binutils/
[binutils-gdb.git] / gdb / linux-nat.c
blob90638e20dfeba3ffc1d454882fe2fed3f9cd8f2e
1 /* GNU/Linux native-dependent code common to multiple platforms.
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
25 #include "gdb_string.h"
26 #include "gdb_wait.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
29 #include <unistd.h>
30 #include <sys/syscall.h>
31 #endif
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include "gdbthread.h" /* for struct thread_info etc. */
50 #include "gdb_stat.h" /* for struct stat */
51 #include <fcntl.h> /* for O_RDONLY */
52 #include "inf-loop.h"
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include <pwd.h>
56 #include <sys/types.h>
57 #include "gdb_dirent.h"
58 #include "xml-support.h"
59 #include "terminal.h"
60 #include <sys/vfs.h>
61 #include "solib.h"
62 #include "linux-osdata.h"
63 #include "linux-tdep.h"
64 #include "symfile.h"
65 #include "agent.h"
66 #include "tracepoint.h"
67 #include "exceptions.h"
68 #include "linux-ptrace.h"
69 #include "buffer.h"
70 #include "target-descriptions.h"
71 #include "filestuff.h"
73 #ifndef SPUFS_MAGIC
74 #define SPUFS_MAGIC 0x23c9b64e
75 #endif
77 #ifdef HAVE_PERSONALITY
78 # include <sys/personality.h>
79 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
80 # define ADDR_NO_RANDOMIZE 0x0040000
81 # endif
82 #endif /* HAVE_PERSONALITY */
84 /* This comment documents high-level logic of this file.
86 Waiting for events in sync mode
87 ===============================
89 When waiting for an event in a specific thread, we just use waitpid, passing
90 the specific pid, and not passing WNOHANG.
92 When waiting for an event in all threads, waitpid is not quite good. Prior to
93 version 2.4, Linux can either wait for event in main thread, or in secondary
94 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
95 miss an event. The solution is to use non-blocking waitpid, together with
96 sigsuspend. First, we use non-blocking waitpid to get an event in the main
97 process, if any. Second, we use non-blocking waitpid with the __WCLONED
98 flag to check for events in cloned processes. If nothing is found, we use
99 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
100 happened to a child process -- and SIGCHLD will be delivered both for events
101 in main debugged process and in cloned processes. As soon as we know there's
102 an event, we get back to calling nonblocking waitpid with and without
103 __WCLONED.
105 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
106 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
107 blocked, the signal becomes pending and sigsuspend immediately
108 notices it and returns.
110 Waiting for events in async mode
111 ================================
113 In async mode, GDB should always be ready to handle both user input
114 and target events, so neither blocking waitpid nor sigsuspend are
115 viable options. Instead, we should asynchronously notify the GDB main
116 event loop whenever there's an unprocessed event from the target. We
117 detect asynchronous target events by handling SIGCHLD signals. To
118 notify the event loop about target events, the self-pipe trick is used
119 --- a pipe is registered as waitable event source in the event loop,
120 the event loop select/poll's on the read end of this pipe (as well on
121 other event sources, e.g., stdin), and the SIGCHLD handler writes a
122 byte to this pipe. This is more portable than relying on
123 pselect/ppoll, since on kernels that lack those syscalls, libc
124 emulates them with select/poll+sigprocmask, and that is racy
125 (a.k.a. plain broken).
127 Obviously, if we fail to notify the event loop if there's a target
128 event, it's bad. OTOH, if we notify the event loop when there's no
129 event from the target, linux_nat_wait will detect that there's no real
130 event to report, and return event of type TARGET_WAITKIND_IGNORE.
131 This is mostly harmless, but it will waste time and is better avoided.
133 The main design point is that every time GDB is outside linux-nat.c,
134 we have a SIGCHLD handler installed that is called when something
135 happens to the target and notifies the GDB event loop. Whenever GDB
136 core decides to handle the event, and calls into linux-nat.c, we
137 process things as in sync mode, except that the we never block in
138 sigsuspend.
140 While processing an event, we may end up momentarily blocked in
141 waitpid calls. Those waitpid calls, while blocking, are guarantied to
142 return quickly. E.g., in all-stop mode, before reporting to the core
143 that an LWP hit a breakpoint, all LWPs are stopped by sending them
144 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
145 Note that this is different from blocking indefinitely waiting for the
146 next event --- here, we're already handling an event.
148 Use of signals
149 ==============
151 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
152 signal is not entirely significant; we just need for a signal to be delivered,
153 so that we can intercept it. SIGSTOP's advantage is that it can not be
154 blocked. A disadvantage is that it is not a real-time signal, so it can only
155 be queued once; we do not keep track of other sources of SIGSTOP.
157 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
158 use them, because they have special behavior when the signal is generated -
159 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
160 kills the entire thread group.
162 A delivered SIGSTOP would stop the entire thread group, not just the thread we
163 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
164 cancel it (by PTRACE_CONT without passing SIGSTOP).
166 We could use a real-time signal instead. This would solve those problems; we
167 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
168 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
169 generates it, and there are races with trying to find a signal that is not
170 blocked. */
172 #ifndef O_LARGEFILE
173 #define O_LARGEFILE 0
174 #endif
176 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
177 the use of the multi-threaded target. */
178 static struct target_ops *linux_ops;
179 static struct target_ops linux_ops_saved;
181 /* The method to call, if any, when a new thread is attached. */
182 static void (*linux_nat_new_thread) (struct lwp_info *);
184 /* The method to call, if any, when a new fork is attached. */
185 static linux_nat_new_fork_ftype *linux_nat_new_fork;
187 /* The method to call, if any, when a process is no longer
188 attached. */
189 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
191 /* Hook to call prior to resuming a thread. */
192 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
194 /* The method to call, if any, when the siginfo object needs to be
195 converted between the layout returned by ptrace, and the layout in
196 the architecture of the inferior. */
197 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
198 gdb_byte *,
199 int);
201 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
202 Called by our to_xfer_partial. */
203 static LONGEST (*super_xfer_partial) (struct target_ops *,
204 enum target_object,
205 const char *, gdb_byte *,
206 const gdb_byte *,
207 ULONGEST, LONGEST);
209 static unsigned int debug_linux_nat;
210 static void
211 show_debug_linux_nat (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
214 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
215 value);
218 struct simple_pid_list
220 int pid;
221 int status;
222 struct simple_pid_list *next;
224 struct simple_pid_list *stopped_pids;
226 /* Async mode support. */
228 /* The read/write ends of the pipe registered as waitable file in the
229 event loop. */
230 static int linux_nat_event_pipe[2] = { -1, -1 };
232 /* Flush the event pipe. */
234 static void
235 async_file_flush (void)
237 int ret;
238 char buf;
242 ret = read (linux_nat_event_pipe[0], &buf, 1);
244 while (ret >= 0 || (ret == -1 && errno == EINTR));
247 /* Put something (anything, doesn't matter what, or how much) in event
248 pipe, so that the select/poll in the event-loop realizes we have
249 something to process. */
251 static void
252 async_file_mark (void)
254 int ret;
256 /* It doesn't really matter what the pipe contains, as long we end
257 up with something in it. Might as well flush the previous
258 left-overs. */
259 async_file_flush ();
263 ret = write (linux_nat_event_pipe[1], "+", 1);
265 while (ret == -1 && errno == EINTR);
267 /* Ignore EAGAIN. If the pipe is full, the event loop will already
268 be awakened anyway. */
271 static void linux_nat_async (void (*callback)
272 (enum inferior_event_type event_type,
273 void *context),
274 void *context);
275 static int kill_lwp (int lwpid, int signo);
277 static int stop_callback (struct lwp_info *lp, void *data);
279 static void block_child_signals (sigset_t *prev_mask);
280 static void restore_child_signals_mask (sigset_t *prev_mask);
282 struct lwp_info;
283 static struct lwp_info *add_lwp (ptid_t ptid);
284 static void purge_lwp_list (int pid);
285 static void delete_lwp (ptid_t ptid);
286 static struct lwp_info *find_lwp_pid (ptid_t ptid);
289 /* Trivial list manipulation functions to keep track of a list of
290 new stopped processes. */
291 static void
292 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
294 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
296 new_pid->pid = pid;
297 new_pid->status = status;
298 new_pid->next = *listp;
299 *listp = new_pid;
302 static int
303 in_pid_list_p (struct simple_pid_list *list, int pid)
305 struct simple_pid_list *p;
307 for (p = list; p != NULL; p = p->next)
308 if (p->pid == pid)
309 return 1;
310 return 0;
313 static int
314 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
316 struct simple_pid_list **p;
318 for (p = listp; *p != NULL; p = &(*p)->next)
319 if ((*p)->pid == pid)
321 struct simple_pid_list *next = (*p)->next;
323 *statusp = (*p)->status;
324 xfree (*p);
325 *p = next;
326 return 1;
328 return 0;
331 /* Initialize ptrace warnings and check for supported ptrace
332 features given PID. */
334 static void
335 linux_init_ptrace (pid_t pid)
337 linux_enable_event_reporting (pid);
338 linux_ptrace_init_warnings ();
341 static void
342 linux_child_post_attach (int pid)
344 linux_init_ptrace (pid);
347 static void
348 linux_child_post_startup_inferior (ptid_t ptid)
350 linux_init_ptrace (ptid_get_pid (ptid));
353 /* Return the number of known LWPs in the tgid given by PID. */
355 static int
356 num_lwps (int pid)
358 int count = 0;
359 struct lwp_info *lp;
361 for (lp = lwp_list; lp; lp = lp->next)
362 if (ptid_get_pid (lp->ptid) == pid)
363 count++;
365 return count;
368 /* Call delete_lwp with prototype compatible for make_cleanup. */
370 static void
371 delete_lwp_cleanup (void *lp_voidp)
373 struct lwp_info *lp = lp_voidp;
375 delete_lwp (lp->ptid);
378 static int
379 linux_child_follow_fork (struct target_ops *ops, int follow_child,
380 int detach_fork)
382 int has_vforked;
383 int parent_pid, child_pid;
385 has_vforked = (inferior_thread ()->pending_follow.kind
386 == TARGET_WAITKIND_VFORKED);
387 parent_pid = ptid_get_lwp (inferior_ptid);
388 if (parent_pid == 0)
389 parent_pid = ptid_get_pid (inferior_ptid);
390 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
392 if (has_vforked
393 && !non_stop /* Non-stop always resumes both branches. */
394 && (!target_is_async_p () || sync_execution)
395 && !(follow_child || detach_fork || sched_multi))
397 /* The parent stays blocked inside the vfork syscall until the
398 child execs or exits. If we don't let the child run, then
399 the parent stays blocked. If we're telling the parent to run
400 in the foreground, the user will not be able to ctrl-c to get
401 back the terminal, effectively hanging the debug session. */
402 fprintf_filtered (gdb_stderr, _("\
403 Can not resume the parent process over vfork in the foreground while\n\
404 holding the child stopped. Try \"set detach-on-fork\" or \
405 \"set schedule-multiple\".\n"));
406 /* FIXME output string > 80 columns. */
407 return 1;
410 if (! follow_child)
412 struct lwp_info *child_lp = NULL;
414 /* We're already attached to the parent, by default. */
416 /* Detach new forked process? */
417 if (detach_fork)
419 struct cleanup *old_chain;
421 /* Before detaching from the child, remove all breakpoints
422 from it. If we forked, then this has already been taken
423 care of by infrun.c. If we vforked however, any
424 breakpoint inserted in the parent is visible in the
425 child, even those added while stopped in a vfork
426 catchpoint. This will remove the breakpoints from the
427 parent also, but they'll be reinserted below. */
428 if (has_vforked)
430 /* keep breakpoints list in sync. */
431 remove_breakpoints_pid (GET_PID (inferior_ptid));
434 if (info_verbose || debug_linux_nat)
436 target_terminal_ours ();
437 fprintf_filtered (gdb_stdlog,
438 "Detaching after fork from "
439 "child process %d.\n",
440 child_pid);
443 old_chain = save_inferior_ptid ();
444 inferior_ptid = ptid_build (child_pid, child_pid, 0);
446 child_lp = add_lwp (inferior_ptid);
447 child_lp->stopped = 1;
448 child_lp->last_resume_kind = resume_stop;
449 make_cleanup (delete_lwp_cleanup, child_lp);
451 if (linux_nat_prepare_to_resume != NULL)
452 linux_nat_prepare_to_resume (child_lp);
453 ptrace (PTRACE_DETACH, child_pid, 0, 0);
455 do_cleanups (old_chain);
457 else
459 struct inferior *parent_inf, *child_inf;
460 struct cleanup *old_chain;
462 /* Add process to GDB's tables. */
463 child_inf = add_inferior (child_pid);
465 parent_inf = current_inferior ();
466 child_inf->attach_flag = parent_inf->attach_flag;
467 copy_terminal_info (child_inf, parent_inf);
468 child_inf->gdbarch = parent_inf->gdbarch;
469 copy_inferior_target_desc_info (child_inf, parent_inf);
471 old_chain = save_inferior_ptid ();
472 save_current_program_space ();
474 inferior_ptid = ptid_build (child_pid, child_pid, 0);
475 add_thread (inferior_ptid);
476 child_lp = add_lwp (inferior_ptid);
477 child_lp->stopped = 1;
478 child_lp->last_resume_kind = resume_stop;
479 child_inf->symfile_flags = SYMFILE_NO_READ;
481 /* If this is a vfork child, then the address-space is
482 shared with the parent. */
483 if (has_vforked)
485 child_inf->pspace = parent_inf->pspace;
486 child_inf->aspace = parent_inf->aspace;
488 /* The parent will be frozen until the child is done
489 with the shared region. Keep track of the
490 parent. */
491 child_inf->vfork_parent = parent_inf;
492 child_inf->pending_detach = 0;
493 parent_inf->vfork_child = child_inf;
494 parent_inf->pending_detach = 0;
496 else
498 child_inf->aspace = new_address_space ();
499 child_inf->pspace = add_program_space (child_inf->aspace);
500 child_inf->removable = 1;
501 set_current_program_space (child_inf->pspace);
502 clone_program_space (child_inf->pspace, parent_inf->pspace);
504 /* Let the shared library layer (solib-svr4) learn about
505 this new process, relocate the cloned exec, pull in
506 shared libraries, and install the solib event
507 breakpoint. If a "cloned-VM" event was propagated
508 better throughout the core, this wouldn't be
509 required. */
510 solib_create_inferior_hook (0);
513 /* Let the thread_db layer learn about this new process. */
514 check_for_thread_db ();
516 do_cleanups (old_chain);
519 if (has_vforked)
521 struct lwp_info *parent_lp;
522 struct inferior *parent_inf;
524 parent_inf = current_inferior ();
526 /* If we detached from the child, then we have to be careful
527 to not insert breakpoints in the parent until the child
528 is done with the shared memory region. However, if we're
529 staying attached to the child, then we can and should
530 insert breakpoints, so that we can debug it. A
531 subsequent child exec or exit is enough to know when does
532 the child stops using the parent's address space. */
533 parent_inf->waiting_for_vfork_done = detach_fork;
534 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
537 gdb_assert (linux_supports_tracefork () >= 0);
539 if (linux_supports_tracevforkdone ())
541 if (debug_linux_nat)
542 fprintf_unfiltered (gdb_stdlog,
543 "LCFF: waiting for VFORK_DONE on %d\n",
544 parent_pid);
545 parent_lp->stopped = 1;
547 /* We'll handle the VFORK_DONE event like any other
548 event, in target_wait. */
550 else
552 /* We can't insert breakpoints until the child has
553 finished with the shared memory region. We need to
554 wait until that happens. Ideal would be to just
555 call:
556 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
557 - waitpid (parent_pid, &status, __WALL);
558 However, most architectures can't handle a syscall
559 being traced on the way out if it wasn't traced on
560 the way in.
562 We might also think to loop, continuing the child
563 until it exits or gets a SIGTRAP. One problem is
564 that the child might call ptrace with PTRACE_TRACEME.
566 There's no simple and reliable way to figure out when
567 the vforked child will be done with its copy of the
568 shared memory. We could step it out of the syscall,
569 two instructions, let it go, and then single-step the
570 parent once. When we have hardware single-step, this
571 would work; with software single-step it could still
572 be made to work but we'd have to be able to insert
573 single-step breakpoints in the child, and we'd have
574 to insert -just- the single-step breakpoint in the
575 parent. Very awkward.
577 In the end, the best we can do is to make sure it
578 runs for a little while. Hopefully it will be out of
579 range of any breakpoints we reinsert. Usually this
580 is only the single-step breakpoint at vfork's return
581 point. */
583 if (debug_linux_nat)
584 fprintf_unfiltered (gdb_stdlog,
585 "LCFF: no VFORK_DONE "
586 "support, sleeping a bit\n");
588 usleep (10000);
590 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
591 and leave it pending. The next linux_nat_resume call
592 will notice a pending event, and bypasses actually
593 resuming the inferior. */
594 parent_lp->status = 0;
595 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
596 parent_lp->stopped = 1;
598 /* If we're in async mode, need to tell the event loop
599 there's something here to process. */
600 if (target_can_async_p ())
601 async_file_mark ();
605 else
607 struct inferior *parent_inf, *child_inf;
608 struct lwp_info *child_lp;
609 struct program_space *parent_pspace;
611 if (info_verbose || debug_linux_nat)
613 target_terminal_ours ();
614 if (has_vforked)
615 fprintf_filtered (gdb_stdlog,
616 _("Attaching after process %d "
617 "vfork to child process %d.\n"),
618 parent_pid, child_pid);
619 else
620 fprintf_filtered (gdb_stdlog,
621 _("Attaching after process %d "
622 "fork to child process %d.\n"),
623 parent_pid, child_pid);
626 /* Add the new inferior first, so that the target_detach below
627 doesn't unpush the target. */
629 child_inf = add_inferior (child_pid);
631 parent_inf = current_inferior ();
632 child_inf->attach_flag = parent_inf->attach_flag;
633 copy_terminal_info (child_inf, parent_inf);
634 child_inf->gdbarch = parent_inf->gdbarch;
635 copy_inferior_target_desc_info (child_inf, parent_inf);
637 parent_pspace = parent_inf->pspace;
639 /* If we're vforking, we want to hold on to the parent until the
640 child exits or execs. At child exec or exit time we can
641 remove the old breakpoints from the parent and detach or
642 resume debugging it. Otherwise, detach the parent now; we'll
643 want to reuse it's program/address spaces, but we can't set
644 them to the child before removing breakpoints from the
645 parent, otherwise, the breakpoints module could decide to
646 remove breakpoints from the wrong process (since they'd be
647 assigned to the same address space). */
649 if (has_vforked)
651 gdb_assert (child_inf->vfork_parent == NULL);
652 gdb_assert (parent_inf->vfork_child == NULL);
653 child_inf->vfork_parent = parent_inf;
654 child_inf->pending_detach = 0;
655 parent_inf->vfork_child = child_inf;
656 parent_inf->pending_detach = detach_fork;
657 parent_inf->waiting_for_vfork_done = 0;
659 else if (detach_fork)
660 target_detach (NULL, 0);
662 /* Note that the detach above makes PARENT_INF dangling. */
664 /* Add the child thread to the appropriate lists, and switch to
665 this new thread, before cloning the program space, and
666 informing the solib layer about this new process. */
668 inferior_ptid = ptid_build (child_pid, child_pid, 0);
669 add_thread (inferior_ptid);
670 child_lp = add_lwp (inferior_ptid);
671 child_lp->stopped = 1;
672 child_lp->last_resume_kind = resume_stop;
674 /* If this is a vfork child, then the address-space is shared
675 with the parent. If we detached from the parent, then we can
676 reuse the parent's program/address spaces. */
677 if (has_vforked || detach_fork)
679 child_inf->pspace = parent_pspace;
680 child_inf->aspace = child_inf->pspace->aspace;
682 else
684 child_inf->aspace = new_address_space ();
685 child_inf->pspace = add_program_space (child_inf->aspace);
686 child_inf->removable = 1;
687 child_inf->symfile_flags = SYMFILE_NO_READ;
688 set_current_program_space (child_inf->pspace);
689 clone_program_space (child_inf->pspace, parent_pspace);
691 /* Let the shared library layer (solib-svr4) learn about
692 this new process, relocate the cloned exec, pull in
693 shared libraries, and install the solib event breakpoint.
694 If a "cloned-VM" event was propagated better throughout
695 the core, this wouldn't be required. */
696 solib_create_inferior_hook (0);
699 /* Let the thread_db layer learn about this new process. */
700 check_for_thread_db ();
703 return 0;
707 static int
708 linux_child_insert_fork_catchpoint (int pid)
710 return !linux_supports_tracefork ();
713 static int
714 linux_child_remove_fork_catchpoint (int pid)
716 return 0;
719 static int
720 linux_child_insert_vfork_catchpoint (int pid)
722 return !linux_supports_tracefork ();
725 static int
726 linux_child_remove_vfork_catchpoint (int pid)
728 return 0;
731 static int
732 linux_child_insert_exec_catchpoint (int pid)
734 return !linux_supports_tracefork ();
737 static int
738 linux_child_remove_exec_catchpoint (int pid)
740 return 0;
743 static int
744 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
745 int table_size, int *table)
747 if (!linux_supports_tracesysgood ())
748 return 1;
750 /* On GNU/Linux, we ignore the arguments. It means that we only
751 enable the syscall catchpoints, but do not disable them.
753 Also, we do not use the `table' information because we do not
754 filter system calls here. We let GDB do the logic for us. */
755 return 0;
758 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
759 are processes sharing the same VM space. A multi-threaded process
760 is basically a group of such processes. However, such a grouping
761 is almost entirely a user-space issue; the kernel doesn't enforce
762 such a grouping at all (this might change in the future). In
763 general, we'll rely on the threads library (i.e. the GNU/Linux
764 Threads library) to provide such a grouping.
766 It is perfectly well possible to write a multi-threaded application
767 without the assistance of a threads library, by using the clone
768 system call directly. This module should be able to give some
769 rudimentary support for debugging such applications if developers
770 specify the CLONE_PTRACE flag in the clone system call, and are
771 using the Linux kernel 2.4 or above.
773 Note that there are some peculiarities in GNU/Linux that affect
774 this code:
776 - In general one should specify the __WCLONE flag to waitpid in
777 order to make it report events for any of the cloned processes
778 (and leave it out for the initial process). However, if a cloned
779 process has exited the exit status is only reported if the
780 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
781 we cannot use it since GDB must work on older systems too.
783 - When a traced, cloned process exits and is waited for by the
784 debugger, the kernel reassigns it to the original parent and
785 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
786 library doesn't notice this, which leads to the "zombie problem":
787 When debugged a multi-threaded process that spawns a lot of
788 threads will run out of processes, even if the threads exit,
789 because the "zombies" stay around. */
791 /* List of known LWPs. */
792 struct lwp_info *lwp_list;
795 /* Original signal mask. */
796 static sigset_t normal_mask;
798 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
799 _initialize_linux_nat. */
800 static sigset_t suspend_mask;
802 /* Signals to block to make that sigsuspend work. */
803 static sigset_t blocked_mask;
805 /* SIGCHLD action. */
806 struct sigaction sigchld_action;
808 /* Block child signals (SIGCHLD and linux threads signals), and store
809 the previous mask in PREV_MASK. */
811 static void
812 block_child_signals (sigset_t *prev_mask)
814 /* Make sure SIGCHLD is blocked. */
815 if (!sigismember (&blocked_mask, SIGCHLD))
816 sigaddset (&blocked_mask, SIGCHLD);
818 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
821 /* Restore child signals mask, previously returned by
822 block_child_signals. */
824 static void
825 restore_child_signals_mask (sigset_t *prev_mask)
827 sigprocmask (SIG_SETMASK, prev_mask, NULL);
830 /* Mask of signals to pass directly to the inferior. */
831 static sigset_t pass_mask;
833 /* Update signals to pass to the inferior. */
834 static void
835 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
837 int signo;
839 sigemptyset (&pass_mask);
841 for (signo = 1; signo < NSIG; signo++)
843 int target_signo = gdb_signal_from_host (signo);
844 if (target_signo < numsigs && pass_signals[target_signo])
845 sigaddset (&pass_mask, signo);
851 /* Prototypes for local functions. */
852 static int stop_wait_callback (struct lwp_info *lp, void *data);
853 static int linux_thread_alive (ptid_t ptid);
854 static char *linux_child_pid_to_exec_file (int pid);
857 /* Convert wait status STATUS to a string. Used for printing debug
858 messages only. */
860 static char *
861 status_to_str (int status)
863 static char buf[64];
865 if (WIFSTOPPED (status))
867 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
868 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
869 strsignal (SIGTRAP));
870 else
871 snprintf (buf, sizeof (buf), "%s (stopped)",
872 strsignal (WSTOPSIG (status)));
874 else if (WIFSIGNALED (status))
875 snprintf (buf, sizeof (buf), "%s (terminated)",
876 strsignal (WTERMSIG (status)));
877 else
878 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
880 return buf;
883 /* Destroy and free LP. */
885 static void
886 lwp_free (struct lwp_info *lp)
888 xfree (lp->arch_private);
889 xfree (lp);
892 /* Remove all LWPs belong to PID from the lwp list. */
894 static void
895 purge_lwp_list (int pid)
897 struct lwp_info *lp, *lpprev, *lpnext;
899 lpprev = NULL;
901 for (lp = lwp_list; lp; lp = lpnext)
903 lpnext = lp->next;
905 if (ptid_get_pid (lp->ptid) == pid)
907 if (lp == lwp_list)
908 lwp_list = lp->next;
909 else
910 lpprev->next = lp->next;
912 lwp_free (lp);
914 else
915 lpprev = lp;
919 /* Add the LWP specified by PTID to the list. PTID is the first LWP
920 in the process. Return a pointer to the structure describing the
921 new LWP.
923 This differs from add_lwp in that we don't let the arch specific
924 bits know about this new thread. Current clients of this callback
925 take the opportunity to install watchpoints in the new thread, and
926 we shouldn't do that for the first thread. If we're spawning a
927 child ("run"), the thread executes the shell wrapper first, and we
928 shouldn't touch it until it execs the program we want to debug.
929 For "attach", it'd be okay to call the callback, but it's not
930 necessary, because watchpoints can't yet have been inserted into
931 the inferior. */
933 static struct lwp_info *
934 add_initial_lwp (ptid_t ptid)
936 struct lwp_info *lp;
938 gdb_assert (is_lwp (ptid));
940 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
942 memset (lp, 0, sizeof (struct lwp_info));
944 lp->last_resume_kind = resume_continue;
945 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
947 lp->ptid = ptid;
948 lp->core = -1;
950 lp->next = lwp_list;
951 lwp_list = lp;
953 return lp;
956 /* Add the LWP specified by PID to the list. Return a pointer to the
957 structure describing the new LWP. The LWP should already be
958 stopped. */
960 static struct lwp_info *
961 add_lwp (ptid_t ptid)
963 struct lwp_info *lp;
965 lp = add_initial_lwp (ptid);
967 /* Let the arch specific bits know about this new thread. Current
968 clients of this callback take the opportunity to install
969 watchpoints in the new thread. We don't do this for the first
970 thread though. See add_initial_lwp. */
971 if (linux_nat_new_thread != NULL)
972 linux_nat_new_thread (lp);
974 return lp;
977 /* Remove the LWP specified by PID from the list. */
979 static void
980 delete_lwp (ptid_t ptid)
982 struct lwp_info *lp, *lpprev;
984 lpprev = NULL;
986 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
987 if (ptid_equal (lp->ptid, ptid))
988 break;
990 if (!lp)
991 return;
993 if (lpprev)
994 lpprev->next = lp->next;
995 else
996 lwp_list = lp->next;
998 lwp_free (lp);
1001 /* Return a pointer to the structure describing the LWP corresponding
1002 to PID. If no corresponding LWP could be found, return NULL. */
1004 static struct lwp_info *
1005 find_lwp_pid (ptid_t ptid)
1007 struct lwp_info *lp;
1008 int lwp;
1010 if (is_lwp (ptid))
1011 lwp = GET_LWP (ptid);
1012 else
1013 lwp = GET_PID (ptid);
1015 for (lp = lwp_list; lp; lp = lp->next)
1016 if (lwp == GET_LWP (lp->ptid))
1017 return lp;
1019 return NULL;
1022 /* Call CALLBACK with its second argument set to DATA for every LWP in
1023 the list. If CALLBACK returns 1 for a particular LWP, return a
1024 pointer to the structure describing that LWP immediately.
1025 Otherwise return NULL. */
1027 struct lwp_info *
1028 iterate_over_lwps (ptid_t filter,
1029 int (*callback) (struct lwp_info *, void *),
1030 void *data)
1032 struct lwp_info *lp, *lpnext;
1034 for (lp = lwp_list; lp; lp = lpnext)
1036 lpnext = lp->next;
1038 if (ptid_match (lp->ptid, filter))
1040 if ((*callback) (lp, data))
1041 return lp;
1045 return NULL;
1048 /* Update our internal state when changing from one checkpoint to
1049 another indicated by NEW_PTID. We can only switch single-threaded
1050 applications, so we only create one new LWP, and the previous list
1051 is discarded. */
1053 void
1054 linux_nat_switch_fork (ptid_t new_ptid)
1056 struct lwp_info *lp;
1058 purge_lwp_list (GET_PID (inferior_ptid));
1060 lp = add_lwp (new_ptid);
1061 lp->stopped = 1;
1063 /* This changes the thread's ptid while preserving the gdb thread
1064 num. Also changes the inferior pid, while preserving the
1065 inferior num. */
1066 thread_change_ptid (inferior_ptid, new_ptid);
1068 /* We've just told GDB core that the thread changed target id, but,
1069 in fact, it really is a different thread, with different register
1070 contents. */
1071 registers_changed ();
1074 /* Handle the exit of a single thread LP. */
1076 static void
1077 exit_lwp (struct lwp_info *lp)
1079 struct thread_info *th = find_thread_ptid (lp->ptid);
1081 if (th)
1083 if (print_thread_events)
1084 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1086 delete_thread (lp->ptid);
1089 delete_lwp (lp->ptid);
1092 /* Wait for the LWP specified by LP, which we have just attached to.
1093 Returns a wait status for that LWP, to cache. */
1095 static int
1096 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1097 int *signalled)
1099 pid_t new_pid, pid = GET_LWP (ptid);
1100 int status;
1102 if (linux_proc_pid_is_stopped (pid))
1104 if (debug_linux_nat)
1105 fprintf_unfiltered (gdb_stdlog,
1106 "LNPAW: Attaching to a stopped process\n");
1108 /* The process is definitely stopped. It is in a job control
1109 stop, unless the kernel predates the TASK_STOPPED /
1110 TASK_TRACED distinction, in which case it might be in a
1111 ptrace stop. Make sure it is in a ptrace stop; from there we
1112 can kill it, signal it, et cetera.
1114 First make sure there is a pending SIGSTOP. Since we are
1115 already attached, the process can not transition from stopped
1116 to running without a PTRACE_CONT; so we know this signal will
1117 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1118 probably already in the queue (unless this kernel is old
1119 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1120 is not an RT signal, it can only be queued once. */
1121 kill_lwp (pid, SIGSTOP);
1123 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1124 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1125 ptrace (PTRACE_CONT, pid, 0, 0);
1128 /* Make sure the initial process is stopped. The user-level threads
1129 layer might want to poke around in the inferior, and that won't
1130 work if things haven't stabilized yet. */
1131 new_pid = my_waitpid (pid, &status, 0);
1132 if (new_pid == -1 && errno == ECHILD)
1134 if (first)
1135 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1137 /* Try again with __WCLONE to check cloned processes. */
1138 new_pid = my_waitpid (pid, &status, __WCLONE);
1139 *cloned = 1;
1142 gdb_assert (pid == new_pid);
1144 if (!WIFSTOPPED (status))
1146 /* The pid we tried to attach has apparently just exited. */
1147 if (debug_linux_nat)
1148 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1149 pid, status_to_str (status));
1150 return status;
1153 if (WSTOPSIG (status) != SIGSTOP)
1155 *signalled = 1;
1156 if (debug_linux_nat)
1157 fprintf_unfiltered (gdb_stdlog,
1158 "LNPAW: Received %s after attaching\n",
1159 status_to_str (status));
1162 return status;
1165 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1166 the new LWP could not be attached, or 1 if we're already auto
1167 attached to this thread, but haven't processed the
1168 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1169 its existance, without considering it an error. */
1172 lin_lwp_attach_lwp (ptid_t ptid)
1174 struct lwp_info *lp;
1175 int lwpid;
1177 gdb_assert (is_lwp (ptid));
1179 lp = find_lwp_pid (ptid);
1180 lwpid = GET_LWP (ptid);
1182 /* We assume that we're already attached to any LWP that has an id
1183 equal to the overall process id, and to any LWP that is already
1184 in our list of LWPs. If we're not seeing exit events from threads
1185 and we've had PID wraparound since we last tried to stop all threads,
1186 this assumption might be wrong; fortunately, this is very unlikely
1187 to happen. */
1188 if (lwpid != GET_PID (ptid) && lp == NULL)
1190 int status, cloned = 0, signalled = 0;
1192 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1194 if (linux_supports_tracefork ())
1196 /* If we haven't stopped all threads when we get here,
1197 we may have seen a thread listed in thread_db's list,
1198 but not processed the PTRACE_EVENT_CLONE yet. If
1199 that's the case, ignore this new thread, and let
1200 normal event handling discover it later. */
1201 if (in_pid_list_p (stopped_pids, lwpid))
1203 /* We've already seen this thread stop, but we
1204 haven't seen the PTRACE_EVENT_CLONE extended
1205 event yet. */
1206 return 0;
1208 else
1210 int new_pid;
1211 int status;
1213 /* See if we've got a stop for this new child
1214 pending. If so, we're already attached. */
1215 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1216 if (new_pid == -1 && errno == ECHILD)
1217 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1218 if (new_pid != -1)
1220 if (WIFSTOPPED (status))
1221 add_to_pid_list (&stopped_pids, lwpid, status);
1222 return 1;
1227 /* If we fail to attach to the thread, issue a warning,
1228 but continue. One way this can happen is if thread
1229 creation is interrupted; as of Linux kernel 2.6.19, a
1230 bug may place threads in the thread list and then fail
1231 to create them. */
1232 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1233 safe_strerror (errno));
1234 return -1;
1237 if (debug_linux_nat)
1238 fprintf_unfiltered (gdb_stdlog,
1239 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1240 target_pid_to_str (ptid));
1242 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1243 if (!WIFSTOPPED (status))
1244 return 1;
1246 lp = add_lwp (ptid);
1247 lp->stopped = 1;
1248 lp->cloned = cloned;
1249 lp->signalled = signalled;
1250 if (WSTOPSIG (status) != SIGSTOP)
1252 lp->resumed = 1;
1253 lp->status = status;
1256 target_post_attach (GET_LWP (lp->ptid));
1258 if (debug_linux_nat)
1260 fprintf_unfiltered (gdb_stdlog,
1261 "LLAL: waitpid %s received %s\n",
1262 target_pid_to_str (ptid),
1263 status_to_str (status));
1266 else
1268 /* We assume that the LWP representing the original process is
1269 already stopped. Mark it as stopped in the data structure
1270 that the GNU/linux ptrace layer uses to keep track of
1271 threads. Note that this won't have already been done since
1272 the main thread will have, we assume, been stopped by an
1273 attach from a different layer. */
1274 if (lp == NULL)
1275 lp = add_lwp (ptid);
1276 lp->stopped = 1;
1279 lp->last_resume_kind = resume_stop;
1280 return 0;
1283 static void
1284 linux_nat_create_inferior (struct target_ops *ops,
1285 char *exec_file, char *allargs, char **env,
1286 int from_tty)
1288 #ifdef HAVE_PERSONALITY
1289 int personality_orig = 0, personality_set = 0;
1290 #endif /* HAVE_PERSONALITY */
1292 /* The fork_child mechanism is synchronous and calls target_wait, so
1293 we have to mask the async mode. */
1295 #ifdef HAVE_PERSONALITY
1296 if (disable_randomization)
1298 errno = 0;
1299 personality_orig = personality (0xffffffff);
1300 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1302 personality_set = 1;
1303 personality (personality_orig | ADDR_NO_RANDOMIZE);
1305 if (errno != 0 || (personality_set
1306 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1307 warning (_("Error disabling address space randomization: %s"),
1308 safe_strerror (errno));
1310 #endif /* HAVE_PERSONALITY */
1312 /* Make sure we report all signals during startup. */
1313 linux_nat_pass_signals (0, NULL);
1315 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1317 #ifdef HAVE_PERSONALITY
1318 if (personality_set)
1320 errno = 0;
1321 personality (personality_orig);
1322 if (errno != 0)
1323 warning (_("Error restoring address space randomization: %s"),
1324 safe_strerror (errno));
1326 #endif /* HAVE_PERSONALITY */
1329 static void
1330 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1332 struct lwp_info *lp;
1333 int status;
1334 ptid_t ptid;
1335 volatile struct gdb_exception ex;
1337 /* Make sure we report all signals during attach. */
1338 linux_nat_pass_signals (0, NULL);
1340 TRY_CATCH (ex, RETURN_MASK_ERROR)
1342 linux_ops->to_attach (ops, args, from_tty);
1344 if (ex.reason < 0)
1346 pid_t pid = parse_pid_to_attach (args);
1347 struct buffer buffer;
1348 char *message, *buffer_s;
1350 message = xstrdup (ex.message);
1351 make_cleanup (xfree, message);
1353 buffer_init (&buffer);
1354 linux_ptrace_attach_warnings (pid, &buffer);
1356 buffer_grow_str0 (&buffer, "");
1357 buffer_s = buffer_finish (&buffer);
1358 make_cleanup (xfree, buffer_s);
1360 throw_error (ex.error, "%s%s", buffer_s, message);
1363 /* The ptrace base target adds the main thread with (pid,0,0)
1364 format. Decorate it with lwp info. */
1365 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1366 thread_change_ptid (inferior_ptid, ptid);
1368 /* Add the initial process as the first LWP to the list. */
1369 lp = add_initial_lwp (ptid);
1371 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1372 &lp->signalled);
1373 if (!WIFSTOPPED (status))
1375 if (WIFEXITED (status))
1377 int exit_code = WEXITSTATUS (status);
1379 target_terminal_ours ();
1380 target_mourn_inferior ();
1381 if (exit_code == 0)
1382 error (_("Unable to attach: program exited normally."));
1383 else
1384 error (_("Unable to attach: program exited with code %d."),
1385 exit_code);
1387 else if (WIFSIGNALED (status))
1389 enum gdb_signal signo;
1391 target_terminal_ours ();
1392 target_mourn_inferior ();
1394 signo = gdb_signal_from_host (WTERMSIG (status));
1395 error (_("Unable to attach: program terminated with signal "
1396 "%s, %s."),
1397 gdb_signal_to_name (signo),
1398 gdb_signal_to_string (signo));
1401 internal_error (__FILE__, __LINE__,
1402 _("unexpected status %d for PID %ld"),
1403 status, (long) GET_LWP (ptid));
1406 lp->stopped = 1;
1408 /* Save the wait status to report later. */
1409 lp->resumed = 1;
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "LNA: waitpid %ld, saving status %s\n",
1413 (long) GET_PID (lp->ptid), status_to_str (status));
1415 lp->status = status;
1417 if (target_can_async_p ())
1418 target_async (inferior_event_handler, 0);
1421 /* Get pending status of LP. */
1422 static int
1423 get_pending_status (struct lwp_info *lp, int *status)
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1427 /* If we paused threads momentarily, we may have stored pending
1428 events in lp->status or lp->waitstatus (see stop_wait_callback),
1429 and GDB core hasn't seen any signal for those threads.
1430 Otherwise, the last signal reported to the core is found in the
1431 thread object's stop_signal.
1433 There's a corner case that isn't handled here at present. Only
1434 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1435 stop_signal make sense as a real signal to pass to the inferior.
1436 Some catchpoint related events, like
1437 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1438 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1439 those traps are debug API (ptrace in our case) related and
1440 induced; the inferior wouldn't see them if it wasn't being
1441 traced. Hence, we should never pass them to the inferior, even
1442 when set to pass state. Since this corner case isn't handled by
1443 infrun.c when proceeding with a signal, for consistency, neither
1444 do we handle it here (or elsewhere in the file we check for
1445 signal pass state). Normally SIGTRAP isn't set to pass state, so
1446 this is really a corner case. */
1448 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1449 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1450 else if (lp->status)
1451 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1452 else if (non_stop && !is_executing (lp->ptid))
1454 struct thread_info *tp = find_thread_ptid (lp->ptid);
1456 signo = tp->suspend.stop_signal;
1458 else if (!non_stop)
1460 struct target_waitstatus last;
1461 ptid_t last_ptid;
1463 get_last_target_status (&last_ptid, &last);
1465 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1467 struct thread_info *tp = find_thread_ptid (lp->ptid);
1469 signo = tp->suspend.stop_signal;
1473 *status = 0;
1475 if (signo == GDB_SIGNAL_0)
1477 if (debug_linux_nat)
1478 fprintf_unfiltered (gdb_stdlog,
1479 "GPT: lwp %s has no pending signal\n",
1480 target_pid_to_str (lp->ptid));
1482 else if (!signal_pass_state (signo))
1484 if (debug_linux_nat)
1485 fprintf_unfiltered (gdb_stdlog,
1486 "GPT: lwp %s had signal %s, "
1487 "but it is in no pass state\n",
1488 target_pid_to_str (lp->ptid),
1489 gdb_signal_to_string (signo));
1491 else
1493 *status = W_STOPCODE (gdb_signal_to_host (signo));
1495 if (debug_linux_nat)
1496 fprintf_unfiltered (gdb_stdlog,
1497 "GPT: lwp %s has pending signal %s\n",
1498 target_pid_to_str (lp->ptid),
1499 gdb_signal_to_string (signo));
1502 return 0;
1505 static int
1506 detach_callback (struct lwp_info *lp, void *data)
1508 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1510 if (debug_linux_nat && lp->status)
1511 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1512 strsignal (WSTOPSIG (lp->status)),
1513 target_pid_to_str (lp->ptid));
1515 /* If there is a pending SIGSTOP, get rid of it. */
1516 if (lp->signalled)
1518 if (debug_linux_nat)
1519 fprintf_unfiltered (gdb_stdlog,
1520 "DC: Sending SIGCONT to %s\n",
1521 target_pid_to_str (lp->ptid));
1523 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1524 lp->signalled = 0;
1527 /* We don't actually detach from the LWP that has an id equal to the
1528 overall process id just yet. */
1529 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1531 int status = 0;
1533 /* Pass on any pending signal for this LWP. */
1534 get_pending_status (lp, &status);
1536 if (linux_nat_prepare_to_resume != NULL)
1537 linux_nat_prepare_to_resume (lp);
1538 errno = 0;
1539 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1540 WSTOPSIG (status)) < 0)
1541 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1542 safe_strerror (errno));
1544 if (debug_linux_nat)
1545 fprintf_unfiltered (gdb_stdlog,
1546 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1547 target_pid_to_str (lp->ptid),
1548 strsignal (WSTOPSIG (status)));
1550 delete_lwp (lp->ptid);
1553 return 0;
1556 static void
1557 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1559 int pid;
1560 int status;
1561 struct lwp_info *main_lwp;
1563 pid = GET_PID (inferior_ptid);
1565 /* Don't unregister from the event loop, as there may be other
1566 inferiors running. */
1568 /* Stop all threads before detaching. ptrace requires that the
1569 thread is stopped to sucessfully detach. */
1570 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1571 /* ... and wait until all of them have reported back that
1572 they're no longer running. */
1573 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1575 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1577 /* Only the initial process should be left right now. */
1578 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1580 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1582 /* Pass on any pending signal for the last LWP. */
1583 if ((args == NULL || *args == '\0')
1584 && get_pending_status (main_lwp, &status) != -1
1585 && WIFSTOPPED (status))
1587 /* Put the signal number in ARGS so that inf_ptrace_detach will
1588 pass it along with PTRACE_DETACH. */
1589 args = alloca (8);
1590 sprintf (args, "%d", (int) WSTOPSIG (status));
1591 if (debug_linux_nat)
1592 fprintf_unfiltered (gdb_stdlog,
1593 "LND: Sending signal %s to %s\n",
1594 args,
1595 target_pid_to_str (main_lwp->ptid));
1598 if (linux_nat_prepare_to_resume != NULL)
1599 linux_nat_prepare_to_resume (main_lwp);
1600 delete_lwp (main_lwp->ptid);
1602 if (forks_exist_p ())
1604 /* Multi-fork case. The current inferior_ptid is being detached
1605 from, but there are other viable forks to debug. Detach from
1606 the current fork, and context-switch to the first
1607 available. */
1608 linux_fork_detach (args, from_tty);
1610 else
1611 linux_ops->to_detach (ops, args, from_tty);
1614 /* Resume LP. */
1616 static void
1617 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1619 if (lp->stopped)
1621 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1623 if (inf->vfork_child != NULL)
1625 if (debug_linux_nat)
1626 fprintf_unfiltered (gdb_stdlog,
1627 "RC: Not resuming %s (vfork parent)\n",
1628 target_pid_to_str (lp->ptid));
1630 else if (lp->status == 0
1631 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1633 if (debug_linux_nat)
1634 fprintf_unfiltered (gdb_stdlog,
1635 "RC: Resuming sibling %s, %s, %s\n",
1636 target_pid_to_str (lp->ptid),
1637 (signo != GDB_SIGNAL_0
1638 ? strsignal (gdb_signal_to_host (signo))
1639 : "0"),
1640 step ? "step" : "resume");
1642 if (linux_nat_prepare_to_resume != NULL)
1643 linux_nat_prepare_to_resume (lp);
1644 linux_ops->to_resume (linux_ops,
1645 pid_to_ptid (GET_LWP (lp->ptid)),
1646 step, signo);
1647 lp->stopped = 0;
1648 lp->step = step;
1649 lp->stopped_by_watchpoint = 0;
1651 else
1653 if (debug_linux_nat)
1654 fprintf_unfiltered (gdb_stdlog,
1655 "RC: Not resuming sibling %s (has pending)\n",
1656 target_pid_to_str (lp->ptid));
1659 else
1661 if (debug_linux_nat)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "RC: Not resuming sibling %s (not stopped)\n",
1664 target_pid_to_str (lp->ptid));
1668 /* Resume LWP, with the last stop signal, if it is in pass state. */
1670 static int
1671 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1673 enum gdb_signal signo = GDB_SIGNAL_0;
1675 if (lp->stopped)
1677 struct thread_info *thread;
1679 thread = find_thread_ptid (lp->ptid);
1680 if (thread != NULL)
1682 if (signal_pass_state (thread->suspend.stop_signal))
1683 signo = thread->suspend.stop_signal;
1684 thread->suspend.stop_signal = GDB_SIGNAL_0;
1688 resume_lwp (lp, 0, signo);
1689 return 0;
1692 static int
1693 resume_clear_callback (struct lwp_info *lp, void *data)
1695 lp->resumed = 0;
1696 lp->last_resume_kind = resume_stop;
1697 return 0;
1700 static int
1701 resume_set_callback (struct lwp_info *lp, void *data)
1703 lp->resumed = 1;
1704 lp->last_resume_kind = resume_continue;
1705 return 0;
1708 static void
1709 linux_nat_resume (struct target_ops *ops,
1710 ptid_t ptid, int step, enum gdb_signal signo)
1712 struct lwp_info *lp;
1713 int resume_many;
1715 if (debug_linux_nat)
1716 fprintf_unfiltered (gdb_stdlog,
1717 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1718 step ? "step" : "resume",
1719 target_pid_to_str (ptid),
1720 (signo != GDB_SIGNAL_0
1721 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1722 target_pid_to_str (inferior_ptid));
1724 /* A specific PTID means `step only this process id'. */
1725 resume_many = (ptid_equal (minus_one_ptid, ptid)
1726 || ptid_is_pid (ptid));
1728 /* Mark the lwps we're resuming as resumed. */
1729 iterate_over_lwps (ptid, resume_set_callback, NULL);
1731 /* See if it's the current inferior that should be handled
1732 specially. */
1733 if (resume_many)
1734 lp = find_lwp_pid (inferior_ptid);
1735 else
1736 lp = find_lwp_pid (ptid);
1737 gdb_assert (lp != NULL);
1739 /* Remember if we're stepping. */
1740 lp->step = step;
1741 lp->last_resume_kind = step ? resume_step : resume_continue;
1743 /* If we have a pending wait status for this thread, there is no
1744 point in resuming the process. But first make sure that
1745 linux_nat_wait won't preemptively handle the event - we
1746 should never take this short-circuit if we are going to
1747 leave LP running, since we have skipped resuming all the
1748 other threads. This bit of code needs to be synchronized
1749 with linux_nat_wait. */
1751 if (lp->status && WIFSTOPPED (lp->status))
1753 if (!lp->step
1754 && WSTOPSIG (lp->status)
1755 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1757 if (debug_linux_nat)
1758 fprintf_unfiltered (gdb_stdlog,
1759 "LLR: Not short circuiting for ignored "
1760 "status 0x%x\n", lp->status);
1762 /* FIXME: What should we do if we are supposed to continue
1763 this thread with a signal? */
1764 gdb_assert (signo == GDB_SIGNAL_0);
1765 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1766 lp->status = 0;
1770 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1772 /* FIXME: What should we do if we are supposed to continue
1773 this thread with a signal? */
1774 gdb_assert (signo == GDB_SIGNAL_0);
1776 if (debug_linux_nat)
1777 fprintf_unfiltered (gdb_stdlog,
1778 "LLR: Short circuiting for status 0x%x\n",
1779 lp->status);
1781 if (target_can_async_p ())
1783 target_async (inferior_event_handler, 0);
1784 /* Tell the event loop we have something to process. */
1785 async_file_mark ();
1787 return;
1790 /* Mark LWP as not stopped to prevent it from being continued by
1791 linux_nat_resume_callback. */
1792 lp->stopped = 0;
1794 if (resume_many)
1795 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1797 /* Convert to something the lower layer understands. */
1798 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1800 if (linux_nat_prepare_to_resume != NULL)
1801 linux_nat_prepare_to_resume (lp);
1802 linux_ops->to_resume (linux_ops, ptid, step, signo);
1803 lp->stopped_by_watchpoint = 0;
1805 if (debug_linux_nat)
1806 fprintf_unfiltered (gdb_stdlog,
1807 "LLR: %s %s, %s (resume event thread)\n",
1808 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1809 target_pid_to_str (ptid),
1810 (signo != GDB_SIGNAL_0
1811 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1813 if (target_can_async_p ())
1814 target_async (inferior_event_handler, 0);
1817 /* Send a signal to an LWP. */
1819 static int
1820 kill_lwp (int lwpid, int signo)
1822 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1823 fails, then we are not using nptl threads and we should be using kill. */
1825 #ifdef HAVE_TKILL_SYSCALL
1827 static int tkill_failed;
1829 if (!tkill_failed)
1831 int ret;
1833 errno = 0;
1834 ret = syscall (__NR_tkill, lwpid, signo);
1835 if (errno != ENOSYS)
1836 return ret;
1837 tkill_failed = 1;
1840 #endif
1842 return kill (lwpid, signo);
1845 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1846 event, check if the core is interested in it: if not, ignore the
1847 event, and keep waiting; otherwise, we need to toggle the LWP's
1848 syscall entry/exit status, since the ptrace event itself doesn't
1849 indicate it, and report the trap to higher layers. */
1851 static int
1852 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1854 struct target_waitstatus *ourstatus = &lp->waitstatus;
1855 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1856 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1858 if (stopping)
1860 /* If we're stopping threads, there's a SIGSTOP pending, which
1861 makes it so that the LWP reports an immediate syscall return,
1862 followed by the SIGSTOP. Skip seeing that "return" using
1863 PTRACE_CONT directly, and let stop_wait_callback collect the
1864 SIGSTOP. Later when the thread is resumed, a new syscall
1865 entry event. If we didn't do this (and returned 0), we'd
1866 leave a syscall entry pending, and our caller, by using
1867 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1868 itself. Later, when the user re-resumes this LWP, we'd see
1869 another syscall entry event and we'd mistake it for a return.
1871 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1872 (leaving immediately with LWP->signalled set, without issuing
1873 a PTRACE_CONT), it would still be problematic to leave this
1874 syscall enter pending, as later when the thread is resumed,
1875 it would then see the same syscall exit mentioned above,
1876 followed by the delayed SIGSTOP, while the syscall didn't
1877 actually get to execute. It seems it would be even more
1878 confusing to the user. */
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "LHST: ignoring syscall %d "
1883 "for LWP %ld (stopping threads), "
1884 "resuming with PTRACE_CONT for SIGSTOP\n",
1885 syscall_number,
1886 GET_LWP (lp->ptid));
1888 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1889 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1890 return 1;
1893 if (catch_syscall_enabled ())
1895 /* Always update the entry/return state, even if this particular
1896 syscall isn't interesting to the core now. In async mode,
1897 the user could install a new catchpoint for this syscall
1898 between syscall enter/return, and we'll need to know to
1899 report a syscall return if that happens. */
1900 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1901 ? TARGET_WAITKIND_SYSCALL_RETURN
1902 : TARGET_WAITKIND_SYSCALL_ENTRY);
1904 if (catching_syscall_number (syscall_number))
1906 /* Alright, an event to report. */
1907 ourstatus->kind = lp->syscall_state;
1908 ourstatus->value.syscall_number = syscall_number;
1910 if (debug_linux_nat)
1911 fprintf_unfiltered (gdb_stdlog,
1912 "LHST: stopping for %s of syscall %d"
1913 " for LWP %ld\n",
1914 lp->syscall_state
1915 == TARGET_WAITKIND_SYSCALL_ENTRY
1916 ? "entry" : "return",
1917 syscall_number,
1918 GET_LWP (lp->ptid));
1919 return 0;
1922 if (debug_linux_nat)
1923 fprintf_unfiltered (gdb_stdlog,
1924 "LHST: ignoring %s of syscall %d "
1925 "for LWP %ld\n",
1926 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? "entry" : "return",
1928 syscall_number,
1929 GET_LWP (lp->ptid));
1931 else
1933 /* If we had been syscall tracing, and hence used PT_SYSCALL
1934 before on this LWP, it could happen that the user removes all
1935 syscall catchpoints before we get to process this event.
1936 There are two noteworthy issues here:
1938 - When stopped at a syscall entry event, resuming with
1939 PT_STEP still resumes executing the syscall and reports a
1940 syscall return.
1942 - Only PT_SYSCALL catches syscall enters. If we last
1943 single-stepped this thread, then this event can't be a
1944 syscall enter. If we last single-stepped this thread, this
1945 has to be a syscall exit.
1947 The points above mean that the next resume, be it PT_STEP or
1948 PT_CONTINUE, can not trigger a syscall trace event. */
1949 if (debug_linux_nat)
1950 fprintf_unfiltered (gdb_stdlog,
1951 "LHST: caught syscall event "
1952 "with no syscall catchpoints."
1953 " %d for LWP %ld, ignoring\n",
1954 syscall_number,
1955 GET_LWP (lp->ptid));
1956 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1959 /* The core isn't interested in this event. For efficiency, avoid
1960 stopping all threads only to have the core resume them all again.
1961 Since we're not stopping threads, if we're still syscall tracing
1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1963 subsequent syscall. Simply resume using the inf-ptrace layer,
1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1966 /* Note that gdbarch_get_syscall_number may access registers, hence
1967 fill a regcache. */
1968 registers_changed ();
1969 if (linux_nat_prepare_to_resume != NULL)
1970 linux_nat_prepare_to_resume (lp);
1971 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
1972 lp->step, GDB_SIGNAL_0);
1973 return 1;
1976 /* Handle a GNU/Linux extended wait response. If we see a clone
1977 event, we need to add the new LWP to our list (and not report the
1978 trap to higher layers). This function returns non-zero if the
1979 event should be ignored and we should wait again. If STOPPING is
1980 true, the new LWP remains stopped, otherwise it is continued. */
1982 static int
1983 linux_handle_extended_wait (struct lwp_info *lp, int status,
1984 int stopping)
1986 int pid = GET_LWP (lp->ptid);
1987 struct target_waitstatus *ourstatus = &lp->waitstatus;
1988 int event = status >> 16;
1990 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1991 || event == PTRACE_EVENT_CLONE)
1993 unsigned long new_pid;
1994 int ret;
1996 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1998 /* If we haven't already seen the new PID stop, wait for it now. */
1999 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2001 /* The new child has a pending SIGSTOP. We can't affect it until it
2002 hits the SIGSTOP, but we're already attached. */
2003 ret = my_waitpid (new_pid, &status,
2004 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2005 if (ret == -1)
2006 perror_with_name (_("waiting for new child"));
2007 else if (ret != new_pid)
2008 internal_error (__FILE__, __LINE__,
2009 _("wait returned unexpected PID %d"), ret);
2010 else if (!WIFSTOPPED (status))
2011 internal_error (__FILE__, __LINE__,
2012 _("wait returned unexpected status 0x%x"), status);
2015 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2017 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2019 /* The arch-specific native code may need to know about new
2020 forks even if those end up never mapped to an
2021 inferior. */
2022 if (linux_nat_new_fork != NULL)
2023 linux_nat_new_fork (lp, new_pid);
2026 if (event == PTRACE_EVENT_FORK
2027 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2029 /* Handle checkpointing by linux-fork.c here as a special
2030 case. We don't want the follow-fork-mode or 'catch fork'
2031 to interfere with this. */
2033 /* This won't actually modify the breakpoint list, but will
2034 physically remove the breakpoints from the child. */
2035 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2037 /* Retain child fork in ptrace (stopped) state. */
2038 if (!find_fork_pid (new_pid))
2039 add_fork (new_pid);
2041 /* Report as spurious, so that infrun doesn't want to follow
2042 this fork. We're actually doing an infcall in
2043 linux-fork.c. */
2044 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2046 /* Report the stop to the core. */
2047 return 0;
2050 if (event == PTRACE_EVENT_FORK)
2051 ourstatus->kind = TARGET_WAITKIND_FORKED;
2052 else if (event == PTRACE_EVENT_VFORK)
2053 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2054 else
2056 struct lwp_info *new_lp;
2058 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2060 if (debug_linux_nat)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "LHEW: Got clone event "
2063 "from LWP %d, new child is LWP %ld\n",
2064 pid, new_pid);
2066 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2067 new_lp->cloned = 1;
2068 new_lp->stopped = 1;
2070 if (WSTOPSIG (status) != SIGSTOP)
2072 /* This can happen if someone starts sending signals to
2073 the new thread before it gets a chance to run, which
2074 have a lower number than SIGSTOP (e.g. SIGUSR1).
2075 This is an unlikely case, and harder to handle for
2076 fork / vfork than for clone, so we do not try - but
2077 we handle it for clone events here. We'll send
2078 the other signal on to the thread below. */
2080 new_lp->signalled = 1;
2082 else
2084 struct thread_info *tp;
2086 /* When we stop for an event in some other thread, and
2087 pull the thread list just as this thread has cloned,
2088 we'll have seen the new thread in the thread_db list
2089 before handling the CLONE event (glibc's
2090 pthread_create adds the new thread to the thread list
2091 before clone'ing, and has the kernel fill in the
2092 thread's tid on the clone call with
2093 CLONE_PARENT_SETTID). If that happened, and the core
2094 had requested the new thread to stop, we'll have
2095 killed it with SIGSTOP. But since SIGSTOP is not an
2096 RT signal, it can only be queued once. We need to be
2097 careful to not resume the LWP if we wanted it to
2098 stop. In that case, we'll leave the SIGSTOP pending.
2099 It will later be reported as GDB_SIGNAL_0. */
2100 tp = find_thread_ptid (new_lp->ptid);
2101 if (tp != NULL && tp->stop_requested)
2102 new_lp->last_resume_kind = resume_stop;
2103 else
2104 status = 0;
2107 if (non_stop)
2109 /* Add the new thread to GDB's lists as soon as possible
2110 so that:
2112 1) the frontend doesn't have to wait for a stop to
2113 display them, and,
2115 2) we tag it with the correct running state. */
2117 /* If the thread_db layer is active, let it know about
2118 this new thread, and add it to GDB's list. */
2119 if (!thread_db_attach_lwp (new_lp->ptid))
2121 /* We're not using thread_db. Add it to GDB's
2122 list. */
2123 target_post_attach (GET_LWP (new_lp->ptid));
2124 add_thread (new_lp->ptid);
2127 if (!stopping)
2129 set_running (new_lp->ptid, 1);
2130 set_executing (new_lp->ptid, 1);
2131 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2132 resume_stop. */
2133 new_lp->last_resume_kind = resume_continue;
2137 if (status != 0)
2139 /* We created NEW_LP so it cannot yet contain STATUS. */
2140 gdb_assert (new_lp->status == 0);
2142 /* Save the wait status to report later. */
2143 if (debug_linux_nat)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "LHEW: waitpid of new LWP %ld, "
2146 "saving status %s\n",
2147 (long) GET_LWP (new_lp->ptid),
2148 status_to_str (status));
2149 new_lp->status = status;
2152 /* Note the need to use the low target ops to resume, to
2153 handle resuming with PT_SYSCALL if we have syscall
2154 catchpoints. */
2155 if (!stopping)
2157 new_lp->resumed = 1;
2159 if (status == 0)
2161 gdb_assert (new_lp->last_resume_kind == resume_continue);
2162 if (debug_linux_nat)
2163 fprintf_unfiltered (gdb_stdlog,
2164 "LHEW: resuming new LWP %ld\n",
2165 GET_LWP (new_lp->ptid));
2166 if (linux_nat_prepare_to_resume != NULL)
2167 linux_nat_prepare_to_resume (new_lp);
2168 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2169 0, GDB_SIGNAL_0);
2170 new_lp->stopped = 0;
2174 if (debug_linux_nat)
2175 fprintf_unfiltered (gdb_stdlog,
2176 "LHEW: resuming parent LWP %d\n", pid);
2177 if (linux_nat_prepare_to_resume != NULL)
2178 linux_nat_prepare_to_resume (lp);
2179 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2180 0, GDB_SIGNAL_0);
2182 return 1;
2185 return 0;
2188 if (event == PTRACE_EVENT_EXEC)
2190 if (debug_linux_nat)
2191 fprintf_unfiltered (gdb_stdlog,
2192 "LHEW: Got exec event from LWP %ld\n",
2193 GET_LWP (lp->ptid));
2195 ourstatus->kind = TARGET_WAITKIND_EXECD;
2196 ourstatus->value.execd_pathname
2197 = xstrdup (linux_child_pid_to_exec_file (pid));
2199 return 0;
2202 if (event == PTRACE_EVENT_VFORK_DONE)
2204 if (current_inferior ()->waiting_for_vfork_done)
2206 if (debug_linux_nat)
2207 fprintf_unfiltered (gdb_stdlog,
2208 "LHEW: Got expected PTRACE_EVENT_"
2209 "VFORK_DONE from LWP %ld: stopping\n",
2210 GET_LWP (lp->ptid));
2212 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2213 return 0;
2216 if (debug_linux_nat)
2217 fprintf_unfiltered (gdb_stdlog,
2218 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2219 "from LWP %ld: resuming\n",
2220 GET_LWP (lp->ptid));
2221 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2222 return 1;
2225 internal_error (__FILE__, __LINE__,
2226 _("unknown ptrace event %d"), event);
2229 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2230 exited. */
2232 static int
2233 wait_lwp (struct lwp_info *lp)
2235 pid_t pid;
2236 int status = 0;
2237 int thread_dead = 0;
2238 sigset_t prev_mask;
2240 gdb_assert (!lp->stopped);
2241 gdb_assert (lp->status == 0);
2243 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2244 block_child_signals (&prev_mask);
2246 for (;;)
2248 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2249 was right and we should just call sigsuspend. */
2251 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2252 if (pid == -1 && errno == ECHILD)
2253 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2254 if (pid == -1 && errno == ECHILD)
2256 /* The thread has previously exited. We need to delete it
2257 now because, for some vendor 2.4 kernels with NPTL
2258 support backported, there won't be an exit event unless
2259 it is the main thread. 2.6 kernels will report an exit
2260 event for each thread that exits, as expected. */
2261 thread_dead = 1;
2262 if (debug_linux_nat)
2263 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2264 target_pid_to_str (lp->ptid));
2266 if (pid != 0)
2267 break;
2269 /* Bugs 10970, 12702.
2270 Thread group leader may have exited in which case we'll lock up in
2271 waitpid if there are other threads, even if they are all zombies too.
2272 Basically, we're not supposed to use waitpid this way.
2273 __WCLONE is not applicable for the leader so we can't use that.
2274 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2275 process; it gets ESRCH both for the zombie and for running processes.
2277 As a workaround, check if we're waiting for the thread group leader and
2278 if it's a zombie, and avoid calling waitpid if it is.
2280 This is racy, what if the tgl becomes a zombie right after we check?
2281 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2282 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2284 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2285 && linux_proc_pid_is_zombie (GET_LWP (lp->ptid)))
2287 thread_dead = 1;
2288 if (debug_linux_nat)
2289 fprintf_unfiltered (gdb_stdlog,
2290 "WL: Thread group leader %s vanished.\n",
2291 target_pid_to_str (lp->ptid));
2292 break;
2295 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2296 get invoked despite our caller had them intentionally blocked by
2297 block_child_signals. This is sensitive only to the loop of
2298 linux_nat_wait_1 and there if we get called my_waitpid gets called
2299 again before it gets to sigsuspend so we can safely let the handlers
2300 get executed here. */
2302 sigsuspend (&suspend_mask);
2305 restore_child_signals_mask (&prev_mask);
2307 if (!thread_dead)
2309 gdb_assert (pid == GET_LWP (lp->ptid));
2311 if (debug_linux_nat)
2313 fprintf_unfiltered (gdb_stdlog,
2314 "WL: waitpid %s received %s\n",
2315 target_pid_to_str (lp->ptid),
2316 status_to_str (status));
2319 /* Check if the thread has exited. */
2320 if (WIFEXITED (status) || WIFSIGNALED (status))
2322 thread_dead = 1;
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2325 target_pid_to_str (lp->ptid));
2329 if (thread_dead)
2331 exit_lwp (lp);
2332 return 0;
2335 gdb_assert (WIFSTOPPED (status));
2337 /* Handle GNU/Linux's syscall SIGTRAPs. */
2338 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2340 /* No longer need the sysgood bit. The ptrace event ends up
2341 recorded in lp->waitstatus if we care for it. We can carry
2342 on handling the event like a regular SIGTRAP from here
2343 on. */
2344 status = W_STOPCODE (SIGTRAP);
2345 if (linux_handle_syscall_trap (lp, 1))
2346 return wait_lwp (lp);
2349 /* Handle GNU/Linux's extended waitstatus for trace events. */
2350 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2352 if (debug_linux_nat)
2353 fprintf_unfiltered (gdb_stdlog,
2354 "WL: Handling extended status 0x%06x\n",
2355 status);
2356 if (linux_handle_extended_wait (lp, status, 1))
2357 return wait_lwp (lp);
2360 return status;
2363 /* Send a SIGSTOP to LP. */
2365 static int
2366 stop_callback (struct lwp_info *lp, void *data)
2368 if (!lp->stopped && !lp->signalled)
2370 int ret;
2372 if (debug_linux_nat)
2374 fprintf_unfiltered (gdb_stdlog,
2375 "SC: kill %s **<SIGSTOP>**\n",
2376 target_pid_to_str (lp->ptid));
2378 errno = 0;
2379 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2380 if (debug_linux_nat)
2382 fprintf_unfiltered (gdb_stdlog,
2383 "SC: lwp kill %d %s\n",
2384 ret,
2385 errno ? safe_strerror (errno) : "ERRNO-OK");
2388 lp->signalled = 1;
2389 gdb_assert (lp->status == 0);
2392 return 0;
2395 /* Request a stop on LWP. */
2397 void
2398 linux_stop_lwp (struct lwp_info *lwp)
2400 stop_callback (lwp, NULL);
2403 /* Return non-zero if LWP PID has a pending SIGINT. */
2405 static int
2406 linux_nat_has_pending_sigint (int pid)
2408 sigset_t pending, blocked, ignored;
2410 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2412 if (sigismember (&pending, SIGINT)
2413 && !sigismember (&ignored, SIGINT))
2414 return 1;
2416 return 0;
2419 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2421 static int
2422 set_ignore_sigint (struct lwp_info *lp, void *data)
2424 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2425 flag to consume the next one. */
2426 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2427 && WSTOPSIG (lp->status) == SIGINT)
2428 lp->status = 0;
2429 else
2430 lp->ignore_sigint = 1;
2432 return 0;
2435 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2436 This function is called after we know the LWP has stopped; if the LWP
2437 stopped before the expected SIGINT was delivered, then it will never have
2438 arrived. Also, if the signal was delivered to a shared queue and consumed
2439 by a different thread, it will never be delivered to this LWP. */
2441 static void
2442 maybe_clear_ignore_sigint (struct lwp_info *lp)
2444 if (!lp->ignore_sigint)
2445 return;
2447 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2449 if (debug_linux_nat)
2450 fprintf_unfiltered (gdb_stdlog,
2451 "MCIS: Clearing bogus flag for %s\n",
2452 target_pid_to_str (lp->ptid));
2453 lp->ignore_sigint = 0;
2457 /* Fetch the possible triggered data watchpoint info and store it in
2460 On some archs, like x86, that use debug registers to set
2461 watchpoints, it's possible that the way to know which watched
2462 address trapped, is to check the register that is used to select
2463 which address to watch. Problem is, between setting the watchpoint
2464 and reading back which data address trapped, the user may change
2465 the set of watchpoints, and, as a consequence, GDB changes the
2466 debug registers in the inferior. To avoid reading back a stale
2467 stopped-data-address when that happens, we cache in LP the fact
2468 that a watchpoint trapped, and the corresponding data address, as
2469 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2470 registers meanwhile, we have the cached data we can rely on. */
2472 static void
2473 save_sigtrap (struct lwp_info *lp)
2475 struct cleanup *old_chain;
2477 if (linux_ops->to_stopped_by_watchpoint == NULL)
2479 lp->stopped_by_watchpoint = 0;
2480 return;
2483 old_chain = save_inferior_ptid ();
2484 inferior_ptid = lp->ptid;
2486 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2488 if (lp->stopped_by_watchpoint)
2490 if (linux_ops->to_stopped_data_address != NULL)
2491 lp->stopped_data_address_p =
2492 linux_ops->to_stopped_data_address (&current_target,
2493 &lp->stopped_data_address);
2494 else
2495 lp->stopped_data_address_p = 0;
2498 do_cleanups (old_chain);
2501 /* See save_sigtrap. */
2503 static int
2504 linux_nat_stopped_by_watchpoint (void)
2506 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2508 gdb_assert (lp != NULL);
2510 return lp->stopped_by_watchpoint;
2513 static int
2514 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2516 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2518 gdb_assert (lp != NULL);
2520 *addr_p = lp->stopped_data_address;
2522 return lp->stopped_data_address_p;
2525 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2527 static int
2528 sigtrap_is_event (int status)
2530 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2533 /* SIGTRAP-like events recognizer. */
2535 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2537 /* Check for SIGTRAP-like events in LP. */
2539 static int
2540 linux_nat_lp_status_is_event (struct lwp_info *lp)
2542 /* We check for lp->waitstatus in addition to lp->status, because we can
2543 have pending process exits recorded in lp->status
2544 and W_EXITCODE(0,0) == 0. We should probably have an additional
2545 lp->status_p flag. */
2547 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2548 && linux_nat_status_is_event (lp->status));
2551 /* Set alternative SIGTRAP-like events recognizer. If
2552 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2553 applied. */
2555 void
2556 linux_nat_set_status_is_event (struct target_ops *t,
2557 int (*status_is_event) (int status))
2559 linux_nat_status_is_event = status_is_event;
2562 /* Wait until LP is stopped. */
2564 static int
2565 stop_wait_callback (struct lwp_info *lp, void *data)
2567 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2569 /* If this is a vfork parent, bail out, it is not going to report
2570 any SIGSTOP until the vfork is done with. */
2571 if (inf->vfork_child != NULL)
2572 return 0;
2574 if (!lp->stopped)
2576 int status;
2578 status = wait_lwp (lp);
2579 if (status == 0)
2580 return 0;
2582 if (lp->ignore_sigint && WIFSTOPPED (status)
2583 && WSTOPSIG (status) == SIGINT)
2585 lp->ignore_sigint = 0;
2587 errno = 0;
2588 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2589 if (debug_linux_nat)
2590 fprintf_unfiltered (gdb_stdlog,
2591 "PTRACE_CONT %s, 0, 0 (%s) "
2592 "(discarding SIGINT)\n",
2593 target_pid_to_str (lp->ptid),
2594 errno ? safe_strerror (errno) : "OK");
2596 return stop_wait_callback (lp, NULL);
2599 maybe_clear_ignore_sigint (lp);
2601 if (WSTOPSIG (status) != SIGSTOP)
2603 /* The thread was stopped with a signal other than SIGSTOP. */
2605 save_sigtrap (lp);
2607 if (debug_linux_nat)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "SWC: Pending event %s in %s\n",
2610 status_to_str ((int) status),
2611 target_pid_to_str (lp->ptid));
2613 /* Save the sigtrap event. */
2614 lp->status = status;
2615 gdb_assert (!lp->stopped);
2616 gdb_assert (lp->signalled);
2617 lp->stopped = 1;
2619 else
2621 /* We caught the SIGSTOP that we intended to catch, so
2622 there's no SIGSTOP pending. */
2624 if (debug_linux_nat)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "SWC: Delayed SIGSTOP caught for %s.\n",
2627 target_pid_to_str (lp->ptid));
2629 lp->stopped = 1;
2631 /* Reset SIGNALLED only after the stop_wait_callback call
2632 above as it does gdb_assert on SIGNALLED. */
2633 lp->signalled = 0;
2637 return 0;
2640 /* Return non-zero if LP has a wait status pending. */
2642 static int
2643 status_callback (struct lwp_info *lp, void *data)
2645 /* Only report a pending wait status if we pretend that this has
2646 indeed been resumed. */
2647 if (!lp->resumed)
2648 return 0;
2650 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2652 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2653 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2654 0', so a clean process exit can not be stored pending in
2655 lp->status, it is indistinguishable from
2656 no-pending-status. */
2657 return 1;
2660 if (lp->status != 0)
2661 return 1;
2663 return 0;
2666 /* Return non-zero if LP isn't stopped. */
2668 static int
2669 running_callback (struct lwp_info *lp, void *data)
2671 return (!lp->stopped
2672 || ((lp->status != 0
2673 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2674 && lp->resumed));
2677 /* Count the LWP's that have had events. */
2679 static int
2680 count_events_callback (struct lwp_info *lp, void *data)
2682 int *count = data;
2684 gdb_assert (count != NULL);
2686 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2687 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2688 (*count)++;
2690 return 0;
2693 /* Select the LWP (if any) that is currently being single-stepped. */
2695 static int
2696 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2698 if (lp->last_resume_kind == resume_step
2699 && lp->status != 0)
2700 return 1;
2701 else
2702 return 0;
2705 /* Select the Nth LWP that has had a SIGTRAP event. */
2707 static int
2708 select_event_lwp_callback (struct lwp_info *lp, void *data)
2710 int *selector = data;
2712 gdb_assert (selector != NULL);
2714 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2715 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2716 if ((*selector)-- == 0)
2717 return 1;
2719 return 0;
2722 static int
2723 cancel_breakpoint (struct lwp_info *lp)
2725 /* Arrange for a breakpoint to be hit again later. We don't keep
2726 the SIGTRAP status and don't forward the SIGTRAP signal to the
2727 LWP. We will handle the current event, eventually we will resume
2728 this LWP, and this breakpoint will trap again.
2730 If we do not do this, then we run the risk that the user will
2731 delete or disable the breakpoint, but the LWP will have already
2732 tripped on it. */
2734 struct regcache *regcache = get_thread_regcache (lp->ptid);
2735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2736 CORE_ADDR pc;
2738 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2739 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2741 if (debug_linux_nat)
2742 fprintf_unfiltered (gdb_stdlog,
2743 "CB: Push back breakpoint for %s\n",
2744 target_pid_to_str (lp->ptid));
2746 /* Back up the PC if necessary. */
2747 if (gdbarch_decr_pc_after_break (gdbarch))
2748 regcache_write_pc (regcache, pc);
2750 return 1;
2752 return 0;
2755 static int
2756 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2758 struct lwp_info *event_lp = data;
2760 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2761 if (lp == event_lp)
2762 return 0;
2764 /* If a LWP other than the LWP that we're reporting an event for has
2765 hit a GDB breakpoint (as opposed to some random trap signal),
2766 then just arrange for it to hit it again later. We don't keep
2767 the SIGTRAP status and don't forward the SIGTRAP signal to the
2768 LWP. We will handle the current event, eventually we will resume
2769 all LWPs, and this one will get its breakpoint trap again.
2771 If we do not do this, then we run the risk that the user will
2772 delete or disable the breakpoint, but the LWP will have already
2773 tripped on it. */
2775 if (linux_nat_lp_status_is_event (lp)
2776 && cancel_breakpoint (lp))
2777 /* Throw away the SIGTRAP. */
2778 lp->status = 0;
2780 return 0;
2783 /* Select one LWP out of those that have events pending. */
2785 static void
2786 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2788 int num_events = 0;
2789 int random_selector;
2790 struct lwp_info *event_lp;
2792 /* Record the wait status for the original LWP. */
2793 (*orig_lp)->status = *status;
2795 /* Give preference to any LWP that is being single-stepped. */
2796 event_lp = iterate_over_lwps (filter,
2797 select_singlestep_lwp_callback, NULL);
2798 if (event_lp != NULL)
2800 if (debug_linux_nat)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "SEL: Select single-step %s\n",
2803 target_pid_to_str (event_lp->ptid));
2805 else
2807 /* No single-stepping LWP. Select one at random, out of those
2808 which have had SIGTRAP events. */
2810 /* First see how many SIGTRAP events we have. */
2811 iterate_over_lwps (filter, count_events_callback, &num_events);
2813 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2814 random_selector = (int)
2815 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2817 if (debug_linux_nat && num_events > 1)
2818 fprintf_unfiltered (gdb_stdlog,
2819 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2820 num_events, random_selector);
2822 event_lp = iterate_over_lwps (filter,
2823 select_event_lwp_callback,
2824 &random_selector);
2827 if (event_lp != NULL)
2829 /* Switch the event LWP. */
2830 *orig_lp = event_lp;
2831 *status = event_lp->status;
2834 /* Flush the wait status for the event LWP. */
2835 (*orig_lp)->status = 0;
2838 /* Return non-zero if LP has been resumed. */
2840 static int
2841 resumed_callback (struct lwp_info *lp, void *data)
2843 return lp->resumed;
2846 /* Stop an active thread, verify it still exists, then resume it. If
2847 the thread ends up with a pending status, then it is not resumed,
2848 and *DATA (really a pointer to int), is set. */
2850 static int
2851 stop_and_resume_callback (struct lwp_info *lp, void *data)
2853 int *new_pending_p = data;
2855 if (!lp->stopped)
2857 ptid_t ptid = lp->ptid;
2859 stop_callback (lp, NULL);
2860 stop_wait_callback (lp, NULL);
2862 /* Resume if the lwp still exists, and the core wanted it
2863 running. */
2864 lp = find_lwp_pid (ptid);
2865 if (lp != NULL)
2867 if (lp->last_resume_kind == resume_stop
2868 && lp->status == 0)
2870 /* The core wanted the LWP to stop. Even if it stopped
2871 cleanly (with SIGSTOP), leave the event pending. */
2872 if (debug_linux_nat)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "SARC: core wanted LWP %ld stopped "
2875 "(leaving SIGSTOP pending)\n",
2876 GET_LWP (lp->ptid));
2877 lp->status = W_STOPCODE (SIGSTOP);
2880 if (lp->status == 0)
2882 if (debug_linux_nat)
2883 fprintf_unfiltered (gdb_stdlog,
2884 "SARC: re-resuming LWP %ld\n",
2885 GET_LWP (lp->ptid));
2886 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2888 else
2890 if (debug_linux_nat)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "SARC: not re-resuming LWP %ld "
2893 "(has pending)\n",
2894 GET_LWP (lp->ptid));
2895 if (new_pending_p)
2896 *new_pending_p = 1;
2900 return 0;
2903 /* Check if we should go on and pass this event to common code.
2904 Return the affected lwp if we are, or NULL otherwise. If we stop
2905 all lwps temporarily, we may end up with new pending events in some
2906 other lwp. In that case set *NEW_PENDING_P to true. */
2908 static struct lwp_info *
2909 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2911 struct lwp_info *lp;
2913 *new_pending_p = 0;
2915 lp = find_lwp_pid (pid_to_ptid (lwpid));
2917 /* Check for stop events reported by a process we didn't already
2918 know about - anything not already in our LWP list.
2920 If we're expecting to receive stopped processes after
2921 fork, vfork, and clone events, then we'll just add the
2922 new one to our list and go back to waiting for the event
2923 to be reported - the stopped process might be returned
2924 from waitpid before or after the event is.
2926 But note the case of a non-leader thread exec'ing after the
2927 leader having exited, and gone from our lists. The non-leader
2928 thread changes its tid to the tgid. */
2930 if (WIFSTOPPED (status) && lp == NULL
2931 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2933 /* A multi-thread exec after we had seen the leader exiting. */
2934 if (debug_linux_nat)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "LLW: Re-adding thread group leader LWP %d.\n",
2937 lwpid);
2939 lp = add_lwp (BUILD_LWP (lwpid, lwpid));
2940 lp->stopped = 1;
2941 lp->resumed = 1;
2942 add_thread (lp->ptid);
2945 if (WIFSTOPPED (status) && !lp)
2947 add_to_pid_list (&stopped_pids, lwpid, status);
2948 return NULL;
2951 /* Make sure we don't report an event for the exit of an LWP not in
2952 our list, i.e. not part of the current process. This can happen
2953 if we detach from a program we originally forked and then it
2954 exits. */
2955 if (!WIFSTOPPED (status) && !lp)
2956 return NULL;
2958 /* Handle GNU/Linux's syscall SIGTRAPs. */
2959 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2961 /* No longer need the sysgood bit. The ptrace event ends up
2962 recorded in lp->waitstatus if we care for it. We can carry
2963 on handling the event like a regular SIGTRAP from here
2964 on. */
2965 status = W_STOPCODE (SIGTRAP);
2966 if (linux_handle_syscall_trap (lp, 0))
2967 return NULL;
2970 /* Handle GNU/Linux's extended waitstatus for trace events. */
2971 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2973 if (debug_linux_nat)
2974 fprintf_unfiltered (gdb_stdlog,
2975 "LLW: Handling extended status 0x%06x\n",
2976 status);
2977 if (linux_handle_extended_wait (lp, status, 0))
2978 return NULL;
2981 if (linux_nat_status_is_event (status))
2982 save_sigtrap (lp);
2984 /* Check if the thread has exited. */
2985 if ((WIFEXITED (status) || WIFSIGNALED (status))
2986 && num_lwps (GET_PID (lp->ptid)) > 1)
2988 /* If this is the main thread, we must stop all threads and verify
2989 if they are still alive. This is because in the nptl thread model
2990 on Linux 2.4, there is no signal issued for exiting LWPs
2991 other than the main thread. We only get the main thread exit
2992 signal once all child threads have already exited. If we
2993 stop all the threads and use the stop_wait_callback to check
2994 if they have exited we can determine whether this signal
2995 should be ignored or whether it means the end of the debugged
2996 application, regardless of which threading model is being
2997 used. */
2998 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3000 lp->stopped = 1;
3001 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3002 stop_and_resume_callback, new_pending_p);
3005 if (debug_linux_nat)
3006 fprintf_unfiltered (gdb_stdlog,
3007 "LLW: %s exited.\n",
3008 target_pid_to_str (lp->ptid));
3010 if (num_lwps (GET_PID (lp->ptid)) > 1)
3012 /* If there is at least one more LWP, then the exit signal
3013 was not the end of the debugged application and should be
3014 ignored. */
3015 exit_lwp (lp);
3016 return NULL;
3020 /* Check if the current LWP has previously exited. In the nptl
3021 thread model, LWPs other than the main thread do not issue
3022 signals when they exit so we must check whenever the thread has
3023 stopped. A similar check is made in stop_wait_callback(). */
3024 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3026 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "LLW: %s exited.\n",
3031 target_pid_to_str (lp->ptid));
3033 exit_lwp (lp);
3035 /* Make sure there is at least one thread running. */
3036 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3038 /* Discard the event. */
3039 return NULL;
3042 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3043 an attempt to stop an LWP. */
3044 if (lp->signalled
3045 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3047 if (debug_linux_nat)
3048 fprintf_unfiltered (gdb_stdlog,
3049 "LLW: Delayed SIGSTOP caught for %s.\n",
3050 target_pid_to_str (lp->ptid));
3052 lp->signalled = 0;
3054 if (lp->last_resume_kind != resume_stop)
3056 /* This is a delayed SIGSTOP. */
3058 registers_changed ();
3060 if (linux_nat_prepare_to_resume != NULL)
3061 linux_nat_prepare_to_resume (lp);
3062 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3063 lp->step, GDB_SIGNAL_0);
3064 if (debug_linux_nat)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3067 lp->step ?
3068 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3069 target_pid_to_str (lp->ptid));
3071 lp->stopped = 0;
3072 gdb_assert (lp->resumed);
3074 /* Discard the event. */
3075 return NULL;
3079 /* Make sure we don't report a SIGINT that we have already displayed
3080 for another thread. */
3081 if (lp->ignore_sigint
3082 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3084 if (debug_linux_nat)
3085 fprintf_unfiltered (gdb_stdlog,
3086 "LLW: Delayed SIGINT caught for %s.\n",
3087 target_pid_to_str (lp->ptid));
3089 /* This is a delayed SIGINT. */
3090 lp->ignore_sigint = 0;
3092 registers_changed ();
3093 if (linux_nat_prepare_to_resume != NULL)
3094 linux_nat_prepare_to_resume (lp);
3095 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3096 lp->step, GDB_SIGNAL_0);
3097 if (debug_linux_nat)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3100 lp->step ?
3101 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3102 target_pid_to_str (lp->ptid));
3104 lp->stopped = 0;
3105 gdb_assert (lp->resumed);
3107 /* Discard the event. */
3108 return NULL;
3111 /* An interesting event. */
3112 gdb_assert (lp);
3113 lp->status = status;
3114 return lp;
3117 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3118 their exits until all other threads in the group have exited. */
3120 static void
3121 check_zombie_leaders (void)
3123 struct inferior *inf;
3125 ALL_INFERIORS (inf)
3127 struct lwp_info *leader_lp;
3129 if (inf->pid == 0)
3130 continue;
3132 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3133 if (leader_lp != NULL
3134 /* Check if there are other threads in the group, as we may
3135 have raced with the inferior simply exiting. */
3136 && num_lwps (inf->pid) > 1
3137 && linux_proc_pid_is_zombie (inf->pid))
3139 if (debug_linux_nat)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "CZL: Thread group leader %d zombie "
3142 "(it exited, or another thread execd).\n",
3143 inf->pid);
3145 /* A leader zombie can mean one of two things:
3147 - It exited, and there's an exit status pending
3148 available, or only the leader exited (not the whole
3149 program). In the latter case, we can't waitpid the
3150 leader's exit status until all other threads are gone.
3152 - There are 3 or more threads in the group, and a thread
3153 other than the leader exec'd. On an exec, the Linux
3154 kernel destroys all other threads (except the execing
3155 one) in the thread group, and resets the execing thread's
3156 tid to the tgid. No exit notification is sent for the
3157 execing thread -- from the ptracer's perspective, it
3158 appears as though the execing thread just vanishes.
3159 Until we reap all other threads except the leader and the
3160 execing thread, the leader will be zombie, and the
3161 execing thread will be in `D (disc sleep)'. As soon as
3162 all other threads are reaped, the execing thread changes
3163 it's tid to the tgid, and the previous (zombie) leader
3164 vanishes, giving place to the "new" leader. We could try
3165 distinguishing the exit and exec cases, by waiting once
3166 more, and seeing if something comes out, but it doesn't
3167 sound useful. The previous leader _does_ go away, and
3168 we'll re-add the new one once we see the exec event
3169 (which is just the same as what would happen if the
3170 previous leader did exit voluntarily before some other
3171 thread execs). */
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "CZL: Thread group leader %d vanished.\n",
3176 inf->pid);
3177 exit_lwp (leader_lp);
3182 static ptid_t
3183 linux_nat_wait_1 (struct target_ops *ops,
3184 ptid_t ptid, struct target_waitstatus *ourstatus,
3185 int target_options)
3187 static sigset_t prev_mask;
3188 enum resume_kind last_resume_kind;
3189 struct lwp_info *lp;
3190 int status;
3192 if (debug_linux_nat)
3193 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3195 /* The first time we get here after starting a new inferior, we may
3196 not have added it to the LWP list yet - this is the earliest
3197 moment at which we know its PID. */
3198 if (ptid_is_pid (inferior_ptid))
3200 /* Upgrade the main thread's ptid. */
3201 thread_change_ptid (inferior_ptid,
3202 BUILD_LWP (GET_PID (inferior_ptid),
3203 GET_PID (inferior_ptid)));
3205 lp = add_initial_lwp (inferior_ptid);
3206 lp->resumed = 1;
3209 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3210 block_child_signals (&prev_mask);
3212 retry:
3213 lp = NULL;
3214 status = 0;
3216 /* First check if there is a LWP with a wait status pending. */
3217 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3219 /* Any LWP in the PTID group that's been resumed will do. */
3220 lp = iterate_over_lwps (ptid, status_callback, NULL);
3221 if (lp)
3223 if (debug_linux_nat && lp->status)
3224 fprintf_unfiltered (gdb_stdlog,
3225 "LLW: Using pending wait status %s for %s.\n",
3226 status_to_str (lp->status),
3227 target_pid_to_str (lp->ptid));
3230 else if (is_lwp (ptid))
3232 if (debug_linux_nat)
3233 fprintf_unfiltered (gdb_stdlog,
3234 "LLW: Waiting for specific LWP %s.\n",
3235 target_pid_to_str (ptid));
3237 /* We have a specific LWP to check. */
3238 lp = find_lwp_pid (ptid);
3239 gdb_assert (lp);
3241 if (debug_linux_nat && lp->status)
3242 fprintf_unfiltered (gdb_stdlog,
3243 "LLW: Using pending wait status %s for %s.\n",
3244 status_to_str (lp->status),
3245 target_pid_to_str (lp->ptid));
3247 /* We check for lp->waitstatus in addition to lp->status,
3248 because we can have pending process exits recorded in
3249 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3250 an additional lp->status_p flag. */
3251 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3252 lp = NULL;
3255 if (!target_can_async_p ())
3257 /* Causes SIGINT to be passed on to the attached process. */
3258 set_sigint_trap ();
3261 /* But if we don't find a pending event, we'll have to wait. */
3263 while (lp == NULL)
3265 pid_t lwpid;
3267 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3268 quirks:
3270 - If the thread group leader exits while other threads in the
3271 thread group still exist, waitpid(TGID, ...) hangs. That
3272 waitpid won't return an exit status until the other threads
3273 in the group are reapped.
3275 - When a non-leader thread execs, that thread just vanishes
3276 without reporting an exit (so we'd hang if we waited for it
3277 explicitly in that case). The exec event is reported to
3278 the TGID pid. */
3280 errno = 0;
3281 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3282 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3283 lwpid = my_waitpid (-1, &status, WNOHANG);
3285 if (debug_linux_nat)
3286 fprintf_unfiltered (gdb_stdlog,
3287 "LNW: waitpid(-1, ...) returned %d, %s\n",
3288 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3290 if (lwpid > 0)
3292 /* If this is true, then we paused LWPs momentarily, and may
3293 now have pending events to handle. */
3294 int new_pending;
3296 if (debug_linux_nat)
3298 fprintf_unfiltered (gdb_stdlog,
3299 "LLW: waitpid %ld received %s\n",
3300 (long) lwpid, status_to_str (status));
3303 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3305 /* STATUS is now no longer valid, use LP->STATUS instead. */
3306 status = 0;
3308 if (lp && !ptid_match (lp->ptid, ptid))
3310 gdb_assert (lp->resumed);
3312 if (debug_linux_nat)
3313 fprintf (stderr,
3314 "LWP %ld got an event %06x, leaving pending.\n",
3315 ptid_get_lwp (lp->ptid), lp->status);
3317 if (WIFSTOPPED (lp->status))
3319 if (WSTOPSIG (lp->status) != SIGSTOP)
3321 /* Cancel breakpoint hits. The breakpoint may
3322 be removed before we fetch events from this
3323 process to report to the core. It is best
3324 not to assume the moribund breakpoints
3325 heuristic always handles these cases --- it
3326 could be too many events go through to the
3327 core before this one is handled. All-stop
3328 always cancels breakpoint hits in all
3329 threads. */
3330 if (non_stop
3331 && linux_nat_lp_status_is_event (lp)
3332 && cancel_breakpoint (lp))
3334 /* Throw away the SIGTRAP. */
3335 lp->status = 0;
3337 if (debug_linux_nat)
3338 fprintf (stderr,
3339 "LLW: LWP %ld hit a breakpoint while"
3340 " waiting for another process;"
3341 " cancelled it\n",
3342 ptid_get_lwp (lp->ptid));
3344 lp->stopped = 1;
3346 else
3348 lp->stopped = 1;
3349 lp->signalled = 0;
3352 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3354 if (debug_linux_nat)
3355 fprintf (stderr,
3356 "Process %ld exited while stopping LWPs\n",
3357 ptid_get_lwp (lp->ptid));
3359 /* This was the last lwp in the process. Since
3360 events are serialized to GDB core, and we can't
3361 report this one right now, but GDB core and the
3362 other target layers will want to be notified
3363 about the exit code/signal, leave the status
3364 pending for the next time we're able to report
3365 it. */
3367 /* Prevent trying to stop this thread again. We'll
3368 never try to resume it because it has a pending
3369 status. */
3370 lp->stopped = 1;
3372 /* Dead LWP's aren't expected to reported a pending
3373 sigstop. */
3374 lp->signalled = 0;
3376 /* Store the pending event in the waitstatus as
3377 well, because W_EXITCODE(0,0) == 0. */
3378 store_waitstatus (&lp->waitstatus, lp->status);
3381 /* Keep looking. */
3382 lp = NULL;
3385 if (new_pending)
3387 /* Some LWP now has a pending event. Go all the way
3388 back to check it. */
3389 goto retry;
3392 if (lp)
3394 /* We got an event to report to the core. */
3395 break;
3398 /* Retry until nothing comes out of waitpid. A single
3399 SIGCHLD can indicate more than one child stopped. */
3400 continue;
3403 /* Check for zombie thread group leaders. Those can't be reaped
3404 until all other threads in the thread group are. */
3405 check_zombie_leaders ();
3407 /* If there are no resumed children left, bail. We'd be stuck
3408 forever in the sigsuspend call below otherwise. */
3409 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3411 if (debug_linux_nat)
3412 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3414 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3416 if (!target_can_async_p ())
3417 clear_sigint_trap ();
3419 restore_child_signals_mask (&prev_mask);
3420 return minus_one_ptid;
3423 /* No interesting event to report to the core. */
3425 if (target_options & TARGET_WNOHANG)
3427 if (debug_linux_nat)
3428 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3430 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3431 restore_child_signals_mask (&prev_mask);
3432 return minus_one_ptid;
3435 /* We shouldn't end up here unless we want to try again. */
3436 gdb_assert (lp == NULL);
3438 /* Block until we get an event reported with SIGCHLD. */
3439 sigsuspend (&suspend_mask);
3442 if (!target_can_async_p ())
3443 clear_sigint_trap ();
3445 gdb_assert (lp);
3447 status = lp->status;
3448 lp->status = 0;
3450 /* Don't report signals that GDB isn't interested in, such as
3451 signals that are neither printed nor stopped upon. Stopping all
3452 threads can be a bit time-consuming so if we want decent
3453 performance with heavily multi-threaded programs, especially when
3454 they're using a high frequency timer, we'd better avoid it if we
3455 can. */
3457 if (WIFSTOPPED (status))
3459 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3461 /* When using hardware single-step, we need to report every signal.
3462 Otherwise, signals in pass_mask may be short-circuited. */
3463 if (!lp->step
3464 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3466 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3467 here? It is not clear we should. GDB may not expect
3468 other threads to run. On the other hand, not resuming
3469 newly attached threads may cause an unwanted delay in
3470 getting them running. */
3471 registers_changed ();
3472 if (linux_nat_prepare_to_resume != NULL)
3473 linux_nat_prepare_to_resume (lp);
3474 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3475 lp->step, signo);
3476 if (debug_linux_nat)
3477 fprintf_unfiltered (gdb_stdlog,
3478 "LLW: %s %s, %s (preempt 'handle')\n",
3479 lp->step ?
3480 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3481 target_pid_to_str (lp->ptid),
3482 (signo != GDB_SIGNAL_0
3483 ? strsignal (gdb_signal_to_host (signo))
3484 : "0"));
3485 lp->stopped = 0;
3486 goto retry;
3489 if (!non_stop)
3491 /* Only do the below in all-stop, as we currently use SIGINT
3492 to implement target_stop (see linux_nat_stop) in
3493 non-stop. */
3494 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3496 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3497 forwarded to the entire process group, that is, all LWPs
3498 will receive it - unless they're using CLONE_THREAD to
3499 share signals. Since we only want to report it once, we
3500 mark it as ignored for all LWPs except this one. */
3501 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3502 set_ignore_sigint, NULL);
3503 lp->ignore_sigint = 0;
3505 else
3506 maybe_clear_ignore_sigint (lp);
3510 /* This LWP is stopped now. */
3511 lp->stopped = 1;
3513 if (debug_linux_nat)
3514 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3515 status_to_str (status), target_pid_to_str (lp->ptid));
3517 if (!non_stop)
3519 /* Now stop all other LWP's ... */
3520 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3522 /* ... and wait until all of them have reported back that
3523 they're no longer running. */
3524 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3526 /* If we're not waiting for a specific LWP, choose an event LWP
3527 from among those that have had events. Giving equal priority
3528 to all LWPs that have had events helps prevent
3529 starvation. */
3530 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3531 select_event_lwp (ptid, &lp, &status);
3533 /* Now that we've selected our final event LWP, cancel any
3534 breakpoints in other LWPs that have hit a GDB breakpoint.
3535 See the comment in cancel_breakpoints_callback to find out
3536 why. */
3537 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3539 /* We'll need this to determine whether to report a SIGSTOP as
3540 TARGET_WAITKIND_0. Need to take a copy because
3541 resume_clear_callback clears it. */
3542 last_resume_kind = lp->last_resume_kind;
3544 /* In all-stop, from the core's perspective, all LWPs are now
3545 stopped until a new resume action is sent over. */
3546 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3548 else
3550 /* See above. */
3551 last_resume_kind = lp->last_resume_kind;
3552 resume_clear_callback (lp, NULL);
3555 if (linux_nat_status_is_event (status))
3557 if (debug_linux_nat)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "LLW: trap ptid is %s.\n",
3560 target_pid_to_str (lp->ptid));
3563 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3565 *ourstatus = lp->waitstatus;
3566 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3568 else
3569 store_waitstatus (ourstatus, status);
3571 if (debug_linux_nat)
3572 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3574 restore_child_signals_mask (&prev_mask);
3576 if (last_resume_kind == resume_stop
3577 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3578 && WSTOPSIG (status) == SIGSTOP)
3580 /* A thread that has been requested to stop by GDB with
3581 target_stop, and it stopped cleanly, so report as SIG0. The
3582 use of SIGSTOP is an implementation detail. */
3583 ourstatus->value.sig = GDB_SIGNAL_0;
3586 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3587 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3588 lp->core = -1;
3589 else
3590 lp->core = linux_common_core_of_thread (lp->ptid);
3592 return lp->ptid;
3595 /* Resume LWPs that are currently stopped without any pending status
3596 to report, but are resumed from the core's perspective. */
3598 static int
3599 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3601 ptid_t *wait_ptid_p = data;
3603 if (lp->stopped
3604 && lp->resumed
3605 && lp->status == 0
3606 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3608 struct regcache *regcache = get_thread_regcache (lp->ptid);
3609 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3610 CORE_ADDR pc = regcache_read_pc (regcache);
3612 gdb_assert (is_executing (lp->ptid));
3614 /* Don't bother if there's a breakpoint at PC that we'd hit
3615 immediately, and we're not waiting for this LWP. */
3616 if (!ptid_match (lp->ptid, *wait_ptid_p))
3618 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3619 return 0;
3622 if (debug_linux_nat)
3623 fprintf_unfiltered (gdb_stdlog,
3624 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3625 target_pid_to_str (lp->ptid),
3626 paddress (gdbarch, pc),
3627 lp->step);
3629 registers_changed ();
3630 if (linux_nat_prepare_to_resume != NULL)
3631 linux_nat_prepare_to_resume (lp);
3632 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3633 lp->step, GDB_SIGNAL_0);
3634 lp->stopped = 0;
3635 lp->stopped_by_watchpoint = 0;
3638 return 0;
3641 static ptid_t
3642 linux_nat_wait (struct target_ops *ops,
3643 ptid_t ptid, struct target_waitstatus *ourstatus,
3644 int target_options)
3646 ptid_t event_ptid;
3648 if (debug_linux_nat)
3650 char *options_string;
3652 options_string = target_options_to_string (target_options);
3653 fprintf_unfiltered (gdb_stdlog,
3654 "linux_nat_wait: [%s], [%s]\n",
3655 target_pid_to_str (ptid),
3656 options_string);
3657 xfree (options_string);
3660 /* Flush the async file first. */
3661 if (target_can_async_p ())
3662 async_file_flush ();
3664 /* Resume LWPs that are currently stopped without any pending status
3665 to report, but are resumed from the core's perspective. LWPs get
3666 in this state if we find them stopping at a time we're not
3667 interested in reporting the event (target_wait on a
3668 specific_process, for example, see linux_nat_wait_1), and
3669 meanwhile the event became uninteresting. Don't bother resuming
3670 LWPs we're not going to wait for if they'd stop immediately. */
3671 if (non_stop)
3672 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3674 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3676 /* If we requested any event, and something came out, assume there
3677 may be more. If we requested a specific lwp or process, also
3678 assume there may be more. */
3679 if (target_can_async_p ()
3680 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3681 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3682 || !ptid_equal (ptid, minus_one_ptid)))
3683 async_file_mark ();
3685 /* Get ready for the next event. */
3686 if (target_can_async_p ())
3687 target_async (inferior_event_handler, 0);
3689 return event_ptid;
3692 static int
3693 kill_callback (struct lwp_info *lp, void *data)
3695 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3697 errno = 0;
3698 kill (GET_LWP (lp->ptid), SIGKILL);
3699 if (debug_linux_nat)
3700 fprintf_unfiltered (gdb_stdlog,
3701 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3702 target_pid_to_str (lp->ptid),
3703 errno ? safe_strerror (errno) : "OK");
3705 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3707 errno = 0;
3708 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3709 if (debug_linux_nat)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3712 target_pid_to_str (lp->ptid),
3713 errno ? safe_strerror (errno) : "OK");
3715 return 0;
3718 static int
3719 kill_wait_callback (struct lwp_info *lp, void *data)
3721 pid_t pid;
3723 /* We must make sure that there are no pending events (delayed
3724 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3725 program doesn't interfere with any following debugging session. */
3727 /* For cloned processes we must check both with __WCLONE and
3728 without, since the exit status of a cloned process isn't reported
3729 with __WCLONE. */
3730 if (lp->cloned)
3734 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3735 if (pid != (pid_t) -1)
3737 if (debug_linux_nat)
3738 fprintf_unfiltered (gdb_stdlog,
3739 "KWC: wait %s received unknown.\n",
3740 target_pid_to_str (lp->ptid));
3741 /* The Linux kernel sometimes fails to kill a thread
3742 completely after PTRACE_KILL; that goes from the stop
3743 point in do_fork out to the one in
3744 get_signal_to_deliever and waits again. So kill it
3745 again. */
3746 kill_callback (lp, NULL);
3749 while (pid == GET_LWP (lp->ptid));
3751 gdb_assert (pid == -1 && errno == ECHILD);
3756 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3757 if (pid != (pid_t) -1)
3759 if (debug_linux_nat)
3760 fprintf_unfiltered (gdb_stdlog,
3761 "KWC: wait %s received unk.\n",
3762 target_pid_to_str (lp->ptid));
3763 /* See the call to kill_callback above. */
3764 kill_callback (lp, NULL);
3767 while (pid == GET_LWP (lp->ptid));
3769 gdb_assert (pid == -1 && errno == ECHILD);
3770 return 0;
3773 static void
3774 linux_nat_kill (struct target_ops *ops)
3776 struct target_waitstatus last;
3777 ptid_t last_ptid;
3778 int status;
3780 /* If we're stopped while forking and we haven't followed yet,
3781 kill the other task. We need to do this first because the
3782 parent will be sleeping if this is a vfork. */
3784 get_last_target_status (&last_ptid, &last);
3786 if (last.kind == TARGET_WAITKIND_FORKED
3787 || last.kind == TARGET_WAITKIND_VFORKED)
3789 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3790 wait (&status);
3792 /* Let the arch-specific native code know this process is
3793 gone. */
3794 linux_nat_forget_process (PIDGET (last.value.related_pid));
3797 if (forks_exist_p ())
3798 linux_fork_killall ();
3799 else
3801 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3803 /* Stop all threads before killing them, since ptrace requires
3804 that the thread is stopped to sucessfully PTRACE_KILL. */
3805 iterate_over_lwps (ptid, stop_callback, NULL);
3806 /* ... and wait until all of them have reported back that
3807 they're no longer running. */
3808 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3810 /* Kill all LWP's ... */
3811 iterate_over_lwps (ptid, kill_callback, NULL);
3813 /* ... and wait until we've flushed all events. */
3814 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3817 target_mourn_inferior ();
3820 static void
3821 linux_nat_mourn_inferior (struct target_ops *ops)
3823 int pid = ptid_get_pid (inferior_ptid);
3825 purge_lwp_list (pid);
3827 if (! forks_exist_p ())
3828 /* Normal case, no other forks available. */
3829 linux_ops->to_mourn_inferior (ops);
3830 else
3831 /* Multi-fork case. The current inferior_ptid has exited, but
3832 there are other viable forks to debug. Delete the exiting
3833 one and context-switch to the first available. */
3834 linux_fork_mourn_inferior ();
3836 /* Let the arch-specific native code know this process is gone. */
3837 linux_nat_forget_process (pid);
3840 /* Convert a native/host siginfo object, into/from the siginfo in the
3841 layout of the inferiors' architecture. */
3843 static void
3844 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3846 int done = 0;
3848 if (linux_nat_siginfo_fixup != NULL)
3849 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3851 /* If there was no callback, or the callback didn't do anything,
3852 then just do a straight memcpy. */
3853 if (!done)
3855 if (direction == 1)
3856 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3857 else
3858 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3862 static LONGEST
3863 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3864 const char *annex, gdb_byte *readbuf,
3865 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3867 int pid;
3868 siginfo_t siginfo;
3869 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3871 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3872 gdb_assert (readbuf || writebuf);
3874 pid = GET_LWP (inferior_ptid);
3875 if (pid == 0)
3876 pid = GET_PID (inferior_ptid);
3878 if (offset > sizeof (siginfo))
3879 return -1;
3881 errno = 0;
3882 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3883 if (errno != 0)
3884 return -1;
3886 /* When GDB is built as a 64-bit application, ptrace writes into
3887 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3888 inferior with a 64-bit GDB should look the same as debugging it
3889 with a 32-bit GDB, we need to convert it. GDB core always sees
3890 the converted layout, so any read/write will have to be done
3891 post-conversion. */
3892 siginfo_fixup (&siginfo, inf_siginfo, 0);
3894 if (offset + len > sizeof (siginfo))
3895 len = sizeof (siginfo) - offset;
3897 if (readbuf != NULL)
3898 memcpy (readbuf, inf_siginfo + offset, len);
3899 else
3901 memcpy (inf_siginfo + offset, writebuf, len);
3903 /* Convert back to ptrace layout before flushing it out. */
3904 siginfo_fixup (&siginfo, inf_siginfo, 1);
3906 errno = 0;
3907 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3908 if (errno != 0)
3909 return -1;
3912 return len;
3915 static LONGEST
3916 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3917 const char *annex, gdb_byte *readbuf,
3918 const gdb_byte *writebuf,
3919 ULONGEST offset, LONGEST len)
3921 struct cleanup *old_chain;
3922 LONGEST xfer;
3924 if (object == TARGET_OBJECT_SIGNAL_INFO)
3925 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3926 offset, len);
3928 /* The target is connected but no live inferior is selected. Pass
3929 this request down to a lower stratum (e.g., the executable
3930 file). */
3931 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3932 return 0;
3934 old_chain = save_inferior_ptid ();
3936 if (is_lwp (inferior_ptid))
3937 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3939 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3940 offset, len);
3942 do_cleanups (old_chain);
3943 return xfer;
3946 static int
3947 linux_thread_alive (ptid_t ptid)
3949 int err, tmp_errno;
3951 gdb_assert (is_lwp (ptid));
3953 /* Send signal 0 instead of anything ptrace, because ptracing a
3954 running thread errors out claiming that the thread doesn't
3955 exist. */
3956 err = kill_lwp (GET_LWP (ptid), 0);
3957 tmp_errno = errno;
3958 if (debug_linux_nat)
3959 fprintf_unfiltered (gdb_stdlog,
3960 "LLTA: KILL(SIG0) %s (%s)\n",
3961 target_pid_to_str (ptid),
3962 err ? safe_strerror (tmp_errno) : "OK");
3964 if (err != 0)
3965 return 0;
3967 return 1;
3970 static int
3971 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3973 return linux_thread_alive (ptid);
3976 static char *
3977 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3979 static char buf[64];
3981 if (is_lwp (ptid)
3982 && (GET_PID (ptid) != GET_LWP (ptid)
3983 || num_lwps (GET_PID (ptid)) > 1))
3985 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3986 return buf;
3989 return normal_pid_to_str (ptid);
3992 static char *
3993 linux_nat_thread_name (struct thread_info *thr)
3995 int pid = ptid_get_pid (thr->ptid);
3996 long lwp = ptid_get_lwp (thr->ptid);
3997 #define FORMAT "/proc/%d/task/%ld/comm"
3998 char buf[sizeof (FORMAT) + 30];
3999 FILE *comm_file;
4000 char *result = NULL;
4002 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4003 comm_file = gdb_fopen_cloexec (buf, "r");
4004 if (comm_file)
4006 /* Not exported by the kernel, so we define it here. */
4007 #define COMM_LEN 16
4008 static char line[COMM_LEN + 1];
4010 if (fgets (line, sizeof (line), comm_file))
4012 char *nl = strchr (line, '\n');
4014 if (nl)
4015 *nl = '\0';
4016 if (*line != '\0')
4017 result = line;
4020 fclose (comm_file);
4023 #undef COMM_LEN
4024 #undef FORMAT
4026 return result;
4029 /* Accepts an integer PID; Returns a string representing a file that
4030 can be opened to get the symbols for the child process. */
4032 static char *
4033 linux_child_pid_to_exec_file (int pid)
4035 char *name1, *name2;
4037 name1 = xmalloc (PATH_MAX);
4038 name2 = xmalloc (PATH_MAX);
4039 make_cleanup (xfree, name1);
4040 make_cleanup (xfree, name2);
4041 memset (name2, 0, PATH_MAX);
4043 sprintf (name1, "/proc/%d/exe", pid);
4044 if (readlink (name1, name2, PATH_MAX - 1) > 0)
4045 return name2;
4046 else
4047 return name1;
4050 /* Records the thread's register state for the corefile note
4051 section. */
4053 static char *
4054 linux_nat_collect_thread_registers (const struct regcache *regcache,
4055 ptid_t ptid, bfd *obfd,
4056 char *note_data, int *note_size,
4057 enum gdb_signal stop_signal)
4059 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4060 const struct regset *regset;
4061 int core_regset_p;
4062 gdb_gregset_t gregs;
4063 gdb_fpregset_t fpregs;
4065 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4067 if (core_regset_p
4068 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4069 sizeof (gregs)))
4070 != NULL && regset->collect_regset != NULL)
4071 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4072 else
4073 fill_gregset (regcache, &gregs, -1);
4075 note_data = (char *) elfcore_write_prstatus
4076 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4077 gdb_signal_to_host (stop_signal), &gregs);
4079 if (core_regset_p
4080 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4081 sizeof (fpregs)))
4082 != NULL && regset->collect_regset != NULL)
4083 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4084 else
4085 fill_fpregset (regcache, &fpregs, -1);
4087 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4088 &fpregs, sizeof (fpregs));
4090 return note_data;
4093 /* Fills the "to_make_corefile_note" target vector. Builds the note
4094 section for a corefile, and returns it in a malloc buffer. */
4096 static char *
4097 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4099 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4100 converted to gdbarch_core_regset_sections, this function can go away. */
4101 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4102 linux_nat_collect_thread_registers);
4105 /* Implement the to_xfer_partial interface for memory reads using the /proc
4106 filesystem. Because we can use a single read() call for /proc, this
4107 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4108 but it doesn't support writes. */
4110 static LONGEST
4111 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4112 const char *annex, gdb_byte *readbuf,
4113 const gdb_byte *writebuf,
4114 ULONGEST offset, LONGEST len)
4116 LONGEST ret;
4117 int fd;
4118 char filename[64];
4120 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4121 return 0;
4123 /* Don't bother for one word. */
4124 if (len < 3 * sizeof (long))
4125 return 0;
4127 /* We could keep this file open and cache it - possibly one per
4128 thread. That requires some juggling, but is even faster. */
4129 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4130 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4131 if (fd == -1)
4132 return 0;
4134 /* If pread64 is available, use it. It's faster if the kernel
4135 supports it (only one syscall), and it's 64-bit safe even on
4136 32-bit platforms (for instance, SPARC debugging a SPARC64
4137 application). */
4138 #ifdef HAVE_PREAD64
4139 if (pread64 (fd, readbuf, len, offset) != len)
4140 #else
4141 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4142 #endif
4143 ret = 0;
4144 else
4145 ret = len;
4147 close (fd);
4148 return ret;
4152 /* Enumerate spufs IDs for process PID. */
4153 static LONGEST
4154 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4156 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4157 LONGEST pos = 0;
4158 LONGEST written = 0;
4159 char path[128];
4160 DIR *dir;
4161 struct dirent *entry;
4163 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4164 dir = opendir (path);
4165 if (!dir)
4166 return -1;
4168 rewinddir (dir);
4169 while ((entry = readdir (dir)) != NULL)
4171 struct stat st;
4172 struct statfs stfs;
4173 int fd;
4175 fd = atoi (entry->d_name);
4176 if (!fd)
4177 continue;
4179 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4180 if (stat (path, &st) != 0)
4181 continue;
4182 if (!S_ISDIR (st.st_mode))
4183 continue;
4185 if (statfs (path, &stfs) != 0)
4186 continue;
4187 if (stfs.f_type != SPUFS_MAGIC)
4188 continue;
4190 if (pos >= offset && pos + 4 <= offset + len)
4192 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4193 written += 4;
4195 pos += 4;
4198 closedir (dir);
4199 return written;
4202 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4203 object type, using the /proc file system. */
4204 static LONGEST
4205 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4206 const char *annex, gdb_byte *readbuf,
4207 const gdb_byte *writebuf,
4208 ULONGEST offset, LONGEST len)
4210 char buf[128];
4211 int fd = 0;
4212 int ret = -1;
4213 int pid = PIDGET (inferior_ptid);
4215 if (!annex)
4217 if (!readbuf)
4218 return -1;
4219 else
4220 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4223 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4224 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4225 if (fd <= 0)
4226 return -1;
4228 if (offset != 0
4229 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4231 close (fd);
4232 return 0;
4235 if (writebuf)
4236 ret = write (fd, writebuf, (size_t) len);
4237 else if (readbuf)
4238 ret = read (fd, readbuf, (size_t) len);
4240 close (fd);
4241 return ret;
4245 /* Parse LINE as a signal set and add its set bits to SIGS. */
4247 static void
4248 add_line_to_sigset (const char *line, sigset_t *sigs)
4250 int len = strlen (line) - 1;
4251 const char *p;
4252 int signum;
4254 if (line[len] != '\n')
4255 error (_("Could not parse signal set: %s"), line);
4257 p = line;
4258 signum = len * 4;
4259 while (len-- > 0)
4261 int digit;
4263 if (*p >= '0' && *p <= '9')
4264 digit = *p - '0';
4265 else if (*p >= 'a' && *p <= 'f')
4266 digit = *p - 'a' + 10;
4267 else
4268 error (_("Could not parse signal set: %s"), line);
4270 signum -= 4;
4272 if (digit & 1)
4273 sigaddset (sigs, signum + 1);
4274 if (digit & 2)
4275 sigaddset (sigs, signum + 2);
4276 if (digit & 4)
4277 sigaddset (sigs, signum + 3);
4278 if (digit & 8)
4279 sigaddset (sigs, signum + 4);
4281 p++;
4285 /* Find process PID's pending signals from /proc/pid/status and set
4286 SIGS to match. */
4288 void
4289 linux_proc_pending_signals (int pid, sigset_t *pending,
4290 sigset_t *blocked, sigset_t *ignored)
4292 FILE *procfile;
4293 char buffer[PATH_MAX], fname[PATH_MAX];
4294 struct cleanup *cleanup;
4296 sigemptyset (pending);
4297 sigemptyset (blocked);
4298 sigemptyset (ignored);
4299 sprintf (fname, "/proc/%d/status", pid);
4300 procfile = gdb_fopen_cloexec (fname, "r");
4301 if (procfile == NULL)
4302 error (_("Could not open %s"), fname);
4303 cleanup = make_cleanup_fclose (procfile);
4305 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4307 /* Normal queued signals are on the SigPnd line in the status
4308 file. However, 2.6 kernels also have a "shared" pending
4309 queue for delivering signals to a thread group, so check for
4310 a ShdPnd line also.
4312 Unfortunately some Red Hat kernels include the shared pending
4313 queue but not the ShdPnd status field. */
4315 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4316 add_line_to_sigset (buffer + 8, pending);
4317 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4318 add_line_to_sigset (buffer + 8, pending);
4319 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4320 add_line_to_sigset (buffer + 8, blocked);
4321 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4322 add_line_to_sigset (buffer + 8, ignored);
4325 do_cleanups (cleanup);
4328 static LONGEST
4329 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4330 const char *annex, gdb_byte *readbuf,
4331 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4333 gdb_assert (object == TARGET_OBJECT_OSDATA);
4335 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4338 static LONGEST
4339 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4340 const char *annex, gdb_byte *readbuf,
4341 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4343 LONGEST xfer;
4345 if (object == TARGET_OBJECT_AUXV)
4346 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4347 offset, len);
4349 if (object == TARGET_OBJECT_OSDATA)
4350 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4351 offset, len);
4353 if (object == TARGET_OBJECT_SPU)
4354 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4355 offset, len);
4357 /* GDB calculates all the addresses in possibly larget width of the address.
4358 Address width needs to be masked before its final use - either by
4359 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4361 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4363 if (object == TARGET_OBJECT_MEMORY)
4365 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4367 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4368 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4371 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4372 offset, len);
4373 if (xfer != 0)
4374 return xfer;
4376 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4377 offset, len);
4380 static void
4381 cleanup_target_stop (void *arg)
4383 ptid_t *ptid = (ptid_t *) arg;
4385 gdb_assert (arg != NULL);
4387 /* Unpause all */
4388 target_resume (*ptid, 0, GDB_SIGNAL_0);
4391 static VEC(static_tracepoint_marker_p) *
4392 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4394 char s[IPA_CMD_BUF_SIZE];
4395 struct cleanup *old_chain;
4396 int pid = ptid_get_pid (inferior_ptid);
4397 VEC(static_tracepoint_marker_p) *markers = NULL;
4398 struct static_tracepoint_marker *marker = NULL;
4399 char *p = s;
4400 ptid_t ptid = ptid_build (pid, 0, 0);
4402 /* Pause all */
4403 target_stop (ptid);
4405 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4406 s[sizeof ("qTfSTM")] = 0;
4408 agent_run_command (pid, s, strlen (s) + 1);
4410 old_chain = make_cleanup (free_current_marker, &marker);
4411 make_cleanup (cleanup_target_stop, &ptid);
4413 while (*p++ == 'm')
4415 if (marker == NULL)
4416 marker = XCNEW (struct static_tracepoint_marker);
4420 parse_static_tracepoint_marker_definition (p, &p, marker);
4422 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4424 VEC_safe_push (static_tracepoint_marker_p,
4425 markers, marker);
4426 marker = NULL;
4428 else
4430 release_static_tracepoint_marker (marker);
4431 memset (marker, 0, sizeof (*marker));
4434 while (*p++ == ','); /* comma-separated list */
4436 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4437 s[sizeof ("qTsSTM")] = 0;
4438 agent_run_command (pid, s, strlen (s) + 1);
4439 p = s;
4442 do_cleanups (old_chain);
4444 return markers;
4447 /* Create a prototype generic GNU/Linux target. The client can override
4448 it with local methods. */
4450 static void
4451 linux_target_install_ops (struct target_ops *t)
4453 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4454 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4455 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4456 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4457 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4458 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4459 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4460 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4461 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4462 t->to_post_attach = linux_child_post_attach;
4463 t->to_follow_fork = linux_child_follow_fork;
4464 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4466 super_xfer_partial = t->to_xfer_partial;
4467 t->to_xfer_partial = linux_xfer_partial;
4469 t->to_static_tracepoint_markers_by_strid
4470 = linux_child_static_tracepoint_markers_by_strid;
4473 struct target_ops *
4474 linux_target (void)
4476 struct target_ops *t;
4478 t = inf_ptrace_target ();
4479 linux_target_install_ops (t);
4481 return t;
4484 struct target_ops *
4485 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4487 struct target_ops *t;
4489 t = inf_ptrace_trad_target (register_u_offset);
4490 linux_target_install_ops (t);
4492 return t;
4495 /* target_is_async_p implementation. */
4497 static int
4498 linux_nat_is_async_p (void)
4500 /* NOTE: palves 2008-03-21: We're only async when the user requests
4501 it explicitly with the "set target-async" command.
4502 Someday, linux will always be async. */
4503 return target_async_permitted;
4506 /* target_can_async_p implementation. */
4508 static int
4509 linux_nat_can_async_p (void)
4511 /* NOTE: palves 2008-03-21: We're only async when the user requests
4512 it explicitly with the "set target-async" command.
4513 Someday, linux will always be async. */
4514 return target_async_permitted;
4517 static int
4518 linux_nat_supports_non_stop (void)
4520 return 1;
4523 /* True if we want to support multi-process. To be removed when GDB
4524 supports multi-exec. */
4526 int linux_multi_process = 1;
4528 static int
4529 linux_nat_supports_multi_process (void)
4531 return linux_multi_process;
4534 static int
4535 linux_nat_supports_disable_randomization (void)
4537 #ifdef HAVE_PERSONALITY
4538 return 1;
4539 #else
4540 return 0;
4541 #endif
4544 static int async_terminal_is_ours = 1;
4546 /* target_terminal_inferior implementation. */
4548 static void
4549 linux_nat_terminal_inferior (void)
4551 if (!target_is_async_p ())
4553 /* Async mode is disabled. */
4554 terminal_inferior ();
4555 return;
4558 terminal_inferior ();
4560 /* Calls to target_terminal_*() are meant to be idempotent. */
4561 if (!async_terminal_is_ours)
4562 return;
4564 delete_file_handler (input_fd);
4565 async_terminal_is_ours = 0;
4566 set_sigint_trap ();
4569 /* target_terminal_ours implementation. */
4571 static void
4572 linux_nat_terminal_ours (void)
4574 if (!target_is_async_p ())
4576 /* Async mode is disabled. */
4577 terminal_ours ();
4578 return;
4581 /* GDB should never give the terminal to the inferior if the
4582 inferior is running in the background (run&, continue&, etc.),
4583 but claiming it sure should. */
4584 terminal_ours ();
4586 if (async_terminal_is_ours)
4587 return;
4589 clear_sigint_trap ();
4590 add_file_handler (input_fd, stdin_event_handler, 0);
4591 async_terminal_is_ours = 1;
4594 static void (*async_client_callback) (enum inferior_event_type event_type,
4595 void *context);
4596 static void *async_client_context;
4598 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4599 so we notice when any child changes state, and notify the
4600 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4601 above to wait for the arrival of a SIGCHLD. */
4603 static void
4604 sigchld_handler (int signo)
4606 int old_errno = errno;
4608 if (debug_linux_nat)
4609 ui_file_write_async_safe (gdb_stdlog,
4610 "sigchld\n", sizeof ("sigchld\n") - 1);
4612 if (signo == SIGCHLD
4613 && linux_nat_event_pipe[0] != -1)
4614 async_file_mark (); /* Let the event loop know that there are
4615 events to handle. */
4617 errno = old_errno;
4620 /* Callback registered with the target events file descriptor. */
4622 static void
4623 handle_target_event (int error, gdb_client_data client_data)
4625 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4628 /* Create/destroy the target events pipe. Returns previous state. */
4630 static int
4631 linux_async_pipe (int enable)
4633 int previous = (linux_nat_event_pipe[0] != -1);
4635 if (previous != enable)
4637 sigset_t prev_mask;
4639 /* Block child signals while we create/destroy the pipe, as
4640 their handler writes to it. */
4641 block_child_signals (&prev_mask);
4643 if (enable)
4645 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4646 internal_error (__FILE__, __LINE__,
4647 "creating event pipe failed.");
4649 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4650 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4652 else
4654 close (linux_nat_event_pipe[0]);
4655 close (linux_nat_event_pipe[1]);
4656 linux_nat_event_pipe[0] = -1;
4657 linux_nat_event_pipe[1] = -1;
4660 restore_child_signals_mask (&prev_mask);
4663 return previous;
4666 /* target_async implementation. */
4668 static void
4669 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4670 void *context), void *context)
4672 if (callback != NULL)
4674 async_client_callback = callback;
4675 async_client_context = context;
4676 if (!linux_async_pipe (1))
4678 add_file_handler (linux_nat_event_pipe[0],
4679 handle_target_event, NULL);
4680 /* There may be pending events to handle. Tell the event loop
4681 to poll them. */
4682 async_file_mark ();
4685 else
4687 async_client_callback = callback;
4688 async_client_context = context;
4689 delete_file_handler (linux_nat_event_pipe[0]);
4690 linux_async_pipe (0);
4692 return;
4695 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4696 event came out. */
4698 static int
4699 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4701 if (!lwp->stopped)
4703 if (debug_linux_nat)
4704 fprintf_unfiltered (gdb_stdlog,
4705 "LNSL: running -> suspending %s\n",
4706 target_pid_to_str (lwp->ptid));
4709 if (lwp->last_resume_kind == resume_stop)
4711 if (debug_linux_nat)
4712 fprintf_unfiltered (gdb_stdlog,
4713 "linux-nat: already stopping LWP %ld at "
4714 "GDB's request\n",
4715 ptid_get_lwp (lwp->ptid));
4716 return 0;
4719 stop_callback (lwp, NULL);
4720 lwp->last_resume_kind = resume_stop;
4722 else
4724 /* Already known to be stopped; do nothing. */
4726 if (debug_linux_nat)
4728 if (find_thread_ptid (lwp->ptid)->stop_requested)
4729 fprintf_unfiltered (gdb_stdlog,
4730 "LNSL: already stopped/stop_requested %s\n",
4731 target_pid_to_str (lwp->ptid));
4732 else
4733 fprintf_unfiltered (gdb_stdlog,
4734 "LNSL: already stopped/no "
4735 "stop_requested yet %s\n",
4736 target_pid_to_str (lwp->ptid));
4739 return 0;
4742 static void
4743 linux_nat_stop (ptid_t ptid)
4745 if (non_stop)
4746 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4747 else
4748 linux_ops->to_stop (ptid);
4751 static void
4752 linux_nat_close (void)
4754 /* Unregister from the event loop. */
4755 if (linux_nat_is_async_p ())
4756 linux_nat_async (NULL, 0);
4758 if (linux_ops->to_close)
4759 linux_ops->to_close ();
4762 /* When requests are passed down from the linux-nat layer to the
4763 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4764 used. The address space pointer is stored in the inferior object,
4765 but the common code that is passed such ptid can't tell whether
4766 lwpid is a "main" process id or not (it assumes so). We reverse
4767 look up the "main" process id from the lwp here. */
4769 static struct address_space *
4770 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4772 struct lwp_info *lwp;
4773 struct inferior *inf;
4774 int pid;
4776 pid = GET_LWP (ptid);
4777 if (GET_LWP (ptid) == 0)
4779 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4780 tgid. */
4781 lwp = find_lwp_pid (ptid);
4782 pid = GET_PID (lwp->ptid);
4784 else
4786 /* A (pid,lwpid,0) ptid. */
4787 pid = GET_PID (ptid);
4790 inf = find_inferior_pid (pid);
4791 gdb_assert (inf != NULL);
4792 return inf->aspace;
4795 /* Return the cached value of the processor core for thread PTID. */
4797 static int
4798 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4800 struct lwp_info *info = find_lwp_pid (ptid);
4802 if (info)
4803 return info->core;
4804 return -1;
4807 void
4808 linux_nat_add_target (struct target_ops *t)
4810 /* Save the provided single-threaded target. We save this in a separate
4811 variable because another target we've inherited from (e.g. inf-ptrace)
4812 may have saved a pointer to T; we want to use it for the final
4813 process stratum target. */
4814 linux_ops_saved = *t;
4815 linux_ops = &linux_ops_saved;
4817 /* Override some methods for multithreading. */
4818 t->to_create_inferior = linux_nat_create_inferior;
4819 t->to_attach = linux_nat_attach;
4820 t->to_detach = linux_nat_detach;
4821 t->to_resume = linux_nat_resume;
4822 t->to_wait = linux_nat_wait;
4823 t->to_pass_signals = linux_nat_pass_signals;
4824 t->to_xfer_partial = linux_nat_xfer_partial;
4825 t->to_kill = linux_nat_kill;
4826 t->to_mourn_inferior = linux_nat_mourn_inferior;
4827 t->to_thread_alive = linux_nat_thread_alive;
4828 t->to_pid_to_str = linux_nat_pid_to_str;
4829 t->to_thread_name = linux_nat_thread_name;
4830 t->to_has_thread_control = tc_schedlock;
4831 t->to_thread_address_space = linux_nat_thread_address_space;
4832 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4833 t->to_stopped_data_address = linux_nat_stopped_data_address;
4835 t->to_can_async_p = linux_nat_can_async_p;
4836 t->to_is_async_p = linux_nat_is_async_p;
4837 t->to_supports_non_stop = linux_nat_supports_non_stop;
4838 t->to_async = linux_nat_async;
4839 t->to_terminal_inferior = linux_nat_terminal_inferior;
4840 t->to_terminal_ours = linux_nat_terminal_ours;
4841 t->to_close = linux_nat_close;
4843 /* Methods for non-stop support. */
4844 t->to_stop = linux_nat_stop;
4846 t->to_supports_multi_process = linux_nat_supports_multi_process;
4848 t->to_supports_disable_randomization
4849 = linux_nat_supports_disable_randomization;
4851 t->to_core_of_thread = linux_nat_core_of_thread;
4853 /* We don't change the stratum; this target will sit at
4854 process_stratum and thread_db will set at thread_stratum. This
4855 is a little strange, since this is a multi-threaded-capable
4856 target, but we want to be on the stack below thread_db, and we
4857 also want to be used for single-threaded processes. */
4859 add_target (t);
4862 /* Register a method to call whenever a new thread is attached. */
4863 void
4864 linux_nat_set_new_thread (struct target_ops *t,
4865 void (*new_thread) (struct lwp_info *))
4867 /* Save the pointer. We only support a single registered instance
4868 of the GNU/Linux native target, so we do not need to map this to
4869 T. */
4870 linux_nat_new_thread = new_thread;
4873 /* See declaration in linux-nat.h. */
4875 void
4876 linux_nat_set_new_fork (struct target_ops *t,
4877 linux_nat_new_fork_ftype *new_fork)
4879 /* Save the pointer. */
4880 linux_nat_new_fork = new_fork;
4883 /* See declaration in linux-nat.h. */
4885 void
4886 linux_nat_set_forget_process (struct target_ops *t,
4887 linux_nat_forget_process_ftype *fn)
4889 /* Save the pointer. */
4890 linux_nat_forget_process_hook = fn;
4893 /* See declaration in linux-nat.h. */
4895 void
4896 linux_nat_forget_process (pid_t pid)
4898 if (linux_nat_forget_process_hook != NULL)
4899 linux_nat_forget_process_hook (pid);
4902 /* Register a method that converts a siginfo object between the layout
4903 that ptrace returns, and the layout in the architecture of the
4904 inferior. */
4905 void
4906 linux_nat_set_siginfo_fixup (struct target_ops *t,
4907 int (*siginfo_fixup) (siginfo_t *,
4908 gdb_byte *,
4909 int))
4911 /* Save the pointer. */
4912 linux_nat_siginfo_fixup = siginfo_fixup;
4915 /* Register a method to call prior to resuming a thread. */
4917 void
4918 linux_nat_set_prepare_to_resume (struct target_ops *t,
4919 void (*prepare_to_resume) (struct lwp_info *))
4921 /* Save the pointer. */
4922 linux_nat_prepare_to_resume = prepare_to_resume;
4925 /* See linux-nat.h. */
4928 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4930 int pid;
4932 pid = GET_LWP (ptid);
4933 if (pid == 0)
4934 pid = GET_PID (ptid);
4936 errno = 0;
4937 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4938 if (errno != 0)
4940 memset (siginfo, 0, sizeof (*siginfo));
4941 return 0;
4943 return 1;
4946 /* Provide a prototype to silence -Wmissing-prototypes. */
4947 extern initialize_file_ftype _initialize_linux_nat;
4949 void
4950 _initialize_linux_nat (void)
4952 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4953 &debug_linux_nat, _("\
4954 Set debugging of GNU/Linux lwp module."), _("\
4955 Show debugging of GNU/Linux lwp module."), _("\
4956 Enables printf debugging output."),
4957 NULL,
4958 show_debug_linux_nat,
4959 &setdebuglist, &showdebuglist);
4961 /* Save this mask as the default. */
4962 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4964 /* Install a SIGCHLD handler. */
4965 sigchld_action.sa_handler = sigchld_handler;
4966 sigemptyset (&sigchld_action.sa_mask);
4967 sigchld_action.sa_flags = SA_RESTART;
4969 /* Make it the default. */
4970 sigaction (SIGCHLD, &sigchld_action, NULL);
4972 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4973 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4974 sigdelset (&suspend_mask, SIGCHLD);
4976 sigemptyset (&blocked_mask);
4980 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4981 the GNU/Linux Threads library and therefore doesn't really belong
4982 here. */
4984 /* Read variable NAME in the target and return its value if found.
4985 Otherwise return zero. It is assumed that the type of the variable
4986 is `int'. */
4988 static int
4989 get_signo (const char *name)
4991 struct minimal_symbol *ms;
4992 int signo;
4994 ms = lookup_minimal_symbol (name, NULL, NULL);
4995 if (ms == NULL)
4996 return 0;
4998 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4999 sizeof (signo)) != 0)
5000 return 0;
5002 return signo;
5005 /* Return the set of signals used by the threads library in *SET. */
5007 void
5008 lin_thread_get_thread_signals (sigset_t *set)
5010 struct sigaction action;
5011 int restart, cancel;
5013 sigemptyset (&blocked_mask);
5014 sigemptyset (set);
5016 restart = get_signo ("__pthread_sig_restart");
5017 cancel = get_signo ("__pthread_sig_cancel");
5019 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5020 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5021 not provide any way for the debugger to query the signal numbers -
5022 fortunately they don't change! */
5024 if (restart == 0)
5025 restart = __SIGRTMIN;
5027 if (cancel == 0)
5028 cancel = __SIGRTMIN + 1;
5030 sigaddset (set, restart);
5031 sigaddset (set, cancel);
5033 /* The GNU/Linux Threads library makes terminating threads send a
5034 special "cancel" signal instead of SIGCHLD. Make sure we catch
5035 those (to prevent them from terminating GDB itself, which is
5036 likely to be their default action) and treat them the same way as
5037 SIGCHLD. */
5039 action.sa_handler = sigchld_handler;
5040 sigemptyset (&action.sa_mask);
5041 action.sa_flags = SA_RESTART;
5042 sigaction (cancel, &action, NULL);
5044 /* We block the "cancel" signal throughout this code ... */
5045 sigaddset (&blocked_mask, cancel);
5046 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5048 /* ... except during a sigsuspend. */
5049 sigdelset (&suspend_mask, cancel);