ADD
3133 NOTE: We don't manage space for FILE, we assume FILE lives as long
3134 as the caller needs. */
3137 filename_seen (struct filename_seen_cache
*cache
, const char *file
, int add
)
3141 /* Is FILE in tab? */
3142 slot
= htab_find_slot (cache
->tab
, file
, add
? INSERT
: NO_INSERT
);
3146 /* No; maybe add it to tab. */
3148 *slot
= (char *) file
;
3153 /* Data structure to maintain printing state for output_source_filename. */
3155 struct output_source_filename_data
3157 /* Cache of what we've seen so far. */
3158 struct filename_seen_cache
*filename_seen_cache
;
3160 /* Flag of whether we're printing the first one. */
3164 /* Slave routine for sources_info. Force line breaks at ,'s.
3165 NAME is the name to print.
3166 DATA contains the state for printing and watching for duplicates. */
3169 output_source_filename (const char *name
,
3170 struct output_source_filename_data
*data
)
3172 /* Since a single source file can result in several partial symbol
3173 tables, we need to avoid printing it more than once. Note: if
3174 some of the psymtabs are read in and some are not, it gets
3175 printed both under "Source files for which symbols have been
3176 read" and "Source files for which symbols will be read in on
3177 demand". I consider this a reasonable way to deal with the
3178 situation. I'm not sure whether this can also happen for
3179 symtabs; it doesn't hurt to check. */
3181 /* Was NAME already seen? */
3182 if (filename_seen (data
->filename_seen_cache
, name
, 1))
3184 /* Yes; don't print it again. */
3188 /* No; print it and reset *FIRST. */
3190 printf_filtered (", ");
3194 fputs_filtered (name
, gdb_stdout
);
3197 /* A callback for map_partial_symbol_filenames. */
3200 output_partial_symbol_filename (const char *filename
, const char *fullname
,
3203 output_source_filename (fullname
? fullname
: filename
, data
);
3207 sources_info (char *ignore
, int from_tty
)
3210 struct objfile
*objfile
;
3211 struct output_source_filename_data data
;
3212 struct cleanup
*cleanups
;
3214 if (!have_full_symbols () && !have_partial_symbols ())
3216 error (_("No symbol table is loaded. Use the \"file\" command."));
3219 data
.filename_seen_cache
= create_filename_seen_cache ();
3220 cleanups
= make_cleanup (delete_filename_seen_cache
,
3221 data
.filename_seen_cache
);
3223 printf_filtered ("Source files for which symbols have been read in:\n\n");
3226 ALL_SYMTABS (objfile
, s
)
3228 const char *fullname
= symtab_to_fullname (s
);
3230 output_source_filename (fullname
, &data
);
3232 printf_filtered ("\n\n");
3234 printf_filtered ("Source files for which symbols "
3235 "will be read in on demand:\n\n");
3237 clear_filename_seen_cache (data
.filename_seen_cache
);
3239 map_partial_symbol_filenames (output_partial_symbol_filename
, &data
,
3240 1 /*need_fullname*/);
3241 printf_filtered ("\n");
3243 do_cleanups (cleanups
);
3246 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3247 non-zero compare only lbasename of FILES. */
3250 file_matches (const char *file
, char *files
[], int nfiles
, int basenames
)
3254 if (file
!= NULL
&& nfiles
!= 0)
3256 for (i
= 0; i
< nfiles
; i
++)
3258 if (compare_filenames_for_search (file
, (basenames
3259 ? lbasename (files
[i
])
3264 else if (nfiles
== 0)
3269 /* Free any memory associated with a search. */
3272 free_search_symbols (struct symbol_search
*symbols
)
3274 struct symbol_search
*p
;
3275 struct symbol_search
*next
;
3277 for (p
= symbols
; p
!= NULL
; p
= next
)
3285 do_free_search_symbols_cleanup (void *symbolsp
)
3287 struct symbol_search
*symbols
= *(struct symbol_search
**) symbolsp
;
3289 free_search_symbols (symbols
);
3293 make_cleanup_free_search_symbols (struct symbol_search
**symbolsp
)
3295 return make_cleanup (do_free_search_symbols_cleanup
, symbolsp
);
3298 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3299 sort symbols, not minimal symbols. */
3302 compare_search_syms (const void *sa
, const void *sb
)
3304 struct symbol_search
*sym_a
= *(struct symbol_search
**) sa
;
3305 struct symbol_search
*sym_b
= *(struct symbol_search
**) sb
;
3308 c
= strcmp (sym_a
->symtab
->filename
, sym_b
->symtab
->filename
);
3312 if (sym_a
->block
!= sym_b
->block
)
3313 return sym_a
->block
- sym_b
->block
;
3315 return strcmp (SYMBOL_PRINT_NAME (sym_a
->symbol
),
3316 SYMBOL_PRINT_NAME (sym_b
->symbol
));
3319 /* Helper function for sort_search_symbols_remove_dups.
3320 Return TRUE if symbols A, B are equal. */
3323 search_symbols_equal (const struct symbol_search
*a
,
3324 const struct symbol_search
*b
)
3326 return (strcmp (a
->symtab
->filename
, b
->symtab
->filename
) == 0
3327 && a
->block
== b
->block
3328 && strcmp (SYMBOL_PRINT_NAME (a
->symbol
),
3329 SYMBOL_PRINT_NAME (b
->symbol
)) == 0);
3332 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3333 The duplicates are freed, and the new list is returned in
3334 *NEW_HEAD, *NEW_TAIL. */
3337 sort_search_symbols_remove_dups (struct symbol_search
*found
, int nfound
,
3338 struct symbol_search
**new_head
,
3339 struct symbol_search
**new_tail
)
3341 struct symbol_search
**symbols
, *symp
, *old_next
;
3344 gdb_assert (found
!= NULL
&& nfound
> 0);
3346 /* Build an array out of the list so we can easily sort them. */
3347 symbols
= (struct symbol_search
**) xmalloc (sizeof (struct symbol_search
*)
3350 for (i
= 0; i
< nfound
; i
++)
3352 gdb_assert (symp
!= NULL
);
3353 gdb_assert (symp
->block
>= 0 && symp
->block
<= 1);
3357 gdb_assert (symp
== NULL
);
3359 qsort (symbols
, nfound
, sizeof (struct symbol_search
*),
3360 compare_search_syms
);
3362 /* Collapse out the dups. */
3363 for (i
= 1, j
= 1; i
< nfound
; ++i
)
3365 if (! search_symbols_equal (symbols
[j
- 1], symbols
[i
]))
3366 symbols
[j
++] = symbols
[i
];
3371 symbols
[j
- 1]->next
= NULL
;
3373 /* Rebuild the linked list. */
3374 for (i
= 0; i
< nunique
- 1; i
++)
3375 symbols
[i
]->next
= symbols
[i
+ 1];
3376 symbols
[nunique
- 1]->next
= NULL
;
3378 *new_head
= symbols
[0];
3379 *new_tail
= symbols
[nunique
- 1];
3383 /* An object of this type is passed as the user_data to the
3384 expand_symtabs_matching method. */
3385 struct search_symbols_data
3390 /* It is true if PREG contains valid data, false otherwise. */
3391 unsigned preg_p
: 1;
3395 /* A callback for expand_symtabs_matching. */
3398 search_symbols_file_matches (const char *filename
, void *user_data
,
3401 struct search_symbols_data
*data
= user_data
;
3403 return file_matches (filename
, data
->files
, data
->nfiles
, basenames
);
3406 /* A callback for expand_symtabs_matching. */
3409 search_symbols_name_matches (const char *symname
, void *user_data
)
3411 struct search_symbols_data
*data
= user_data
;
3413 return !data
->preg_p
|| regexec (&data
->preg
, symname
, 0, NULL
, 0) == 0;
3416 /* Search the symbol table for matches to the regular expression REGEXP,
3417 returning the results in *MATCHES.
3419 Only symbols of KIND are searched:
3420 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3421 and constants (enums)
3422 FUNCTIONS_DOMAIN - search all functions
3423 TYPES_DOMAIN - search all type names
3424 ALL_DOMAIN - an internal error for this function
3426 free_search_symbols should be called when *MATCHES is no longer needed.
3428 Within each file the results are sorted locally; each symtab's global and
3429 static blocks are separately alphabetized.
3430 Duplicate entries are removed. */
3433 search_symbols (char *regexp
, enum search_domain kind
,
3434 int nfiles
, char *files
[],
3435 struct symbol_search
**matches
)
3438 struct blockvector
*bv
;
3441 struct block_iterator iter
;
3443 struct objfile
*objfile
;
3444 struct minimal_symbol
*msymbol
;
3446 static const enum minimal_symbol_type types
[]
3447 = {mst_data
, mst_text
, mst_abs
};
3448 static const enum minimal_symbol_type types2
[]
3449 = {mst_bss
, mst_file_text
, mst_abs
};
3450 static const enum minimal_symbol_type types3
[]
3451 = {mst_file_data
, mst_solib_trampoline
, mst_abs
};
3452 static const enum minimal_symbol_type types4
[]
3453 = {mst_file_bss
, mst_text_gnu_ifunc
, mst_abs
};
3454 enum minimal_symbol_type ourtype
;
3455 enum minimal_symbol_type ourtype2
;
3456 enum minimal_symbol_type ourtype3
;
3457 enum minimal_symbol_type ourtype4
;
3458 struct symbol_search
*found
;
3459 struct symbol_search
*tail
;
3460 struct search_symbols_data datum
;
3463 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3464 CLEANUP_CHAIN is freed only in the case of an error. */
3465 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
3466 struct cleanup
*retval_chain
;
3468 gdb_assert (kind
<= TYPES_DOMAIN
);
3470 ourtype
= types
[kind
];
3471 ourtype2
= types2
[kind
];
3472 ourtype3
= types3
[kind
];
3473 ourtype4
= types4
[kind
];
3480 /* Make sure spacing is right for C++ operators.
3481 This is just a courtesy to make the matching less sensitive
3482 to how many spaces the user leaves between 'operator'
3483 and <TYPENAME> or <OPERATOR>. */
3485 char *opname
= operator_chars (regexp
, &opend
);
3490 int fix
= -1; /* -1 means ok; otherwise number of
3493 if (isalpha (*opname
) || *opname
== '_' || *opname
== '$')
3495 /* There should 1 space between 'operator' and 'TYPENAME'. */
3496 if (opname
[-1] != ' ' || opname
[-2] == ' ')
3501 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3502 if (opname
[-1] == ' ')
3505 /* If wrong number of spaces, fix it. */
3508 char *tmp
= (char *) alloca (8 + fix
+ strlen (opname
) + 1);
3510 sprintf (tmp
, "operator%.*s%s", fix
, " ", opname
);
3515 errcode
= regcomp (&datum
.preg
, regexp
,
3516 REG_NOSUB
| (case_sensitivity
== case_sensitive_off
3520 char *err
= get_regcomp_error (errcode
, &datum
.preg
);
3522 make_cleanup (xfree
, err
);
3523 error (_("Invalid regexp (%s): %s"), err
, regexp
);
3526 make_regfree_cleanup (&datum
.preg
);
3529 /* Search through the partial symtabs *first* for all symbols
3530 matching the regexp. That way we don't have to reproduce all of
3531 the machinery below. */
3533 datum
.nfiles
= nfiles
;
3534 datum
.files
= files
;
3535 ALL_OBJFILES (objfile
)
3538 objfile
->sf
->qf
->expand_symtabs_matching (objfile
,
3541 : search_symbols_file_matches
),
3542 search_symbols_name_matches
,
3547 /* Here, we search through the minimal symbol tables for functions
3548 and variables that match, and force their symbols to be read.
3549 This is in particular necessary for demangled variable names,
3550 which are no longer put into the partial symbol tables.
3551 The symbol will then be found during the scan of symtabs below.
3553 For functions, find_pc_symtab should succeed if we have debug info
3554 for the function, for variables we have to call
3555 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3557 If the lookup fails, set found_misc so that we will rescan to print
3558 any matching symbols without debug info.
3559 We only search the objfile the msymbol came from, we no longer search
3560 all objfiles. In large programs (1000s of shared libs) searching all
3561 objfiles is not worth the pain. */
3563 if (nfiles
== 0 && (kind
== VARIABLES_DOMAIN
|| kind
== FUNCTIONS_DOMAIN
))
3565 ALL_MSYMBOLS (objfile
, msymbol
)
3569 if (msymbol
->created_by_gdb
)
3572 if (MSYMBOL_TYPE (msymbol
) == ourtype
3573 || MSYMBOL_TYPE (msymbol
) == ourtype2
3574 || MSYMBOL_TYPE (msymbol
) == ourtype3
3575 || MSYMBOL_TYPE (msymbol
) == ourtype4
)
3578 || regexec (&datum
.preg
, SYMBOL_NATURAL_NAME (msymbol
), 0,
3581 /* Note: An important side-effect of these lookup functions
3582 is to expand the symbol table if msymbol is found, for the
3583 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3584 if (kind
== FUNCTIONS_DOMAIN
3585 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol
)) == NULL
3586 : (lookup_symbol_in_objfile_from_linkage_name
3587 (objfile
, SYMBOL_LINKAGE_NAME (msymbol
), VAR_DOMAIN
)
3598 retval_chain
= make_cleanup_free_search_symbols (&found
);
3600 ALL_PRIMARY_SYMTABS (objfile
, s
)
3602 bv
= BLOCKVECTOR (s
);
3603 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
3605 b
= BLOCKVECTOR_BLOCK (bv
, i
);
3606 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
3608 struct symtab
*real_symtab
= SYMBOL_SYMTAB (sym
);
3612 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3613 a substring of symtab_to_fullname as it may contain "./" etc. */
3614 if ((file_matches (real_symtab
->filename
, files
, nfiles
, 0)
3615 || ((basenames_may_differ
3616 || file_matches (lbasename (real_symtab
->filename
),
3618 && file_matches (symtab_to_fullname (real_symtab
),
3621 || regexec (&datum
.preg
, SYMBOL_NATURAL_NAME (sym
), 0,
3623 && ((kind
== VARIABLES_DOMAIN
3624 && SYMBOL_CLASS (sym
) != LOC_TYPEDEF
3625 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
3626 && SYMBOL_CLASS (sym
) != LOC_BLOCK
3627 /* LOC_CONST can be used for more than just enums,
3628 e.g., c++ static const members.
3629 We only want to skip enums here. */
3630 && !(SYMBOL_CLASS (sym
) == LOC_CONST
3631 && TYPE_CODE (SYMBOL_TYPE (sym
))
3633 || (kind
== FUNCTIONS_DOMAIN
3634 && SYMBOL_CLASS (sym
) == LOC_BLOCK
)
3635 || (kind
== TYPES_DOMAIN
3636 && SYMBOL_CLASS (sym
) == LOC_TYPEDEF
))))
3639 struct symbol_search
*psr
= (struct symbol_search
*)
3640 xmalloc (sizeof (struct symbol_search
));
3642 psr
->symtab
= real_symtab
;
3644 memset (&psr
->msymbol
, 0, sizeof (psr
->msymbol
));
3659 sort_search_symbols_remove_dups (found
, nfound
, &found
, &tail
);
3660 /* Note: nfound is no longer useful beyond this point. */
3663 /* If there are no eyes, avoid all contact. I mean, if there are
3664 no debug symbols, then print directly from the msymbol_vector. */
3666 if (found_misc
|| (nfiles
== 0 && kind
!= FUNCTIONS_DOMAIN
))
3668 ALL_MSYMBOLS (objfile
, msymbol
)
3672 if (msymbol
->created_by_gdb
)
3675 if (MSYMBOL_TYPE (msymbol
) == ourtype
3676 || MSYMBOL_TYPE (msymbol
) == ourtype2
3677 || MSYMBOL_TYPE (msymbol
) == ourtype3
3678 || MSYMBOL_TYPE (msymbol
) == ourtype4
)
3681 || regexec (&datum
.preg
, SYMBOL_NATURAL_NAME (msymbol
), 0,
3684 /* For functions we can do a quick check of whether the
3685 symbol might be found via find_pc_symtab. */
3686 if (kind
!= FUNCTIONS_DOMAIN
3687 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol
)) == NULL
)
3689 if (lookup_symbol_in_objfile_from_linkage_name
3690 (objfile
, SYMBOL_LINKAGE_NAME (msymbol
), VAR_DOMAIN
)
3694 struct symbol_search
*psr
= (struct symbol_search
*)
3695 xmalloc (sizeof (struct symbol_search
));
3697 psr
->msymbol
.minsym
= msymbol
;
3698 psr
->msymbol
.objfile
= objfile
;
3714 discard_cleanups (retval_chain
);
3715 do_cleanups (old_chain
);
3719 /* Helper function for symtab_symbol_info, this function uses
3720 the data returned from search_symbols() to print information
3721 regarding the match to gdb_stdout. */
3724 print_symbol_info (enum search_domain kind
,
3725 struct symtab
*s
, struct symbol
*sym
,
3726 int block
, const char *last
)
3728 const char *s_filename
= symtab_to_filename_for_display (s
);
3730 if (last
== NULL
|| filename_cmp (last
, s_filename
) != 0)
3732 fputs_filtered ("\nFile ", gdb_stdout
);
3733 fputs_filtered (s_filename
, gdb_stdout
);
3734 fputs_filtered (":\n", gdb_stdout
);
3737 if (kind
!= TYPES_DOMAIN
&& block
== STATIC_BLOCK
)
3738 printf_filtered ("static ");
3740 /* Typedef that is not a C++ class. */
3741 if (kind
== TYPES_DOMAIN
3742 && SYMBOL_DOMAIN (sym
) != STRUCT_DOMAIN
)
3743 typedef_print (SYMBOL_TYPE (sym
), sym
, gdb_stdout
);
3744 /* variable, func, or typedef-that-is-c++-class. */
3745 else if (kind
< TYPES_DOMAIN
3746 || (kind
== TYPES_DOMAIN
3747 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
))
3749 type_print (SYMBOL_TYPE (sym
),
3750 (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
3751 ? "" : SYMBOL_PRINT_NAME (sym
)),
3754 printf_filtered (";\n");
3758 /* This help function for symtab_symbol_info() prints information
3759 for non-debugging symbols to gdb_stdout. */
3762 print_msymbol_info (struct bound_minimal_symbol msymbol
)
3764 struct gdbarch
*gdbarch
= get_objfile_arch (msymbol
.objfile
);
3767 if (gdbarch_addr_bit (gdbarch
) <= 32)
3768 tmp
= hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol
.minsym
)
3769 & (CORE_ADDR
) 0xffffffff,
3772 tmp
= hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol
.minsym
),
3774 printf_filtered ("%s %s\n",
3775 tmp
, SYMBOL_PRINT_NAME (msymbol
.minsym
));
3778 /* This is the guts of the commands "info functions", "info types", and
3779 "info variables". It calls search_symbols to find all matches and then
3780 print_[m]symbol_info to print out some useful information about the
3784 symtab_symbol_info (char *regexp
, enum search_domain kind
, int from_tty
)
3786 static const char * const classnames
[] =
3787 {"variable", "function", "type"};
3788 struct symbol_search
*symbols
;
3789 struct symbol_search
*p
;
3790 struct cleanup
*old_chain
;
3791 const char *last_filename
= NULL
;
3794 gdb_assert (kind
<= TYPES_DOMAIN
);
3796 /* Must make sure that if we're interrupted, symbols gets freed. */
3797 search_symbols (regexp
, kind
, 0, (char **) NULL
, &symbols
);
3798 old_chain
= make_cleanup_free_search_symbols (&symbols
);
3801 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3802 classnames
[kind
], regexp
);
3804 printf_filtered (_("All defined %ss:\n"), classnames
[kind
]);
3806 for (p
= symbols
; p
!= NULL
; p
= p
->next
)
3810 if (p
->msymbol
.minsym
!= NULL
)
3814 printf_filtered (_("\nNon-debugging symbols:\n"));
3817 print_msymbol_info (p
->msymbol
);
3821 print_symbol_info (kind
,
3826 last_filename
= symtab_to_filename_for_display (p
->symtab
);
3830 do_cleanups (old_chain
);
3834 variables_info (char *regexp
, int from_tty
)
3836 symtab_symbol_info (regexp
, VARIABLES_DOMAIN
, from_tty
);
3840 functions_info (char *regexp
, int from_tty
)
3842 symtab_symbol_info (regexp
, FUNCTIONS_DOMAIN
, from_tty
);
3847 types_info (char *regexp
, int from_tty
)
3849 symtab_symbol_info (regexp
, TYPES_DOMAIN
, from_tty
);
3852 /* Breakpoint all functions matching regular expression. */
3855 rbreak_command_wrapper (char *regexp
, int from_tty
)
3857 rbreak_command (regexp
, from_tty
);
3860 /* A cleanup function that calls end_rbreak_breakpoints. */
3863 do_end_rbreak_breakpoints (void *ignore
)
3865 end_rbreak_breakpoints ();
3869 rbreak_command (char *regexp
, int from_tty
)
3871 struct symbol_search
*ss
;
3872 struct symbol_search
*p
;
3873 struct cleanup
*old_chain
;
3874 char *string
= NULL
;
3876 char **files
= NULL
, *file_name
;
3881 char *colon
= strchr (regexp
, ':');
3883 if (colon
&& *(colon
+ 1) != ':')
3887 colon_index
= colon
- regexp
;
3888 file_name
= alloca (colon_index
+ 1);
3889 memcpy (file_name
, regexp
, colon_index
);
3890 file_name
[colon_index
--] = 0;
3891 while (isspace (file_name
[colon_index
]))
3892 file_name
[colon_index
--] = 0;
3895 regexp
= skip_spaces (colon
+ 1);
3899 search_symbols (regexp
, FUNCTIONS_DOMAIN
, nfiles
, files
, &ss
);
3900 old_chain
= make_cleanup_free_search_symbols (&ss
);
3901 make_cleanup (free_current_contents
, &string
);
3903 start_rbreak_breakpoints ();
3904 make_cleanup (do_end_rbreak_breakpoints
, NULL
);
3905 for (p
= ss
; p
!= NULL
; p
= p
->next
)
3907 if (p
->msymbol
.minsym
== NULL
)
3909 const char *fullname
= symtab_to_fullname (p
->symtab
);
3911 int newlen
= (strlen (fullname
)
3912 + strlen (SYMBOL_LINKAGE_NAME (p
->symbol
))
3917 string
= xrealloc (string
, newlen
);
3920 strcpy (string
, fullname
);
3921 strcat (string
, ":'");
3922 strcat (string
, SYMBOL_LINKAGE_NAME (p
->symbol
));
3923 strcat (string
, "'");
3924 break_command (string
, from_tty
);
3925 print_symbol_info (FUNCTIONS_DOMAIN
,
3929 symtab_to_filename_for_display (p
->symtab
));
3933 int newlen
= (strlen (SYMBOL_LINKAGE_NAME (p
->msymbol
.minsym
)) + 3);
3937 string
= xrealloc (string
, newlen
);
3940 strcpy (string
, "'");
3941 strcat (string
, SYMBOL_LINKAGE_NAME (p
->msymbol
.minsym
));
3942 strcat (string
, "'");
3944 break_command (string
, from_tty
);
3945 printf_filtered ("<function, no debug info> %s;\n",
3946 SYMBOL_PRINT_NAME (p
->msymbol
.minsym
));
3950 do_cleanups (old_chain
);
3954 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3956 Either sym_text[sym_text_len] != '(' and then we search for any
3957 symbol starting with SYM_TEXT text.
3959 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3960 be terminated at that point. Partial symbol tables do not have parameters
3964 compare_symbol_name (const char *name
, const char *sym_text
, int sym_text_len
)
3966 int (*ncmp
) (const char *, const char *, size_t);
3968 ncmp
= (case_sensitivity
== case_sensitive_on
? strncmp
: strncasecmp
);
3970 if (ncmp (name
, sym_text
, sym_text_len
) != 0)
3973 if (sym_text
[sym_text_len
] == '(')
3975 /* User searches for `name(someth...'. Require NAME to be terminated.
3976 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3977 present but accept even parameters presence. In this case this
3978 function is in fact strcmp_iw but whitespace skipping is not supported
3979 for tab completion. */
3981 if (name
[sym_text_len
] != '\0' && name
[sym_text_len
] != '(')
3988 /* Free any memory associated with a completion list. */
3991 free_completion_list (VEC (char_ptr
) **list_ptr
)
3996 for (i
= 0; VEC_iterate (char_ptr
, *list_ptr
, i
, p
); ++i
)
3998 VEC_free (char_ptr
, *list_ptr
);
4001 /* Callback for make_cleanup. */
4004 do_free_completion_list (void *list
)
4006 free_completion_list (list
);
4009 /* Helper routine for make_symbol_completion_list. */
4011 static VEC (char_ptr
) *return_val
;
4013 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4014 completion_list_add_name \
4015 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4017 /* Test to see if the symbol specified by SYMNAME (which is already
4018 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4019 characters. If so, add it to the current completion list. */
4022 completion_list_add_name (const char *symname
,
4023 const char *sym_text
, int sym_text_len
,
4024 const char *text
, const char *word
)
4026 /* Clip symbols that cannot match. */
4027 if (!compare_symbol_name (symname
, sym_text
, sym_text_len
))
4030 /* We have a match for a completion, so add SYMNAME to the current list
4031 of matches. Note that the name is moved to freshly malloc'd space. */
4036 if (word
== sym_text
)
4038 new = xmalloc (strlen (symname
) + 5);
4039 strcpy (new, symname
);
4041 else if (word
> sym_text
)
4043 /* Return some portion of symname. */
4044 new = xmalloc (strlen (symname
) + 5);
4045 strcpy (new, symname
+ (word
- sym_text
));
4049 /* Return some of SYM_TEXT plus symname. */
4050 new = xmalloc (strlen (symname
) + (sym_text
- word
) + 5);
4051 strncpy (new, word
, sym_text
- word
);
4052 new[sym_text
- word
] = '\0';
4053 strcat (new, symname
);
4056 VEC_safe_push (char_ptr
, return_val
, new);
4060 /* ObjC: In case we are completing on a selector, look as the msymbol
4061 again and feed all the selectors into the mill. */
4064 completion_list_objc_symbol (struct minimal_symbol
*msymbol
,
4065 const char *sym_text
, int sym_text_len
,
4066 const char *text
, const char *word
)
4068 static char *tmp
= NULL
;
4069 static unsigned int tmplen
= 0;
4071 const char *method
, *category
, *selector
;
4074 method
= SYMBOL_NATURAL_NAME (msymbol
);
4076 /* Is it a method? */
4077 if ((method
[0] != '-') && (method
[0] != '+'))
4080 if (sym_text
[0] == '[')
4081 /* Complete on shortened method method. */
4082 completion_list_add_name (method
+ 1, sym_text
, sym_text_len
, text
, word
);
4084 while ((strlen (method
) + 1) >= tmplen
)
4090 tmp
= xrealloc (tmp
, tmplen
);
4092 selector
= strchr (method
, ' ');
4093 if (selector
!= NULL
)
4096 category
= strchr (method
, '(');
4098 if ((category
!= NULL
) && (selector
!= NULL
))
4100 memcpy (tmp
, method
, (category
- method
));
4101 tmp
[category
- method
] = ' ';
4102 memcpy (tmp
+ (category
- method
) + 1, selector
, strlen (selector
) + 1);
4103 completion_list_add_name (tmp
, sym_text
, sym_text_len
, text
, word
);
4104 if (sym_text
[0] == '[')
4105 completion_list_add_name (tmp
+ 1, sym_text
, sym_text_len
, text
, word
);
4108 if (selector
!= NULL
)
4110 /* Complete on selector only. */
4111 strcpy (tmp
, selector
);
4112 tmp2
= strchr (tmp
, ']');
4116 completion_list_add_name (tmp
, sym_text
, sym_text_len
, text
, word
);
4120 /* Break the non-quoted text based on the characters which are in
4121 symbols. FIXME: This should probably be language-specific. */
4124 language_search_unquoted_string (const char *text
, const char *p
)
4126 for (; p
> text
; --p
)
4128 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0')
4132 if ((current_language
->la_language
== language_objc
))
4134 if (p
[-1] == ':') /* Might be part of a method name. */
4136 else if (p
[-1] == '[' && (p
[-2] == '-' || p
[-2] == '+'))
4137 p
-= 2; /* Beginning of a method name. */
4138 else if (p
[-1] == ' ' || p
[-1] == '(' || p
[-1] == ')')
4139 { /* Might be part of a method name. */
4142 /* Seeing a ' ' or a '(' is not conclusive evidence
4143 that we are in the middle of a method name. However,
4144 finding "-[" or "+[" should be pretty un-ambiguous.
4145 Unfortunately we have to find it now to decide. */
4148 if (isalnum (t
[-1]) || t
[-1] == '_' ||
4149 t
[-1] == ' ' || t
[-1] == ':' ||
4150 t
[-1] == '(' || t
[-1] == ')')
4155 if (t
[-1] == '[' && (t
[-2] == '-' || t
[-2] == '+'))
4156 p
= t
- 2; /* Method name detected. */
4157 /* Else we leave with p unchanged. */
4167 completion_list_add_fields (struct symbol
*sym
, const char *sym_text
,
4168 int sym_text_len
, const char *text
,
4171 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
4173 struct type
*t
= SYMBOL_TYPE (sym
);
4174 enum type_code c
= TYPE_CODE (t
);
4177 if (c
== TYPE_CODE_UNION
|| c
== TYPE_CODE_STRUCT
)
4178 for (j
= TYPE_N_BASECLASSES (t
); j
< TYPE_NFIELDS (t
); j
++)
4179 if (TYPE_FIELD_NAME (t
, j
))
4180 completion_list_add_name (TYPE_FIELD_NAME (t
, j
),
4181 sym_text
, sym_text_len
, text
, word
);
4185 /* Type of the user_data argument passed to add_macro_name or
4186 expand_partial_symbol_name. The contents are simply whatever is
4187 needed by completion_list_add_name. */
4188 struct add_name_data
4190 const char *sym_text
;
4196 /* A callback used with macro_for_each and macro_for_each_in_scope.
4197 This adds a macro's name to the current completion list. */
4200 add_macro_name (const char *name
, const struct macro_definition
*ignore
,
4201 struct macro_source_file
*ignore2
, int ignore3
,
4204 struct add_name_data
*datum
= (struct add_name_data
*) user_data
;
4206 completion_list_add_name ((char *) name
,
4207 datum
->sym_text
, datum
->sym_text_len
,
4208 datum
->text
, datum
->word
);
4211 /* A callback for expand_partial_symbol_names. */
4214 expand_partial_symbol_name (const char *name
, void *user_data
)
4216 struct add_name_data
*datum
= (struct add_name_data
*) user_data
;
4218 return compare_symbol_name (name
, datum
->sym_text
, datum
->sym_text_len
);
4222 default_make_symbol_completion_list_break_on (const char *text
,
4224 const char *break_on
,
4225 enum type_code code
)
4227 /* Problem: All of the symbols have to be copied because readline
4228 frees them. I'm not going to worry about this; hopefully there
4229 won't be that many. */
4233 struct minimal_symbol
*msymbol
;
4234 struct objfile
*objfile
;
4236 const struct block
*surrounding_static_block
, *surrounding_global_block
;
4237 struct block_iterator iter
;
4238 /* The symbol we are completing on. Points in same buffer as text. */
4239 const char *sym_text
;
4240 /* Length of sym_text. */
4242 struct add_name_data datum
;
4243 struct cleanup
*back_to
;
4245 /* Now look for the symbol we are supposed to complete on. */
4249 const char *quote_pos
= NULL
;
4251 /* First see if this is a quoted string. */
4253 for (p
= text
; *p
!= '\0'; ++p
)
4255 if (quote_found
!= '\0')
4257 if (*p
== quote_found
)
4258 /* Found close quote. */
4260 else if (*p
== '\\' && p
[1] == quote_found
)
4261 /* A backslash followed by the quote character
4262 doesn't end the string. */
4265 else if (*p
== '\'' || *p
== '"')
4271 if (quote_found
== '\'')
4272 /* A string within single quotes can be a symbol, so complete on it. */
4273 sym_text
= quote_pos
+ 1;
4274 else if (quote_found
== '"')
4275 /* A double-quoted string is never a symbol, nor does it make sense
4276 to complete it any other way. */
4282 /* It is not a quoted string. Break it based on the characters
4283 which are in symbols. */
4286 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0'
4287 || p
[-1] == ':' || strchr (break_on
, p
[-1]) != NULL
)
4296 sym_text_len
= strlen (sym_text
);
4298 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4300 if (current_language
->la_language
== language_cplus
4301 || current_language
->la_language
== language_java
4302 || current_language
->la_language
== language_fortran
)
4304 /* These languages may have parameters entered by user but they are never
4305 present in the partial symbol tables. */
4307 const char *cs
= memchr (sym_text
, '(', sym_text_len
);
4310 sym_text_len
= cs
- sym_text
;
4312 gdb_assert (sym_text
[sym_text_len
] == '\0' || sym_text
[sym_text_len
] == '(');
4315 back_to
= make_cleanup (do_free_completion_list
, &return_val
);
4317 datum
.sym_text
= sym_text
;
4318 datum
.sym_text_len
= sym_text_len
;
4322 /* Look through the partial symtabs for all symbols which begin
4323 by matching SYM_TEXT. Expand all CUs that you find to the list.
4324 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4325 expand_partial_symbol_names (expand_partial_symbol_name
, &datum
);
4327 /* At this point scan through the misc symbol vectors and add each
4328 symbol you find to the list. Eventually we want to ignore
4329 anything that isn't a text symbol (everything else will be
4330 handled by the psymtab code above). */
4332 if (code
== TYPE_CODE_UNDEF
)
4334 ALL_MSYMBOLS (objfile
, msymbol
)
4337 COMPLETION_LIST_ADD_SYMBOL (msymbol
, sym_text
, sym_text_len
, text
,
4340 completion_list_objc_symbol (msymbol
, sym_text
, sym_text_len
, text
,
4345 /* Search upwards from currently selected frame (so that we can
4346 complete on local vars). Also catch fields of types defined in
4347 this places which match our text string. Only complete on types
4348 visible from current context. */
4350 b
= get_selected_block (0);
4351 surrounding_static_block
= block_static_block (b
);
4352 surrounding_global_block
= block_global_block (b
);
4353 if (surrounding_static_block
!= NULL
)
4354 while (b
!= surrounding_static_block
)
4358 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4360 if (code
== TYPE_CODE_UNDEF
)
4362 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
,
4364 completion_list_add_fields (sym
, sym_text
, sym_text_len
, text
,
4367 else if (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
4368 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
)
4369 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
,
4373 /* Stop when we encounter an enclosing function. Do not stop for
4374 non-inlined functions - the locals of the enclosing function
4375 are in scope for a nested function. */
4376 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
4378 b
= BLOCK_SUPERBLOCK (b
);
4381 /* Add fields from the file's types; symbols will be added below. */
4383 if (code
== TYPE_CODE_UNDEF
)
4385 if (surrounding_static_block
!= NULL
)
4386 ALL_BLOCK_SYMBOLS (surrounding_static_block
, iter
, sym
)
4387 completion_list_add_fields (sym
, sym_text
, sym_text_len
, text
, word
);
4389 if (surrounding_global_block
!= NULL
)
4390 ALL_BLOCK_SYMBOLS (surrounding_global_block
, iter
, sym
)
4391 completion_list_add_fields (sym
, sym_text
, sym_text_len
, text
, word
);
4394 /* Go through the symtabs and check the externs and statics for
4395 symbols which match. */
4397 ALL_PRIMARY_SYMTABS (objfile
, s
)
4400 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
);
4401 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4403 if (code
== TYPE_CODE_UNDEF
4404 || (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
4405 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
))
4406 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
, word
);
4410 ALL_PRIMARY_SYMTABS (objfile
, s
)
4413 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), STATIC_BLOCK
);
4414 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4416 if (code
== TYPE_CODE_UNDEF
4417 || (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
4418 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
))
4419 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
, word
);
4423 /* Skip macros if we are completing a struct tag -- arguable but
4424 usually what is expected. */
4425 if (current_language
->la_macro_expansion
== macro_expansion_c
4426 && code
== TYPE_CODE_UNDEF
)
4428 struct macro_scope
*scope
;
4430 /* Add any macros visible in the default scope. Note that this
4431 may yield the occasional wrong result, because an expression
4432 might be evaluated in a scope other than the default. For
4433 example, if the user types "break file:line if <TAB>", the
4434 resulting expression will be evaluated at "file:line" -- but
4435 at there does not seem to be a way to detect this at
4437 scope
= default_macro_scope ();
4440 macro_for_each_in_scope (scope
->file
, scope
->line
,
4441 add_macro_name
, &datum
);
4445 /* User-defined macros are always visible. */
4446 macro_for_each (macro_user_macros
, add_macro_name
, &datum
);
4449 discard_cleanups (back_to
);
4450 return (return_val
);
4454 default_make_symbol_completion_list (const char *text
, const char *word
,
4455 enum type_code code
)
4457 return default_make_symbol_completion_list_break_on (text
, word
, "", code
);
4460 /* Return a vector of all symbols (regardless of class) which begin by
4461 matching TEXT. If the answer is no symbols, then the return value
4465 make_symbol_completion_list (const char *text
, const char *word
)
4467 return current_language
->la_make_symbol_completion_list (text
, word
,
4471 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4472 symbols whose type code is CODE. */
4475 make_symbol_completion_type (const char *text
, const char *word
,
4476 enum type_code code
)
4478 gdb_assert (code
== TYPE_CODE_UNION
4479 || code
== TYPE_CODE_STRUCT
4480 || code
== TYPE_CODE_CLASS
4481 || code
== TYPE_CODE_ENUM
);
4482 return current_language
->la_make_symbol_completion_list (text
, word
, code
);
4485 /* Like make_symbol_completion_list, but suitable for use as a
4486 completion function. */
4489 make_symbol_completion_list_fn (struct cmd_list_element
*ignore
,
4490 const char *text
, const char *word
)
4492 return make_symbol_completion_list (text
, word
);
4495 /* Like make_symbol_completion_list, but returns a list of symbols
4496 defined in a source file FILE. */
4499 make_file_symbol_completion_list (const char *text
, const char *word
,
4500 const char *srcfile
)
4505 struct block_iterator iter
;
4506 /* The symbol we are completing on. Points in same buffer as text. */
4507 const char *sym_text
;
4508 /* Length of sym_text. */
4511 /* Now look for the symbol we are supposed to complete on.
4512 FIXME: This should be language-specific. */
4516 const char *quote_pos
= NULL
;
4518 /* First see if this is a quoted string. */
4520 for (p
= text
; *p
!= '\0'; ++p
)
4522 if (quote_found
!= '\0')
4524 if (*p
== quote_found
)
4525 /* Found close quote. */
4527 else if (*p
== '\\' && p
[1] == quote_found
)
4528 /* A backslash followed by the quote character
4529 doesn't end the string. */
4532 else if (*p
== '\'' || *p
== '"')
4538 if (quote_found
== '\'')
4539 /* A string within single quotes can be a symbol, so complete on it. */
4540 sym_text
= quote_pos
+ 1;
4541 else if (quote_found
== '"')
4542 /* A double-quoted string is never a symbol, nor does it make sense
4543 to complete it any other way. */
4549 /* Not a quoted string. */
4550 sym_text
= language_search_unquoted_string (text
, p
);
4554 sym_text_len
= strlen (sym_text
);
4558 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4560 s
= lookup_symtab (srcfile
);
4563 /* Maybe they typed the file with leading directories, while the
4564 symbol tables record only its basename. */
4565 const char *tail
= lbasename (srcfile
);
4568 s
= lookup_symtab (tail
);
4571 /* If we have no symtab for that file, return an empty list. */
4573 return (return_val
);
4575 /* Go through this symtab and check the externs and statics for
4576 symbols which match. */
4578 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), GLOBAL_BLOCK
);
4579 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4581 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
, word
);
4584 b
= BLOCKVECTOR_BLOCK (BLOCKVECTOR (s
), STATIC_BLOCK
);
4585 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4587 COMPLETION_LIST_ADD_SYMBOL (sym
, sym_text
, sym_text_len
, text
, word
);
4590 return (return_val
);
4593 /* A helper function for make_source_files_completion_list. It adds
4594 another file name to a list of possible completions, growing the
4595 list as necessary. */
4598 add_filename_to_list (const char *fname
, const char *text
, const char *word
,
4599 VEC (char_ptr
) **list
)
4602 size_t fnlen
= strlen (fname
);
4606 /* Return exactly fname. */
4607 new = xmalloc (fnlen
+ 5);
4608 strcpy (new, fname
);
4610 else if (word
> text
)
4612 /* Return some portion of fname. */
4613 new = xmalloc (fnlen
+ 5);
4614 strcpy (new, fname
+ (word
- text
));
4618 /* Return some of TEXT plus fname. */
4619 new = xmalloc (fnlen
+ (text
- word
) + 5);
4620 strncpy (new, word
, text
- word
);
4621 new[text
- word
] = '\0';
4622 strcat (new, fname
);
4624 VEC_safe_push (char_ptr
, *list
, new);
4628 not_interesting_fname (const char *fname
)
4630 static const char *illegal_aliens
[] = {
4631 "_globals_", /* inserted by coff_symtab_read */
4636 for (i
= 0; illegal_aliens
[i
]; i
++)
4638 if (filename_cmp (fname
, illegal_aliens
[i
]) == 0)
4644 /* An object of this type is passed as the user_data argument to
4645 map_partial_symbol_filenames. */
4646 struct add_partial_filename_data
4648 struct filename_seen_cache
*filename_seen_cache
;
4652 VEC (char_ptr
) **list
;
4655 /* A callback for map_partial_symbol_filenames. */
4658 maybe_add_partial_symtab_filename (const char *filename
, const char *fullname
,
4661 struct add_partial_filename_data
*data
= user_data
;
4663 if (not_interesting_fname (filename
))
4665 if (!filename_seen (data
->filename_seen_cache
, filename
, 1)
4666 && filename_ncmp (filename
, data
->text
, data
->text_len
) == 0)
4668 /* This file matches for a completion; add it to the
4669 current list of matches. */
4670 add_filename_to_list (filename
, data
->text
, data
->word
, data
->list
);
4674 const char *base_name
= lbasename (filename
);
4676 if (base_name
!= filename
4677 && !filename_seen (data
->filename_seen_cache
, base_name
, 1)
4678 && filename_ncmp (base_name
, data
->text
, data
->text_len
) == 0)
4679 add_filename_to_list (base_name
, data
->text
, data
->word
, data
->list
);
4683 /* Return a vector of all source files whose names begin with matching
4684 TEXT. The file names are looked up in the symbol tables of this
4685 program. If the answer is no matchess, then the return value is
4689 make_source_files_completion_list (const char *text
, const char *word
)
4692 struct objfile
*objfile
;
4693 size_t text_len
= strlen (text
);
4694 VEC (char_ptr
) *list
= NULL
;
4695 const char *base_name
;
4696 struct add_partial_filename_data datum
;
4697 struct filename_seen_cache
*filename_seen_cache
;
4698 struct cleanup
*back_to
, *cache_cleanup
;
4700 if (!have_full_symbols () && !have_partial_symbols ())
4703 back_to
= make_cleanup (do_free_completion_list
, &list
);
4705 filename_seen_cache
= create_filename_seen_cache ();
4706 cache_cleanup
= make_cleanup (delete_filename_seen_cache
,
4707 filename_seen_cache
);
4709 ALL_SYMTABS (objfile
, s
)
4711 if (not_interesting_fname (s
->filename
))
4713 if (!filename_seen (filename_seen_cache
, s
->filename
, 1)
4714 && filename_ncmp (s
->filename
, text
, text_len
) == 0)
4716 /* This file matches for a completion; add it to the current
4718 add_filename_to_list (s
->filename
, text
, word
, &list
);
4722 /* NOTE: We allow the user to type a base name when the
4723 debug info records leading directories, but not the other
4724 way around. This is what subroutines of breakpoint
4725 command do when they parse file names. */
4726 base_name
= lbasename (s
->filename
);
4727 if (base_name
!= s
->filename
4728 && !filename_seen (filename_seen_cache
, base_name
, 1)
4729 && filename_ncmp (base_name
, text
, text_len
) == 0)
4730 add_filename_to_list (base_name
, text
, word
, &list
);
4734 datum
.filename_seen_cache
= filename_seen_cache
;
4737 datum
.text_len
= text_len
;
4739 map_partial_symbol_filenames (maybe_add_partial_symtab_filename
, &datum
,
4740 0 /*need_fullname*/);
4742 do_cleanups (cache_cleanup
);
4743 discard_cleanups (back_to
);
4748 /* Determine if PC is in the prologue of a function. The prologue is the area
4749 between the first instruction of a function, and the first executable line.
4750 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4752 If non-zero, func_start is where we think the prologue starts, possibly
4753 by previous examination of symbol table information. */
4756 in_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
, CORE_ADDR func_start
)
4758 struct symtab_and_line sal
;
4759 CORE_ADDR func_addr
, func_end
;
4761 /* We have several sources of information we can consult to figure
4763 - Compilers usually emit line number info that marks the prologue
4764 as its own "source line". So the ending address of that "line"
4765 is the end of the prologue. If available, this is the most
4767 - The minimal symbols and partial symbols, which can usually tell
4768 us the starting and ending addresses of a function.
4769 - If we know the function's start address, we can call the
4770 architecture-defined gdbarch_skip_prologue function to analyze the
4771 instruction stream and guess where the prologue ends.
4772 - Our `func_start' argument; if non-zero, this is the caller's
4773 best guess as to the function's entry point. At the time of
4774 this writing, handle_inferior_event doesn't get this right, so
4775 it should be our last resort. */
4777 /* Consult the partial symbol table, to find which function
4779 if (! find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
4781 CORE_ADDR prologue_end
;
4783 /* We don't even have minsym information, so fall back to using
4784 func_start, if given. */
4786 return 1; /* We *might* be in a prologue. */
4788 prologue_end
= gdbarch_skip_prologue (gdbarch
, func_start
);
4790 return func_start
<= pc
&& pc
< prologue_end
;
4793 /* If we have line number information for the function, that's
4794 usually pretty reliable. */
4795 sal
= find_pc_line (func_addr
, 0);
4797 /* Now sal describes the source line at the function's entry point,
4798 which (by convention) is the prologue. The end of that "line",
4799 sal.end, is the end of the prologue.
4801 Note that, for functions whose source code is all on a single
4802 line, the line number information doesn't always end up this way.
4803 So we must verify that our purported end-of-prologue address is
4804 *within* the function, not at its start or end. */
4806 || sal
.end
<= func_addr
4807 || func_end
<= sal
.end
)
4809 /* We don't have any good line number info, so use the minsym
4810 information, together with the architecture-specific prologue
4812 CORE_ADDR prologue_end
= gdbarch_skip_prologue (gdbarch
, func_addr
);
4814 return func_addr
<= pc
&& pc
< prologue_end
;
4817 /* We have line number info, and it looks good. */
4818 return func_addr
<= pc
&& pc
< sal
.end
;
4821 /* Given PC at the function's start address, attempt to find the
4822 prologue end using SAL information. Return zero if the skip fails.
4824 A non-optimized prologue traditionally has one SAL for the function
4825 and a second for the function body. A single line function has
4826 them both pointing at the same line.
4828 An optimized prologue is similar but the prologue may contain
4829 instructions (SALs) from the instruction body. Need to skip those
4830 while not getting into the function body.
4832 The functions end point and an increasing SAL line are used as
4833 indicators of the prologue's endpoint.
4835 This code is based on the function refine_prologue_limit
4839 skip_prologue_using_sal (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
)
4841 struct symtab_and_line prologue_sal
;
4846 /* Get an initial range for the function. */
4847 find_pc_partial_function (func_addr
, NULL
, &start_pc
, &end_pc
);
4848 start_pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
4850 prologue_sal
= find_pc_line (start_pc
, 0);
4851 if (prologue_sal
.line
!= 0)
4853 /* For languages other than assembly, treat two consecutive line
4854 entries at the same address as a zero-instruction prologue.
4855 The GNU assembler emits separate line notes for each instruction
4856 in a multi-instruction macro, but compilers generally will not
4858 if (prologue_sal
.symtab
->language
!= language_asm
)
4860 struct linetable
*linetable
= LINETABLE (prologue_sal
.symtab
);
4863 /* Skip any earlier lines, and any end-of-sequence marker
4864 from a previous function. */
4865 while (linetable
->item
[idx
].pc
!= prologue_sal
.pc
4866 || linetable
->item
[idx
].line
== 0)
4869 if (idx
+1 < linetable
->nitems
4870 && linetable
->item
[idx
+1].line
!= 0
4871 && linetable
->item
[idx
+1].pc
== start_pc
)
4875 /* If there is only one sal that covers the entire function,
4876 then it is probably a single line function, like
4878 if (prologue_sal
.end
>= end_pc
)
4881 while (prologue_sal
.end
< end_pc
)
4883 struct symtab_and_line sal
;
4885 sal
= find_pc_line (prologue_sal
.end
, 0);
4888 /* Assume that a consecutive SAL for the same (or larger)
4889 line mark the prologue -> body transition. */
4890 if (sal
.line
>= prologue_sal
.line
)
4892 /* Likewise if we are in a different symtab altogether
4893 (e.g. within a file included via #include). */
4894 if (sal
.symtab
!= prologue_sal
.symtab
)
4897 /* The line number is smaller. Check that it's from the
4898 same function, not something inlined. If it's inlined,
4899 then there is no point comparing the line numbers. */
4900 bl
= block_for_pc (prologue_sal
.end
);
4903 if (block_inlined_p (bl
))
4905 if (BLOCK_FUNCTION (bl
))
4910 bl
= BLOCK_SUPERBLOCK (bl
);
4915 /* The case in which compiler's optimizer/scheduler has
4916 moved instructions into the prologue. We look ahead in
4917 the function looking for address ranges whose
4918 corresponding line number is less the first one that we
4919 found for the function. This is more conservative then
4920 refine_prologue_limit which scans a large number of SALs
4921 looking for any in the prologue. */
4926 if (prologue_sal
.end
< end_pc
)
4927 /* Return the end of this line, or zero if we could not find a
4929 return prologue_sal
.end
;
4931 /* Don't return END_PC, which is past the end of the function. */
4932 return prologue_sal
.pc
;
4936 static char *name_of_main
;
4937 enum language language_of_main
= language_unknown
;
4940 set_main_name (const char *name
)
4942 if (name_of_main
!= NULL
)
4944 xfree (name_of_main
);
4945 name_of_main
= NULL
;
4946 language_of_main
= language_unknown
;
4950 name_of_main
= xstrdup (name
);
4951 language_of_main
= language_unknown
;
4955 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4959 find_main_name (void)
4961 const char *new_main_name
;
4963 /* Try to see if the main procedure is in Ada. */
4964 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4965 be to add a new method in the language vector, and call this
4966 method for each language until one of them returns a non-empty
4967 name. This would allow us to remove this hard-coded call to
4968 an Ada function. It is not clear that this is a better approach
4969 at this point, because all methods need to be written in a way
4970 such that false positives never be returned. For instance, it is
4971 important that a method does not return a wrong name for the main
4972 procedure if the main procedure is actually written in a different
4973 language. It is easy to guaranty this with Ada, since we use a
4974 special symbol generated only when the main in Ada to find the name
4975 of the main procedure. It is difficult however to see how this can
4976 be guarantied for languages such as C, for instance. This suggests
4977 that order of call for these methods becomes important, which means
4978 a more complicated approach. */
4979 new_main_name
= ada_main_name ();
4980 if (new_main_name
!= NULL
)
4982 set_main_name (new_main_name
);
4986 new_main_name
= go_main_name ();
4987 if (new_main_name
!= NULL
)
4989 set_main_name (new_main_name
);
4993 new_main_name
= pascal_main_name ();
4994 if (new_main_name
!= NULL
)
4996 set_main_name (new_main_name
);
5000 /* The languages above didn't identify the name of the main procedure.
5001 Fallback to "main". */
5002 set_main_name ("main");
5008 if (name_of_main
== NULL
)
5011 return name_of_main
;
5014 /* Handle ``executable_changed'' events for the symtab module. */
5017 symtab_observer_executable_changed (void)
5019 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5020 set_main_name (NULL
);
5023 /* Return 1 if the supplied producer string matches the ARM RealView
5024 compiler (armcc). */
5027 producer_is_realview (const char *producer
)
5029 static const char *const arm_idents
[] = {
5030 "ARM C Compiler, ADS",
5031 "Thumb C Compiler, ADS",
5032 "ARM C++ Compiler, ADS",
5033 "Thumb C++ Compiler, ADS",
5034 "ARM/Thumb C/C++ Compiler, RVCT",
5035 "ARM C/C++ Compiler, RVCT"
5039 if (producer
== NULL
)
5042 for (i
= 0; i
< ARRAY_SIZE (arm_idents
); i
++)
5043 if (strncmp (producer
, arm_idents
[i
], strlen (arm_idents
[i
])) == 0)
5051 /* The next index to hand out in response to a registration request. */
5053 static int next_aclass_value
= LOC_FINAL_VALUE
;
5055 /* The maximum number of "aclass" registrations we support. This is
5056 constant for convenience. */
5057 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5059 /* The objects representing the various "aclass" values. The elements
5060 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5061 elements are those registered at gdb initialization time. */
5063 static struct symbol_impl symbol_impl
[MAX_SYMBOL_IMPLS
];
5065 /* The globally visible pointer. This is separate from 'symbol_impl'
5066 so that it can be const. */
5068 const struct symbol_impl
*symbol_impls
= &symbol_impl
[0];
5070 /* Make sure we saved enough room in struct symbol. */
5072 gdb_static_assert (MAX_SYMBOL_IMPLS
<= (1 << SYMBOL_ACLASS_BITS
));
5074 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5075 is the ops vector associated with this index. This returns the new
5076 index, which should be used as the aclass_index field for symbols
5080 register_symbol_computed_impl (enum address_class aclass
,
5081 const struct symbol_computed_ops
*ops
)
5083 int result
= next_aclass_value
++;
5085 gdb_assert (aclass
== LOC_COMPUTED
);
5086 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
5087 symbol_impl
[result
].aclass
= aclass
;
5088 symbol_impl
[result
].ops_computed
= ops
;
5090 /* Sanity check OPS. */
5091 gdb_assert (ops
!= NULL
);
5092 gdb_assert (ops
->tracepoint_var_ref
!= NULL
);
5093 gdb_assert (ops
->describe_location
!= NULL
);
5094 gdb_assert (ops
->read_needs_frame
!= NULL
);
5095 gdb_assert (ops
->read_variable
!= NULL
);
5100 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5101 OPS is the ops vector associated with this index. This returns the
5102 new index, which should be used as the aclass_index field for symbols
5106 register_symbol_block_impl (enum address_class aclass
,
5107 const struct symbol_block_ops
*ops
)
5109 int result
= next_aclass_value
++;
5111 gdb_assert (aclass
== LOC_BLOCK
);
5112 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
5113 symbol_impl
[result
].aclass
= aclass
;
5114 symbol_impl
[result
].ops_block
= ops
;
5116 /* Sanity check OPS. */
5117 gdb_assert (ops
!= NULL
);
5118 gdb_assert (ops
->find_frame_base_location
!= NULL
);
5123 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5124 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5125 this index. This returns the new index, which should be used as
5126 the aclass_index field for symbols of this type. */
5129 register_symbol_register_impl (enum address_class aclass
,
5130 const struct symbol_register_ops
*ops
)
5132 int result
= next_aclass_value
++;
5134 gdb_assert (aclass
== LOC_REGISTER
|| aclass
== LOC_REGPARM_ADDR
);
5135 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
5136 symbol_impl
[result
].aclass
= aclass
;
5137 symbol_impl
[result
].ops_register
= ops
;
5142 /* Initialize elements of 'symbol_impl' for the constants in enum
5146 initialize_ordinary_address_classes (void)
5150 for (i
= 0; i
< LOC_FINAL_VALUE
; ++i
)
5151 symbol_impl
[i
].aclass
= i
;
5156 /* Initialize the symbol SYM. */
5159 initialize_symbol (struct symbol
*sym
)
5161 memset (sym
, 0, sizeof (*sym
));
5162 SYMBOL_SECTION (sym
) = -1;
5165 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5169 allocate_symbol (struct objfile
*objfile
)
5171 struct symbol
*result
;
5173 result
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct symbol
);
5174 SYMBOL_SECTION (result
) = -1;
5179 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5182 struct template_symbol
*
5183 allocate_template_symbol (struct objfile
*objfile
)
5185 struct template_symbol
*result
;
5187 result
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct template_symbol
);
5188 SYMBOL_SECTION (&result
->base
) = -1;
5196 _initialize_symtab (void)
5198 initialize_ordinary_address_classes ();
5200 add_info ("variables", variables_info
, _("\
5201 All global and static variable names, or those matching REGEXP."));
5203 add_com ("whereis", class_info
, variables_info
, _("\
5204 All global and static variable names, or those matching REGEXP."));
5206 add_info ("functions", functions_info
,
5207 _("All function names, or those matching REGEXP."));
5209 /* FIXME: This command has at least the following problems:
5210 1. It prints builtin types (in a very strange and confusing fashion).
5211 2. It doesn't print right, e.g. with
5212 typedef struct foo *FOO
5213 type_print prints "FOO" when we want to make it (in this situation)
5214 print "struct foo *".
5215 I also think "ptype" or "whatis" is more likely to be useful (but if
5216 there is much disagreement "info types" can be fixed). */
5217 add_info ("types", types_info
,
5218 _("All type names, or those matching REGEXP."));
5220 add_info ("sources", sources_info
,
5221 _("Source files in the program."));
5223 add_com ("rbreak", class_breakpoint
, rbreak_command
,
5224 _("Set a breakpoint for all functions matching REGEXP."));
5228 add_com ("lf", class_info
, sources_info
,
5229 _("Source files in the program"));
5230 add_com ("lg", class_info
, variables_info
, _("\
5231 All global and static variable names, or those matching REGEXP."));
5234 add_setshow_enum_cmd ("multiple-symbols", no_class
,
5235 multiple_symbols_modes
, &multiple_symbols_mode
,
5237 Set the debugger behavior when more than one symbol are possible matches\n\
5238 in an expression."), _("\
5239 Show how the debugger handles ambiguities in expressions."), _("\
5240 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5241 NULL
, NULL
, &setlist
, &showlist
);
5243 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure
,
5244 &basenames_may_differ
, _("\
5245 Set whether a source file may have multiple base names."), _("\
5246 Show whether a source file may have multiple base names."), _("\
5247 (A \"base name\" is the name of a file with the directory part removed.\n\
5248 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5249 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5250 before comparing them. Canonicalization is an expensive operation,\n\
5251 but it allows the same file be known by more than one base name.\n\
5252 If not set (the default), all source files are assumed to have just\n\
5253 one base name, and gdb will do file name comparisons more efficiently."),
5255 &setlist
, &showlist
);
5257 add_setshow_boolean_cmd ("symtab-create", no_class
, &symtab_create_debug
,
5258 _("Set debugging of symbol table creation."),
5259 _("Show debugging of symbol table creation."), _("\
5260 When enabled, debugging messages are printed when building symbol tables."),
5263 &setdebuglist
, &showdebuglist
);
5265 observer_attach_executable_changed (symtab_observer_executable_changed
);