1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2022 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
72 Creating a linker hash table
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
110 Adding symbols to the hash table
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
136 Differing file formats
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
173 Adding symbols from an object file
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
217 Adding symbols from an archive
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
265 Performing the final link
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
297 Information provided by the linker
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
321 Relocating the section contents
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
359 Writing the symbol table
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
405 static bool generic_link_add_object_symbols
406 (bfd
*, struct bfd_link_info
*);
407 static bool generic_link_check_archive_element
408 (bfd
*, struct bfd_link_info
*, struct bfd_link_hash_entry
*, const char *,
410 static bool generic_link_add_symbol_list
411 (bfd
*, struct bfd_link_info
*, bfd_size_type count
, asymbol
**);
412 static bool generic_add_output_symbol
413 (bfd
*, size_t *psymalloc
, asymbol
*);
414 static bool default_data_link_order
415 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*);
416 static bool default_indirect_link_order
417 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*,
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
424 /* Routine to create an entry in the link hash table. */
426 struct bfd_hash_entry
*
427 _bfd_link_hash_newfunc (struct bfd_hash_entry
*entry
,
428 struct bfd_hash_table
*table
,
431 /* Allocate the structure if it has not already been allocated by a
435 entry
= (struct bfd_hash_entry
*)
436 bfd_hash_allocate (table
, sizeof (struct bfd_link_hash_entry
));
441 /* Call the allocation method of the superclass. */
442 entry
= bfd_hash_newfunc (entry
, table
, string
);
445 struct bfd_link_hash_entry
*h
= (struct bfd_link_hash_entry
*) entry
;
447 /* Initialize the local fields. */
448 memset ((char *) &h
->root
+ sizeof (h
->root
), 0,
449 sizeof (*h
) - sizeof (h
->root
));
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table
*table
,
461 bfd
*abfd ATTRIBUTE_UNUSED
,
462 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
463 struct bfd_hash_table
*,
465 unsigned int entsize
)
469 BFD_ASSERT (!abfd
->is_linker_output
&& !abfd
->link
.hash
);
470 table
->undefs
= NULL
;
471 table
->undefs_tail
= NULL
;
472 table
->type
= bfd_link_generic_hash_table
;
474 ret
= bfd_hash_table_init (&table
->table
, newfunc
, entsize
);
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table
->hash_table_free
= _bfd_generic_link_hash_table_free
;
479 abfd
->link
.hash
= table
;
480 abfd
->is_linker_output
= true;
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 . is going to be absolute. Linker-script defined symbols can be
491 . converted from absolute to section-relative ones late in the
492 . link. Use this macro to correctly determine whether the symbol
493 . will actually end up absolute in output. *}
494 .#define bfd_is_abs_symbol(H) \
495 . (((H)->type == bfd_link_hash_defined \
496 . || (H)->type == bfd_link_hash_defweak) \
497 . && bfd_is_abs_section ((H)->u.def.section) \
498 . && !(H)->rel_from_abs)
502 struct bfd_link_hash_entry
*
503 bfd_link_hash_lookup (struct bfd_link_hash_table
*table
,
509 struct bfd_link_hash_entry
*ret
;
511 if (table
== NULL
|| string
== NULL
)
514 ret
= ((struct bfd_link_hash_entry
*)
515 bfd_hash_lookup (&table
->table
, string
, create
, copy
));
517 if (follow
&& ret
!= NULL
)
519 while (ret
->type
== bfd_link_hash_indirect
520 || ret
->type
== bfd_link_hash_warning
)
527 /* Look up a symbol in the main linker hash table if the symbol might
528 be wrapped. This should only be used for references to an
529 undefined symbol, not for definitions of a symbol. */
531 struct bfd_link_hash_entry
*
532 bfd_wrapped_link_hash_lookup (bfd
*abfd
,
533 struct bfd_link_info
*info
,
541 if (info
->wrap_hash
!= NULL
)
547 if (*l
== bfd_get_symbol_leading_char (abfd
) || *l
== info
->wrap_char
)
554 #define WRAP "__wrap_"
556 if (bfd_hash_lookup (info
->wrap_hash
, l
, false, false) != NULL
)
559 struct bfd_link_hash_entry
*h
;
561 /* This symbol is being wrapped. We want to replace all
562 references to SYM with references to __wrap_SYM. */
564 amt
= strlen (l
) + sizeof WRAP
+ 1;
565 n
= (char *) bfd_malloc (amt
);
573 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, true, follow
);
579 #define REAL "__real_"
582 && startswith (l
, REAL
)
583 && bfd_hash_lookup (info
->wrap_hash
, l
+ sizeof REAL
- 1,
584 false, false) != NULL
)
587 struct bfd_link_hash_entry
*h
;
589 /* This is a reference to __real_SYM, where SYM is being
590 wrapped. We want to replace all references to __real_SYM
591 with references to SYM. */
593 amt
= strlen (l
+ sizeof REAL
- 1) + 2;
594 n
= (char *) bfd_malloc (amt
);
600 strcat (n
, l
+ sizeof REAL
- 1);
601 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, true, follow
);
611 return bfd_link_hash_lookup (info
->hash
, string
, create
, copy
, follow
);
614 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
615 and the remainder is found in wrap_hash, return the real symbol. */
617 struct bfd_link_hash_entry
*
618 unwrap_hash_lookup (struct bfd_link_info
*info
,
620 struct bfd_link_hash_entry
*h
)
622 const char *l
= h
->root
.string
;
624 if (*l
== bfd_get_symbol_leading_char (input_bfd
)
625 || *l
== info
->wrap_char
)
628 if (startswith (l
, WRAP
))
630 l
+= sizeof WRAP
- 1;
632 if (bfd_hash_lookup (info
->wrap_hash
, l
, false, false) != NULL
)
635 if (l
- (sizeof WRAP
- 1) != h
->root
.string
)
639 *(char *) l
= *h
->root
.string
;
641 h
= bfd_link_hash_lookup (info
->hash
, l
, false, false, false);
650 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
651 in the treatment of warning symbols. When warning symbols are
652 created they replace the real symbol, so you don't get to see the
653 real symbol in a bfd_hash_traverse. This traversal calls func with
657 bfd_link_hash_traverse
658 (struct bfd_link_hash_table
*htab
,
659 bool (*func
) (struct bfd_link_hash_entry
*, void *),
664 htab
->table
.frozen
= 1;
665 for (i
= 0; i
< htab
->table
.size
; i
++)
667 struct bfd_link_hash_entry
*p
;
669 p
= (struct bfd_link_hash_entry
*) htab
->table
.table
[i
];
670 for (; p
!= NULL
; p
= (struct bfd_link_hash_entry
*) p
->root
.next
)
671 if (!(*func
) (p
->type
== bfd_link_hash_warning
? p
->u
.i
.link
: p
, info
))
675 htab
->table
.frozen
= 0;
678 /* Add a symbol to the linker hash table undefs list. */
681 bfd_link_add_undef (struct bfd_link_hash_table
*table
,
682 struct bfd_link_hash_entry
*h
)
684 BFD_ASSERT (h
->u
.undef
.next
== NULL
);
685 if (table
->undefs_tail
!= NULL
)
686 table
->undefs_tail
->u
.undef
.next
= h
;
687 if (table
->undefs
== NULL
)
689 table
->undefs_tail
= h
;
692 /* The undefs list was designed so that in normal use we don't need to
693 remove entries. However, if symbols on the list are changed from
694 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
695 bfd_link_hash_new for some reason, then they must be removed from the
696 list. Failure to do so might result in the linker attempting to add
697 the symbol to the list again at a later stage. */
700 bfd_link_repair_undef_list (struct bfd_link_hash_table
*table
)
702 struct bfd_link_hash_entry
**pun
;
704 pun
= &table
->undefs
;
707 struct bfd_link_hash_entry
*h
= *pun
;
709 if (h
->type
== bfd_link_hash_new
710 || h
->type
== bfd_link_hash_undefweak
)
712 *pun
= h
->u
.undef
.next
;
713 h
->u
.undef
.next
= NULL
;
714 if (h
== table
->undefs_tail
)
716 if (pun
== &table
->undefs
)
717 table
->undefs_tail
= NULL
;
719 /* pun points at an u.undef.next field. Go back to
720 the start of the link_hash_entry. */
721 table
->undefs_tail
= (struct bfd_link_hash_entry
*)
722 ((char *) pun
- ((char *) &h
->u
.undef
.next
- (char *) h
));
727 pun
= &h
->u
.undef
.next
;
731 /* Routine to create an entry in a generic link hash table. */
733 struct bfd_hash_entry
*
734 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry
*entry
,
735 struct bfd_hash_table
*table
,
738 /* Allocate the structure if it has not already been allocated by a
742 entry
= (struct bfd_hash_entry
*)
743 bfd_hash_allocate (table
, sizeof (struct generic_link_hash_entry
));
748 /* Call the allocation method of the superclass. */
749 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
752 struct generic_link_hash_entry
*ret
;
754 /* Set local fields. */
755 ret
= (struct generic_link_hash_entry
*) entry
;
756 ret
->written
= false;
763 /* Create a generic link hash table. */
765 struct bfd_link_hash_table
*
766 _bfd_generic_link_hash_table_create (bfd
*abfd
)
768 struct generic_link_hash_table
*ret
;
769 size_t amt
= sizeof (struct generic_link_hash_table
);
771 ret
= (struct generic_link_hash_table
*) bfd_malloc (amt
);
774 if (! _bfd_link_hash_table_init (&ret
->root
, abfd
,
775 _bfd_generic_link_hash_newfunc
,
776 sizeof (struct generic_link_hash_entry
)))
785 _bfd_generic_link_hash_table_free (bfd
*obfd
)
787 struct generic_link_hash_table
*ret
;
789 BFD_ASSERT (obfd
->is_linker_output
&& obfd
->link
.hash
);
790 ret
= (struct generic_link_hash_table
*) obfd
->link
.hash
;
791 bfd_hash_table_free (&ret
->root
.table
);
793 obfd
->link
.hash
= NULL
;
794 obfd
->is_linker_output
= false;
797 /* Grab the symbols for an object file when doing a generic link. We
798 store the symbols in the outsymbols field. We need to keep them
799 around for the entire link to ensure that we only read them once.
800 If we read them multiple times, we might wind up with relocs and
801 the hash table pointing to different instances of the symbol
805 bfd_generic_link_read_symbols (bfd
*abfd
)
807 if (bfd_get_outsymbols (abfd
) == NULL
)
812 symsize
= bfd_get_symtab_upper_bound (abfd
);
815 abfd
->outsymbols
= bfd_alloc (abfd
, symsize
);
816 if (bfd_get_outsymbols (abfd
) == NULL
&& symsize
!= 0)
818 symcount
= bfd_canonicalize_symtab (abfd
, bfd_get_outsymbols (abfd
));
821 abfd
->symcount
= symcount
;
827 /* Indicate that we are only retrieving symbol values from this
828 section. We want the symbols to act as though the values in the
829 file are absolute. */
832 _bfd_generic_link_just_syms (asection
*sec
,
833 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
835 sec
->sec_info_type
= SEC_INFO_TYPE_JUST_SYMS
;
836 sec
->output_section
= bfd_abs_section_ptr
;
837 sec
->output_offset
= sec
->vma
;
840 /* Copy the symbol type and other attributes for a linker script
841 assignment from HSRC to HDEST.
842 The default implementation does nothing. */
844 _bfd_generic_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
845 struct bfd_link_hash_entry
*hdest ATTRIBUTE_UNUSED
,
846 struct bfd_link_hash_entry
*hsrc ATTRIBUTE_UNUSED
)
850 /* Generic function to add symbols from an object file to the
851 global hash table. */
854 _bfd_generic_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
858 switch (bfd_get_format (abfd
))
861 ret
= generic_link_add_object_symbols (abfd
, info
);
864 ret
= (_bfd_generic_link_add_archive_symbols
865 (abfd
, info
, generic_link_check_archive_element
));
868 bfd_set_error (bfd_error_wrong_format
);
875 /* Add symbols from an object file to the global hash table. */
878 generic_link_add_object_symbols (bfd
*abfd
,
879 struct bfd_link_info
*info
)
881 bfd_size_type symcount
;
882 struct bfd_symbol
**outsyms
;
884 if (!bfd_generic_link_read_symbols (abfd
))
886 symcount
= _bfd_generic_link_get_symcount (abfd
);
887 outsyms
= _bfd_generic_link_get_symbols (abfd
);
888 return generic_link_add_symbol_list (abfd
, info
, symcount
, outsyms
);
891 /* Generic function to add symbols from an archive file to the global
892 hash file. This function presumes that the archive symbol table
893 has already been read in (this is normally done by the
894 bfd_check_format entry point). It looks through the archive symbol
895 table for symbols that are undefined or common in the linker global
896 symbol hash table. When one is found, the CHECKFN argument is used
897 to see if an object file should be included. This allows targets
898 to customize common symbol behaviour. CHECKFN should set *PNEEDED
899 to TRUE if the object file should be included, and must also call
900 the bfd_link_info add_archive_element callback function and handle
901 adding the symbols to the global hash table. CHECKFN must notice
902 if the callback indicates a substitute BFD, and arrange to add
903 those symbols instead if it does so. CHECKFN should only return
904 FALSE if some sort of error occurs. */
907 _bfd_generic_link_add_archive_symbols
909 struct bfd_link_info
*info
,
910 bool (*checkfn
) (bfd
*, struct bfd_link_info
*,
911 struct bfd_link_hash_entry
*, const char *, bool *))
915 unsigned char *included
;
917 if (! bfd_has_map (abfd
))
919 /* An empty archive is a special case. */
920 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
922 bfd_set_error (bfd_error_no_armap
);
926 amt
= bfd_ardata (abfd
)->symdef_count
;
929 amt
*= sizeof (*included
);
930 included
= (unsigned char *) bfd_zmalloc (amt
);
931 if (included
== NULL
)
940 file_ptr last_ar_offset
= -1;
945 arsyms
= bfd_ardata (abfd
)->symdefs
;
946 arsym_end
= arsyms
+ bfd_ardata (abfd
)->symdef_count
;
947 for (arsym
= arsyms
, indx
= 0; arsym
< arsym_end
; arsym
++, indx
++)
949 struct bfd_link_hash_entry
*h
;
950 struct bfd_link_hash_entry
*undefs_tail
;
954 if (needed
&& arsym
->file_offset
== last_ar_offset
)
960 if (arsym
->name
== NULL
)
963 h
= bfd_link_hash_lookup (info
->hash
, arsym
->name
,
967 && info
->pei386_auto_import
968 && startswith (arsym
->name
, "__imp_"))
969 h
= bfd_link_hash_lookup (info
->hash
, arsym
->name
+ 6,
974 if (h
->type
!= bfd_link_hash_undefined
975 && h
->type
!= bfd_link_hash_common
)
977 if (h
->type
!= bfd_link_hash_undefweak
)
978 /* Symbol must be defined. Don't check it again. */
983 if (last_ar_offset
!= arsym
->file_offset
)
985 last_ar_offset
= arsym
->file_offset
;
986 element
= _bfd_get_elt_at_filepos (abfd
, last_ar_offset
,
989 || !bfd_check_format (element
, bfd_object
))
993 undefs_tail
= info
->hash
->undefs_tail
;
995 /* CHECKFN will see if this element should be included, and
996 go ahead and include it if appropriate. */
997 if (! (*checkfn
) (element
, info
, h
, arsym
->name
, &needed
))
1004 /* Look backward to mark all symbols from this object file
1005 which we have already seen in this pass. */
1014 while (arsyms
[mark
].file_offset
== last_ar_offset
);
1016 if (undefs_tail
!= info
->hash
->undefs_tail
)
1030 /* See if we should include an archive element. */
1033 generic_link_check_archive_element (bfd
*abfd
,
1034 struct bfd_link_info
*info
,
1035 struct bfd_link_hash_entry
*h
,
1036 const char *name ATTRIBUTE_UNUSED
,
1039 asymbol
**pp
, **ppend
;
1043 if (!bfd_generic_link_read_symbols (abfd
))
1046 pp
= _bfd_generic_link_get_symbols (abfd
);
1047 ppend
= pp
+ _bfd_generic_link_get_symcount (abfd
);
1048 for (; pp
< ppend
; pp
++)
1054 /* We are only interested in globally visible symbols. */
1055 if (! bfd_is_com_section (p
->section
)
1056 && (p
->flags
& (BSF_GLOBAL
| BSF_INDIRECT
| BSF_WEAK
)) == 0)
1059 /* We are only interested if we know something about this
1060 symbol, and it is undefined or common. An undefined weak
1061 symbol (type bfd_link_hash_undefweak) is not considered to be
1062 a reference when pulling files out of an archive. See the
1063 SVR4 ABI, p. 4-27. */
1064 h
= bfd_link_hash_lookup (info
->hash
, bfd_asymbol_name (p
), false,
1067 || (h
->type
!= bfd_link_hash_undefined
1068 && h
->type
!= bfd_link_hash_common
))
1071 /* P is a symbol we are looking for. */
1073 if (! bfd_is_com_section (p
->section
)
1074 || (h
->type
== bfd_link_hash_undefined
1075 && h
->u
.undef
.abfd
== NULL
))
1077 /* P is not a common symbol, or an undefined reference was
1078 created from outside BFD such as from a linker -u option.
1079 This object file defines the symbol, so pull it in. */
1081 if (!(*info
->callbacks
1082 ->add_archive_element
) (info
, abfd
, bfd_asymbol_name (p
),
1085 /* Potentially, the add_archive_element hook may have set a
1086 substitute BFD for us. */
1087 return bfd_link_add_symbols (abfd
, info
);
1090 /* P is a common symbol. */
1092 if (h
->type
== bfd_link_hash_undefined
)
1098 /* Turn the symbol into a common symbol but do not link in
1099 the object file. This is how a.out works. Object
1100 formats that require different semantics must implement
1101 this function differently. This symbol is already on the
1102 undefs list. We add the section to a common section
1103 attached to symbfd to ensure that it is in a BFD which
1104 will be linked in. */
1105 symbfd
= h
->u
.undef
.abfd
;
1106 h
->type
= bfd_link_hash_common
;
1107 h
->u
.c
.p
= (struct bfd_link_hash_common_entry
*)
1108 bfd_hash_allocate (&info
->hash
->table
,
1109 sizeof (struct bfd_link_hash_common_entry
));
1110 if (h
->u
.c
.p
== NULL
)
1113 size
= bfd_asymbol_value (p
);
1116 power
= bfd_log2 (size
);
1119 h
->u
.c
.p
->alignment_power
= power
;
1121 if (p
->section
== bfd_com_section_ptr
)
1122 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
, "COMMON");
1124 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
,
1126 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1130 /* Adjust the size of the common symbol if necessary. This
1131 is how a.out works. Object formats that require
1132 different semantics must implement this function
1134 if (bfd_asymbol_value (p
) > h
->u
.c
.size
)
1135 h
->u
.c
.size
= bfd_asymbol_value (p
);
1139 /* This archive element is not needed. */
1143 /* Add the symbols from an object file to the global hash table. ABFD
1144 is the object file. INFO is the linker information. SYMBOL_COUNT
1145 is the number of symbols. SYMBOLS is the list of symbols. */
1148 generic_link_add_symbol_list (bfd
*abfd
,
1149 struct bfd_link_info
*info
,
1150 bfd_size_type symbol_count
,
1153 asymbol
**pp
, **ppend
;
1156 ppend
= symbols
+ symbol_count
;
1157 for (; pp
< ppend
; pp
++)
1163 if ((p
->flags
& (BSF_INDIRECT
1168 || bfd_is_und_section (bfd_asymbol_section (p
))
1169 || bfd_is_com_section (bfd_asymbol_section (p
))
1170 || bfd_is_ind_section (bfd_asymbol_section (p
)))
1174 struct generic_link_hash_entry
*h
;
1175 struct bfd_link_hash_entry
*bh
;
1177 string
= name
= bfd_asymbol_name (p
);
1178 if (((p
->flags
& BSF_INDIRECT
) != 0
1179 || bfd_is_ind_section (p
->section
))
1183 string
= bfd_asymbol_name (*pp
);
1185 else if ((p
->flags
& BSF_WARNING
) != 0
1188 /* The name of P is actually the warning string, and the
1189 next symbol is the one to warn about. */
1191 name
= bfd_asymbol_name (*pp
);
1195 if (! (_bfd_generic_link_add_one_symbol
1196 (info
, abfd
, name
, p
->flags
, bfd_asymbol_section (p
),
1197 p
->value
, string
, false, false, &bh
)))
1199 h
= (struct generic_link_hash_entry
*) bh
;
1201 /* If this is a constructor symbol, and the linker didn't do
1202 anything with it, then we want to just pass the symbol
1203 through to the output file. This will happen when
1205 if ((p
->flags
& BSF_CONSTRUCTOR
) != 0
1206 && (h
== NULL
|| h
->root
.type
== bfd_link_hash_new
))
1212 /* Save the BFD symbol so that we don't lose any backend
1213 specific information that may be attached to it. We only
1214 want this one if it gives more information than the
1215 existing one; we don't want to replace a defined symbol
1216 with an undefined one. This routine may be called with a
1217 hash table other than the generic hash table, so we only
1218 do this if we are certain that the hash table is a
1220 if (info
->output_bfd
->xvec
== abfd
->xvec
)
1223 || (! bfd_is_und_section (bfd_asymbol_section (p
))
1224 && (! bfd_is_com_section (bfd_asymbol_section (p
))
1225 || bfd_is_und_section (bfd_asymbol_section (h
->sym
)))))
1228 /* BSF_OLD_COMMON is a hack to support COFF reloc
1229 reading, and it should go away when the COFF
1230 linker is switched to the new version. */
1231 if (bfd_is_com_section (bfd_asymbol_section (p
)))
1232 p
->flags
|= BSF_OLD_COMMON
;
1236 /* Store a back pointer from the symbol to the hash
1237 table entry for the benefit of relaxation code until
1238 it gets rewritten to not use asymbol structures.
1239 Setting this is also used to check whether these
1240 symbols were set up by the generic linker. */
1248 /* We use a state table to deal with adding symbols from an object
1249 file. The first index into the state table describes the symbol
1250 from the object file. The second index into the state table is the
1251 type of the symbol in the hash table. */
1253 /* The symbol from the object file is turned into one of these row
1258 UNDEF_ROW
, /* Undefined. */
1259 UNDEFW_ROW
, /* Weak undefined. */
1260 DEF_ROW
, /* Defined. */
1261 DEFW_ROW
, /* Weak defined. */
1262 COMMON_ROW
, /* Common. */
1263 INDR_ROW
, /* Indirect. */
1264 WARN_ROW
, /* Warning. */
1265 SET_ROW
/* Member of set. */
1268 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1271 /* The actions to take in the state table. */
1276 UND
, /* Mark symbol undefined. */
1277 WEAK
, /* Mark symbol weak undefined. */
1278 DEF
, /* Mark symbol defined. */
1279 DEFW
, /* Mark symbol weak defined. */
1280 COM
, /* Mark symbol common. */
1281 REF
, /* Mark defined symbol referenced. */
1282 CREF
, /* Possibly warn about common reference to defined symbol. */
1283 CDEF
, /* Define existing common symbol. */
1284 NOACT
, /* No action. */
1285 BIG
, /* Mark symbol common using largest size. */
1286 MDEF
, /* Multiple definition error. */
1287 MIND
, /* Multiple indirect symbols. */
1288 IND
, /* Make indirect symbol. */
1289 CIND
, /* Make indirect symbol from existing common symbol. */
1290 SET
, /* Add value to set. */
1291 MWARN
, /* Make warning symbol. */
1292 WARN
, /* Warn if referenced, else MWARN. */
1293 CYCLE
, /* Repeat with symbol pointed to. */
1294 REFC
, /* Mark indirect symbol referenced and then CYCLE. */
1295 WARNC
/* Issue warning and then CYCLE. */
1298 /* The state table itself. The first index is a link_row and the
1299 second index is a bfd_link_hash_type. */
1301 static const enum link_action link_action
[8][8] =
1303 /* current\prev new undef undefw def defw com indr warn */
1304 /* UNDEF_ROW */ {UND
, NOACT
, UND
, REF
, REF
, NOACT
, REFC
, WARNC
},
1305 /* UNDEFW_ROW */ {WEAK
, NOACT
, NOACT
, REF
, REF
, NOACT
, REFC
, WARNC
},
1306 /* DEF_ROW */ {DEF
, DEF
, DEF
, MDEF
, DEF
, CDEF
, MIND
, CYCLE
},
1307 /* DEFW_ROW */ {DEFW
, DEFW
, DEFW
, NOACT
, NOACT
, NOACT
, NOACT
, CYCLE
},
1308 /* COMMON_ROW */ {COM
, COM
, COM
, CREF
, COM
, BIG
, REFC
, WARNC
},
1309 /* INDR_ROW */ {IND
, IND
, IND
, MDEF
, IND
, CIND
, MIND
, CYCLE
},
1310 /* WARN_ROW */ {MWARN
, WARN
, WARN
, WARN
, WARN
, WARN
, WARN
, NOACT
},
1311 /* SET_ROW */ {SET
, SET
, SET
, SET
, SET
, SET
, CYCLE
, CYCLE
}
1314 /* Most of the entries in the LINK_ACTION table are straightforward,
1315 but a few are somewhat subtle.
1317 A reference to an indirect symbol (UNDEF_ROW/indr or
1318 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1319 symbol and to the symbol the indirect symbol points to.
1321 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1322 causes the warning to be issued.
1324 A common definition of an indirect symbol (COMMON_ROW/indr) is
1325 treated as a multiple definition error. Likewise for an indirect
1326 definition of a common symbol (INDR_ROW/com).
1328 An indirect definition of a warning (INDR_ROW/warn) does not cause
1329 the warning to be issued.
1331 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1332 warning is created for the symbol the indirect symbol points to.
1334 Adding an entry to a set does not count as a reference to a set,
1335 and no warning is issued (SET_ROW/warn). */
1337 /* Return the BFD in which a hash entry has been defined, if known. */
1340 hash_entry_bfd (struct bfd_link_hash_entry
*h
)
1342 while (h
->type
== bfd_link_hash_warning
)
1348 case bfd_link_hash_undefined
:
1349 case bfd_link_hash_undefweak
:
1350 return h
->u
.undef
.abfd
;
1351 case bfd_link_hash_defined
:
1352 case bfd_link_hash_defweak
:
1353 return h
->u
.def
.section
->owner
;
1354 case bfd_link_hash_common
:
1355 return h
->u
.c
.p
->section
->owner
;
1360 /* Add a symbol to the global hash table.
1361 ABFD is the BFD the symbol comes from.
1362 NAME is the name of the symbol.
1363 FLAGS is the BSF_* bits associated with the symbol.
1364 SECTION is the section in which the symbol is defined; this may be
1365 bfd_und_section_ptr or bfd_com_section_ptr.
1366 VALUE is the value of the symbol, relative to the section.
1367 STRING is used for either an indirect symbol, in which case it is
1368 the name of the symbol to indirect to, or a warning symbol, in
1369 which case it is the warning string.
1370 COPY is TRUE if NAME or STRING must be copied into locally
1371 allocated memory if they need to be saved.
1372 COLLECT is TRUE if we should automatically collect gcc constructor
1373 or destructor names as collect2 does.
1374 HASHP, if not NULL, is a place to store the created hash table
1375 entry; if *HASHP is not NULL, the caller has already looked up
1376 the hash table entry, and stored it in *HASHP. */
1379 _bfd_generic_link_add_one_symbol (struct bfd_link_info
*info
,
1388 struct bfd_link_hash_entry
**hashp
)
1391 struct bfd_link_hash_entry
*h
;
1392 struct bfd_link_hash_entry
*inh
= NULL
;
1395 BFD_ASSERT (section
!= NULL
);
1397 if (bfd_is_ind_section (section
)
1398 || (flags
& BSF_INDIRECT
) != 0)
1401 /* Create the indirect symbol here. This is for the benefit of
1402 the plugin "notice" function.
1403 STRING is the name of the symbol we want to indirect to. */
1404 inh
= bfd_wrapped_link_hash_lookup (abfd
, info
, string
, true,
1409 else if ((flags
& BSF_WARNING
) != 0)
1411 else if ((flags
& BSF_CONSTRUCTOR
) != 0)
1413 else if (bfd_is_und_section (section
))
1415 if ((flags
& BSF_WEAK
) != 0)
1420 else if ((flags
& BSF_WEAK
) != 0)
1422 else if (bfd_is_com_section (section
))
1425 if (!bfd_link_relocatable (info
)
1429 && strcmp (name
+ (name
[2] == '_'), "__gnu_lto_slim") == 0)
1431 (_("%pB: plugin needed to handle lto object"), abfd
);
1436 if (hashp
!= NULL
&& *hashp
!= NULL
)
1440 if (row
== UNDEF_ROW
|| row
== UNDEFW_ROW
)
1441 h
= bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, copy
, false);
1443 h
= bfd_link_hash_lookup (info
->hash
, name
, true, copy
, false);
1452 if (info
->notice_all
1453 || (info
->notice_hash
!= NULL
1454 && bfd_hash_lookup (info
->notice_hash
, name
, false, false) != NULL
))
1456 if (! (*info
->callbacks
->notice
) (info
, h
, inh
,
1457 abfd
, section
, value
, flags
))
1466 enum link_action action
;
1470 /* Treat symbols defined by early linker script pass as undefined. */
1471 if (h
->ldscript_def
)
1472 prev
= bfd_link_hash_undefined
;
1474 action
= link_action
[(int) row
][prev
];
1485 /* Make a new undefined symbol. */
1486 h
->type
= bfd_link_hash_undefined
;
1487 h
->u
.undef
.abfd
= abfd
;
1488 bfd_link_add_undef (info
->hash
, h
);
1492 /* Make a new weak undefined symbol. */
1493 h
->type
= bfd_link_hash_undefweak
;
1494 h
->u
.undef
.abfd
= abfd
;
1498 /* We have found a definition for a symbol which was
1499 previously common. */
1500 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1501 (*info
->callbacks
->multiple_common
) (info
, h
, abfd
,
1502 bfd_link_hash_defined
, 0);
1507 enum bfd_link_hash_type oldtype
;
1509 /* Define a symbol. */
1512 h
->type
= bfd_link_hash_defweak
;
1514 h
->type
= bfd_link_hash_defined
;
1515 h
->u
.def
.section
= section
;
1516 h
->u
.def
.value
= value
;
1518 h
->ldscript_def
= 0;
1520 /* If we have been asked to, we act like collect2 and
1521 identify all functions that might be global
1522 constructors and destructors and pass them up in a
1523 callback. We only do this for certain object file
1524 types, since many object file types can handle this
1526 if (collect
&& name
[0] == '_')
1530 /* A constructor or destructor name starts like this:
1531 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1532 the second are the same character (we accept any
1533 character there, in case a new object file format
1534 comes along with even worse naming restrictions). */
1536 #define CONS_PREFIX "GLOBAL_"
1537 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1542 if (s
[0] == 'G' && startswith (s
, CONS_PREFIX
))
1546 c
= s
[CONS_PREFIX_LEN
+ 1];
1547 if ((c
== 'I' || c
== 'D')
1548 && s
[CONS_PREFIX_LEN
] == s
[CONS_PREFIX_LEN
+ 2])
1550 /* If this is a definition of a symbol which
1551 was previously weakly defined, we are in
1552 trouble. We have already added a
1553 constructor entry for the weak defined
1554 symbol, and now we are trying to add one
1555 for the new symbol. Fortunately, this case
1556 should never arise in practice. */
1557 if (oldtype
== bfd_link_hash_defweak
)
1560 (*info
->callbacks
->constructor
) (info
, c
== 'I',
1561 h
->root
.string
, abfd
,
1571 /* We have found a common definition for a symbol. */
1572 if (h
->type
== bfd_link_hash_new
)
1573 bfd_link_add_undef (info
->hash
, h
);
1574 h
->type
= bfd_link_hash_common
;
1575 h
->u
.c
.p
= (struct bfd_link_hash_common_entry
*)
1576 bfd_hash_allocate (&info
->hash
->table
,
1577 sizeof (struct bfd_link_hash_common_entry
));
1578 if (h
->u
.c
.p
== NULL
)
1581 h
->u
.c
.size
= value
;
1583 /* Select a default alignment based on the size. This may
1584 be overridden by the caller. */
1588 power
= bfd_log2 (value
);
1591 h
->u
.c
.p
->alignment_power
= power
;
1594 /* The section of a common symbol is only used if the common
1595 symbol is actually allocated. It basically provides a
1596 hook for the linker script to decide which output section
1597 the common symbols should be put in. In most cases, the
1598 section of a common symbol will be bfd_com_section_ptr,
1599 the code here will choose a common symbol section named
1600 "COMMON", and the linker script will contain *(COMMON) in
1601 the appropriate place. A few targets use separate common
1602 sections for small symbols, and they require special
1604 if (section
== bfd_com_section_ptr
)
1606 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
, "COMMON");
1607 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1609 else if (section
->owner
!= abfd
)
1611 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
,
1613 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1616 h
->u
.c
.p
->section
= section
;
1618 h
->ldscript_def
= 0;
1622 /* A reference to a defined symbol. */
1623 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1624 h
->u
.undef
.next
= h
;
1628 /* We have found a common definition for a symbol which
1629 already had a common definition. Use the maximum of the
1630 two sizes, and use the section required by the larger symbol. */
1631 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1632 (*info
->callbacks
->multiple_common
) (info
, h
, abfd
,
1633 bfd_link_hash_common
, value
);
1634 if (value
> h
->u
.c
.size
)
1638 h
->u
.c
.size
= value
;
1640 /* Select a default alignment based on the size. This may
1641 be overridden by the caller. */
1642 power
= bfd_log2 (value
);
1645 h
->u
.c
.p
->alignment_power
= power
;
1647 /* Some systems have special treatment for small commons,
1648 hence we want to select the section used by the larger
1649 symbol. This makes sure the symbol does not go in a
1650 small common section if it is now too large. */
1651 if (section
== bfd_com_section_ptr
)
1654 = bfd_make_section_old_way (abfd
, "COMMON");
1655 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1657 else if (section
->owner
!= abfd
)
1660 = bfd_make_section_old_way (abfd
, section
->name
);
1661 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1664 h
->u
.c
.p
->section
= section
;
1669 /* We have found a common definition for a symbol which
1670 was already defined. */
1671 (*info
->callbacks
->multiple_common
) (info
, h
, abfd
,
1672 bfd_link_hash_common
, value
);
1676 /* Multiple indirect symbols. This is OK if they both point
1677 to the same symbol. */
1678 if (h
->u
.i
.link
->type
== bfd_link_hash_defweak
)
1680 /* It is also OK to redefine a symbol that indirects to
1681 a weak definition. So for sym@ver -> sym@@ver where
1682 sym@@ver is weak and we have a new strong sym@ver,
1683 redefine sym@@ver. Of course if there exists
1684 sym -> sym@@ver then this also redefines sym. */
1689 if (string
!= NULL
&& strcmp (h
->u
.i
.link
->root
.string
, string
) == 0)
1693 /* Handle a multiple definition. */
1694 (*info
->callbacks
->multiple_definition
) (info
, h
,
1695 abfd
, section
, value
);
1699 /* Create an indirect symbol from an existing common symbol. */
1700 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1701 (*info
->callbacks
->multiple_common
) (info
, h
, abfd
,
1702 bfd_link_hash_indirect
, 0);
1705 if (inh
->type
== bfd_link_hash_indirect
1706 && inh
->u
.i
.link
== h
)
1709 /* xgettext:c-format */
1710 (_("%pB: indirect symbol `%s' to `%s' is a loop"),
1711 abfd
, name
, string
);
1712 bfd_set_error (bfd_error_invalid_operation
);
1715 if (inh
->type
== bfd_link_hash_new
)
1717 inh
->type
= bfd_link_hash_undefined
;
1718 inh
->u
.undef
.abfd
= abfd
;
1719 bfd_link_add_undef (info
->hash
, inh
);
1722 /* If the indirect symbol has been referenced, we need to
1723 push the reference down to the symbol we are referencing. */
1724 if (h
->type
!= bfd_link_hash_new
)
1726 /* ??? If inh->type == bfd_link_hash_undefweak this
1727 converts inh to bfd_link_hash_undefined. */
1732 h
->type
= bfd_link_hash_indirect
;
1734 /* Not setting h = h->u.i.link here means that when cycle is
1735 set above we'll always go to REFC, and then cycle again
1736 to the indirected symbol. This means that any successful
1737 change of an existing symbol to indirect counts as a
1738 reference. ??? That may not be correct when the existing
1739 symbol was defweak. */
1743 /* Add an entry to a set. */
1744 (*info
->callbacks
->add_to_set
) (info
, h
, BFD_RELOC_CTOR
,
1745 abfd
, section
, value
);
1749 /* Issue a warning and cycle, except when the reference is
1751 if (h
->u
.i
.warning
!= NULL
1752 && (abfd
->flags
& BFD_PLUGIN
) == 0)
1754 (*info
->callbacks
->warning
) (info
, h
->u
.i
.warning
,
1755 h
->root
.string
, abfd
, NULL
, 0);
1756 /* Only issue a warning once. */
1757 h
->u
.i
.warning
= NULL
;
1761 /* Try again with the referenced symbol. */
1767 /* A reference to an indirect symbol. */
1768 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1769 h
->u
.undef
.next
= h
;
1775 /* Warn if this symbol has been referenced already from non-IR,
1776 otherwise add a warning. */
1777 if ((!info
->lto_plugin_active
1778 && (h
->u
.undef
.next
!= NULL
|| info
->hash
->undefs_tail
== h
))
1779 || h
->non_ir_ref_regular
1780 || h
->non_ir_ref_dynamic
)
1782 (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1783 hash_entry_bfd (h
), NULL
, 0);
1788 /* Make a warning symbol. */
1790 struct bfd_link_hash_entry
*sub
;
1792 /* STRING is the warning to give. */
1793 sub
= ((struct bfd_link_hash_entry
*)
1794 ((*info
->hash
->table
.newfunc
)
1795 (NULL
, &info
->hash
->table
, h
->root
.string
)));
1799 sub
->type
= bfd_link_hash_warning
;
1802 sub
->u
.i
.warning
= string
;
1806 size_t len
= strlen (string
) + 1;
1808 w
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1811 memcpy (w
, string
, len
);
1812 sub
->u
.i
.warning
= w
;
1815 bfd_hash_replace (&info
->hash
->table
,
1816 (struct bfd_hash_entry
*) h
,
1817 (struct bfd_hash_entry
*) sub
);
1829 /* Generic final link routine. */
1832 _bfd_generic_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
1836 struct bfd_link_order
*p
;
1838 struct generic_write_global_symbol_info wginfo
;
1840 abfd
->outsymbols
= NULL
;
1844 /* Mark all sections which will be included in the output file. */
1845 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1846 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
1847 if (p
->type
== bfd_indirect_link_order
)
1848 p
->u
.indirect
.section
->linker_mark
= true;
1850 /* Build the output symbol table. */
1851 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
1852 if (! _bfd_generic_link_output_symbols (abfd
, sub
, info
, &outsymalloc
))
1855 /* Accumulate the global symbols. */
1857 wginfo
.output_bfd
= abfd
;
1858 wginfo
.psymalloc
= &outsymalloc
;
1859 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info
),
1860 _bfd_generic_link_write_global_symbol
,
1863 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1864 shouldn't really need one, since we have SYMCOUNT, but some old
1865 code still expects one. */
1866 if (! generic_add_output_symbol (abfd
, &outsymalloc
, NULL
))
1869 if (bfd_link_relocatable (info
))
1871 /* Allocate space for the output relocs for each section. */
1872 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1875 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
1877 if (p
->type
== bfd_section_reloc_link_order
1878 || p
->type
== bfd_symbol_reloc_link_order
)
1880 else if (p
->type
== bfd_indirect_link_order
)
1882 asection
*input_section
;
1889 input_section
= p
->u
.indirect
.section
;
1890 input_bfd
= input_section
->owner
;
1891 relsize
= bfd_get_reloc_upper_bound (input_bfd
,
1895 relocs
= (arelent
**) bfd_malloc (relsize
);
1896 if (!relocs
&& relsize
!= 0)
1898 symbols
= _bfd_generic_link_get_symbols (input_bfd
);
1899 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
1904 if (reloc_count
< 0)
1906 BFD_ASSERT ((unsigned long) reloc_count
1907 == input_section
->reloc_count
);
1908 o
->reloc_count
+= reloc_count
;
1911 if (o
->reloc_count
> 0)
1915 amt
= o
->reloc_count
;
1916 amt
*= sizeof (arelent
*);
1917 o
->orelocation
= (struct reloc_cache_entry
**) bfd_alloc (abfd
, amt
);
1918 if (!o
->orelocation
)
1920 o
->flags
|= SEC_RELOC
;
1921 /* Reset the count so that it can be used as an index
1922 when putting in the output relocs. */
1928 /* Handle all the link order information for the sections. */
1929 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1931 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
1935 case bfd_section_reloc_link_order
:
1936 case bfd_symbol_reloc_link_order
:
1937 if (! _bfd_generic_reloc_link_order (abfd
, info
, o
, p
))
1940 case bfd_indirect_link_order
:
1941 if (! default_indirect_link_order (abfd
, info
, o
, p
, true))
1945 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
1955 /* Add an output symbol to the output BFD. */
1958 generic_add_output_symbol (bfd
*output_bfd
, size_t *psymalloc
, asymbol
*sym
)
1960 if (bfd_get_symcount (output_bfd
) >= *psymalloc
)
1965 if (*psymalloc
== 0)
1970 amt
*= sizeof (asymbol
*);
1971 newsyms
= (asymbol
**) bfd_realloc (bfd_get_outsymbols (output_bfd
), amt
);
1972 if (newsyms
== NULL
)
1974 output_bfd
->outsymbols
= newsyms
;
1977 output_bfd
->outsymbols
[output_bfd
->symcount
] = sym
;
1979 ++output_bfd
->symcount
;
1984 /* Handle the symbols for an input BFD. */
1987 _bfd_generic_link_output_symbols (bfd
*output_bfd
,
1989 struct bfd_link_info
*info
,
1995 if (!bfd_generic_link_read_symbols (input_bfd
))
1998 /* Create a filename symbol if we are supposed to. */
1999 if (info
->create_object_symbols_section
!= NULL
)
2003 for (sec
= input_bfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2005 if (sec
->output_section
== info
->create_object_symbols_section
)
2009 newsym
= bfd_make_empty_symbol (input_bfd
);
2012 newsym
->name
= bfd_get_filename (input_bfd
);
2014 newsym
->flags
= BSF_LOCAL
| BSF_FILE
;
2015 newsym
->section
= sec
;
2017 if (! generic_add_output_symbol (output_bfd
, psymalloc
,
2026 /* Adjust the values of the globally visible symbols, and write out
2028 sym_ptr
= _bfd_generic_link_get_symbols (input_bfd
);
2029 sym_end
= sym_ptr
+ _bfd_generic_link_get_symcount (input_bfd
);
2030 for (; sym_ptr
< sym_end
; sym_ptr
++)
2033 struct generic_link_hash_entry
*h
;
2038 if ((sym
->flags
& (BSF_INDIRECT
2043 || bfd_is_und_section (bfd_asymbol_section (sym
))
2044 || bfd_is_com_section (bfd_asymbol_section (sym
))
2045 || bfd_is_ind_section (bfd_asymbol_section (sym
)))
2047 if (sym
->udata
.p
!= NULL
)
2048 h
= (struct generic_link_hash_entry
*) sym
->udata
.p
;
2049 else if ((sym
->flags
& BSF_CONSTRUCTOR
) != 0)
2051 /* This case normally means that the main linker code
2052 deliberately ignored this constructor symbol. We
2053 should just pass it through. This will screw up if
2054 the constructor symbol is from a different,
2055 non-generic, object file format, but the case will
2056 only arise when linking with -r, which will probably
2057 fail anyhow, since there will be no way to represent
2058 the relocs in the output format being used. */
2061 else if (bfd_is_und_section (bfd_asymbol_section (sym
)))
2062 h
= ((struct generic_link_hash_entry
*)
2063 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2064 bfd_asymbol_name (sym
),
2065 false, false, true));
2067 h
= _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info
),
2068 bfd_asymbol_name (sym
),
2069 false, false, true);
2073 /* Force all references to this symbol to point to
2074 the same area in memory. It is possible that
2075 this routine will be called with a hash table
2076 other than a generic hash table, so we double
2078 if (info
->output_bfd
->xvec
== input_bfd
->xvec
)
2081 *sym_ptr
= sym
= h
->sym
;
2084 switch (h
->root
.type
)
2087 case bfd_link_hash_new
:
2089 case bfd_link_hash_undefined
:
2091 case bfd_link_hash_undefweak
:
2092 sym
->flags
|= BSF_WEAK
;
2094 case bfd_link_hash_indirect
:
2095 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2097 case bfd_link_hash_defined
:
2098 sym
->flags
|= BSF_GLOBAL
;
2099 sym
->flags
&=~ (BSF_WEAK
| BSF_CONSTRUCTOR
);
2100 sym
->value
= h
->root
.u
.def
.value
;
2101 sym
->section
= h
->root
.u
.def
.section
;
2103 case bfd_link_hash_defweak
:
2104 sym
->flags
|= BSF_WEAK
;
2105 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2106 sym
->value
= h
->root
.u
.def
.value
;
2107 sym
->section
= h
->root
.u
.def
.section
;
2109 case bfd_link_hash_common
:
2110 sym
->value
= h
->root
.u
.c
.size
;
2111 sym
->flags
|= BSF_GLOBAL
;
2112 if (! bfd_is_com_section (sym
->section
))
2114 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2115 sym
->section
= bfd_com_section_ptr
;
2117 /* We do not set the section of the symbol to
2118 h->root.u.c.p->section. That value was saved so
2119 that we would know where to allocate the symbol
2120 if it was defined. In this case the type is
2121 still bfd_link_hash_common, so we did not define
2122 it, so we do not want to use that section. */
2128 if ((sym
->flags
& BSF_KEEP
) == 0
2129 && (info
->strip
== strip_all
2130 || (info
->strip
== strip_some
2131 && bfd_hash_lookup (info
->keep_hash
, bfd_asymbol_name (sym
),
2132 false, false) == NULL
)))
2134 else if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0)
2136 /* If this symbol is marked as occurring now, rather
2137 than at the end, output it now. This is used for
2138 COFF C_EXT FCN symbols. FIXME: There must be a
2140 if (bfd_asymbol_bfd (sym
) == input_bfd
2141 && (sym
->flags
& BSF_NOT_AT_END
) != 0)
2146 else if ((sym
->flags
& BSF_KEEP
) != 0)
2148 else if (bfd_is_ind_section (sym
->section
))
2150 else if ((sym
->flags
& BSF_DEBUGGING
) != 0)
2152 if (info
->strip
== strip_none
)
2157 else if (bfd_is_und_section (sym
->section
)
2158 || bfd_is_com_section (sym
->section
))
2160 else if ((sym
->flags
& BSF_LOCAL
) != 0)
2162 if ((sym
->flags
& BSF_WARNING
) != 0)
2166 switch (info
->discard
)
2172 case discard_sec_merge
:
2174 if (bfd_link_relocatable (info
)
2175 || ! (sym
->section
->flags
& SEC_MERGE
))
2179 if (bfd_is_local_label (input_bfd
, sym
))
2190 else if ((sym
->flags
& BSF_CONSTRUCTOR
))
2192 if (info
->strip
!= strip_all
)
2197 else if (sym
->flags
== 0
2198 && (sym
->section
->owner
->flags
& BFD_PLUGIN
) != 0)
2199 /* LTO doesn't set symbol information. We get here with the
2200 generic linker for a symbol that was "common" but no longer
2201 needs to be global. */
2206 /* If this symbol is in a section which is not being included
2207 in the output file, then we don't want to output the
2209 if (!bfd_is_abs_section (sym
->section
)
2210 && bfd_section_removed_from_list (output_bfd
,
2211 sym
->section
->output_section
))
2216 if (! generic_add_output_symbol (output_bfd
, psymalloc
, sym
))
2226 /* Set the section and value of a generic BFD symbol based on a linker
2227 hash table entry. */
2230 set_symbol_from_hash (asymbol
*sym
, struct bfd_link_hash_entry
*h
)
2237 case bfd_link_hash_new
:
2238 /* This can happen when a constructor symbol is seen but we are
2239 not building constructors. */
2240 if (sym
->section
!= NULL
)
2242 BFD_ASSERT ((sym
->flags
& BSF_CONSTRUCTOR
) != 0);
2246 sym
->flags
|= BSF_CONSTRUCTOR
;
2247 sym
->section
= bfd_abs_section_ptr
;
2251 case bfd_link_hash_undefined
:
2252 sym
->section
= bfd_und_section_ptr
;
2255 case bfd_link_hash_undefweak
:
2256 sym
->section
= bfd_und_section_ptr
;
2258 sym
->flags
|= BSF_WEAK
;
2260 case bfd_link_hash_defined
:
2261 sym
->section
= h
->u
.def
.section
;
2262 sym
->value
= h
->u
.def
.value
;
2264 case bfd_link_hash_defweak
:
2265 sym
->flags
|= BSF_WEAK
;
2266 sym
->section
= h
->u
.def
.section
;
2267 sym
->value
= h
->u
.def
.value
;
2269 case bfd_link_hash_common
:
2270 sym
->value
= h
->u
.c
.size
;
2271 if (sym
->section
== NULL
)
2272 sym
->section
= bfd_com_section_ptr
;
2273 else if (! bfd_is_com_section (sym
->section
))
2275 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2276 sym
->section
= bfd_com_section_ptr
;
2278 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2280 case bfd_link_hash_indirect
:
2281 case bfd_link_hash_warning
:
2282 /* FIXME: What should we do here? */
2287 /* Write out a global symbol, if it hasn't already been written out.
2288 This is called for each symbol in the hash table. */
2291 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry
*h
,
2294 struct generic_write_global_symbol_info
*wginfo
=
2295 (struct generic_write_global_symbol_info
*) data
;
2303 if (wginfo
->info
->strip
== strip_all
2304 || (wginfo
->info
->strip
== strip_some
2305 && bfd_hash_lookup (wginfo
->info
->keep_hash
, h
->root
.root
.string
,
2306 false, false) == NULL
))
2313 sym
= bfd_make_empty_symbol (wginfo
->output_bfd
);
2316 sym
->name
= h
->root
.root
.string
;
2320 set_symbol_from_hash (sym
, &h
->root
);
2322 sym
->flags
|= BSF_GLOBAL
;
2324 if (! generic_add_output_symbol (wginfo
->output_bfd
, wginfo
->psymalloc
,
2327 /* FIXME: No way to return failure. */
2334 /* Create a relocation. */
2337 _bfd_generic_reloc_link_order (bfd
*abfd
,
2338 struct bfd_link_info
*info
,
2340 struct bfd_link_order
*link_order
)
2344 if (! bfd_link_relocatable (info
))
2346 if (sec
->orelocation
== NULL
)
2349 r
= (arelent
*) bfd_alloc (abfd
, sizeof (arelent
));
2353 r
->address
= link_order
->offset
;
2354 r
->howto
= bfd_reloc_type_lookup (abfd
, link_order
->u
.reloc
.p
->reloc
);
2357 bfd_set_error (bfd_error_bad_value
);
2361 /* Get the symbol to use for the relocation. */
2362 if (link_order
->type
== bfd_section_reloc_link_order
)
2363 r
->sym_ptr_ptr
= link_order
->u
.reloc
.p
->u
.section
->symbol_ptr_ptr
;
2366 struct generic_link_hash_entry
*h
;
2368 h
= ((struct generic_link_hash_entry
*)
2369 bfd_wrapped_link_hash_lookup (abfd
, info
,
2370 link_order
->u
.reloc
.p
->u
.name
,
2371 false, false, true));
2375 (*info
->callbacks
->unattached_reloc
)
2376 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0);
2377 bfd_set_error (bfd_error_bad_value
);
2380 r
->sym_ptr_ptr
= &h
->sym
;
2383 /* If this is an inplace reloc, write the addend to the object file.
2384 Otherwise, store it in the reloc addend. */
2385 if (! r
->howto
->partial_inplace
)
2386 r
->addend
= link_order
->u
.reloc
.p
->addend
;
2390 bfd_reloc_status_type rstat
;
2395 size
= bfd_get_reloc_size (r
->howto
);
2396 buf
= (bfd_byte
*) bfd_zmalloc (size
);
2397 if (buf
== NULL
&& size
!= 0)
2399 rstat
= _bfd_relocate_contents (r
->howto
, abfd
,
2400 (bfd_vma
) link_order
->u
.reloc
.p
->addend
,
2407 case bfd_reloc_outofrange
:
2409 case bfd_reloc_overflow
:
2410 (*info
->callbacks
->reloc_overflow
)
2412 (link_order
->type
== bfd_section_reloc_link_order
2413 ? bfd_section_name (link_order
->u
.reloc
.p
->u
.section
)
2414 : link_order
->u
.reloc
.p
->u
.name
),
2415 r
->howto
->name
, link_order
->u
.reloc
.p
->addend
,
2419 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
, sec
);
2420 ok
= bfd_set_section_contents (abfd
, sec
, buf
, loc
, size
);
2428 sec
->orelocation
[sec
->reloc_count
] = r
;
2434 /* Allocate a new link_order for a section. */
2436 struct bfd_link_order
*
2437 bfd_new_link_order (bfd
*abfd
, asection
*section
)
2439 size_t amt
= sizeof (struct bfd_link_order
);
2440 struct bfd_link_order
*new_lo
;
2442 new_lo
= (struct bfd_link_order
*) bfd_zalloc (abfd
, amt
);
2446 new_lo
->type
= bfd_undefined_link_order
;
2448 if (section
->map_tail
.link_order
!= NULL
)
2449 section
->map_tail
.link_order
->next
= new_lo
;
2451 section
->map_head
.link_order
= new_lo
;
2452 section
->map_tail
.link_order
= new_lo
;
2457 /* Default link order processing routine. Note that we can not handle
2458 the reloc_link_order types here, since they depend upon the details
2459 of how the particular backends generates relocs. */
2462 _bfd_default_link_order (bfd
*abfd
,
2463 struct bfd_link_info
*info
,
2465 struct bfd_link_order
*link_order
)
2467 switch (link_order
->type
)
2469 case bfd_undefined_link_order
:
2470 case bfd_section_reloc_link_order
:
2471 case bfd_symbol_reloc_link_order
:
2474 case bfd_indirect_link_order
:
2475 return default_indirect_link_order (abfd
, info
, sec
, link_order
,
2477 case bfd_data_link_order
:
2478 return default_data_link_order (abfd
, info
, sec
, link_order
);
2482 /* Default routine to handle a bfd_data_link_order. */
2485 default_data_link_order (bfd
*abfd
,
2486 struct bfd_link_info
*info
,
2488 struct bfd_link_order
*link_order
)
2496 BFD_ASSERT ((sec
->flags
& SEC_HAS_CONTENTS
) != 0);
2498 size
= link_order
->size
;
2502 fill
= link_order
->u
.data
.contents
;
2503 fill_size
= link_order
->u
.data
.size
;
2506 fill
= abfd
->arch_info
->fill (size
, info
->big_endian
,
2507 (sec
->flags
& SEC_CODE
) != 0);
2511 else if (fill_size
< size
)
2514 fill
= (bfd_byte
*) bfd_malloc (size
);
2519 memset (p
, (int) link_order
->u
.data
.contents
[0], (size_t) size
);
2524 memcpy (p
, link_order
->u
.data
.contents
, fill_size
);
2528 while (size
>= fill_size
);
2530 memcpy (p
, link_order
->u
.data
.contents
, (size_t) size
);
2531 size
= link_order
->size
;
2535 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
, sec
);
2536 result
= bfd_set_section_contents (abfd
, sec
, fill
, loc
, size
);
2538 if (fill
!= link_order
->u
.data
.contents
)
2543 /* Default routine to handle a bfd_indirect_link_order. */
2546 default_indirect_link_order (bfd
*output_bfd
,
2547 struct bfd_link_info
*info
,
2548 asection
*output_section
,
2549 struct bfd_link_order
*link_order
,
2550 bool generic_linker
)
2552 asection
*input_section
;
2554 bfd_byte
*alloced
= NULL
;
2555 bfd_byte
*new_contents
;
2558 BFD_ASSERT ((output_section
->flags
& SEC_HAS_CONTENTS
) != 0);
2560 input_section
= link_order
->u
.indirect
.section
;
2561 input_bfd
= input_section
->owner
;
2562 if (input_section
->size
== 0)
2565 BFD_ASSERT (input_section
->output_section
== output_section
);
2566 BFD_ASSERT (input_section
->output_offset
== link_order
->offset
);
2567 BFD_ASSERT (input_section
->size
== link_order
->size
);
2569 if (bfd_link_relocatable (info
)
2570 && input_section
->reloc_count
> 0
2571 && output_section
->orelocation
== NULL
)
2573 /* Space has not been allocated for the output relocations.
2574 This can happen when we are called by a specific backend
2575 because somebody is attempting to link together different
2576 types of object files. Handling this case correctly is
2577 difficult, and sometimes impossible. */
2579 /* xgettext:c-format */
2580 (_("attempt to do relocatable link with %s input and %s output"),
2581 bfd_get_target (input_bfd
), bfd_get_target (output_bfd
));
2582 bfd_set_error (bfd_error_wrong_format
);
2586 if (! generic_linker
)
2591 /* Get the canonical symbols. The generic linker will always
2592 have retrieved them by this point, but we are being called by
2593 a specific linker, presumably because we are linking
2594 different types of object files together. */
2595 if (!bfd_generic_link_read_symbols (input_bfd
))
2598 /* Since we have been called by a specific linker, rather than
2599 the generic linker, the values of the symbols will not be
2600 right. They will be the values as seen in the input file,
2601 not the values of the final link. We need to fix them up
2602 before we can relocate the section. */
2603 sympp
= _bfd_generic_link_get_symbols (input_bfd
);
2604 symppend
= sympp
+ _bfd_generic_link_get_symcount (input_bfd
);
2605 for (; sympp
< symppend
; sympp
++)
2608 struct bfd_link_hash_entry
*h
;
2612 if ((sym
->flags
& (BSF_INDIRECT
2617 || bfd_is_und_section (bfd_asymbol_section (sym
))
2618 || bfd_is_com_section (bfd_asymbol_section (sym
))
2619 || bfd_is_ind_section (bfd_asymbol_section (sym
)))
2621 /* sym->udata may have been set by
2622 generic_link_add_symbol_list. */
2623 if (sym
->udata
.p
!= NULL
)
2624 h
= (struct bfd_link_hash_entry
*) sym
->udata
.p
;
2625 else if (bfd_is_und_section (bfd_asymbol_section (sym
)))
2626 h
= bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2627 bfd_asymbol_name (sym
),
2628 false, false, true);
2630 h
= bfd_link_hash_lookup (info
->hash
,
2631 bfd_asymbol_name (sym
),
2632 false, false, true);
2634 set_symbol_from_hash (sym
, h
);
2639 if ((output_section
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) == SEC_GROUP
2640 && input_section
->size
!= 0)
2642 /* Group section contents are set by bfd_elf_set_group_contents. */
2643 if (!output_bfd
->output_has_begun
)
2645 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2646 if (!bfd_set_section_contents (output_bfd
, output_section
, "", 0, 1))
2649 new_contents
= output_section
->contents
;
2650 BFD_ASSERT (new_contents
!= NULL
);
2651 BFD_ASSERT (input_section
->output_offset
== 0);
2655 /* Get and relocate the section contents. */
2656 new_contents
= (bfd_get_relocated_section_contents
2657 (output_bfd
, info
, link_order
, NULL
,
2658 bfd_link_relocatable (info
),
2659 _bfd_generic_link_get_symbols (input_bfd
)));
2660 alloced
= new_contents
;
2665 /* Output the section contents. */
2666 loc
= (input_section
->output_offset
2667 * bfd_octets_per_byte (output_bfd
, output_section
));
2668 if (! bfd_set_section_contents (output_bfd
, output_section
,
2669 new_contents
, loc
, input_section
->size
))
2680 /* A little routine to count the number of relocs in a link_order
2684 _bfd_count_link_order_relocs (struct bfd_link_order
*link_order
)
2686 register unsigned int c
;
2687 register struct bfd_link_order
*l
;
2690 for (l
= link_order
; l
!= NULL
; l
= l
->next
)
2692 if (l
->type
== bfd_section_reloc_link_order
2693 || l
->type
== bfd_symbol_reloc_link_order
)
2702 bfd_link_split_section
2705 bool bfd_link_split_section (bfd *abfd, asection *sec);
2708 Return nonzero if @var{sec} should be split during a
2709 reloceatable or final link.
2711 .#define bfd_link_split_section(abfd, sec) \
2712 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2718 _bfd_generic_link_split_section (bfd
*abfd ATTRIBUTE_UNUSED
,
2719 asection
*sec ATTRIBUTE_UNUSED
)
2726 bfd_section_already_linked
2729 bool bfd_section_already_linked (bfd *abfd,
2731 struct bfd_link_info *info);
2734 Check if @var{data} has been already linked during a reloceatable
2735 or final link. Return TRUE if it has.
2737 .#define bfd_section_already_linked(abfd, sec, info) \
2738 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2743 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2744 once into the output. This routine checks each section, and
2745 arrange to discard it if a section of the same name has already
2746 been linked. This code assumes that all relevant sections have the
2747 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2748 section name. bfd_section_already_linked is called via
2749 bfd_map_over_sections. */
2751 /* The hash table. */
2753 static struct bfd_hash_table _bfd_section_already_linked_table
;
2755 /* Support routines for the hash table used by section_already_linked,
2756 initialize the table, traverse, lookup, fill in an entry and remove
2760 bfd_section_already_linked_table_traverse
2761 (bool (*func
) (struct bfd_section_already_linked_hash_entry
*, void *),
2764 bfd_hash_traverse (&_bfd_section_already_linked_table
,
2765 (bool (*) (struct bfd_hash_entry
*, void *)) func
,
2769 struct bfd_section_already_linked_hash_entry
*
2770 bfd_section_already_linked_table_lookup (const char *name
)
2772 return ((struct bfd_section_already_linked_hash_entry
*)
2773 bfd_hash_lookup (&_bfd_section_already_linked_table
, name
,
2778 bfd_section_already_linked_table_insert
2779 (struct bfd_section_already_linked_hash_entry
*already_linked_list
,
2782 struct bfd_section_already_linked
*l
;
2784 /* Allocate the memory from the same obstack as the hash table is
2786 l
= (struct bfd_section_already_linked
*)
2787 bfd_hash_allocate (&_bfd_section_already_linked_table
, sizeof *l
);
2791 l
->next
= already_linked_list
->entry
;
2792 already_linked_list
->entry
= l
;
2796 static struct bfd_hash_entry
*
2797 already_linked_newfunc (struct bfd_hash_entry
*entry ATTRIBUTE_UNUSED
,
2798 struct bfd_hash_table
*table
,
2799 const char *string ATTRIBUTE_UNUSED
)
2801 struct bfd_section_already_linked_hash_entry
*ret
=
2802 (struct bfd_section_already_linked_hash_entry
*)
2803 bfd_hash_allocate (table
, sizeof *ret
);
2814 bfd_section_already_linked_table_init (void)
2816 return bfd_hash_table_init_n (&_bfd_section_already_linked_table
,
2817 already_linked_newfunc
,
2818 sizeof (struct bfd_section_already_linked_hash_entry
),
2823 bfd_section_already_linked_table_free (void)
2825 bfd_hash_table_free (&_bfd_section_already_linked_table
);
2828 /* Report warnings as appropriate for duplicate section SEC.
2829 Return FALSE if we decide to keep SEC after all. */
2832 _bfd_handle_already_linked (asection
*sec
,
2833 struct bfd_section_already_linked
*l
,
2834 struct bfd_link_info
*info
)
2836 switch (sec
->flags
& SEC_LINK_DUPLICATES
)
2841 case SEC_LINK_DUPLICATES_DISCARD
:
2842 /* If we found an LTO IR match for this comdat group on
2843 the first pass, replace it with the LTO output on the
2844 second pass. We can't simply choose real object
2845 files over IR because the first pass may contain a
2846 mix of LTO and normal objects and we must keep the
2847 first match, be it IR or real. */
2848 if (sec
->owner
->lto_output
2849 && (l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
2856 case SEC_LINK_DUPLICATES_ONE_ONLY
:
2857 info
->callbacks
->einfo
2858 /* xgettext:c-format */
2859 (_("%pB: ignoring duplicate section `%pA'\n"),
2863 case SEC_LINK_DUPLICATES_SAME_SIZE
:
2864 if ((l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
2866 else if (sec
->size
!= l
->sec
->size
)
2867 info
->callbacks
->einfo
2868 /* xgettext:c-format */
2869 (_("%pB: duplicate section `%pA' has different size\n"),
2873 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
2874 if ((l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
2876 else if (sec
->size
!= l
->sec
->size
)
2877 info
->callbacks
->einfo
2878 /* xgettext:c-format */
2879 (_("%pB: duplicate section `%pA' has different size\n"),
2881 else if (sec
->size
!= 0)
2883 bfd_byte
*sec_contents
, *l_sec_contents
= NULL
;
2885 if (!bfd_malloc_and_get_section (sec
->owner
, sec
, &sec_contents
))
2886 info
->callbacks
->einfo
2887 /* xgettext:c-format */
2888 (_("%pB: could not read contents of section `%pA'\n"),
2890 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
2892 info
->callbacks
->einfo
2893 /* xgettext:c-format */
2894 (_("%pB: could not read contents of section `%pA'\n"),
2895 l
->sec
->owner
, l
->sec
);
2896 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
2897 info
->callbacks
->einfo
2898 /* xgettext:c-format */
2899 (_("%pB: duplicate section `%pA' has different contents\n"),
2902 free (sec_contents
);
2903 free (l_sec_contents
);
2908 /* Set the output_section field so that lang_add_section
2909 does not create a lang_input_section structure for this
2910 section. Since there might be a symbol in the section
2911 being discarded, we must retain a pointer to the section
2912 which we are really going to use. */
2913 sec
->output_section
= bfd_abs_section_ptr
;
2914 sec
->kept_section
= l
->sec
;
2918 /* This is used on non-ELF inputs. */
2921 _bfd_generic_section_already_linked (bfd
*abfd ATTRIBUTE_UNUSED
,
2923 struct bfd_link_info
*info
)
2926 struct bfd_section_already_linked
*l
;
2927 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
2929 if ((sec
->flags
& SEC_LINK_ONCE
) == 0)
2932 /* The generic linker doesn't handle section groups. */
2933 if ((sec
->flags
& SEC_GROUP
) != 0)
2936 /* FIXME: When doing a relocatable link, we may have trouble
2937 copying relocations in other sections that refer to local symbols
2938 in the section being discarded. Those relocations will have to
2939 be converted somehow; as of this writing I'm not sure that any of
2940 the backends handle that correctly.
2942 It is tempting to instead not discard link once sections when
2943 doing a relocatable link (technically, they should be discarded
2944 whenever we are building constructors). However, that fails,
2945 because the linker winds up combining all the link once sections
2946 into a single large link once section, which defeats the purpose
2947 of having link once sections in the first place. */
2949 name
= bfd_section_name (sec
);
2951 already_linked_list
= bfd_section_already_linked_table_lookup (name
);
2953 l
= already_linked_list
->entry
;
2956 /* The section has already been linked. See if we should
2958 return _bfd_handle_already_linked (sec
, l
, info
);
2961 /* This is the first section with this name. Record it. */
2962 if (!bfd_section_already_linked_table_insert (already_linked_list
, sec
))
2963 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
2967 /* Choose a neighbouring section to S in OBFD that will be output, or
2968 the absolute section if ADDR is out of bounds of the neighbours. */
2971 _bfd_nearby_section (bfd
*obfd
, asection
*s
, bfd_vma addr
)
2973 asection
*next
, *prev
, *best
;
2975 /* Find preceding kept section. */
2976 for (prev
= s
->prev
; prev
!= NULL
; prev
= prev
->prev
)
2977 if ((prev
->flags
& SEC_EXCLUDE
) == 0
2978 && !bfd_section_removed_from_list (obfd
, prev
))
2981 /* Find following kept section. Start at prev->next because
2982 other sections may have been added after S was removed. */
2983 if (s
->prev
!= NULL
)
2984 next
= s
->prev
->next
;
2986 next
= s
->owner
->sections
;
2987 for (; next
!= NULL
; next
= next
->next
)
2988 if ((next
->flags
& SEC_EXCLUDE
) == 0
2989 && !bfd_section_removed_from_list (obfd
, next
))
2992 /* Choose better of two sections, based on flags. The idea
2993 is to choose a section that will be in the same segment
2994 as S would have been if it was kept. */
2999 best
= bfd_abs_section_ptr
;
3001 else if (next
== NULL
)
3003 else if (((prev
->flags
^ next
->flags
)
3004 & (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_LOAD
)) != 0)
3006 if (((next
->flags
^ s
->flags
)
3007 & (SEC_ALLOC
| SEC_THREAD_LOCAL
)) != 0
3008 /* We prefer to choose a loaded section. Section S
3009 doesn't have SEC_LOAD set (it being excluded, that
3010 part of the flag processing didn't happen) so we
3011 can't compare that flag to those of NEXT and PREV. */
3012 || ((prev
->flags
& SEC_LOAD
) != 0
3013 && (next
->flags
& SEC_LOAD
) == 0))
3016 else if (((prev
->flags
^ next
->flags
) & SEC_READONLY
) != 0)
3018 if (((next
->flags
^ s
->flags
) & SEC_READONLY
) != 0)
3021 else if (((prev
->flags
^ next
->flags
) & SEC_CODE
) != 0)
3023 if (((next
->flags
^ s
->flags
) & SEC_CODE
) != 0)
3028 /* Flags we care about are the same. Prefer the following
3029 section if that will result in a positive valued sym. */
3030 if (addr
< next
->vma
)
3037 /* Convert symbols in excluded output sections to use a kept section. */
3040 fix_syms (struct bfd_link_hash_entry
*h
, void *data
)
3042 bfd
*obfd
= (bfd
*) data
;
3044 if (h
->type
== bfd_link_hash_defined
3045 || h
->type
== bfd_link_hash_defweak
)
3047 asection
*s
= h
->u
.def
.section
;
3049 && s
->output_section
!= NULL
3050 && (s
->output_section
->flags
& SEC_EXCLUDE
) != 0
3051 && bfd_section_removed_from_list (obfd
, s
->output_section
))
3055 h
->u
.def
.value
+= s
->output_offset
+ s
->output_section
->vma
;
3056 op
= _bfd_nearby_section (obfd
, s
->output_section
, h
->u
.def
.value
);
3057 h
->u
.def
.value
-= op
->vma
;
3058 h
->u
.def
.section
= op
;
3066 _bfd_fix_excluded_sec_syms (bfd
*obfd
, struct bfd_link_info
*info
)
3068 bfd_link_hash_traverse (info
->hash
, fix_syms
, obfd
);
3073 bfd_generic_define_common_symbol
3076 bool bfd_generic_define_common_symbol
3077 (bfd *output_bfd, struct bfd_link_info *info,
3078 struct bfd_link_hash_entry *h);
3081 Convert common symbol @var{h} into a defined symbol.
3082 Return TRUE on success and FALSE on failure.
3084 .#define bfd_define_common_symbol(output_bfd, info, h) \
3085 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3090 bfd_generic_define_common_symbol (bfd
*output_bfd
,
3091 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3092 struct bfd_link_hash_entry
*h
)
3094 unsigned int power_of_two
;
3095 bfd_vma alignment
, size
;
3098 BFD_ASSERT (h
!= NULL
&& h
->type
== bfd_link_hash_common
);
3101 power_of_two
= h
->u
.c
.p
->alignment_power
;
3102 section
= h
->u
.c
.p
->section
;
3104 /* Increase the size of the section to align the common symbol.
3105 The alignment must be a power of two. But if the section does
3106 not have any alignment requirement then do not increase the
3107 alignment unnecessarily. */
3109 alignment
= bfd_octets_per_byte (output_bfd
, section
) << power_of_two
;
3112 BFD_ASSERT (alignment
!= 0 && (alignment
& -alignment
) == alignment
);
3113 section
->size
+= alignment
- 1;
3114 section
->size
&= -alignment
;
3116 /* Adjust the section's overall alignment if necessary. */
3117 if (power_of_two
> section
->alignment_power
)
3118 section
->alignment_power
= power_of_two
;
3120 /* Change the symbol from common to defined. */
3121 h
->type
= bfd_link_hash_defined
;
3122 h
->u
.def
.section
= section
;
3123 h
->u
.def
.value
= section
->size
;
3125 /* Increase the size of the section. */
3126 section
->size
+= size
;
3128 /* Make sure the section is allocated in memory, and make sure that
3129 it is no longer a common section. */
3130 section
->flags
|= SEC_ALLOC
;
3131 section
->flags
&= ~(SEC_IS_COMMON
| SEC_HAS_CONTENTS
);
3137 _bfd_generic_link_hide_symbol
3140 void _bfd_generic_link_hide_symbol
3141 (bfd *output_bfd, struct bfd_link_info *info,
3142 struct bfd_link_hash_entry *h);
3145 Hide symbol @var{h}.
3146 This is an internal function. It should not be called from
3147 outside the BFD library.
3149 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3150 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3155 _bfd_generic_link_hide_symbol (bfd
*output_bfd ATTRIBUTE_UNUSED
,
3156 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3157 struct bfd_link_hash_entry
*h ATTRIBUTE_UNUSED
)
3163 bfd_generic_define_start_stop
3166 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3167 (struct bfd_link_info *info,
3168 const char *symbol, asection *sec);
3171 Define a __start, __stop, .startof. or .sizeof. symbol.
3172 Return the symbol or NULL if no such undefined symbol exists.
3174 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3175 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3179 struct bfd_link_hash_entry
*
3180 bfd_generic_define_start_stop (struct bfd_link_info
*info
,
3181 const char *symbol
, asection
*sec
)
3183 struct bfd_link_hash_entry
*h
;
3185 h
= bfd_link_hash_lookup (info
->hash
, symbol
, false, false, true);
3188 && (h
->type
== bfd_link_hash_undefined
3189 || h
->type
== bfd_link_hash_undefweak
))
3191 h
->type
= bfd_link_hash_defined
;
3192 h
->u
.def
.section
= sec
;
3201 bfd_find_version_for_sym
3204 struct bfd_elf_version_tree * bfd_find_version_for_sym
3205 (struct bfd_elf_version_tree *verdefs,
3206 const char *sym_name, bool *hide);
3209 Search an elf version script tree for symbol versioning
3210 info and export / don't-export status for a given symbol.
3211 Return non-NULL on success and NULL on failure; also sets
3212 the output @samp{hide} boolean parameter.
3216 struct bfd_elf_version_tree
*
3217 bfd_find_version_for_sym (struct bfd_elf_version_tree
*verdefs
,
3218 const char *sym_name
,
3221 struct bfd_elf_version_tree
*t
;
3222 struct bfd_elf_version_tree
*local_ver
, *global_ver
, *exist_ver
;
3223 struct bfd_elf_version_tree
*star_local_ver
, *star_global_ver
;
3227 star_local_ver
= NULL
;
3228 star_global_ver
= NULL
;
3230 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3232 if (t
->globals
.list
!= NULL
)
3234 struct bfd_elf_version_expr
*d
= NULL
;
3236 while ((d
= (*t
->match
) (&t
->globals
, d
, sym_name
)) != NULL
)
3238 if (d
->literal
|| strcmp (d
->pattern
, "*") != 0)
3241 star_global_ver
= t
;
3245 /* If the match is a wildcard pattern, keep looking for
3246 a more explicit, perhaps even local, match. */
3255 if (t
->locals
.list
!= NULL
)
3257 struct bfd_elf_version_expr
*d
= NULL
;
3259 while ((d
= (*t
->match
) (&t
->locals
, d
, sym_name
)) != NULL
)
3261 if (d
->literal
|| strcmp (d
->pattern
, "*") != 0)
3265 /* If the match is a wildcard pattern, keep looking for
3266 a more explicit, perhaps even global, match. */
3269 /* An exact match overrides a global wildcard. */
3271 star_global_ver
= NULL
;
3281 if (global_ver
== NULL
&& local_ver
== NULL
)
3282 global_ver
= star_global_ver
;
3284 if (global_ver
!= NULL
)
3286 /* If we already have a versioned symbol that matches the
3287 node for this symbol, then we don't want to create a
3288 duplicate from the unversioned symbol. Instead hide the
3289 unversioned symbol. */
3290 *hide
= exist_ver
== global_ver
;
3294 if (local_ver
== NULL
)
3295 local_ver
= star_local_ver
;
3297 if (local_ver
!= NULL
)
3308 bfd_hide_sym_by_version
3311 bool bfd_hide_sym_by_version
3312 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3315 Search an elf version script tree for symbol versioning
3316 info for a given symbol. Return TRUE if the symbol is hidden.
3321 bfd_hide_sym_by_version (struct bfd_elf_version_tree
*verdefs
,
3322 const char *sym_name
)
3324 bool hidden
= false;
3325 bfd_find_version_for_sym (verdefs
, sym_name
, &hidden
);
3331 bfd_link_check_relocs
3334 bool bfd_link_check_relocs
3335 (bfd *abfd, struct bfd_link_info *info);
3338 Checks the relocs in ABFD for validity.
3339 Does not execute the relocs.
3340 Return TRUE if everything is OK, FALSE otherwise.
3341 This is the external entry point to this code.
3345 bfd_link_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
)
3347 return BFD_SEND (abfd
, _bfd_link_check_relocs
, (abfd
, info
));
3352 _bfd_generic_link_check_relocs
3355 bool _bfd_generic_link_check_relocs
3356 (bfd *abfd, struct bfd_link_info *info);
3359 Stub function for targets that do not implement reloc checking.
3361 This is an internal function. It should not be called from
3362 outside the BFD library.
3366 _bfd_generic_link_check_relocs (bfd
*abfd ATTRIBUTE_UNUSED
,
3367 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3374 bfd_merge_private_bfd_data
3377 bool bfd_merge_private_bfd_data
3378 (bfd *ibfd, struct bfd_link_info *info);
3381 Merge private BFD information from the BFD @var{ibfd} to the
3382 the output file BFD when linking. Return <<TRUE>> on success,
3383 <<FALSE>> on error. Possible error returns are:
3385 o <<bfd_error_no_memory>> -
3386 Not enough memory exists to create private data for @var{obfd}.
3388 .#define bfd_merge_private_bfd_data(ibfd, info) \
3389 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3395 _bfd_generic_verify_endian_match
3398 bool _bfd_generic_verify_endian_match
3399 (bfd *ibfd, struct bfd_link_info *info);
3402 Can be used from / for bfd_merge_private_bfd_data to check that
3403 endianness matches between input and output file. Returns
3404 TRUE for a match, otherwise returns FALSE and emits an error.
3408 _bfd_generic_verify_endian_match (bfd
*ibfd
, struct bfd_link_info
*info
)
3410 bfd
*obfd
= info
->output_bfd
;
3412 if (ibfd
->xvec
->byteorder
!= obfd
->xvec
->byteorder
3413 && ibfd
->xvec
->byteorder
!= BFD_ENDIAN_UNKNOWN
3414 && obfd
->xvec
->byteorder
!= BFD_ENDIAN_UNKNOWN
)
3416 if (bfd_big_endian (ibfd
))
3417 _bfd_error_handler (_("%pB: compiled for a big endian system "
3418 "and target is little endian"), ibfd
);
3420 _bfd_error_handler (_("%pB: compiled for a little endian system "
3421 "and target is big endian"), ibfd
);
3422 bfd_set_error (bfd_error_wrong_format
);
3430 _bfd_nolink_sizeof_headers (bfd
*abfd ATTRIBUTE_UNUSED
,
3431 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3437 _bfd_nolink_bfd_relax_section (bfd
*abfd
,
3438 asection
*section ATTRIBUTE_UNUSED
,
3439 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
3440 bool *again ATTRIBUTE_UNUSED
)
3442 return _bfd_bool_bfd_false_error (abfd
);
3446 _bfd_nolink_bfd_get_relocated_section_contents
3448 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
3449 struct bfd_link_order
*link_order ATTRIBUTE_UNUSED
,
3450 bfd_byte
*data ATTRIBUTE_UNUSED
,
3451 bool relocatable ATTRIBUTE_UNUSED
,
3452 asymbol
**symbols ATTRIBUTE_UNUSED
)
3454 return (bfd_byte
*) _bfd_ptr_bfd_null_error (abfd
);
3458 _bfd_nolink_bfd_lookup_section_flags
3459 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3460 struct flag_info
*flaginfo ATTRIBUTE_UNUSED
,
3463 return _bfd_bool_bfd_false_error (section
->owner
);
3467 _bfd_nolink_bfd_is_group_section (bfd
*abfd
,
3468 const asection
*sec ATTRIBUTE_UNUSED
)
3470 return _bfd_bool_bfd_false_error (abfd
);
3474 _bfd_nolink_bfd_group_name (bfd
*abfd
,
3475 const asection
*sec ATTRIBUTE_UNUSED
)
3477 return _bfd_ptr_bfd_null_error (abfd
);
3481 _bfd_nolink_bfd_discard_group (bfd
*abfd
, asection
*sec ATTRIBUTE_UNUSED
)
3483 return _bfd_bool_bfd_false_error (abfd
);
3486 struct bfd_link_hash_table
*
3487 _bfd_nolink_bfd_link_hash_table_create (bfd
*abfd
)
3489 return (struct bfd_link_hash_table
*) _bfd_ptr_bfd_null_error (abfd
);
3493 _bfd_nolink_bfd_link_just_syms (asection
*sec ATTRIBUTE_UNUSED
,
3494 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3499 _bfd_nolink_bfd_copy_link_hash_symbol_type
3500 (bfd
*abfd ATTRIBUTE_UNUSED
,
3501 struct bfd_link_hash_entry
*from ATTRIBUTE_UNUSED
,
3502 struct bfd_link_hash_entry
*to ATTRIBUTE_UNUSED
)
3507 _bfd_nolink_bfd_link_split_section (bfd
*abfd
, asection
*sec ATTRIBUTE_UNUSED
)
3509 return _bfd_bool_bfd_false_error (abfd
);
3513 _bfd_nolink_section_already_linked (bfd
*abfd
,
3514 asection
*sec ATTRIBUTE_UNUSED
,
3515 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3517 return _bfd_bool_bfd_false_error (abfd
);
3521 _bfd_nolink_bfd_define_common_symbol
3523 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3524 struct bfd_link_hash_entry
*h ATTRIBUTE_UNUSED
)
3526 return _bfd_bool_bfd_false_error (abfd
);
3529 struct bfd_link_hash_entry
*
3530 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3531 const char *name ATTRIBUTE_UNUSED
,
3534 return (struct bfd_link_hash_entry
*) _bfd_ptr_bfd_null_error (sec
->owner
);
3537 /* Return false if linker should avoid caching relocation infomation
3538 and symbol tables of input files in memory. */
3541 _bfd_link_keep_memory (struct bfd_link_info
* info
)
3546 if (!info
->keep_memory
)
3549 if (info
->max_cache_size
== (bfd_size_type
) -1)
3552 abfd
= info
->input_bfds
;
3553 size
= info
->cache_size
;
3556 if (size
>= info
->max_cache_size
)
3558 /* Over the limit. Reduce the memory usage. */
3559 info
->keep_memory
= false;
3564 size
+= abfd
->alloc_size
;
3565 abfd
= abfd
->link
.next
;