1 /* Implement a cached obstack.
2 Written by Fred Fish <fnf@cygnus.com>
3 Rewritten by Jim Blandy <jimb@cygnus.com>
5 Copyright (C) 1999-2024 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "gdbsupport/gdb_obstack.h"
29 /* The type used to hold a single bcache string. The user data is
30 stored in d.data. Since it can be any type, it needs to have the
31 same alignment as the most strict alignment of any type on the host
32 machine. I don't know of any really correct way to do this in
33 stock ANSI C, so just do it the same way obstack.h does. */
39 /* Assume the data length is no more than 64k. */
40 unsigned short length
;
41 /* The half hash hack. This contains the upper 16 bits of the hash
42 value and is used as a pre-check when comparing two strings and
43 avoids the need to do length or memcmp calls. It proves to be
44 roughly 100% effective. */
45 unsigned short half_hash
;
56 /* Growing the bcache's hash table. */
58 /* If the average chain length grows beyond this, then we want to
59 resize our hash table. */
60 #define CHAIN_LENGTH_THRESHOLD (5)
63 bcache::expand_hash_table ()
65 /* A table of good hash table sizes. Whenever we grow, we pick the
66 next larger size from this table. sizes[i] is close to 1 << (i+10),
67 so we roughly double the table size each time. After we fall off
68 the end of this table, we just double. Don't laugh --- there have
69 been executables sighted with a gigabyte of debug info. */
70 static const unsigned long sizes
[] = {
71 1021, 2053, 4099, 8191, 16381, 32771,
72 65537, 131071, 262144, 524287, 1048573, 2097143,
73 4194301, 8388617, 16777213, 33554467, 67108859, 134217757,
74 268435459, 536870923, 1073741827, 2147483659UL
76 unsigned int new_num_buckets
;
77 struct bstring
**new_buckets
;
80 /* Count the stats. Every unique item needs to be re-hashed and
83 m_expand_hash_count
+= m_unique_count
;
85 /* Find the next size. */
86 new_num_buckets
= m_num_buckets
* 2;
87 for (unsigned long a_size
: sizes
)
88 if (a_size
> m_num_buckets
)
90 new_num_buckets
= a_size
;
94 /* Allocate the new table. */
96 size_t new_size
= new_num_buckets
* sizeof (new_buckets
[0]);
98 new_buckets
= (struct bstring
**) xmalloc (new_size
);
99 memset (new_buckets
, 0, new_size
);
101 m_structure_size
-= m_num_buckets
* sizeof (m_bucket
[0]);
102 m_structure_size
+= new_size
;
105 /* Rehash all existing strings. */
106 for (i
= 0; i
< m_num_buckets
; i
++)
108 struct bstring
*s
, *next
;
110 for (s
= m_bucket
[i
]; s
; s
= next
)
112 struct bstring
**new_bucket
;
115 new_bucket
= &new_buckets
[(this->hash (&s
->d
.data
, s
->length
)
117 s
->next
= *new_bucket
;
122 /* Plug in the new table. */
124 m_bucket
= new_buckets
;
125 m_num_buckets
= new_num_buckets
;
129 /* Looking up things in the bcache. */
131 /* The number of bytes needed to allocate a struct bstring whose data
133 #define BSTRING_SIZE(n) (offsetof (struct bstring, d.data) + (n))
135 /* Find a copy of the LENGTH bytes at ADDR in BCACHE. If BCACHE has
136 never seen those bytes before, add a copy of them to BCACHE. In
137 either case, return a pointer to BCACHE's copy of that string. If
138 optional ADDED is not NULL, return 1 in case of new entry or 0 if
139 returning an old entry. */
142 bcache::insert (const void *addr
, int length
, bool *added
)
144 unsigned long full_hash
;
145 unsigned short half_hash
;
149 if (added
!= nullptr)
152 /* Lazily initialize the obstack. This can save quite a bit of
153 memory in some cases. */
154 if (m_total_count
== 0)
156 /* We could use obstack_specify_allocation here instead, but
157 gdb_obstack.h specifies the allocation/deallocation
159 obstack_init (&m_cache
);
162 /* If our average chain length is too high, expand the hash table. */
163 if (m_unique_count
>= m_num_buckets
* CHAIN_LENGTH_THRESHOLD
)
164 expand_hash_table ();
167 m_total_size
+= length
;
169 full_hash
= this->hash (addr
, length
);
171 half_hash
= (full_hash
>> 16);
172 hash_index
= full_hash
% m_num_buckets
;
174 /* Search the hash m_bucket for a string identical to the caller's.
175 As a short-circuit first compare the upper part of each hash
177 for (s
= m_bucket
[hash_index
]; s
; s
= s
->next
)
179 if (s
->half_hash
== half_hash
)
181 if (s
->length
== length
182 && this->compare (&s
->d
.data
, addr
, length
))
185 m_half_hash_miss_count
++;
189 /* The user's string isn't in the list. Insert it after *ps. */
191 struct bstring
*newobj
192 = (struct bstring
*) obstack_alloc (&m_cache
,
193 BSTRING_SIZE (length
));
195 memcpy (&newobj
->d
.data
, addr
, length
);
196 newobj
->length
= length
;
197 newobj
->next
= m_bucket
[hash_index
];
198 newobj
->half_hash
= half_hash
;
199 m_bucket
[hash_index
] = newobj
;
202 m_unique_size
+= length
;
203 m_structure_size
+= BSTRING_SIZE (length
);
205 if (added
!= nullptr)
208 return &newobj
->d
.data
;
216 bcache::hash (const void *addr
, int length
)
218 return fast_hash (addr
, length
, 0);
224 bcache::compare (const void *left
, const void *right
, int length
)
226 return memcmp (left
, right
, length
) == 0;
229 /* Free all the storage associated with BCACHE. */
232 /* Only free the obstack if we actually initialized it. */
233 if (m_total_count
> 0)
234 obstack_free (&m_cache
, 0);
240 /* Printing statistics. */
243 print_percentage (int portion
, int total
)
246 /* i18n: Like "Percentage of duplicates, by count: (not applicable)". */
247 gdb_printf (_("(not applicable)\n"));
249 gdb_printf ("%3d%%\n", (int) (portion
* 100.0 / total
));
253 /* Print statistics on BCACHE's memory usage and efficacity at
254 eliminating duplication. NAME should describe the kind of data
255 BCACHE holds. Statistics are printed using `gdb_printf' and
258 bcache::print_statistics (const char *type
)
260 int occupied_buckets
;
261 int max_chain_length
;
262 int median_chain_length
;
264 int median_entry_size
;
266 /* Count the number of occupied buckets, tally the various string
267 lengths, and measure chain lengths. */
270 int *chain_length
= XCNEWVEC (int, m_num_buckets
+ 1);
271 int *entry_size
= XCNEWVEC (int, m_unique_count
+ 1);
274 occupied_buckets
= 0;
276 for (b
= 0; b
< m_num_buckets
; b
++)
278 struct bstring
*s
= m_bucket
[b
];
288 gdb_assert (b
< m_num_buckets
);
290 gdb_assert (stringi
< m_unique_count
);
291 entry_size
[stringi
++] = s
->length
;
297 /* To compute the median, we need the set of chain lengths
299 std::sort (chain_length
, chain_length
+ m_num_buckets
);
300 std::sort (entry_size
, entry_size
+ m_unique_count
);
302 if (m_num_buckets
> 0)
304 max_chain_length
= chain_length
[m_num_buckets
- 1];
305 median_chain_length
= chain_length
[m_num_buckets
/ 2];
309 max_chain_length
= 0;
310 median_chain_length
= 0;
312 if (m_unique_count
> 0)
314 max_entry_size
= entry_size
[m_unique_count
- 1];
315 median_entry_size
= entry_size
[m_unique_count
/ 2];
320 median_entry_size
= 0;
323 xfree (chain_length
);
327 gdb_printf (_(" M_Cached '%s' statistics:\n"), type
);
328 gdb_printf (_(" Total object count: %ld\n"), m_total_count
);
329 gdb_printf (_(" Unique object count: %lu\n"), m_unique_count
);
330 gdb_printf (_(" Percentage of duplicates, by count: "));
331 print_percentage (m_total_count
- m_unique_count
, m_total_count
);
334 gdb_printf (_(" Total object size: %ld\n"), m_total_size
);
335 gdb_printf (_(" Unique object size: %ld\n"), m_unique_size
);
336 gdb_printf (_(" Percentage of duplicates, by size: "));
337 print_percentage (m_total_size
- m_unique_size
, m_total_size
);
340 gdb_printf (_(" Max entry size: %d\n"), max_entry_size
);
341 gdb_printf (_(" Average entry size: "));
342 if (m_unique_count
> 0)
343 gdb_printf ("%ld\n", m_unique_size
/ m_unique_count
);
345 /* i18n: "Average entry size: (not applicable)". */
346 gdb_printf (_("(not applicable)\n"));
347 gdb_printf (_(" Median entry size: %d\n"), median_entry_size
);
351 Total memory used by bcache, including overhead: %ld\n"),
353 gdb_printf (_(" Percentage memory overhead: "));
354 print_percentage (m_structure_size
- m_unique_size
, m_unique_size
);
355 gdb_printf (_(" Net memory savings: "));
356 print_percentage (m_total_size
- m_structure_size
, m_total_size
);
359 gdb_printf (_(" Hash table size: %3d\n"),
361 gdb_printf (_(" Hash table expands: %lu\n"),
363 gdb_printf (_(" Hash table hashes: %lu\n"),
364 m_total_count
+ m_expand_hash_count
);
365 gdb_printf (_(" Half hash misses: %lu\n"),
366 m_half_hash_miss_count
);
367 gdb_printf (_(" Hash table population: "));
368 print_percentage (occupied_buckets
, m_num_buckets
);
369 gdb_printf (_(" Median hash chain length: %3d\n"),
370 median_chain_length
);
371 gdb_printf (_(" Average hash chain length: "));
372 if (m_num_buckets
> 0)
373 gdb_printf ("%3lu\n", m_unique_count
/ m_num_buckets
);
375 /* i18n: "Average hash chain length: (not applicable)". */
376 gdb_printf (_("(not applicable)\n"));
377 gdb_printf (_(" Maximum hash chain length: %3d\n"),
383 bcache::memory_used ()
385 if (m_total_count
== 0)
387 return obstack_memory_used (&m_cache
);
390 } /* namespace gdb */