S390: Add target descriptions for vector register sets
[binutils-gdb.git] / gdb / ia64-hpux-nat.c
blob67b5854908346fb3a26562b1230f321b0bc460ed
1 /* Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 This file is part of GDB.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18 #include "defs.h"
19 #include "ia64-tdep.h"
20 #include "inferior.h"
21 #include "inf-ttrace.h"
22 #include "regcache.h"
23 #include "solib-ia64-hpux.h"
25 #include <ia64/sys/uregs.h>
26 #include <sys/ttrace.h>
28 /* The offsets used with ttrace to read the value of the raw registers. */
30 static int u_offsets[] =
31 { /* Static General Registers. */
32 -1, __r1, __r2, __r3, __r4, __r5, __r6, __r7,
33 __r8, __r9, __r10, __r11, __r12, __r13, __r14, __r15,
34 __r16, __r17, __r18, __r19, __r20, __r21, __r22, __r23,
35 __r24, __r25, __r26, __r27, __r28, __r29, __r30, __r31,
36 -1, -1, -1, -1, -1, -1, -1, -1,
37 -1, -1, -1, -1, -1, -1, -1, -1,
38 -1, -1, -1, -1, -1, -1, -1, -1,
39 -1, -1, -1, -1, -1, -1, -1, -1,
40 -1, -1, -1, -1, -1, -1, -1, -1,
41 -1, -1, -1, -1, -1, -1, -1, -1,
42 -1, -1, -1, -1, -1, -1, -1, -1,
43 -1, -1, -1, -1, -1, -1, -1, -1,
44 -1, -1, -1, -1, -1, -1, -1, -1,
45 -1, -1, -1, -1, -1, -1, -1, -1,
46 -1, -1, -1, -1, -1, -1, -1, -1,
47 -1, -1, -1, -1, -1, -1, -1, -1,
49 /* Static Floating-Point Registers. */
50 -1, -1, __f2, __f3, __f4, __f5, __f6, __f7,
51 __f8, __f9, __f10, __f11, __f12, __f13, __f14, __f15,
52 __f16, __f17, __f18, __f19, __f20, __f21, __f22, __f23,
53 __f24, __f25, __f26, __f27, __f28, __f29, __f30, __f31,
54 __f32, __f33, __f34, __f35, __f36, __f37, __f38, __f39,
55 __f40, __f41, __f42, __f43, __f44, __f45, __f46, __f47,
56 __f48, __f49, __f50, __f51, __f52, __f53, __f54, __f55,
57 __f56, __f57, __f58, __f59, __f60, __f61, __f62, __f63,
58 __f64, __f65, __f66, __f67, __f68, __f69, __f70, __f71,
59 __f72, __f73, __f74, __f75, __f76, __f77, __f78, __f79,
60 __f80, __f81, __f82, __f83, __f84, __f85, __f86, __f87,
61 __f88, __f89, __f90, __f91, __f92, __f93, __f94, __f95,
62 __f96, __f97, __f98, __f99, __f100, __f101, __f102, __f103,
63 __f104, __f105, __f106, __f107, __f108, __f109, __f110, __f111,
64 __f112, __f113, __f114, __f115, __f116, __f117, __f118, __f119,
65 __f120, __f121, __f122, __f123, __f124, __f125, __f126, __f127,
67 -1, -1, -1, -1, -1, -1, -1, -1,
68 -1, -1, -1, -1, -1, -1, -1, -1,
69 -1, -1, -1, -1, -1, -1, -1, -1,
70 -1, -1, -1, -1, -1, -1, -1, -1,
71 -1, -1, -1, -1, -1, -1, -1, -1,
72 -1, -1, -1, -1, -1, -1, -1, -1,
73 -1, -1, -1, -1, -1, -1, -1, -1,
74 -1, -1, -1, -1, -1, -1, -1, -1,
76 /* Branch Registers. */
77 __b0, __b1, __b2, __b3, __b4, __b5, __b6, __b7,
79 /* Virtual frame pointer and virtual return address pointer. */
80 -1, -1,
82 /* Other registers. */
83 __pr, __ip, __cr_ipsr, __cfm,
85 /* Kernel registers. */
86 -1, -1, -1, -1,
87 -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1,
91 /* Some application registers. */
92 __ar_rsc, __ar_bsp, __ar_bspstore, __ar_rnat,
94 -1,
95 -1, /* Not available: FCR, IA32 floating control register. */
96 -1, -1,
98 -1, /* Not available: EFLAG. */
99 -1, /* Not available: CSD. */
100 -1, /* Not available: SSD. */
101 -1, /* Not available: CFLG. */
102 -1, /* Not available: FSR. */
103 -1, /* Not available: FIR. */
104 -1, /* Not available: FDR. */
106 __ar_ccv, -1, -1, -1, __ar_unat, -1, -1, -1,
107 __ar_fpsr, -1, -1, -1,
108 -1, /* Not available: ITC. */
109 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
110 -1, -1, -1, -1, -1, -1, -1, -1, -1,
111 __ar_pfs, __ar_lc, __ar_ec,
112 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
113 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
114 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
115 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
116 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
117 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
119 /* All following registers, starting with nat0, are handled as
120 pseudo registers, and hence are handled separately. */
123 /* Some register have a fixed value and can not be modified.
124 Store their value in static constant buffers that can be used
125 later to fill the register cache. */
126 static const char r0_value[8] = {0x00, 0x00, 0x00, 0x00,
127 0x00, 0x00, 0x00, 0x00};
128 static const char f0_value[16] = {0x00, 0x00, 0x00, 0x00,
129 0x00, 0x00, 0x00, 0x00,
130 0x00, 0x00, 0x00, 0x00,
131 0x00, 0x00, 0x00, 0x00};
132 static const char f1_value[16] = {0x00, 0x00, 0x00, 0x00,
133 0x00, 0x00, 0xff, 0xff,
134 0x80, 0x00, 0x00, 0x00,
135 0x00, 0x00, 0x00, 0x00};
137 /* The "to_wait" routine from the "inf-ttrace" layer. */
139 static ptid_t (*super_to_wait) (struct target_ops *, ptid_t,
140 struct target_waitstatus *, int);
142 /* The "to_wait" target_ops routine routine for ia64-hpux. */
144 static ptid_t
145 ia64_hpux_wait (struct target_ops *ops, ptid_t ptid,
146 struct target_waitstatus *ourstatus, int options)
148 ptid_t new_ptid;
150 new_ptid = super_to_wait (ops, ptid, ourstatus, options);
152 /* If this is a DLD event (hard-coded breakpoint instruction
153 that was activated by the solib-ia64-hpux module), we need to
154 process it, and then resume the execution as if the event did
155 not happen. */
156 if (ourstatus->kind == TARGET_WAITKIND_STOPPED
157 && ourstatus->value.sig == GDB_SIGNAL_TRAP
158 && ia64_hpux_at_dld_breakpoint_p (new_ptid))
160 ia64_hpux_handle_dld_breakpoint (new_ptid);
162 target_resume (new_ptid, 0, GDB_SIGNAL_0);
163 ourstatus->kind = TARGET_WAITKIND_IGNORE;
166 return new_ptid;
169 /* Fetch the RNAT register and supply it to the REGCACHE. */
171 static void
172 ia64_hpux_fetch_rnat_register (struct regcache *regcache)
174 CORE_ADDR addr;
175 gdb_byte buf[8];
176 int status;
178 /* The value of RNAT is stored at bsp|0x1f8, and must be read using
179 TT_LWP_RDRSEBS. */
181 regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &addr);
182 addr |= 0x1f8;
184 status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
185 ptid_get_lwp (inferior_ptid), addr, sizeof (buf),
186 (uintptr_t) buf);
187 if (status < 0)
188 error (_("failed to read RNAT register at %s"),
189 paddress (get_regcache_arch(regcache), addr));
191 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, buf);
194 /* Read the value of the register saved at OFFSET in the save_state_t
195 structure, and store its value in BUF. LEN is the size of the register
196 to be read. */
198 static int
199 ia64_hpux_read_register_from_save_state_t (int offset, gdb_byte *buf, int len)
201 int status;
203 status = ttrace (TT_LWP_RUREGS, ptid_get_pid (inferior_ptid),
204 ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
206 return status;
209 /* Fetch register REGNUM from the inferior. */
211 static void
212 ia64_hpux_fetch_register (struct regcache *regcache, int regnum)
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int offset, len, status;
216 gdb_byte *buf;
218 if (regnum == IA64_GR0_REGNUM)
220 /* r0 is always 0. */
221 regcache_raw_supply (regcache, regnum, r0_value);
222 return;
225 if (regnum == IA64_FR0_REGNUM)
227 /* f0 is always 0.0. */
228 regcache_raw_supply (regcache, regnum, f0_value);
229 return;
232 if (regnum == IA64_FR1_REGNUM)
234 /* f1 is always 1.0. */
235 regcache_raw_supply (regcache, regnum, f1_value);
236 return;
239 if (regnum == IA64_RNAT_REGNUM)
241 ia64_hpux_fetch_rnat_register (regcache);
242 return;
245 /* Get the register location. If the register can not be fetched,
246 then return now. */
247 offset = u_offsets[regnum];
248 if (offset == -1)
249 return;
251 len = register_size (gdbarch, regnum);
252 buf = alloca (len * sizeof (gdb_byte));
253 status = ia64_hpux_read_register_from_save_state_t (offset, buf, len);
254 if (status < 0)
255 warning (_("Failed to read register value for %s."),
256 gdbarch_register_name (gdbarch, regnum));
258 regcache_raw_supply (regcache, regnum, buf);
261 /* The "to_fetch_registers" target_ops routine for ia64-hpux. */
263 static void
264 ia64_hpux_fetch_registers (struct target_ops *ops,
265 struct regcache *regcache, int regnum)
267 if (regnum == -1)
268 for (regnum = 0;
269 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
270 regnum++)
271 ia64_hpux_fetch_register (regcache, regnum);
272 else
273 ia64_hpux_fetch_register (regcache, regnum);
276 /* Save register REGNUM (stored in BUF) in the save_state_t structure.
277 LEN is the size of the register in bytes.
279 Return the value from the corresponding ttrace call (a negative value
280 means that the operation failed). */
282 static int
283 ia64_hpux_write_register_to_saved_state_t (int offset, gdb_byte *buf, int len)
285 return ttrace (TT_LWP_WUREGS, ptid_get_pid (inferior_ptid),
286 ptid_get_lwp (inferior_ptid), offset, len, (uintptr_t) buf);
289 /* Store register REGNUM into the inferior. */
291 static void
292 ia64_hpux_store_register (const struct regcache *regcache, int regnum)
294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
295 int offset = u_offsets[regnum];
296 gdb_byte *buf;
297 int len, status;
299 /* If the register can not be stored, then return now. */
300 if (offset == -1)
301 return;
303 /* I don't know how to store that register for now. So just ignore any
304 request to store it, to avoid an internal error. */
305 if (regnum == IA64_PSR_REGNUM)
306 return;
308 len = register_size (gdbarch, regnum);
309 buf = alloca (len * sizeof (gdb_byte));
310 regcache_raw_collect (regcache, regnum, buf);
312 status = ia64_hpux_write_register_to_saved_state_t (offset, buf, len);
314 if (status < 0)
315 error (_("failed to write register value for %s."),
316 gdbarch_register_name (gdbarch, regnum));
319 /* The "to_store_registers" target_ops routine for ia64-hpux. */
321 static void
322 ia64_hpux_store_registers (struct target_ops *ops,
323 struct regcache *regcache, int regnum)
325 if (regnum == -1)
326 for (regnum = 0;
327 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
328 regnum++)
329 ia64_hpux_store_register (regcache, regnum);
330 else
331 ia64_hpux_store_register (regcache, regnum);
334 /* The "xfer_partial" routine from the "inf-ttrace" target layer.
335 Ideally, we would like to use this routine for all transfer
336 requests, but this platforms has a lot of special cases that
337 need to be handled manually. So we override this routine and
338 delegate back if we detect that we are not in a special case. */
340 static target_xfer_partial_ftype *super_xfer_partial;
342 /* The "xfer_partial" routine for a memory region that is completely
343 outside of the backing-store region. */
345 static enum target_xfer_status
346 ia64_hpux_xfer_memory_no_bs (struct target_ops *ops, const char *annex,
347 gdb_byte *readbuf, const gdb_byte *writebuf,
348 CORE_ADDR addr, LONGEST len,
349 ULONGEST *xfered_len)
351 /* Memory writes need to be aligned on 16byte boundaries, at least
352 when writing in the text section. On the other hand, the size
353 of the buffer does not need to be a multiple of 16bytes.
355 No such restriction when performing memory reads. */
357 if (writebuf && addr & 0x0f)
359 const CORE_ADDR aligned_addr = addr & ~0x0f;
360 const int aligned_len = len + (addr - aligned_addr);
361 gdb_byte *aligned_buf = alloca (aligned_len * sizeof (gdb_byte));
362 LONGEST status;
364 /* Read the portion of memory between ALIGNED_ADDR and ADDR, so
365 that we can write it back during our aligned memory write. */
366 status = super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
367 aligned_buf /* read */,
368 NULL /* write */,
369 aligned_addr, addr - aligned_addr);
370 if (status <= 0)
371 return TARGET_XFER_EOF;
372 memcpy (aligned_buf + (addr - aligned_addr), writebuf, len);
374 return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex,
375 NULL /* read */, aligned_buf /* write */,
376 aligned_addr, aligned_len, xfered_len);
378 else
379 /* Memory read or properly aligned memory write. */
380 return super_xfer_partial (ops, TARGET_OBJECT_MEMORY, annex, readbuf,
381 writebuf, addr, len, xfered_len);
384 /* Read LEN bytes at ADDR from memory, and store it in BUF. This memory
385 region is assumed to be inside the backing store.
387 Return zero if the operation failed. */
389 static int
390 ia64_hpux_read_memory_bs (gdb_byte *buf, CORE_ADDR addr, int len)
392 gdb_byte tmp_buf[8];
393 CORE_ADDR tmp_addr = addr & ~0x7;
395 while (tmp_addr < addr + len)
397 int status;
398 int skip_lo = 0;
399 int skip_hi = 0;
401 status = ttrace (TT_LWP_RDRSEBS, ptid_get_pid (inferior_ptid),
402 ptid_get_lwp (inferior_ptid), tmp_addr,
403 sizeof (tmp_buf), (uintptr_t) tmp_buf);
404 if (status < 0)
405 return 0;
407 if (tmp_addr < addr)
408 skip_lo = addr - tmp_addr;
410 if (tmp_addr + sizeof (tmp_buf) > addr + len)
411 skip_hi = (tmp_addr + sizeof (tmp_buf)) - (addr + len);
413 memcpy (buf + (tmp_addr + skip_lo - addr),
414 tmp_buf + skip_lo,
415 sizeof (tmp_buf) - skip_lo - skip_hi);
417 tmp_addr += sizeof (tmp_buf);
420 return 1;
423 /* Write LEN bytes from BUF in memory at ADDR. This memory region is assumed
424 to be inside the backing store.
426 Return zero if the operation failed. */
428 static int
429 ia64_hpux_write_memory_bs (const gdb_byte *buf, CORE_ADDR addr, int len)
431 gdb_byte tmp_buf[8];
432 CORE_ADDR tmp_addr = addr & ~0x7;
434 while (tmp_addr < addr + len)
436 int status;
437 int lo = 0;
438 int hi = 7;
440 if (tmp_addr < addr || tmp_addr + sizeof (tmp_buf) > addr + len)
441 /* Part of the 8byte region pointed by tmp_addr needs to be preserved.
442 So read it in before we copy the data that needs to be changed. */
443 if (!ia64_hpux_read_memory_bs (tmp_buf, tmp_addr, sizeof (tmp_buf)))
444 return 0;
446 if (tmp_addr < addr)
447 lo = addr - tmp_addr;
449 if (tmp_addr + sizeof (tmp_buf) > addr + len)
450 hi = addr - tmp_addr + len - 1;
452 memcpy (tmp_buf + lo, buf + tmp_addr - addr + lo, hi - lo + 1);
454 status = ttrace (TT_LWP_WRRSEBS, ptid_get_pid (inferior_ptid),
455 ptid_get_lwp (inferior_ptid), tmp_addr,
456 sizeof (tmp_buf), (uintptr_t) tmp_buf);
457 if (status < 0)
458 return 0;
460 tmp_addr += sizeof (tmp_buf);
463 return 1;
466 /* The "xfer_partial" routine for a memory region that is completely
467 inside of the backing-store region. */
469 static LONGEST
470 ia64_hpux_xfer_memory_bs (struct target_ops *ops, const char *annex,
471 gdb_byte *readbuf, const gdb_byte *writebuf,
472 CORE_ADDR addr, LONGEST len)
474 int success;
476 if (readbuf)
477 success = ia64_hpux_read_memory_bs (readbuf, addr, len);
478 else
479 success = ia64_hpux_write_memory_bs (writebuf, addr, len);
481 if (success)
482 return len;
483 else
484 return 0;
487 /* Get a register value as a unsigned value directly from the system,
488 instead of going through the regcache.
490 This function is meant to be used when inferior_ptid is not
491 a thread/process known to GDB. */
493 static ULONGEST
494 ia64_hpux_get_register_from_save_state_t (int regnum, int reg_size)
496 gdb_byte *buf = alloca (reg_size);
497 int offset = u_offsets[regnum];
498 int status;
500 /* The register is assumed to be available for fetching. */
501 gdb_assert (offset != -1);
503 status = ia64_hpux_read_register_from_save_state_t (offset, buf, reg_size);
504 if (status < 0)
506 /* This really should not happen. If it does, emit a warning
507 and pretend the register value is zero. Not exactly the best
508 error recovery mechanism, but better than nothing. We will
509 try to do better if we can demonstrate that this can happen
510 under normal circumstances. */
511 warning (_("Failed to read value of register number %d."), regnum);
512 return 0;
515 return extract_unsigned_integer (buf, reg_size, BFD_ENDIAN_BIG);
518 /* The "xfer_partial" target_ops routine for ia64-hpux, in the case
519 where the requested object is TARGET_OBJECT_MEMORY. */
521 static enum target_xfer_status
522 ia64_hpux_xfer_memory (struct target_ops *ops, const char *annex,
523 gdb_byte *readbuf, const gdb_byte *writebuf,
524 CORE_ADDR addr, ULONGEST len, ULONGEST *xfered_len)
526 CORE_ADDR bsp, bspstore;
527 CORE_ADDR start_addr, short_len;
528 int status = 0;
530 /* The back-store region cannot be read/written by the standard memory
531 read/write operations. So we handle the memory region piecemeal:
532 (1) and (2) The regions before and after the backing-store region,
533 which can be treated as normal memory;
534 (3) The region inside the backing-store, which needs to be
535 read/written specially. */
537 if (in_inferior_list (ptid_get_pid (inferior_ptid)))
539 struct regcache *regcache = get_current_regcache ();
541 regcache_raw_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
542 regcache_raw_read_unsigned (regcache, IA64_BSPSTORE_REGNUM, &bspstore);
544 else
546 /* This is probably a child of our inferior created by a fork.
547 Because this process has not been added to our inferior list
548 (we are probably in the process of handling that child
549 process), we do not have a regcache to read the registers
550 from. So get those values directly from the kernel. */
551 bsp = ia64_hpux_get_register_from_save_state_t (IA64_BSP_REGNUM, 8);
552 bspstore =
553 ia64_hpux_get_register_from_save_state_t (IA64_BSPSTORE_REGNUM, 8);
556 /* 1. Memory region before BSPSTORE. */
558 if (addr < bspstore)
560 short_len = len;
561 if (addr + len > bspstore)
562 short_len = bspstore - addr;
564 status = ia64_hpux_xfer_memory_no_bs (ops, annex, readbuf, writebuf,
565 addr, short_len);
566 if (status <= 0)
567 return TARGET_XFER_EOF;
570 /* 2. Memory region after BSP. */
572 if (addr + len > bsp)
574 start_addr = addr;
575 if (start_addr < bsp)
576 start_addr = bsp;
577 short_len = len + addr - start_addr;
579 status = ia64_hpux_xfer_memory_no_bs
580 (ops, annex,
581 readbuf ? readbuf + (start_addr - addr) : NULL,
582 writebuf ? writebuf + (start_addr - addr) : NULL,
583 start_addr, short_len);
584 if (status <= 0)
585 return TARGET_XFER_EOF;
588 /* 3. Memory region between BSPSTORE and BSP. */
590 if (bspstore != bsp
591 && ((addr < bspstore && addr + len > bspstore)
592 || (addr + len <= bsp && addr + len > bsp)))
594 start_addr = addr;
595 if (addr < bspstore)
596 start_addr = bspstore;
597 short_len = len + addr - start_addr;
599 if (start_addr + short_len > bsp)
600 short_len = bsp - start_addr;
602 gdb_assert (short_len > 0);
604 status = ia64_hpux_xfer_memory_bs
605 (ops, annex,
606 readbuf ? readbuf + (start_addr - addr) : NULL,
607 writebuf ? writebuf + (start_addr - addr) : NULL,
608 start_addr, short_len);
609 if (status < 0)
610 return TARGET_XFER_EOF;
613 *xfered_len = len;
614 return TARGET_XFER_OK;
617 /* Handle the transfer of TARGET_OBJECT_HPUX_UREGS objects on ia64-hpux.
618 ANNEX is currently ignored.
620 The current implementation does not support write transfers (because
621 we do not currently do not need these transfers), and will raise
622 a failed assertion if WRITEBUF is not NULL. */
624 static enum target_xfer_status
625 ia64_hpux_xfer_uregs (struct target_ops *ops, const char *annex,
626 gdb_byte *readbuf, const gdb_byte *writebuf,
627 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
629 int status;
631 gdb_assert (writebuf == NULL);
633 status = ia64_hpux_read_register_from_save_state_t (offset, readbuf, len);
634 if (status < 0)
635 return TARGET_XFER_E_IO;
637 *xfered_len = (ULONGEST) len;
638 return TARGET_XFER_OK;
641 /* Handle the transfer of TARGET_OBJECT_HPUX_SOLIB_GOT objects on ia64-hpux.
643 The current implementation does not support write transfers (because
644 we do not currently do not need these transfers), and will raise
645 a failed assertion if WRITEBUF is not NULL. */
647 static enum target_xfer_status
648 ia64_hpux_xfer_solib_got (struct target_ops *ops, const char *annex,
649 gdb_byte *readbuf, const gdb_byte *writebuf,
650 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
652 CORE_ADDR fun_addr;
653 /* The linkage pointer. We use a uint64_t to make sure that the size
654 of the object we are returning is always 64 bits long, as explained
655 in the description of the TARGET_OBJECT_HPUX_SOLIB_GOT object.
656 This is probably paranoia, but we do not use a CORE_ADDR because
657 it could conceivably be larger than uint64_t. */
658 uint64_t got;
660 gdb_assert (writebuf == NULL);
662 if (offset > sizeof (got))
663 return TARGET_XFER_EOF;
665 fun_addr = string_to_core_addr (annex);
666 got = ia64_hpux_get_solib_linkage_addr (fun_addr);
668 if (len > sizeof (got) - offset)
669 len = sizeof (got) - offset;
670 memcpy (readbuf, &got + offset, len);
672 *xfered_len = (ULONGEST) len;
673 return TARGET_XFER_OK;
676 /* The "to_xfer_partial" target_ops routine for ia64-hpux. */
678 static enum target_xfer_status
679 ia64_hpux_xfer_partial (struct target_ops *ops, enum target_object object,
680 const char *annex, gdb_byte *readbuf,
681 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
682 ULONGEST *xfered_len)
684 enum target_xfer_status val;
686 if (object == TARGET_OBJECT_MEMORY)
687 val = ia64_hpux_xfer_memory (ops, annex, readbuf, writebuf, offset, len,
688 xfered_len);
689 else if (object == TARGET_OBJECT_HPUX_UREGS)
690 val = ia64_hpux_xfer_uregs (ops, annex, readbuf, writebuf, offset, len,
691 xfered_len);
692 else if (object == TARGET_OBJECT_HPUX_SOLIB_GOT)
693 val = ia64_hpux_xfer_solib_got (ops, annex, readbuf, writebuf, offset,
694 len, xfered_len);
695 else
696 val = super_xfer_partial (ops, object, annex, readbuf, writebuf, offset,
697 len, xfered_len);
699 return val;
702 /* The "to_can_use_hw_breakpoint" target_ops routine for ia64-hpux. */
704 static int
705 ia64_hpux_can_use_hw_breakpoint (struct target_ops *self,
706 int type, int cnt, int othertype)
708 /* No hardware watchpoint/breakpoint support yet. */
709 return 0;
712 /* The "to_mourn_inferior" routine from the "inf-ttrace" target_ops layer. */
714 static void (*super_mourn_inferior) (struct target_ops *);
716 /* The "to_mourn_inferior" target_ops routine for ia64-hpux. */
718 static void
719 ia64_hpux_mourn_inferior (struct target_ops *ops)
721 const int pid = ptid_get_pid (inferior_ptid);
722 int status;
724 super_mourn_inferior (ops);
726 /* On this platform, the process still exists even after we received
727 an exit event. Detaching from the process isn't sufficient either,
728 as it only turns the process into a zombie. So the only solution
729 we found is to kill it. */
730 ttrace (TT_PROC_EXIT, pid, 0, 0, 0, 0);
731 wait (&status);
734 /* Prevent warning from -Wmissing-prototypes. */
735 void _initialize_ia64_hpux_nat (void);
737 void
738 _initialize_ia64_hpux_nat (void)
740 struct target_ops *t;
742 t = inf_ttrace_target ();
743 super_to_wait = t->to_wait;
744 super_xfer_partial = t->to_xfer_partial;
745 super_mourn_inferior = t->to_mourn_inferior;
747 t->to_wait = ia64_hpux_wait;
748 t->to_fetch_registers = ia64_hpux_fetch_registers;
749 t->to_store_registers = ia64_hpux_store_registers;
750 t->to_xfer_partial = ia64_hpux_xfer_partial;
751 t->to_can_use_hw_breakpoint = ia64_hpux_can_use_hw_breakpoint;
752 t->to_mourn_inferior = ia64_hpux_mourn_inferior;
753 t->to_attach_no_wait = 1;
755 add_target (t);