1 /* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
3 Copyright (C) 1996-2022 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "arch-utils.h"
25 #include "gdbcore.h" /* For write_memory_unsigned_integer. */
28 #include "frame-unwind.h"
29 #include "frame-base.h"
31 #include "dwarf2/frame.h"
34 #include "prologue-value.h"
37 #include "mn10300-tdep.h"
40 /* The am33-2 has 64 registers. */
41 #define MN10300_MAX_NUM_REGS 64
43 /* Big enough to hold the size of the largest register in bytes. */
44 #define MN10300_MAX_REGISTER_SIZE 64
46 /* This structure holds the results of a prologue analysis. */
47 struct mn10300_prologue
49 /* The architecture for which we generated this prologue info. */
50 struct gdbarch
*gdbarch
;
52 /* The offset from the frame base to the stack pointer --- always
55 Calling this a "size" is a bit misleading, but given that the
56 stack grows downwards, using offsets for everything keeps one
57 from going completely sign-crazy: you never change anything's
58 sign for an ADD instruction; always change the second operand's
59 sign for a SUB instruction; and everything takes care of
63 /* Non-zero if this function has initialized the frame pointer from
64 the stack pointer, zero otherwise. */
67 /* If has_frame_ptr is non-zero, this is the offset from the frame
68 base to where the frame pointer points. This is always zero or
72 /* The address of the first instruction at which the frame has been
73 set up and the arguments are where the debug info says they are
74 --- as best as we can tell. */
75 CORE_ADDR prologue_end
;
77 /* reg_offset[R] is the offset from the CFA at which register R is
78 saved, or 1 if register R has not been saved. (Real values are
79 always zero or negative.) */
80 int reg_offset
[MN10300_MAX_NUM_REGS
];
84 /* Compute the alignment required by a type. */
87 mn10300_type_align (struct type
*type
)
91 switch (type
->code ())
102 case TYPE_CODE_RVALUE_REF
:
103 return type
->length ();
105 case TYPE_CODE_COMPLEX
:
106 return type
->length () / 2;
108 case TYPE_CODE_STRUCT
:
109 case TYPE_CODE_UNION
:
110 for (i
= 0; i
< type
->num_fields (); i
++)
112 int falign
= mn10300_type_align (type
->field (i
).type ());
113 while (align
< falign
)
118 case TYPE_CODE_ARRAY
:
119 /* HACK! Structures containing arrays, even small ones, are not
120 eligible for returning in registers. */
123 case TYPE_CODE_TYPEDEF
:
124 return mn10300_type_align (check_typedef (type
));
127 internal_error (_("bad switch"));
131 /* Should call_function allocate stack space for a struct return? */
133 mn10300_use_struct_convention (struct type
*type
)
135 /* Structures bigger than a pair of words can't be returned in
137 if (type
->length () > 8)
140 switch (type
->code ())
142 case TYPE_CODE_STRUCT
:
143 case TYPE_CODE_UNION
:
144 /* Structures with a single field are handled as the field
146 if (type
->num_fields () == 1)
147 return mn10300_use_struct_convention (type
->field (0).type ());
149 /* Structures with word or double-word size are passed in memory, as
150 long as they require at least word alignment. */
151 if (mn10300_type_align (type
) >= 4)
156 /* Arrays are addressable, so they're never returned in
157 registers. This condition can only hold when the array is
158 the only field of a struct or union. */
159 case TYPE_CODE_ARRAY
:
162 case TYPE_CODE_TYPEDEF
:
163 return mn10300_use_struct_convention (check_typedef (type
));
171 mn10300_store_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
172 struct regcache
*regcache
, const gdb_byte
*valbuf
)
174 int len
= type
->length ();
177 if (type
->code () == TYPE_CODE_PTR
)
182 regsz
= register_size (gdbarch
, reg
);
185 regcache
->raw_write_part (reg
, 0, len
, valbuf
);
186 else if (len
<= 2 * regsz
)
188 regcache
->raw_write (reg
, valbuf
);
189 gdb_assert (regsz
== register_size (gdbarch
, reg
+ 1));
190 regcache
->raw_write_part (reg
+ 1, 0, len
- regsz
, valbuf
+ regsz
);
193 internal_error (_("Cannot store return value %d bytes long."), len
);
197 mn10300_extract_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
198 struct regcache
*regcache
, void *valbuf
)
200 gdb_byte buf
[MN10300_MAX_REGISTER_SIZE
];
201 int len
= type
->length ();
204 if (type
->code () == TYPE_CODE_PTR
)
209 regsz
= register_size (gdbarch
, reg
);
210 gdb_assert (regsz
<= MN10300_MAX_REGISTER_SIZE
);
213 regcache
->raw_read (reg
, buf
);
214 memcpy (valbuf
, buf
, len
);
216 else if (len
<= 2 * regsz
)
218 regcache
->raw_read (reg
, buf
);
219 memcpy (valbuf
, buf
, regsz
);
220 gdb_assert (regsz
== register_size (gdbarch
, reg
+ 1));
221 regcache
->raw_read (reg
+ 1, buf
);
222 memcpy ((char *) valbuf
+ regsz
, buf
, len
- regsz
);
225 internal_error (_("Cannot extract return value %d bytes long."), len
);
228 /* Determine, for architecture GDBARCH, how a return value of TYPE
229 should be returned. If it is supposed to be returned in registers,
230 and READBUF is non-zero, read the appropriate value from REGCACHE,
231 and copy it into READBUF. If WRITEBUF is non-zero, write the value
232 from WRITEBUF into REGCACHE. */
234 static enum return_value_convention
235 mn10300_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
236 struct type
*type
, struct regcache
*regcache
,
237 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
239 if (mn10300_use_struct_convention (type
))
240 return RETURN_VALUE_STRUCT_CONVENTION
;
243 mn10300_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
245 mn10300_store_return_value (gdbarch
, type
, regcache
, writebuf
);
247 return RETURN_VALUE_REGISTER_CONVENTION
;
251 register_name (int reg
, const char **regs
, long num_regs
)
253 gdb_assert (reg
< num_regs
);
258 mn10300_generic_register_name (struct gdbarch
*gdbarch
, int reg
)
260 static const char *regs
[] =
261 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
262 "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
263 "", "", "", "", "", "", "", "",
264 "", "", "", "", "", "", "", "fp"
266 return register_name (reg
, regs
, ARRAY_SIZE (regs
));
271 am33_register_name (struct gdbarch
*gdbarch
, int reg
)
273 static const char *regs
[] =
274 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
275 "sp", "pc", "mdr", "psw", "lir", "lar", "",
276 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
277 "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
279 return register_name (reg
, regs
, ARRAY_SIZE (regs
));
283 am33_2_register_name (struct gdbarch
*gdbarch
, int reg
)
285 static const char *regs
[] =
287 "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
288 "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
289 "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
290 "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
291 "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
292 "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
293 "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
294 "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
296 return register_name (reg
, regs
, ARRAY_SIZE (regs
));
300 mn10300_register_type (struct gdbarch
*gdbarch
, int reg
)
302 return builtin_type (gdbarch
)->builtin_int
;
305 /* The breakpoint instruction must be the same size as the smallest
306 instruction in the instruction set.
308 The Matsushita mn10x00 processors have single byte instructions
309 so we need a single byte breakpoint. Matsushita hasn't defined
310 one, so we defined it ourselves. */
311 constexpr gdb_byte mn10300_break_insn
[] = {0xff};
313 typedef BP_MANIPULATION (mn10300_break_insn
) mn10300_breakpoint
;
315 /* Model the semantics of pushing a register onto the stack. This
316 is a helper function for mn10300_analyze_prologue, below. */
318 push_reg (pv_t
*regs
, struct pv_area
*stack
, int regnum
)
320 regs
[E_SP_REGNUM
] = pv_add_constant (regs
[E_SP_REGNUM
], -4);
321 stack
->store (regs
[E_SP_REGNUM
], 4, regs
[regnum
]);
324 /* Translate an "r" register number extracted from an instruction encoding
325 into a GDB register number. Adapted from a simulator function
326 of the same name; see am33.igen. */
328 translate_rreg (int rreg
)
330 /* The higher register numbers actually correspond to the
331 basic machine's address and data registers. */
332 if (rreg
> 7 && rreg
< 12)
333 return E_A0_REGNUM
+ rreg
- 8;
334 else if (rreg
> 11 && rreg
< 16)
335 return E_D0_REGNUM
+ rreg
- 12;
337 return E_E0_REGNUM
+ rreg
;
340 /* Find saved registers in a 'struct pv_area'; we pass this to pv_area::scan.
342 If VALUE is a saved register, ADDR says it was saved at a constant
343 offset from the frame base, and SIZE indicates that the whole
344 register was saved, record its offset in RESULT_UNTYPED. */
346 check_for_saved (void *result_untyped
, pv_t addr
, CORE_ADDR size
, pv_t value
)
348 struct mn10300_prologue
*result
= (struct mn10300_prologue
*) result_untyped
;
350 if (value
.kind
== pvk_register
352 && pv_is_register (addr
, E_SP_REGNUM
)
353 && size
== register_size (result
->gdbarch
, value
.reg
))
354 result
->reg_offset
[value
.reg
] = addr
.k
;
357 /* Analyze the prologue to determine where registers are saved,
358 the end of the prologue, etc. The result of this analysis is
359 returned in RESULT. See struct mn10300_prologue above for more
362 mn10300_analyze_prologue (struct gdbarch
*gdbarch
,
363 CORE_ADDR start_pc
, CORE_ADDR limit_pc
,
364 struct mn10300_prologue
*result
)
366 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
369 pv_t regs
[MN10300_MAX_NUM_REGS
];
370 CORE_ADDR after_last_frame_setup_insn
= start_pc
;
371 int am33_mode
= get_am33_mode (gdbarch
);
373 memset (result
, 0, sizeof (*result
));
374 result
->gdbarch
= gdbarch
;
376 for (rn
= 0; rn
< MN10300_MAX_NUM_REGS
; rn
++)
378 regs
[rn
] = pv_register (rn
, 0);
379 result
->reg_offset
[rn
] = 1;
381 pv_area
stack (E_SP_REGNUM
, gdbarch_addr_bit (gdbarch
));
383 /* The typical call instruction will have saved the return address on the
384 stack. Space for the return address has already been preallocated in
385 the caller's frame. It's possible, such as when using -mrelax with gcc
386 that other registers were saved as well. If this happens, we really
387 have no chance of deciphering the frame. DWARF info can save the day
388 when this happens. */
389 stack
.store (regs
[E_SP_REGNUM
], 4, regs
[E_PC_REGNUM
]);
392 while (pc
< limit_pc
)
397 /* Instructions can be as small as one byte; however, we usually
398 need at least two bytes to do the decoding, so fetch that many
400 status
= target_read_memory (pc
, instr
, 2);
404 /* movm [regs], sp */
405 if (instr
[0] == 0xcf)
409 save_mask
= instr
[1];
411 if ((save_mask
& movm_exreg0_bit
) && am33_mode
)
413 push_reg (regs
, &stack
, E_E2_REGNUM
);
414 push_reg (regs
, &stack
, E_E3_REGNUM
);
416 if ((save_mask
& movm_exreg1_bit
) && am33_mode
)
418 push_reg (regs
, &stack
, E_E4_REGNUM
);
419 push_reg (regs
, &stack
, E_E5_REGNUM
);
420 push_reg (regs
, &stack
, E_E6_REGNUM
);
421 push_reg (regs
, &stack
, E_E7_REGNUM
);
423 if ((save_mask
& movm_exother_bit
) && am33_mode
)
425 push_reg (regs
, &stack
, E_E0_REGNUM
);
426 push_reg (regs
, &stack
, E_E1_REGNUM
);
427 push_reg (regs
, &stack
, E_MDRQ_REGNUM
);
428 push_reg (regs
, &stack
, E_MCRH_REGNUM
);
429 push_reg (regs
, &stack
, E_MCRL_REGNUM
);
430 push_reg (regs
, &stack
, E_MCVF_REGNUM
);
432 if (save_mask
& movm_d2_bit
)
433 push_reg (regs
, &stack
, E_D2_REGNUM
);
434 if (save_mask
& movm_d3_bit
)
435 push_reg (regs
, &stack
, E_D3_REGNUM
);
436 if (save_mask
& movm_a2_bit
)
437 push_reg (regs
, &stack
, E_A2_REGNUM
);
438 if (save_mask
& movm_a3_bit
)
439 push_reg (regs
, &stack
, E_A3_REGNUM
);
440 if (save_mask
& movm_other_bit
)
442 push_reg (regs
, &stack
, E_D0_REGNUM
);
443 push_reg (regs
, &stack
, E_D1_REGNUM
);
444 push_reg (regs
, &stack
, E_A0_REGNUM
);
445 push_reg (regs
, &stack
, E_A1_REGNUM
);
446 push_reg (regs
, &stack
, E_MDR_REGNUM
);
447 push_reg (regs
, &stack
, E_LIR_REGNUM
);
448 push_reg (regs
, &stack
, E_LAR_REGNUM
);
449 /* The `other' bit leaves a blank area of four bytes at
450 the beginning of its block of saved registers, making
451 it 32 bytes long in total. */
452 regs
[E_SP_REGNUM
] = pv_add_constant (regs
[E_SP_REGNUM
], -4);
456 after_last_frame_setup_insn
= pc
;
459 else if ((instr
[0] & 0xfc) == 0x3c)
461 int aN
= instr
[0] & 0x03;
463 regs
[E_A0_REGNUM
+ aN
] = regs
[E_SP_REGNUM
];
467 after_last_frame_setup_insn
= pc
;
470 else if ((instr
[0] & 0xf0) == 0x90
471 && (instr
[0] & 0x03) != ((instr
[0] & 0x0c) >> 2))
473 int aN
= instr
[0] & 0x03;
474 int aM
= (instr
[0] & 0x0c) >> 2;
476 regs
[E_A0_REGNUM
+ aN
] = regs
[E_A0_REGNUM
+ aM
];
481 else if ((instr
[0] & 0xf0) == 0x80
482 && (instr
[0] & 0x03) != ((instr
[0] & 0x0c) >> 2))
484 int dN
= instr
[0] & 0x03;
485 int dM
= (instr
[0] & 0x0c) >> 2;
487 regs
[E_D0_REGNUM
+ dN
] = regs
[E_D0_REGNUM
+ dM
];
492 else if (instr
[0] == 0xf1 && (instr
[1] & 0xf0) == 0xd0)
494 int dN
= instr
[1] & 0x03;
495 int aM
= (instr
[1] & 0x0c) >> 2;
497 regs
[E_D0_REGNUM
+ dN
] = regs
[E_A0_REGNUM
+ aM
];
502 else if (instr
[0] == 0xf1 && (instr
[1] & 0xf0) == 0xe0)
504 int aN
= instr
[1] & 0x03;
505 int dM
= (instr
[1] & 0x0c) >> 2;
507 regs
[E_A0_REGNUM
+ aN
] = regs
[E_D0_REGNUM
+ dM
];
512 else if (instr
[0] == 0xf8 && instr
[1] == 0xfe)
518 status
= target_read_memory (pc
+ 2, buf
, 1);
522 imm8
= extract_signed_integer (buf
, 1, byte_order
);
523 regs
[E_SP_REGNUM
] = pv_add_constant (regs
[E_SP_REGNUM
], imm8
);
526 /* Stack pointer adjustments are frame related. */
527 after_last_frame_setup_insn
= pc
;
530 else if (instr
[0] == 0xfa && instr
[1] == 0xfe)
535 status
= target_read_memory (pc
+ 2, buf
, 2);
539 imm16
= extract_signed_integer (buf
, 2, byte_order
);
540 regs
[E_SP_REGNUM
] = pv_add_constant (regs
[E_SP_REGNUM
], imm16
);
543 /* Stack pointer adjustments are frame related. */
544 after_last_frame_setup_insn
= pc
;
547 else if (instr
[0] == 0xfc && instr
[1] == 0xfe)
552 status
= target_read_memory (pc
+ 2, buf
, 4);
557 imm32
= extract_signed_integer (buf
, 4, byte_order
);
558 regs
[E_SP_REGNUM
] = pv_add_constant (regs
[E_SP_REGNUM
], imm32
);
561 /* Stack pointer adjustments are frame related. */
562 after_last_frame_setup_insn
= pc
;
565 else if ((instr
[0] & 0xfc) == 0x20)
570 aN
= instr
[0] & 0x03;
571 imm8
= extract_signed_integer (&instr
[1], 1, byte_order
);
573 regs
[E_A0_REGNUM
+ aN
] = pv_add_constant (regs
[E_A0_REGNUM
+ aN
],
579 else if (instr
[0] == 0xfa && (instr
[1] & 0xfc) == 0xd0)
585 aN
= instr
[1] & 0x03;
587 status
= target_read_memory (pc
+ 2, buf
, 2);
592 imm16
= extract_signed_integer (buf
, 2, byte_order
);
594 regs
[E_A0_REGNUM
+ aN
] = pv_add_constant (regs
[E_A0_REGNUM
+ aN
],
600 else if (instr
[0] == 0xfc && (instr
[1] & 0xfc) == 0xd0)
606 aN
= instr
[1] & 0x03;
608 status
= target_read_memory (pc
+ 2, buf
, 4);
612 imm32
= extract_signed_integer (buf
, 2, byte_order
);
614 regs
[E_A0_REGNUM
+ aN
] = pv_add_constant (regs
[E_A0_REGNUM
+ aN
],
619 else if (instr
[0] == 0xf9 && (instr
[1] & 0xfd) == 0x30)
624 Y
= (instr
[1] & 0x02) >> 1;
626 status
= target_read_memory (pc
+ 2, buf
, 1);
630 sM
= (buf
[0] & 0xf0) >> 4;
634 stack
.store (regs
[translate_rreg (rN
)], 4,
635 regs
[E_FS0_REGNUM
+ fsM
]);
640 else if (instr
[0] == 0xf9 && (instr
[1] & 0xfd) == 0x34)
645 Y
= (instr
[1] & 0x02) >> 1;
647 status
= target_read_memory (pc
+ 2, buf
, 1);
651 sM
= (buf
[0] & 0xf0) >> 4;
654 stack
.store (regs
[E_SP_REGNUM
], 4,
655 regs
[E_FS0_REGNUM
+ fsM
]);
659 /* fmov fsM, (rN, rI) */
660 else if (instr
[0] == 0xfb && instr
[1] == 0x37)
662 int fsM
, sM
, Z
, rN
, rI
;
666 status
= target_read_memory (pc
+ 2, buf
, 2);
670 rI
= (buf
[0] & 0xf0) >> 4;
672 sM
= (buf
[1] & 0xf0) >> 4;
673 Z
= (buf
[1] & 0x02) >> 1;
676 stack
.store (pv_add (regs
[translate_rreg (rN
)],
677 regs
[translate_rreg (rI
)]),
678 4, regs
[E_FS0_REGNUM
+ fsM
]);
682 /* fmov fsM, (d8, rN) */
683 else if (instr
[0] == 0xfb && (instr
[1] & 0xfd) == 0x30)
689 Y
= (instr
[1] & 0x02) >> 1;
691 status
= target_read_memory (pc
+ 2, buf
, 2);
695 sM
= (buf
[0] & 0xf0) >> 4;
698 d8
= extract_signed_integer (&buf
[1], 1, byte_order
);
700 stack
.store (pv_add_constant (regs
[translate_rreg (rN
)], d8
),
701 4, regs
[E_FS0_REGNUM
+ fsM
]);
705 /* fmov fsM, (d24, rN) */
706 else if (instr
[0] == 0xfd && (instr
[1] & 0xfd) == 0x30)
712 Y
= (instr
[1] & 0x02) >> 1;
714 status
= target_read_memory (pc
+ 2, buf
, 4);
718 sM
= (buf
[0] & 0xf0) >> 4;
721 d24
= extract_signed_integer (&buf
[1], 3, byte_order
);
723 stack
.store (pv_add_constant (regs
[translate_rreg (rN
)], d24
),
724 4, regs
[E_FS0_REGNUM
+ fsM
]);
728 /* fmov fsM, (d32, rN) */
729 else if (instr
[0] == 0xfe && (instr
[1] & 0xfd) == 0x30)
735 Y
= (instr
[1] & 0x02) >> 1;
737 status
= target_read_memory (pc
+ 2, buf
, 5);
741 sM
= (buf
[0] & 0xf0) >> 4;
744 d32
= extract_signed_integer (&buf
[1], 4, byte_order
);
746 stack
.store (pv_add_constant (regs
[translate_rreg (rN
)], d32
),
747 4, regs
[E_FS0_REGNUM
+ fsM
]);
751 /* fmov fsM, (d8, SP) */
752 else if (instr
[0] == 0xfb && (instr
[1] & 0xfd) == 0x34)
758 Y
= (instr
[1] & 0x02) >> 1;
760 status
= target_read_memory (pc
+ 2, buf
, 2);
764 sM
= (buf
[0] & 0xf0) >> 4;
766 d8
= extract_signed_integer (&buf
[1], 1, byte_order
);
768 stack
.store (pv_add_constant (regs
[E_SP_REGNUM
], d8
),
769 4, regs
[E_FS0_REGNUM
+ fsM
]);
773 /* fmov fsM, (d24, SP) */
774 else if (instr
[0] == 0xfd && (instr
[1] & 0xfd) == 0x34)
780 Y
= (instr
[1] & 0x02) >> 1;
782 status
= target_read_memory (pc
+ 2, buf
, 4);
786 sM
= (buf
[0] & 0xf0) >> 4;
788 d24
= extract_signed_integer (&buf
[1], 3, byte_order
);
790 stack
.store (pv_add_constant (regs
[E_SP_REGNUM
], d24
),
791 4, regs
[E_FS0_REGNUM
+ fsM
]);
795 /* fmov fsM, (d32, SP) */
796 else if (instr
[0] == 0xfe && (instr
[1] & 0xfd) == 0x34)
802 Y
= (instr
[1] & 0x02) >> 1;
804 status
= target_read_memory (pc
+ 2, buf
, 5);
808 sM
= (buf
[0] & 0xf0) >> 4;
810 d32
= extract_signed_integer (&buf
[1], 4, byte_order
);
812 stack
.store (pv_add_constant (regs
[E_SP_REGNUM
], d32
),
813 4, regs
[E_FS0_REGNUM
+ fsM
]);
817 /* fmov fsM, (rN+) */
818 else if (instr
[0] == 0xf9 && (instr
[1] & 0xfd) == 0x31)
820 int fsM
, sM
, Y
, rN
, rN_regnum
;
823 Y
= (instr
[1] & 0x02) >> 1;
825 status
= target_read_memory (pc
+ 2, buf
, 1);
829 sM
= (buf
[0] & 0xf0) >> 4;
833 rN_regnum
= translate_rreg (rN
);
835 stack
.store (regs
[rN_regnum
], 4,
836 regs
[E_FS0_REGNUM
+ fsM
]);
837 regs
[rN_regnum
] = pv_add_constant (regs
[rN_regnum
], 4);
841 /* fmov fsM, (rN+, imm8) */
842 else if (instr
[0] == 0xfb && (instr
[1] & 0xfd) == 0x31)
844 int fsM
, sM
, Y
, rN
, rN_regnum
;
848 Y
= (instr
[1] & 0x02) >> 1;
850 status
= target_read_memory (pc
+ 2, buf
, 2);
854 sM
= (buf
[0] & 0xf0) >> 4;
857 imm8
= extract_signed_integer (&buf
[1], 1, byte_order
);
859 rN_regnum
= translate_rreg (rN
);
861 stack
.store (regs
[rN_regnum
], 4, regs
[E_FS0_REGNUM
+ fsM
]);
862 regs
[rN_regnum
] = pv_add_constant (regs
[rN_regnum
], imm8
);
866 /* fmov fsM, (rN+, imm24) */
867 else if (instr
[0] == 0xfd && (instr
[1] & 0xfd) == 0x31)
869 int fsM
, sM
, Y
, rN
, rN_regnum
;
873 Y
= (instr
[1] & 0x02) >> 1;
875 status
= target_read_memory (pc
+ 2, buf
, 4);
879 sM
= (buf
[0] & 0xf0) >> 4;
882 imm24
= extract_signed_integer (&buf
[1], 3, byte_order
);
884 rN_regnum
= translate_rreg (rN
);
886 stack
.store (regs
[rN_regnum
], 4, regs
[E_FS0_REGNUM
+ fsM
]);
887 regs
[rN_regnum
] = pv_add_constant (regs
[rN_regnum
], imm24
);
891 /* fmov fsM, (rN+, imm32) */
892 else if (instr
[0] == 0xfe && (instr
[1] & 0xfd) == 0x31)
894 int fsM
, sM
, Y
, rN
, rN_regnum
;
898 Y
= (instr
[1] & 0x02) >> 1;
900 status
= target_read_memory (pc
+ 2, buf
, 5);
904 sM
= (buf
[0] & 0xf0) >> 4;
907 imm32
= extract_signed_integer (&buf
[1], 4, byte_order
);
909 rN_regnum
= translate_rreg (rN
);
911 stack
.store (regs
[rN_regnum
], 4, regs
[E_FS0_REGNUM
+ fsM
]);
912 regs
[rN_regnum
] = pv_add_constant (regs
[rN_regnum
], imm32
);
917 else if ((instr
[0] & 0xf0) == 0x90)
919 int aN
= instr
[0] & 0x03;
922 imm8
= extract_signed_integer (&instr
[1], 1, byte_order
);
924 regs
[E_A0_REGNUM
+ aN
] = pv_constant (imm8
);
928 else if ((instr
[0] & 0xfc) == 0x24)
930 int aN
= instr
[0] & 0x03;
934 status
= target_read_memory (pc
+ 1, buf
, 2);
938 imm16
= extract_signed_integer (buf
, 2, byte_order
);
939 regs
[E_A0_REGNUM
+ aN
] = pv_constant (imm16
);
943 else if (instr
[0] == 0xfc && ((instr
[1] & 0xfc) == 0xdc))
945 int aN
= instr
[1] & 0x03;
949 status
= target_read_memory (pc
+ 2, buf
, 4);
953 imm32
= extract_signed_integer (buf
, 4, byte_order
);
954 regs
[E_A0_REGNUM
+ aN
] = pv_constant (imm32
);
958 else if ((instr
[0] & 0xf0) == 0x80)
960 int dN
= instr
[0] & 0x03;
963 imm8
= extract_signed_integer (&instr
[1], 1, byte_order
);
965 regs
[E_D0_REGNUM
+ dN
] = pv_constant (imm8
);
969 else if ((instr
[0] & 0xfc) == 0x2c)
971 int dN
= instr
[0] & 0x03;
975 status
= target_read_memory (pc
+ 1, buf
, 2);
979 imm16
= extract_signed_integer (buf
, 2, byte_order
);
980 regs
[E_D0_REGNUM
+ dN
] = pv_constant (imm16
);
984 else if (instr
[0] == 0xfc && ((instr
[1] & 0xfc) == 0xcc))
986 int dN
= instr
[1] & 0x03;
990 status
= target_read_memory (pc
+ 2, buf
, 4);
994 imm32
= extract_signed_integer (buf
, 4, byte_order
);
995 regs
[E_D0_REGNUM
+ dN
] = pv_constant (imm32
);
1000 /* We've hit some instruction that we don't recognize. Hopefully,
1001 we have enough to do prologue analysis. */
1006 /* Is the frame size (offset, really) a known constant? */
1007 if (pv_is_register (regs
[E_SP_REGNUM
], E_SP_REGNUM
))
1008 result
->frame_size
= regs
[E_SP_REGNUM
].k
;
1010 /* Was the frame pointer initialized? */
1011 if (pv_is_register (regs
[E_A3_REGNUM
], E_SP_REGNUM
))
1013 result
->has_frame_ptr
= 1;
1014 result
->frame_ptr_offset
= regs
[E_A3_REGNUM
].k
;
1017 /* Record where all the registers were saved. */
1018 stack
.scan (check_for_saved
, (void *) result
);
1020 result
->prologue_end
= after_last_frame_setup_insn
;
1023 /* Function: skip_prologue
1024 Return the address of the first inst past the prologue of the function. */
1027 mn10300_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1030 CORE_ADDR func_addr
, func_end
;
1031 struct mn10300_prologue p
;
1033 /* Try to find the extent of the function that contains PC. */
1034 if (!find_pc_partial_function (pc
, &name
, &func_addr
, &func_end
))
1037 mn10300_analyze_prologue (gdbarch
, pc
, func_end
, &p
);
1038 return p
.prologue_end
;
1041 /* Wrapper for mn10300_analyze_prologue: find the function start;
1042 use the current frame PC as the limit, then
1043 invoke mn10300_analyze_prologue and return its result. */
1044 static struct mn10300_prologue
*
1045 mn10300_analyze_frame_prologue (frame_info_ptr this_frame
,
1046 void **this_prologue_cache
)
1048 if (!*this_prologue_cache
)
1050 CORE_ADDR func_start
, stop_addr
;
1052 *this_prologue_cache
= FRAME_OBSTACK_ZALLOC (struct mn10300_prologue
);
1054 func_start
= get_frame_func (this_frame
);
1055 stop_addr
= get_frame_pc (this_frame
);
1057 /* If we couldn't find any function containing the PC, then
1058 just initialize the prologue cache, but don't do anything. */
1060 stop_addr
= func_start
;
1062 mn10300_analyze_prologue (get_frame_arch (this_frame
),
1063 func_start
, stop_addr
,
1064 ((struct mn10300_prologue
*)
1065 *this_prologue_cache
));
1068 return (struct mn10300_prologue
*) *this_prologue_cache
;
1071 /* Given the next frame and a prologue cache, return this frame's
1074 mn10300_frame_base (frame_info_ptr this_frame
, void **this_prologue_cache
)
1076 struct mn10300_prologue
*p
1077 = mn10300_analyze_frame_prologue (this_frame
, this_prologue_cache
);
1079 /* In functions that use alloca, the distance between the stack
1080 pointer and the frame base varies dynamically, so we can't use
1081 the SP plus static information like prologue analysis to find the
1082 frame base. However, such functions must have a frame pointer,
1083 to be able to restore the SP on exit. So whenever we do have a
1084 frame pointer, use that to find the base. */
1085 if (p
->has_frame_ptr
)
1087 CORE_ADDR fp
= get_frame_register_unsigned (this_frame
, E_A3_REGNUM
);
1088 return fp
- p
->frame_ptr_offset
;
1092 CORE_ADDR sp
= get_frame_register_unsigned (this_frame
, E_SP_REGNUM
);
1093 return sp
- p
->frame_size
;
1098 mn10300_frame_this_id (frame_info_ptr this_frame
,
1099 void **this_prologue_cache
,
1100 struct frame_id
*this_id
)
1102 *this_id
= frame_id_build (mn10300_frame_base (this_frame
,
1103 this_prologue_cache
),
1104 get_frame_func (this_frame
));
1108 static struct value
*
1109 mn10300_frame_prev_register (frame_info_ptr this_frame
,
1110 void **this_prologue_cache
, int regnum
)
1112 struct mn10300_prologue
*p
1113 = mn10300_analyze_frame_prologue (this_frame
, this_prologue_cache
);
1114 CORE_ADDR frame_base
= mn10300_frame_base (this_frame
, this_prologue_cache
);
1116 if (regnum
== E_SP_REGNUM
)
1117 return frame_unwind_got_constant (this_frame
, regnum
, frame_base
);
1119 /* If prologue analysis says we saved this register somewhere,
1120 return a description of the stack slot holding it. */
1121 if (p
->reg_offset
[regnum
] != 1)
1122 return frame_unwind_got_memory (this_frame
, regnum
,
1123 frame_base
+ p
->reg_offset
[regnum
]);
1125 /* Otherwise, presume we haven't changed the value of this
1126 register, and get it from the next frame. */
1127 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
1130 static const struct frame_unwind mn10300_frame_unwind
= {
1133 default_frame_unwind_stop_reason
,
1134 mn10300_frame_this_id
,
1135 mn10300_frame_prev_register
,
1137 default_frame_sniffer
1141 mn10300_frame_unwind_init (struct gdbarch
*gdbarch
)
1143 dwarf2_append_unwinders (gdbarch
);
1144 frame_unwind_append_unwinder (gdbarch
, &mn10300_frame_unwind
);
1147 /* Function: push_dummy_call
1149 * Set up machine state for a target call, including
1150 * function arguments, stack, return address, etc.
1155 mn10300_push_dummy_call (struct gdbarch
*gdbarch
,
1156 struct value
*target_func
,
1157 struct regcache
*regcache
,
1159 int nargs
, struct value
**args
,
1161 function_call_return_method return_method
,
1162 CORE_ADDR struct_addr
)
1164 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1165 const int push_size
= register_size (gdbarch
, E_PC_REGNUM
);
1168 int stack_offset
= 0;
1170 const gdb_byte
*val
;
1171 gdb_byte valbuf
[MN10300_MAX_REGISTER_SIZE
];
1173 /* This should be a nop, but align the stack just in case something
1174 went wrong. Stacks are four byte aligned on the mn10300. */
1177 /* Now make space on the stack for the args.
1179 XXX This doesn't appear to handle pass-by-invisible reference
1181 regs_used
= (return_method
== return_method_struct
) ? 1 : 0;
1182 for (len
= 0, argnum
= 0; argnum
< nargs
; argnum
++)
1184 arg_len
= (value_type (args
[argnum
])->length () + 3) & ~3;
1185 while (regs_used
< 2 && arg_len
> 0)
1188 arg_len
-= push_size
;
1193 /* Allocate stack space. */
1196 if (return_method
== return_method_struct
)
1199 regcache_cooked_write_unsigned (regcache
, E_D0_REGNUM
, struct_addr
);
1204 /* Push all arguments onto the stack. */
1205 for (argnum
= 0; argnum
< nargs
; argnum
++)
1207 /* FIXME what about structs? Unions? */
1208 if (value_type (*args
)->code () == TYPE_CODE_STRUCT
1209 && value_type (*args
)->length () > 8)
1211 /* Change to pointer-to-type. */
1212 arg_len
= push_size
;
1213 gdb_assert (push_size
<= MN10300_MAX_REGISTER_SIZE
);
1214 store_unsigned_integer (valbuf
, push_size
, byte_order
,
1215 value_address (*args
));
1220 arg_len
= value_type (*args
)->length ();
1221 val
= value_contents (*args
).data ();
1224 while (regs_used
< 2 && arg_len
> 0)
1226 regcache_cooked_write_unsigned (regcache
, regs_used
,
1227 extract_unsigned_integer (val
, push_size
, byte_order
));
1229 arg_len
-= push_size
;
1235 write_memory (sp
+ stack_offset
, val
, push_size
);
1236 arg_len
-= push_size
;
1238 stack_offset
+= push_size
;
1244 /* Make space for the flushback area. */
1247 /* Push the return address that contains the magic breakpoint. */
1249 write_memory_unsigned_integer (sp
, push_size
, byte_order
, bp_addr
);
1251 /* The CPU also writes the return address always into the
1252 MDR register on "call". */
1253 regcache_cooked_write_unsigned (regcache
, E_MDR_REGNUM
, bp_addr
);
1256 regcache_cooked_write_unsigned (regcache
, E_SP_REGNUM
, sp
);
1258 /* On the mn10300, it's possible to move some of the stack adjustment
1259 and saving of the caller-save registers out of the prologue and
1260 into the call sites. (When using gcc, this optimization can
1261 occur when using the -mrelax switch.) If this occurs, the dwarf2
1262 info will reflect this fact. We can test to see if this is the
1263 case by creating a new frame using the current stack pointer and
1264 the address of the function that we're about to call. We then
1265 unwind SP and see if it's different than the SP of our newly
1266 created frame. If the SP values are the same, the caller is not
1267 expected to allocate any additional stack. On the other hand, if
1268 the SP values are different, the difference determines the
1269 additional stack that must be allocated.
1271 Note that we don't update the return value though because that's
1272 the value of the stack just after pushing the arguments, but prior
1273 to performing the call. This value is needed in order to
1274 construct the frame ID of the dummy call. */
1276 CORE_ADDR func_addr
= find_function_addr (target_func
, NULL
);
1277 CORE_ADDR unwound_sp
1278 = gdbarch_unwind_sp (gdbarch
, create_new_frame (sp
, func_addr
));
1279 if (sp
!= unwound_sp
)
1280 regcache_cooked_write_unsigned (regcache
, E_SP_REGNUM
,
1281 sp
- (unwound_sp
- sp
));
1287 /* If DWARF2 is a register number appearing in Dwarf2 debug info, then
1288 mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
1289 register number. Why don't Dwarf2 and GDB use the same numbering?
1290 Who knows? But since people have object files lying around with
1291 the existing Dwarf2 numbering, and other people have written stubs
1292 to work with the existing GDB, neither of them can change. So we
1293 just have to cope. */
1295 mn10300_dwarf2_reg_to_regnum (struct gdbarch
*gdbarch
, int dwarf2
)
1297 /* This table is supposed to be shaped like the gdbarch_register_name
1298 initializer in gcc/config/mn10300/mn10300.h. Registers which
1299 appear in GCC's numbering, but have no counterpart in GDB's
1300 world, are marked with a -1. */
1301 static int dwarf2_to_gdb
[] = {
1302 E_D0_REGNUM
, E_D1_REGNUM
, E_D2_REGNUM
, E_D3_REGNUM
,
1303 E_A0_REGNUM
, E_A1_REGNUM
, E_A2_REGNUM
, E_A3_REGNUM
,
1306 E_E0_REGNUM
, E_E1_REGNUM
, E_E2_REGNUM
, E_E3_REGNUM
,
1307 E_E4_REGNUM
, E_E5_REGNUM
, E_E6_REGNUM
, E_E7_REGNUM
,
1309 E_FS0_REGNUM
+ 0, E_FS0_REGNUM
+ 1, E_FS0_REGNUM
+ 2, E_FS0_REGNUM
+ 3,
1310 E_FS0_REGNUM
+ 4, E_FS0_REGNUM
+ 5, E_FS0_REGNUM
+ 6, E_FS0_REGNUM
+ 7,
1312 E_FS0_REGNUM
+ 8, E_FS0_REGNUM
+ 9, E_FS0_REGNUM
+ 10, E_FS0_REGNUM
+ 11,
1313 E_FS0_REGNUM
+ 12, E_FS0_REGNUM
+ 13, E_FS0_REGNUM
+ 14, E_FS0_REGNUM
+ 15,
1315 E_FS0_REGNUM
+ 16, E_FS0_REGNUM
+ 17, E_FS0_REGNUM
+ 18, E_FS0_REGNUM
+ 19,
1316 E_FS0_REGNUM
+ 20, E_FS0_REGNUM
+ 21, E_FS0_REGNUM
+ 22, E_FS0_REGNUM
+ 23,
1318 E_FS0_REGNUM
+ 24, E_FS0_REGNUM
+ 25, E_FS0_REGNUM
+ 26, E_FS0_REGNUM
+ 27,
1319 E_FS0_REGNUM
+ 28, E_FS0_REGNUM
+ 29, E_FS0_REGNUM
+ 30, E_FS0_REGNUM
+ 31,
1321 E_MDR_REGNUM
, E_PSW_REGNUM
, E_PC_REGNUM
1325 || dwarf2
>= ARRAY_SIZE (dwarf2_to_gdb
))
1328 return dwarf2_to_gdb
[dwarf2
];
1331 static struct gdbarch
*
1332 mn10300_gdbarch_init (struct gdbarch_info info
,
1333 struct gdbarch_list
*arches
)
1335 struct gdbarch
*gdbarch
;
1338 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1340 return arches
->gdbarch
;
1342 mn10300_gdbarch_tdep
*tdep
= new mn10300_gdbarch_tdep
;
1343 gdbarch
= gdbarch_alloc (&info
, tdep
);
1345 switch (info
.bfd_arch_info
->mach
)
1348 case bfd_mach_mn10300
:
1349 set_gdbarch_register_name (gdbarch
, mn10300_generic_register_name
);
1350 tdep
->am33_mode
= 0;
1354 set_gdbarch_register_name (gdbarch
, am33_register_name
);
1355 tdep
->am33_mode
= 1;
1358 case bfd_mach_am33_2
:
1359 set_gdbarch_register_name (gdbarch
, am33_2_register_name
);
1360 tdep
->am33_mode
= 2;
1362 set_gdbarch_fp0_regnum (gdbarch
, 32);
1365 internal_error (_("mn10300_gdbarch_init: Unknown mn10300 variant"));
1369 /* By default, chars are unsigned. */
1370 set_gdbarch_char_signed (gdbarch
, 0);
1373 set_gdbarch_num_regs (gdbarch
, num_regs
);
1374 set_gdbarch_register_type (gdbarch
, mn10300_register_type
);
1375 set_gdbarch_skip_prologue (gdbarch
, mn10300_skip_prologue
);
1376 set_gdbarch_pc_regnum (gdbarch
, E_PC_REGNUM
);
1377 set_gdbarch_sp_regnum (gdbarch
, E_SP_REGNUM
);
1378 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, mn10300_dwarf2_reg_to_regnum
);
1380 /* Stack unwinding. */
1381 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1383 set_gdbarch_breakpoint_kind_from_pc (gdbarch
,
1384 mn10300_breakpoint::kind_from_pc
);
1385 set_gdbarch_sw_breakpoint_from_kind (gdbarch
,
1386 mn10300_breakpoint::bp_from_kind
);
1387 /* decr_pc_after_break? */
1390 set_gdbarch_return_value (gdbarch
, mn10300_return_value
);
1392 /* Stage 3 -- get target calls working. */
1393 set_gdbarch_push_dummy_call (gdbarch
, mn10300_push_dummy_call
);
1394 /* set_gdbarch_return_value (store, extract) */
1397 mn10300_frame_unwind_init (gdbarch
);
1399 /* Hook in ABI-specific overrides, if they have been registered. */
1400 gdbarch_init_osabi (info
, gdbarch
);
1405 /* Dump out the mn10300 specific architecture information. */
1408 mn10300_dump_tdep (struct gdbarch
*gdbarch
, struct ui_file
*file
)
1410 mn10300_gdbarch_tdep
*tdep
= gdbarch_tdep
<mn10300_gdbarch_tdep
> (gdbarch
);
1411 gdb_printf (file
, "mn10300_dump_tdep: am33_mode = %d\n",
1415 void _initialize_mn10300_tdep ();
1417 _initialize_mn10300_tdep ()
1419 gdbarch_register (bfd_arch_mn10300
, mn10300_gdbarch_init
, mn10300_dump_tdep
);