Automatic date update in version.in
[binutils-gdb.git] / gdb / buildsym.c
blob506110989bf54d506a19c81e48d59aa915e55acf
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2024 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 #include "defs.h"
20 #include "buildsym-legacy.h"
21 #include "bfd.h"
22 #include "gdbsupport/gdb_obstack.h"
23 #include "gdbsupport/pathstuff.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "complaints.h"
29 #include "expression.h"
30 #include "filenames.h"
31 #include "macrotab.h"
32 #include "demangle.h"
33 #include "block.h"
34 #include "cp-support.h"
35 #include "dictionary.h"
36 #include <algorithm>
38 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
39 questionable--see comment where we call them). */
41 #include "stabsread.h"
43 /* List of blocks already made (lexical contexts already closed).
44 This is used at the end to make the blockvector. */
46 struct pending_block
48 struct pending_block *next;
49 struct block *block;
52 buildsym_compunit::buildsym_compunit (struct objfile *objfile_,
53 const char *name,
54 const char *comp_dir_,
55 const char *name_for_id,
56 enum language language_,
57 CORE_ADDR last_addr)
58 : m_objfile (objfile_),
59 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
60 m_comp_dir (comp_dir_ == nullptr ? "" : comp_dir_),
61 m_language (language_),
62 m_last_source_start_addr (last_addr)
64 /* Allocate the compunit symtab now. The caller needs it to allocate
65 non-primary symtabs. It is also needed by get_macro_table. */
66 m_compunit_symtab = allocate_compunit_symtab (m_objfile, name);
68 /* Build the subfile for NAME (the main source file) so that we can record
69 a pointer to it for later.
70 IMPORTANT: Do not allocate a struct symtab for NAME here.
71 It can happen that the debug info provides a different path to NAME than
72 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
73 that only works if the main_subfile doesn't have a symtab yet. */
74 start_subfile (name, name_for_id);
75 /* Save this so that we don't have to go looking for it at the end
76 of the subfiles list. */
77 m_main_subfile = m_current_subfile;
80 buildsym_compunit::~buildsym_compunit ()
82 struct subfile *subfile, *nextsub;
84 if (m_pending_macros != nullptr)
85 free_macro_table (m_pending_macros);
87 for (subfile = m_subfiles;
88 subfile != NULL;
89 subfile = nextsub)
91 nextsub = subfile->next;
92 delete subfile;
95 struct pending *next, *next1;
97 for (next = m_file_symbols; next != NULL; next = next1)
99 next1 = next->next;
100 xfree ((void *) next);
103 for (next = m_global_symbols; next != NULL; next = next1)
105 next1 = next->next;
106 xfree ((void *) next);
110 struct macro_table *
111 buildsym_compunit::get_macro_table ()
113 if (m_pending_macros == nullptr)
114 m_pending_macros = new_macro_table (&m_objfile->per_bfd->storage_obstack,
115 &m_objfile->per_bfd->string_cache,
116 m_compunit_symtab);
117 return m_pending_macros;
120 /* Maintain the lists of symbols and blocks. */
122 /* Add a symbol to one of the lists of symbols. */
124 void
125 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
127 struct pending *link;
129 /* If this is an alias for another symbol, don't add it. */
130 if (symbol->linkage_name () && symbol->linkage_name ()[0] == '#')
131 return;
133 /* We keep PENDINGSIZE symbols in each link of the list. If we
134 don't have a link with room in it, add a new link. */
135 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
137 link = XNEW (struct pending);
138 link->next = *listhead;
139 *listhead = link;
140 link->nsyms = 0;
143 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
146 /* Find a symbol named NAME on a LIST. NAME need not be
147 '\0'-terminated; LENGTH is the length of the name. */
149 struct symbol *
150 find_symbol_in_list (struct pending *list, char *name, int length)
152 int j;
153 const char *pp;
155 while (list != NULL)
157 for (j = list->nsyms; --j >= 0;)
159 pp = list->symbol[j]->linkage_name ();
160 if (*pp == *name && strncmp (pp, name, length) == 0
161 && pp[length] == '\0')
163 return (list->symbol[j]);
166 list = list->next;
168 return (NULL);
171 /* Record BLOCK on the list of all blocks in the file. Put it after
172 OPBLOCK, or at the beginning if opblock is NULL. This puts the
173 block in the list after all its subblocks. */
175 void
176 buildsym_compunit::record_pending_block (struct block *block,
177 struct pending_block *opblock)
179 struct pending_block *pblock;
181 pblock = XOBNEW (&m_pending_block_obstack, struct pending_block);
182 pblock->block = block;
183 if (opblock)
185 pblock->next = opblock->next;
186 opblock->next = pblock;
188 else
190 pblock->next = m_pending_blocks;
191 m_pending_blocks = pblock;
195 /* Take one of the lists of symbols and make a block from it. Keep
196 the order the symbols have in the list (reversed from the input
197 file). Put the block on the list of pending blocks. */
199 struct block *
200 buildsym_compunit::finish_block_internal
201 (struct symbol *symbol,
202 struct pending **listhead,
203 struct pending_block *old_blocks,
204 const struct dynamic_prop *static_link,
205 CORE_ADDR start, CORE_ADDR end,
206 int is_global, int expandable)
208 struct gdbarch *gdbarch = m_objfile->arch ();
209 struct pending *next, *next1;
210 struct block *block;
211 struct pending_block *pblock;
212 struct pending_block *opblock;
214 if (is_global)
215 block = new (&m_objfile->objfile_obstack) global_block;
216 else
217 block = new (&m_objfile->objfile_obstack) struct block;
219 if (symbol)
221 block->set_multidict
222 (mdict_create_linear (&m_objfile->objfile_obstack, *listhead));
224 else
226 if (expandable)
228 block->set_multidict
229 (mdict_create_hashed_expandable (m_language));
230 mdict_add_pending (block->multidict (), *listhead);
232 else
234 block->set_multidict
235 (mdict_create_hashed (&m_objfile->objfile_obstack, *listhead));
239 block->set_start (start);
240 block->set_end (end);
242 /* Put the block in as the value of the symbol that names it. */
244 if (symbol)
246 struct type *ftype = symbol->type ();
247 symbol->set_value_block (block);
248 symbol->set_section_index (SECT_OFF_TEXT (m_objfile));
249 block->set_function (symbol);
251 if (ftype->num_fields () <= 0)
253 /* No parameter type information is recorded with the
254 function's type. Set that from the type of the
255 parameter symbols. */
256 int nparams = 0, iparams;
258 /* Here we want to directly access the dictionary, because
259 we haven't fully initialized the block yet. */
260 for (struct symbol *sym : block->multidict_symbols ())
262 if (sym->is_argument ())
263 nparams++;
265 if (nparams > 0)
267 ftype->alloc_fields (nparams);
269 iparams = 0;
270 /* Here we want to directly access the dictionary, because
271 we haven't fully initialized the block yet. */
272 for (struct symbol *sym : block->multidict_symbols ())
274 if (iparams == nparams)
275 break;
277 if (sym->is_argument ())
279 ftype->field (iparams).set_type (sym->type ());
280 ftype->field (iparams).set_is_artificial (false);
281 iparams++;
287 else
288 block->set_function (nullptr);
290 if (static_link != NULL)
291 objfile_register_static_link (m_objfile, block, static_link);
293 /* Now free the links of the list, and empty the list. */
295 for (next = *listhead; next; next = next1)
297 next1 = next->next;
298 xfree (next);
300 *listhead = NULL;
302 /* Check to be sure that the blocks have an end address that is
303 greater than starting address. */
305 if (block->end () < block->start ())
307 if (symbol)
309 complaint (_("block end address less than block "
310 "start address in %s (patched it)"),
311 symbol->print_name ());
313 else
315 complaint (_("block end address %s less than block "
316 "start address %s (patched it)"),
317 paddress (gdbarch, block->end ()),
318 paddress (gdbarch, block->start ()));
320 /* Better than nothing. */
321 block->set_end (block->start ());
324 /* Install this block as the superblock of all blocks made since the
325 start of this scope that don't have superblocks yet. */
327 opblock = NULL;
328 for (pblock = m_pending_blocks;
329 pblock && pblock != old_blocks;
330 pblock = pblock->next)
332 if (pblock->block->superblock () == NULL)
334 /* Check to be sure the blocks are nested as we receive
335 them. If the compiler/assembler/linker work, this just
336 burns a small amount of time.
338 Skip blocks which correspond to a function; they're not
339 physically nested inside this other blocks, only
340 lexically nested. */
341 if (pblock->block->function () == NULL
342 && (pblock->block->start () < block->start ()
343 || pblock->block->end () > block->end ()))
345 if (symbol)
347 complaint (_("inner block not inside outer block in %s"),
348 symbol->print_name ());
350 else
352 complaint (_("inner block (%s-%s) not "
353 "inside outer block (%s-%s)"),
354 paddress (gdbarch, pblock->block->start ()),
355 paddress (gdbarch, pblock->block->end ()),
356 paddress (gdbarch, block->start ()),
357 paddress (gdbarch, block->end ()));
360 if (pblock->block->start () < block->start ())
361 pblock->block->set_start (block->start ());
363 if (pblock->block->end () > block->end ())
364 pblock->block->set_end (block->end ());
366 pblock->block->set_superblock (block);
368 opblock = pblock;
371 block->set_using ((is_global
372 ? m_global_using_directives
373 : m_local_using_directives),
374 &m_objfile->objfile_obstack);
375 if (is_global)
376 m_global_using_directives = NULL;
377 else
378 m_local_using_directives = NULL;
380 record_pending_block (block, opblock);
382 return block;
385 struct block *
386 buildsym_compunit::finish_block (struct symbol *symbol,
387 struct pending_block *old_blocks,
388 const struct dynamic_prop *static_link,
389 CORE_ADDR start, CORE_ADDR end)
391 return finish_block_internal (symbol, &m_local_symbols,
392 old_blocks, static_link, start, end, 0, 0);
395 /* Record that the range of addresses from START to END_INCLUSIVE
396 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
397 addresses must be set already. You must apply this function to all
398 BLOCK's children before applying it to BLOCK.
400 If a call to this function complicates the picture beyond that
401 already provided by BLOCK_START and BLOCK_END, then we create an
402 address map for the block. */
403 void
404 buildsym_compunit::record_block_range (struct block *block,
405 CORE_ADDR start,
406 CORE_ADDR end_inclusive)
408 /* If this is any different from the range recorded in the block's
409 own BLOCK_START and BLOCK_END, then note that the address map has
410 become interesting. Note that even if this block doesn't have
411 any "interesting" ranges, some later block might, so we still
412 need to record this block in the addrmap. */
413 if (start != block->start ()
414 || end_inclusive + 1 != block->end ())
415 m_pending_addrmap_interesting = true;
417 m_pending_addrmap.set_empty (start, end_inclusive, block);
420 struct blockvector *
421 buildsym_compunit::make_blockvector ()
423 struct pending_block *next;
424 struct blockvector *blockvector;
425 int i;
427 /* Count the length of the list of blocks. */
429 for (next = m_pending_blocks, i = 0; next; next = next->next, i++)
433 blockvector = (struct blockvector *)
434 obstack_alloc (&m_objfile->objfile_obstack,
435 (sizeof (struct blockvector)
436 + (i - 1) * sizeof (struct block *)));
438 /* Copy the blocks into the blockvector. This is done in reverse
439 order, which happens to put the blocks into the proper order
440 (ascending starting address). finish_block has hair to insert
441 each block into the list after its subblocks in order to make
442 sure this is true. */
444 blockvector->set_num_blocks (i);
445 for (next = m_pending_blocks; next; next = next->next)
446 blockvector->set_block (--i, next->block);
448 free_pending_blocks ();
450 /* If we needed an address map for this symtab, record it in the
451 blockvector. */
452 if (m_pending_addrmap_interesting)
453 blockvector->set_map
454 (new (&m_objfile->objfile_obstack) addrmap_fixed
455 (&m_objfile->objfile_obstack, &m_pending_addrmap));
456 else
457 blockvector->set_map (nullptr);
459 /* Some compilers output blocks in the wrong order, but we depend on
460 their being in the right order so we can binary search. Check the
461 order and moan about it.
462 Note: Remember that the first two blocks are the global and static
463 blocks. We could special case that fact and begin checking at block 2.
464 To avoid making that assumption we do not. */
465 if (blockvector->num_blocks () > 1)
467 for (i = 1; i < blockvector->num_blocks (); i++)
469 if (blockvector->block (i - 1)->start ()
470 > blockvector->block (i)->start ())
472 CORE_ADDR start
473 = blockvector->block (i)->start ();
475 complaint (_("block at %s out of order"),
476 hex_string ((LONGEST) start));
481 return (blockvector);
484 /* See buildsym.h. */
486 void
487 buildsym_compunit::start_subfile (const char *name, const char *name_for_id)
489 /* See if this subfile is already registered. */
491 symtab_create_debug_printf ("name = %s, name_for_id = %s", name, name_for_id);
493 for (subfile *subfile = m_subfiles; subfile; subfile = subfile->next)
494 if (FILENAME_CMP (subfile->name_for_id.c_str (), name_for_id) == 0)
496 symtab_create_debug_printf ("found existing symtab with name_for_id %s",
497 subfile->name_for_id.c_str ());
498 m_current_subfile = subfile;
499 return;
502 /* This subfile is not known. Add an entry for it. */
504 subfile_up subfile (new struct subfile);
505 subfile->name = name;
506 subfile->name_for_id = name_for_id;
508 m_current_subfile = subfile.get ();
510 /* Default the source language to whatever can be deduced from the
511 filename. If nothing can be deduced (such as for a C/C++ include
512 file with a ".h" extension), then inherit whatever language the
513 previous subfile had. This kludgery is necessary because there
514 is no standard way in some object formats to record the source
515 language. Also, when symtabs are allocated we try to deduce a
516 language then as well, but it is too late for us to use that
517 information while reading symbols, since symtabs aren't allocated
518 until after all the symbols have been processed for a given
519 source file. */
521 subfile->language = deduce_language_from_filename (subfile->name.c_str ());
522 if (subfile->language == language_unknown && m_subfiles != nullptr)
523 subfile->language = m_subfiles->language;
525 /* If the filename of this subfile ends in .C, then change the
526 language of any pending subfiles from C to C++. We also accept
527 any other C++ suffixes accepted by deduce_language_from_filename. */
528 /* Likewise for f2c. */
530 if (!subfile->name.empty ())
532 struct subfile *s;
533 language sublang = deduce_language_from_filename (subfile->name.c_str ());
535 if (sublang == language_cplus || sublang == language_fortran)
536 for (s = m_subfiles; s != NULL; s = s->next)
537 if (s->language == language_c)
538 s->language = sublang;
541 /* And patch up this file if necessary. */
542 if (subfile->language == language_c
543 && m_subfiles != nullptr
544 && (m_subfiles->language == language_cplus
545 || m_subfiles->language == language_fortran))
546 subfile->language = m_subfiles->language;
548 /* Link this subfile at the front of the subfile list. */
549 subfile->next = m_subfiles;
550 m_subfiles = subfile.release ();
553 /* For stabs readers, the first N_SO symbol is assumed to be the
554 source file name, and the subfile struct is initialized using that
555 assumption. If another N_SO symbol is later seen, immediately
556 following the first one, then the first one is assumed to be the
557 directory name and the second one is really the source file name.
559 So we have to patch up the subfile struct by moving the old name
560 value to dirname and remembering the new name. Some sanity
561 checking is performed to ensure that the state of the subfile
562 struct is reasonable and that the old name we are assuming to be a
563 directory name actually is (by checking for a trailing '/'). */
565 void
566 buildsym_compunit::patch_subfile_names (struct subfile *subfile,
567 const char *name)
569 if (subfile != NULL
570 && m_comp_dir.empty ()
571 && !subfile->name.empty ()
572 && IS_DIR_SEPARATOR (subfile->name.back ()))
574 m_comp_dir = std::move (subfile->name);
575 subfile->name = name;
576 subfile->name_for_id = name;
577 set_last_source_file (name);
579 /* Default the source language to whatever can be deduced from
580 the filename. If nothing can be deduced (such as for a C/C++
581 include file with a ".h" extension), then inherit whatever
582 language the previous subfile had. This kludgery is
583 necessary because there is no standard way in some object
584 formats to record the source language. Also, when symtabs
585 are allocated we try to deduce a language then as well, but
586 it is too late for us to use that information while reading
587 symbols, since symtabs aren't allocated until after all the
588 symbols have been processed for a given source file. */
590 subfile->language
591 = deduce_language_from_filename (subfile->name.c_str ());
592 if (subfile->language == language_unknown
593 && subfile->next != NULL)
595 subfile->language = subfile->next->language;
600 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
601 switching source files (different subfiles, as we call them) within
602 one object file, but using a stack rather than in an arbitrary
603 order. */
605 void
606 buildsym_compunit::push_subfile ()
608 gdb_assert (m_current_subfile != NULL);
609 gdb_assert (!m_current_subfile->name.empty ());
610 m_subfile_stack.push_back (m_current_subfile->name.c_str ());
613 const char *
614 buildsym_compunit::pop_subfile ()
616 gdb_assert (!m_subfile_stack.empty ());
617 const char *name = m_subfile_stack.back ();
618 m_subfile_stack.pop_back ();
619 return name;
622 /* Add a linetable entry for line number LINE and address PC to the
623 line vector for SUBFILE. */
625 void
626 buildsym_compunit::record_line (struct subfile *subfile, int line,
627 unrelocated_addr pc, linetable_entry_flags flags)
629 m_have_line_numbers = true;
631 /* Normally, we treat lines as unsorted. But the end of sequence
632 marker is special. We sort line markers at the same PC by line
633 number, so end of sequence markers (which have line == 0) appear
634 first. This is right if the marker ends the previous function,
635 and there is no padding before the next function. But it is
636 wrong if the previous line was empty and we are now marking a
637 switch to a different subfile. We must leave the end of sequence
638 marker at the end of this group of lines, not sort the empty line
639 to after the marker. The easiest way to accomplish this is to
640 delete any empty lines from our table, if they are followed by
641 end of sequence markers. All we lose is the ability to set
642 breakpoints at some lines which contain no instructions
643 anyway. */
644 if (line == 0)
646 std::optional<int> last_line;
648 while (!subfile->line_vector_entries.empty ())
650 linetable_entry *last = &subfile->line_vector_entries.back ();
651 last_line = last->line;
653 if (last->unrelocated_pc () != pc)
654 break;
656 subfile->line_vector_entries.pop_back ();
659 /* Ignore an end-of-sequence marker marking an empty sequence. */
660 if (!last_line.has_value () || *last_line == 0)
661 return;
664 linetable_entry &e = subfile->line_vector_entries.emplace_back ();
665 e.line = line;
666 e.is_stmt = (flags & LEF_IS_STMT) != 0;
667 e.set_unrelocated_pc (pc);
668 e.prologue_end = (flags & LEF_PROLOGUE_END) != 0;
669 e.epilogue_begin = (flags & LEF_EPILOGUE_BEGIN) != 0;
673 /* Subroutine of end_compunit_symtab to simplify it. Look for a subfile that
674 matches the main source file's basename. If there is only one, and
675 if the main source file doesn't have any symbol or line number
676 information, then copy this file's symtab and line_vector to the
677 main source file's subfile and discard the other subfile. This can
678 happen because of a compiler bug or from the user playing games
679 with #line or from things like a distributed build system that
680 manipulates the debug info. This can also happen from an innocent
681 symlink in the paths, we don't canonicalize paths here. */
683 void
684 buildsym_compunit::watch_main_source_file_lossage ()
686 struct subfile *mainsub, *subfile;
688 /* Get the main source file. */
689 mainsub = m_main_subfile;
691 /* If the main source file doesn't have any line number or symbol
692 info, look for an alias in another subfile. */
694 if (mainsub->line_vector_entries.empty ()
695 && mainsub->symtab == NULL)
697 const char *mainbase = lbasename (mainsub->name.c_str ());
698 int nr_matches = 0;
699 struct subfile *prevsub;
700 struct subfile *mainsub_alias = NULL;
701 struct subfile *prev_mainsub_alias = NULL;
703 prevsub = NULL;
704 for (subfile = m_subfiles;
705 subfile != NULL;
706 subfile = subfile->next)
708 if (subfile == mainsub)
709 continue;
710 if (filename_cmp (lbasename (subfile->name.c_str ()), mainbase) == 0)
712 ++nr_matches;
713 mainsub_alias = subfile;
714 prev_mainsub_alias = prevsub;
716 prevsub = subfile;
719 if (nr_matches == 1)
721 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
723 /* Found a match for the main source file.
724 Copy its line_vector and symtab to the main subfile
725 and then discard it. */
727 symtab_create_debug_printf ("using subfile %s as the main subfile",
728 mainsub_alias->name.c_str ());
730 mainsub->line_vector_entries
731 = std::move (mainsub_alias->line_vector_entries);
732 mainsub->symtab = mainsub_alias->symtab;
734 if (prev_mainsub_alias == NULL)
735 m_subfiles = mainsub_alias->next;
736 else
737 prev_mainsub_alias->next = mainsub_alias->next;
739 delete mainsub_alias;
744 /* Implementation of the first part of end_compunit_symtab. It allows modifying
745 STATIC_BLOCK before it gets finalized by
746 end_compunit_symtab_from_static_block. If the returned value is NULL there
747 is no blockvector created for this symtab (you still must call
748 end_compunit_symtab_from_static_block).
750 END_ADDR is the same as for end_compunit_symtab: the address of the end of
751 the file's text.
753 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
754 expandable.
756 If REQUIRED is non-zero, then a symtab is created even if it does
757 not contain any symbols. */
759 struct block *
760 buildsym_compunit::end_compunit_symtab_get_static_block (CORE_ADDR end_addr,
761 int expandable,
762 int required)
764 /* Finish the lexical context of the last function in the file; pop
765 the context stack. */
767 if (!m_context_stack.empty ())
769 struct context_stack cstk = pop_context ();
771 /* Make a block for the local symbols within. */
772 finish_block (cstk.name, cstk.old_blocks, NULL,
773 cstk.start_addr, end_addr);
775 if (!m_context_stack.empty ())
777 /* This is said to happen with SCO. The old coffread.c
778 code simply emptied the context stack, so we do the
779 same. FIXME: Find out why it is happening. This is not
780 believed to happen in most cases (even for coffread.c);
781 it used to be an abort(). */
782 complaint (_("Context stack not empty in end_compunit_symtab"));
783 m_context_stack.clear ();
787 /* Executables may have out of order pending blocks; sort the
788 pending blocks. */
789 if (m_pending_blocks != nullptr)
791 struct pending_block *pb;
793 std::vector<block *> barray;
795 for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
796 barray.push_back (pb->block);
798 /* Sort blocks by start address in descending order. Blocks with the
799 same start address must remain in the original order to preserve
800 inline function caller/callee relationships. */
801 std::stable_sort (barray.begin (), barray.end (),
802 [] (const block *a, const block *b)
804 return a->start () > b->start ();
807 int i = 0;
808 for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
809 pb->block = barray[i++];
812 /* Cleanup any undefined types that have been left hanging around
813 (this needs to be done before the finish_blocks so that
814 file_symbols is still good).
816 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
817 specific, but harmless for other symbol readers, since on gdb
818 startup or when finished reading stabs, the state is set so these
819 are no-ops. FIXME: Is this handled right in case of QUIT? Can
820 we make this cleaner? */
822 cleanup_undefined_stabs_types (m_objfile);
823 finish_global_stabs (m_objfile);
825 if (!required
826 && m_pending_blocks == NULL
827 && m_file_symbols == NULL
828 && m_global_symbols == NULL
829 && !m_have_line_numbers
830 && m_pending_macros == NULL
831 && m_global_using_directives == NULL)
833 /* Ignore symtabs that have no functions with real debugging info. */
834 return NULL;
836 else
838 /* Define the STATIC_BLOCK. */
839 return finish_block_internal (NULL, get_file_symbols (), NULL, NULL,
840 m_last_source_start_addr,
841 end_addr, 0, expandable);
845 /* Subroutine of end_compunit_symtab_from_static_block to simplify it.
846 Handle the "have blockvector" case.
847 See end_compunit_symtab_from_static_block for a description of the
848 arguments. */
850 struct compunit_symtab *
851 buildsym_compunit::end_compunit_symtab_with_blockvector
852 (struct block *static_block, int expandable)
854 struct compunit_symtab *cu = m_compunit_symtab;
855 struct blockvector *blockvector;
856 struct subfile *subfile;
857 CORE_ADDR end_addr;
859 gdb_assert (static_block != NULL);
860 gdb_assert (m_subfiles != NULL);
862 end_addr = static_block->end ();
864 /* Create the GLOBAL_BLOCK and build the blockvector. */
865 finish_block_internal (NULL, get_global_symbols (), NULL, NULL,
866 m_last_source_start_addr, end_addr,
867 1, expandable);
868 blockvector = make_blockvector ();
870 /* Read the line table if it has to be read separately.
871 This is only used by xcoffread.c. */
872 if (m_objfile->sf->sym_read_linetable != NULL)
873 m_objfile->sf->sym_read_linetable (m_objfile);
875 /* Handle the case where the debug info specifies a different path
876 for the main source file. It can cause us to lose track of its
877 line number information. */
878 watch_main_source_file_lossage ();
880 /* Now create the symtab objects proper, if not already done,
881 one for each subfile. */
883 for (subfile = m_subfiles;
884 subfile != NULL;
885 subfile = subfile->next)
887 if (!subfile->line_vector_entries.empty ())
889 /* Like the pending blocks, the line table may be scrambled
890 in reordered executables. Sort it. It is important to
891 preserve the order of lines at the same address, as this
892 maintains the inline function caller/callee
893 relationships, this is why std::stable_sort is used. */
894 std::stable_sort (subfile->line_vector_entries.begin (),
895 subfile->line_vector_entries.end ());
898 /* Allocate a symbol table if necessary. */
899 if (subfile->symtab == NULL)
900 subfile->symtab = allocate_symtab (cu, subfile->name.c_str (),
901 subfile->name_for_id.c_str ());
903 struct symtab *symtab = subfile->symtab;
905 /* Fill in its components. */
907 if (!subfile->line_vector_entries.empty ())
909 /* Reallocate the line table on the objfile obstack. */
910 size_t n_entries = subfile->line_vector_entries.size ();
911 size_t entry_array_size = n_entries * sizeof (struct linetable_entry);
912 int linetablesize = sizeof (struct linetable) + entry_array_size;
914 struct linetable *new_table
915 = XOBNEWVAR (&m_objfile->objfile_obstack, struct linetable,
916 linetablesize);
918 new_table->nitems = n_entries;
919 memcpy (new_table->item,
920 subfile->line_vector_entries.data (), entry_array_size);
922 symtab->set_linetable (new_table);
924 else
925 symtab->set_linetable (nullptr);
927 /* Use whatever language we have been using for this
928 subfile, not the one that was deduced in allocate_symtab
929 from the filename. We already did our own deducing when
930 we created the subfile, and we may have altered our
931 opinion of what language it is from things we found in
932 the symbols. */
933 symtab->set_language (subfile->language);
936 /* Make sure the filetab of main_subfile is the primary filetab of the CU. */
937 cu->set_primary_filetab (m_main_subfile->symtab);
939 /* Fill out the compunit symtab. */
941 if (!m_comp_dir.empty ())
943 /* Reallocate the dirname on the symbol obstack. */
944 cu->set_dirname (obstack_strdup (&m_objfile->objfile_obstack,
945 m_comp_dir.c_str ()));
948 /* Save the debug format string (if any) in the symtab. */
949 cu->set_debugformat (m_debugformat);
951 /* Similarly for the producer. */
952 cu->set_producer (m_producer);
954 cu->set_blockvector (blockvector);
956 struct block *b = blockvector->global_block ();
958 b->set_compunit_symtab (cu);
961 cu->set_macro_table (release_macros ());
963 /* Default any symbols without a specified symtab to the primary symtab. */
965 int block_i;
967 /* The main source file's symtab. */
968 struct symtab *symtab = cu->primary_filetab ();
970 for (block_i = 0; block_i < blockvector->num_blocks (); block_i++)
972 struct block *block = blockvector->block (block_i);
974 /* Inlined functions may have symbols not in the global or
975 static symbol lists. */
976 if (block->function () != nullptr
977 && block->function ()->symtab () == nullptr)
978 block->function ()->set_symtab (symtab);
980 /* Note that we only want to fix up symbols from the local
981 blocks, not blocks coming from included symtabs. That is
982 why we use an mdict iterator here and not a block
983 iterator. */
984 for (struct symbol *sym : block->multidict_symbols ())
985 if (sym->symtab () == NULL)
986 sym->set_symtab (symtab);
990 add_compunit_symtab_to_objfile (cu);
992 return cu;
995 /* Implementation of the second part of end_compunit_symtab. Pass STATIC_BLOCK
996 as value returned by end_compunit_symtab_get_static_block.
998 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
999 expandable. */
1001 struct compunit_symtab *
1002 buildsym_compunit::end_compunit_symtab_from_static_block
1003 (struct block *static_block, int expandable)
1005 struct compunit_symtab *cu;
1007 if (static_block == NULL)
1009 /* Handle the "no blockvector" case.
1010 When this happens there is nothing to record, so there's nothing
1011 to do: memory will be freed up later.
1013 Note: We won't be adding a compunit to the objfile's list of
1014 compunits, so there's nothing to unchain. However, since each symtab
1015 is added to the objfile's obstack we can't free that space.
1016 We could do better, but this is believed to be a sufficiently rare
1017 event. */
1018 cu = NULL;
1020 else
1021 cu = end_compunit_symtab_with_blockvector (static_block, expandable);
1023 return cu;
1026 /* Finish the symbol definitions for one main source file, close off
1027 all the lexical contexts for that file (creating struct block's for
1028 them), then make the struct symtab for that file and put it in the
1029 list of all such.
1031 END_ADDR is the address of the end of the file's text.
1033 Note that it is possible for end_compunit_symtab() to return NULL. In
1034 particular, for the DWARF case at least, it will return NULL when
1035 it finds a compilation unit that has exactly one DIE, a
1036 TAG_compile_unit DIE. This can happen when we link in an object
1037 file that was compiled from an empty source file. Returning NULL
1038 is probably not the correct thing to do, because then gdb will
1039 never know about this empty file (FIXME).
1041 If you need to modify STATIC_BLOCK before it is finalized you should
1042 call end_compunit_symtab_get_static_block and
1043 end_compunit_symtab_from_static_block yourself. */
1045 struct compunit_symtab *
1046 buildsym_compunit::end_compunit_symtab (CORE_ADDR end_addr)
1048 struct block *static_block;
1050 static_block = end_compunit_symtab_get_static_block (end_addr, 0, 0);
1051 return end_compunit_symtab_from_static_block (static_block, 0);
1054 /* Same as end_compunit_symtab except create a symtab that can be later added
1055 to. */
1057 struct compunit_symtab *
1058 buildsym_compunit::end_expandable_symtab (CORE_ADDR end_addr)
1060 struct block *static_block;
1062 static_block = end_compunit_symtab_get_static_block (end_addr, 1, 0);
1063 return end_compunit_symtab_from_static_block (static_block, 1);
1066 /* Subroutine of augment_type_symtab to simplify it.
1067 Attach the main source file's symtab to all symbols in PENDING_LIST that
1068 don't have one. */
1070 static void
1071 set_missing_symtab (struct pending *pending_list,
1072 struct compunit_symtab *cu)
1074 struct pending *pending;
1075 int i;
1077 for (pending = pending_list; pending != NULL; pending = pending->next)
1079 for (i = 0; i < pending->nsyms; ++i)
1081 if (pending->symbol[i]->symtab () == NULL)
1082 pending->symbol[i]->set_symtab (cu->primary_filetab ());
1087 /* Same as end_compunit_symtab, but for the case where we're adding more symbols
1088 to an existing symtab that is known to contain only type information.
1089 This is the case for DWARF4 Type Units. */
1091 void
1092 buildsym_compunit::augment_type_symtab ()
1094 struct compunit_symtab *cust = m_compunit_symtab;
1095 struct blockvector *blockvector = cust->blockvector ();
1097 if (!m_context_stack.empty ())
1098 complaint (_("Context stack not empty in augment_type_symtab"));
1099 if (m_pending_blocks != NULL)
1100 complaint (_("Blocks in a type symtab"));
1101 if (m_pending_macros != NULL)
1102 complaint (_("Macro in a type symtab"));
1103 if (m_have_line_numbers)
1104 complaint (_("Line numbers recorded in a type symtab"));
1106 if (m_file_symbols != NULL)
1108 struct block *block = blockvector->static_block ();
1110 /* First mark any symbols without a specified symtab as belonging
1111 to the primary symtab. */
1112 set_missing_symtab (m_file_symbols, cust);
1114 mdict_add_pending (block->multidict (), m_file_symbols);
1117 if (m_global_symbols != NULL)
1119 struct block *block = blockvector->global_block ();
1121 /* First mark any symbols without a specified symtab as belonging
1122 to the primary symtab. */
1123 set_missing_symtab (m_global_symbols, cust);
1125 mdict_add_pending (block->multidict (), m_global_symbols);
1129 /* Push a context block. Args are an identifying nesting level
1130 (checkable when you pop it), and the starting PC address of this
1131 context. */
1133 struct context_stack *
1134 buildsym_compunit::push_context (int desc, CORE_ADDR valu)
1136 struct context_stack *newobj = &m_context_stack.emplace_back ();
1138 newobj->depth = desc;
1139 newobj->locals = m_local_symbols;
1140 newobj->old_blocks = m_pending_blocks;
1141 newobj->start_addr = valu;
1142 newobj->local_using_directives = m_local_using_directives;
1143 newobj->name = NULL;
1145 m_local_symbols = NULL;
1146 m_local_using_directives = NULL;
1148 return newobj;
1151 /* Pop a context block. Returns the address of the context block just
1152 popped. */
1154 struct context_stack
1155 buildsym_compunit::pop_context ()
1157 gdb_assert (!m_context_stack.empty ());
1158 struct context_stack result = m_context_stack.back ();
1159 m_context_stack.pop_back ();
1160 return result;