* regcache.h (struct thread_info): Forward declare.
[binutils-gdb.git] / gdb / hppa-hpux-tdep.c
blobfd8d7ccf3d9c8b54d4773deec2d6534a89d3d533
1 /* Target-dependent code for HP-UX on PA-RISC.
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "gdbcore.h"
24 #include "osabi.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "trad-frame.h"
28 #include "symtab.h"
29 #include "objfiles.h"
30 #include "inferior.h"
31 #include "infcall.h"
32 #include "observer.h"
33 #include "hppa-tdep.h"
34 #include "solib-som.h"
35 #include "solib-pa64.h"
36 #include "regset.h"
37 #include "regcache.h"
38 #include "exceptions.h"
40 #include "gdb_string.h"
42 #define IS_32BIT_TARGET(_gdbarch) \
43 ((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
45 /* Bit in the `ss_flag' member of `struct save_state' that indicates
46 that the 64-bit register values are live. From
47 <machine/save_state.h>. */
48 #define HPPA_HPUX_SS_WIDEREGS 0x40
50 /* Offsets of various parts of `struct save_state'. From
51 <machine/save_state.h>. */
52 #define HPPA_HPUX_SS_FLAGS_OFFSET 0
53 #define HPPA_HPUX_SS_NARROW_OFFSET 4
54 #define HPPA_HPUX_SS_FPBLOCK_OFFSET 256
55 #define HPPA_HPUX_SS_WIDE_OFFSET 640
57 /* The size of `struct save_state. */
58 #define HPPA_HPUX_SAVE_STATE_SIZE 1152
60 /* The size of `struct pa89_save_state', which corresponds to PA-RISC
61 1.1, the lowest common denominator that we support. */
62 #define HPPA_HPUX_PA89_SAVE_STATE_SIZE 512
65 /* Forward declarations. */
66 extern void _initialize_hppa_hpux_tdep (void);
67 extern initialize_file_ftype _initialize_hppa_hpux_tdep;
69 static int
70 in_opd_section (CORE_ADDR pc)
72 struct obj_section *s;
73 int retval = 0;
75 s = find_pc_section (pc);
77 retval = (s != NULL
78 && s->the_bfd_section->name != NULL
79 && strcmp (s->the_bfd_section->name, ".opd") == 0);
80 return (retval);
83 /* Return one if PC is in the call path of a trampoline, else return zero.
85 Note we return one for *any* call trampoline (long-call, arg-reloc), not
86 just shared library trampolines (import, export). */
88 static int
89 hppa32_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
90 CORE_ADDR pc, char *name)
92 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
93 struct minimal_symbol *minsym;
94 struct unwind_table_entry *u;
96 /* First see if PC is in one of the two C-library trampolines. */
97 if (pc == hppa_symbol_address("$$dyncall")
98 || pc == hppa_symbol_address("_sr4export"))
99 return 1;
101 minsym = lookup_minimal_symbol_by_pc (pc);
102 if (minsym && strcmp (SYMBOL_LINKAGE_NAME (minsym), ".stub") == 0)
103 return 1;
105 /* Get the unwind descriptor corresponding to PC, return zero
106 if no unwind was found. */
107 u = find_unwind_entry (pc);
108 if (!u)
109 return 0;
111 /* If this isn't a linker stub, then return now. */
112 if (u->stub_unwind.stub_type == 0)
113 return 0;
115 /* By definition a long-branch stub is a call stub. */
116 if (u->stub_unwind.stub_type == LONG_BRANCH)
117 return 1;
119 /* The call and return path execute the same instructions within
120 an IMPORT stub! So an IMPORT stub is both a call and return
121 trampoline. */
122 if (u->stub_unwind.stub_type == IMPORT)
123 return 1;
125 /* Parameter relocation stubs always have a call path and may have a
126 return path. */
127 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
128 || u->stub_unwind.stub_type == EXPORT)
130 CORE_ADDR addr;
132 /* Search forward from the current PC until we hit a branch
133 or the end of the stub. */
134 for (addr = pc; addr <= u->region_end; addr += 4)
136 unsigned long insn;
138 insn = read_memory_integer (addr, 4, byte_order);
140 /* Does it look like a bl? If so then it's the call path, if
141 we find a bv or be first, then we're on the return path. */
142 if ((insn & 0xfc00e000) == 0xe8000000)
143 return 1;
144 else if ((insn & 0xfc00e001) == 0xe800c000
145 || (insn & 0xfc000000) == 0xe0000000)
146 return 0;
149 /* Should never happen. */
150 warning (_("Unable to find branch in parameter relocation stub."));
151 return 0;
154 /* Unknown stub type. For now, just return zero. */
155 return 0;
158 static int
159 hppa64_hpux_in_solib_call_trampoline (struct gdbarch *gdbarch,
160 CORE_ADDR pc, char *name)
162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
164 /* PA64 has a completely different stub/trampoline scheme. Is it
165 better? Maybe. It's certainly harder to determine with any
166 certainty that we are in a stub because we can not refer to the
167 unwinders to help.
169 The heuristic is simple. Try to lookup the current PC value in th
170 minimal symbol table. If that fails, then assume we are not in a
171 stub and return.
173 Then see if the PC value falls within the section bounds for the
174 section containing the minimal symbol we found in the first
175 step. If it does, then assume we are not in a stub and return.
177 Finally peek at the instructions to see if they look like a stub. */
178 struct minimal_symbol *minsym;
179 asection *sec;
180 CORE_ADDR addr;
181 int insn, i;
183 minsym = lookup_minimal_symbol_by_pc (pc);
184 if (! minsym)
185 return 0;
187 sec = SYMBOL_OBJ_SECTION (minsym)->the_bfd_section;
189 if (bfd_get_section_vma (sec->owner, sec) <= pc
190 && pc < (bfd_get_section_vma (sec->owner, sec)
191 + bfd_section_size (sec->owner, sec)))
192 return 0;
194 /* We might be in a stub. Peek at the instructions. Stubs are 3
195 instructions long. */
196 insn = read_memory_integer (pc, 4, byte_order);
198 /* Find out where we think we are within the stub. */
199 if ((insn & 0xffffc00e) == 0x53610000)
200 addr = pc;
201 else if ((insn & 0xffffffff) == 0xe820d000)
202 addr = pc - 4;
203 else if ((insn & 0xffffc00e) == 0x537b0000)
204 addr = pc - 8;
205 else
206 return 0;
208 /* Now verify each insn in the range looks like a stub instruction. */
209 insn = read_memory_integer (addr, 4, byte_order);
210 if ((insn & 0xffffc00e) != 0x53610000)
211 return 0;
213 /* Now verify each insn in the range looks like a stub instruction. */
214 insn = read_memory_integer (addr + 4, 4, byte_order);
215 if ((insn & 0xffffffff) != 0xe820d000)
216 return 0;
218 /* Now verify each insn in the range looks like a stub instruction. */
219 insn = read_memory_integer (addr + 8, 4, byte_order);
220 if ((insn & 0xffffc00e) != 0x537b0000)
221 return 0;
223 /* Looks like a stub. */
224 return 1;
227 /* Return one if PC is in the return path of a trampoline, else return zero.
229 Note we return one for *any* call trampoline (long-call, arg-reloc), not
230 just shared library trampolines (import, export). */
232 static int
233 hppa_hpux_in_solib_return_trampoline (struct gdbarch *gdbarch,
234 CORE_ADDR pc, char *name)
236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
237 struct unwind_table_entry *u;
239 /* Get the unwind descriptor corresponding to PC, return zero
240 if no unwind was found. */
241 u = find_unwind_entry (pc);
242 if (!u)
243 return 0;
245 /* If this isn't a linker stub or it's just a long branch stub, then
246 return zero. */
247 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
248 return 0;
250 /* The call and return path execute the same instructions within
251 an IMPORT stub! So an IMPORT stub is both a call and return
252 trampoline. */
253 if (u->stub_unwind.stub_type == IMPORT)
254 return 1;
256 /* Parameter relocation stubs always have a call path and may have a
257 return path. */
258 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
259 || u->stub_unwind.stub_type == EXPORT)
261 CORE_ADDR addr;
263 /* Search forward from the current PC until we hit a branch
264 or the end of the stub. */
265 for (addr = pc; addr <= u->region_end; addr += 4)
267 unsigned long insn;
269 insn = read_memory_integer (addr, 4, byte_order);
271 /* Does it look like a bl? If so then it's the call path, if
272 we find a bv or be first, then we're on the return path. */
273 if ((insn & 0xfc00e000) == 0xe8000000)
274 return 0;
275 else if ((insn & 0xfc00e001) == 0xe800c000
276 || (insn & 0xfc000000) == 0xe0000000)
277 return 1;
280 /* Should never happen. */
281 warning (_("Unable to find branch in parameter relocation stub."));
282 return 0;
285 /* Unknown stub type. For now, just return zero. */
286 return 0;
290 /* Figure out if PC is in a trampoline, and if so find out where
291 the trampoline will jump to. If not in a trampoline, return zero.
293 Simple code examination probably is not a good idea since the code
294 sequences in trampolines can also appear in user code.
296 We use unwinds and information from the minimal symbol table to
297 determine when we're in a trampoline. This won't work for ELF
298 (yet) since it doesn't create stub unwind entries. Whether or
299 not ELF will create stub unwinds or normal unwinds for linker
300 stubs is still being debated.
302 This should handle simple calls through dyncall or sr4export,
303 long calls, argument relocation stubs, and dyncall/sr4export
304 calling an argument relocation stub. It even handles some stubs
305 used in dynamic executables. */
307 static CORE_ADDR
308 hppa_hpux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
310 struct gdbarch *gdbarch = get_frame_arch (frame);
311 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
312 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
313 long orig_pc = pc;
314 long prev_inst, curr_inst, loc;
315 struct minimal_symbol *msym;
316 struct unwind_table_entry *u;
318 /* Addresses passed to dyncall may *NOT* be the actual address
319 of the function. So we may have to do something special. */
320 if (pc == hppa_symbol_address("$$dyncall"))
322 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
324 /* If bit 30 (counting from the left) is on, then pc is the address of
325 the PLT entry for this function, not the address of the function
326 itself. Bit 31 has meaning too, but only for MPE. */
327 if (pc & 0x2)
328 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
330 if (pc == hppa_symbol_address("$$dyncall_external"))
332 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
333 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, word_size, byte_order);
335 else if (pc == hppa_symbol_address("_sr4export"))
336 pc = (CORE_ADDR) get_frame_register_unsigned (frame, 22);
338 /* Get the unwind descriptor corresponding to PC, return zero
339 if no unwind was found. */
340 u = find_unwind_entry (pc);
341 if (!u)
342 return 0;
344 /* If this isn't a linker stub, then return now. */
345 /* elz: attention here! (FIXME) because of a compiler/linker
346 error, some stubs which should have a non zero stub_unwind.stub_type
347 have unfortunately a value of zero. So this function would return here
348 as if we were not in a trampoline. To fix this, we go look at the partial
349 symbol information, which reports this guy as a stub.
350 (FIXME): Unfortunately, we are not that lucky: it turns out that the
351 partial symbol information is also wrong sometimes. This is because
352 when it is entered (somread.c::som_symtab_read()) it can happen that
353 if the type of the symbol (from the som) is Entry, and the symbol is
354 in a shared library, then it can also be a trampoline. This would
355 be OK, except that I believe the way they decide if we are ina shared library
356 does not work. SOOOO..., even if we have a regular function w/o trampolines
357 its minimal symbol can be assigned type mst_solib_trampoline.
358 Also, if we find that the symbol is a real stub, then we fix the unwind
359 descriptor, and define the stub type to be EXPORT.
360 Hopefully this is correct most of the times. */
361 if (u->stub_unwind.stub_type == 0)
364 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
365 we can delete all the code which appears between the lines */
366 /*--------------------------------------------------------------------------*/
367 msym = lookup_minimal_symbol_by_pc (pc);
369 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
370 return orig_pc == pc ? 0 : pc & ~0x3;
372 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
374 struct objfile *objfile;
375 struct minimal_symbol *msymbol;
376 int function_found = 0;
378 /* go look if there is another minimal symbol with the same name as
379 this one, but with type mst_text. This would happen if the msym
380 is an actual trampoline, in which case there would be another
381 symbol with the same name corresponding to the real function */
383 ALL_MSYMBOLS (objfile, msymbol)
385 if (MSYMBOL_TYPE (msymbol) == mst_text
386 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
387 SYMBOL_LINKAGE_NAME (msym)) == 0)
389 function_found = 1;
390 break;
394 if (function_found)
395 /* the type of msym is correct (mst_solib_trampoline), but
396 the unwind info is wrong, so set it to the correct value */
397 u->stub_unwind.stub_type = EXPORT;
398 else
399 /* the stub type info in the unwind is correct (this is not a
400 trampoline), but the msym type information is wrong, it
401 should be mst_text. So we need to fix the msym, and also
402 get out of this function */
404 MSYMBOL_TYPE (msym) = mst_text;
405 return orig_pc == pc ? 0 : pc & ~0x3;
409 /*--------------------------------------------------------------------------*/
412 /* It's a stub. Search for a branch and figure out where it goes.
413 Note we have to handle multi insn branch sequences like ldil;ble.
414 Most (all?) other branches can be determined by examining the contents
415 of certain registers and the stack. */
417 loc = pc;
418 curr_inst = 0;
419 prev_inst = 0;
420 while (1)
422 /* Make sure we haven't walked outside the range of this stub. */
423 if (u != find_unwind_entry (loc))
425 warning (_("Unable to find branch in linker stub"));
426 return orig_pc == pc ? 0 : pc & ~0x3;
429 prev_inst = curr_inst;
430 curr_inst = read_memory_integer (loc, 4, byte_order);
432 /* Does it look like a branch external using %r1? Then it's the
433 branch from the stub to the actual function. */
434 if ((curr_inst & 0xffe0e000) == 0xe0202000)
436 /* Yup. See if the previous instruction loaded
437 a value into %r1. If so compute and return the jump address. */
438 if ((prev_inst & 0xffe00000) == 0x20200000)
439 return (hppa_extract_21 (prev_inst) + hppa_extract_17 (curr_inst)) & ~0x3;
440 else
442 warning (_("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1)."));
443 return orig_pc == pc ? 0 : pc & ~0x3;
447 /* Does it look like a be 0(sr0,%r21)? OR
448 Does it look like a be, n 0(sr0,%r21)? OR
449 Does it look like a bve (r21)? (this is on PA2.0)
450 Does it look like a bve, n(r21)? (this is also on PA2.0)
451 That's the branch from an
452 import stub to an export stub.
454 It is impossible to determine the target of the branch via
455 simple examination of instructions and/or data (consider
456 that the address in the plabel may be the address of the
457 bind-on-reference routine in the dynamic loader).
459 So we have try an alternative approach.
461 Get the name of the symbol at our current location; it should
462 be a stub symbol with the same name as the symbol in the
463 shared library.
465 Then lookup a minimal symbol with the same name; we should
466 get the minimal symbol for the target routine in the shared
467 library as those take precedence of import/export stubs. */
468 if ((curr_inst == 0xe2a00000) ||
469 (curr_inst == 0xe2a00002) ||
470 (curr_inst == 0xeaa0d000) ||
471 (curr_inst == 0xeaa0d002))
473 struct minimal_symbol *stubsym, *libsym;
475 stubsym = lookup_minimal_symbol_by_pc (loc);
476 if (stubsym == NULL)
478 warning (_("Unable to find symbol for 0x%lx"), loc);
479 return orig_pc == pc ? 0 : pc & ~0x3;
482 libsym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (stubsym), NULL, NULL);
483 if (libsym == NULL)
485 warning (_("Unable to find library symbol for %s."),
486 SYMBOL_PRINT_NAME (stubsym));
487 return orig_pc == pc ? 0 : pc & ~0x3;
490 return SYMBOL_VALUE (libsym);
493 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
494 branch from the stub to the actual function. */
495 /*elz */
496 else if ((curr_inst & 0xffe0e000) == 0xe8400000
497 || (curr_inst & 0xffe0e000) == 0xe8000000
498 || (curr_inst & 0xffe0e000) == 0xe800A000)
499 return (loc + hppa_extract_17 (curr_inst) + 8) & ~0x3;
501 /* Does it look like bv (rp)? Note this depends on the
502 current stack pointer being the same as the stack
503 pointer in the stub itself! This is a branch on from the
504 stub back to the original caller. */
505 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
506 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
508 /* Yup. See if the previous instruction loaded
509 rp from sp - 8. */
510 if (prev_inst == 0x4bc23ff1)
512 CORE_ADDR sp;
513 sp = get_frame_register_unsigned (frame, HPPA_SP_REGNUM);
514 return read_memory_integer (sp - 8, 4, byte_order) & ~0x3;
516 else
518 warning (_("Unable to find restore of %%rp before bv (%%rp)."));
519 return orig_pc == pc ? 0 : pc & ~0x3;
523 /* elz: added this case to capture the new instruction
524 at the end of the return part of an export stub used by
525 the PA2.0: BVE, n (rp) */
526 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
528 return (read_memory_integer
529 (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
530 word_size, byte_order)) & ~0x3;
533 /* What about be,n 0(sr0,%rp)? It's just another way we return to
534 the original caller from the stub. Used in dynamic executables. */
535 else if (curr_inst == 0xe0400002)
537 /* The value we jump to is sitting in sp - 24. But that's
538 loaded several instructions before the be instruction.
539 I guess we could check for the previous instruction being
540 mtsp %r1,%sr0 if we want to do sanity checking. */
541 return (read_memory_integer
542 (get_frame_register_unsigned (frame, HPPA_SP_REGNUM) - 24,
543 word_size, byte_order)) & ~0x3;
546 /* Haven't found the branch yet, but we're still in the stub.
547 Keep looking. */
548 loc += 4;
552 static void
553 hppa_skip_permanent_breakpoint (struct regcache *regcache)
555 /* To step over a breakpoint instruction on the PA takes some
556 fiddling with the instruction address queue.
558 When we stop at a breakpoint, the IA queue front (the instruction
559 we're executing now) points at the breakpoint instruction, and
560 the IA queue back (the next instruction to execute) points to
561 whatever instruction we would execute after the breakpoint, if it
562 were an ordinary instruction. This is the case even if the
563 breakpoint is in the delay slot of a branch instruction.
565 Clearly, to step past the breakpoint, we need to set the queue
566 front to the back. But what do we put in the back? What
567 instruction comes after that one? Because of the branch delay
568 slot, the next insn is always at the back + 4. */
570 ULONGEST pcoq_tail, pcsq_tail;
571 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, &pcoq_tail);
572 regcache_cooked_read_unsigned (regcache, HPPA_PCSQ_TAIL_REGNUM, &pcsq_tail);
574 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pcoq_tail);
575 regcache_cooked_write_unsigned (regcache, HPPA_PCSQ_HEAD_REGNUM, pcsq_tail);
577 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pcoq_tail + 4);
578 /* We can leave the tail's space the same, since there's no jump. */
582 /* Signal frames. */
583 struct hppa_hpux_sigtramp_unwind_cache
585 CORE_ADDR base;
586 struct trad_frame_saved_reg *saved_regs;
589 static int hppa_hpux_tramp_reg[] = {
590 HPPA_SAR_REGNUM,
591 HPPA_PCOQ_HEAD_REGNUM,
592 HPPA_PCSQ_HEAD_REGNUM,
593 HPPA_PCOQ_TAIL_REGNUM,
594 HPPA_PCSQ_TAIL_REGNUM,
595 HPPA_EIEM_REGNUM,
596 HPPA_IIR_REGNUM,
597 HPPA_ISR_REGNUM,
598 HPPA_IOR_REGNUM,
599 HPPA_IPSW_REGNUM,
601 HPPA_SR4_REGNUM,
602 HPPA_SR4_REGNUM + 1,
603 HPPA_SR4_REGNUM + 2,
604 HPPA_SR4_REGNUM + 3,
605 HPPA_SR4_REGNUM + 4,
606 HPPA_SR4_REGNUM + 5,
607 HPPA_SR4_REGNUM + 6,
608 HPPA_SR4_REGNUM + 7,
609 HPPA_RCR_REGNUM,
610 HPPA_PID0_REGNUM,
611 HPPA_PID1_REGNUM,
612 HPPA_CCR_REGNUM,
613 HPPA_PID2_REGNUM,
614 HPPA_PID3_REGNUM,
615 HPPA_TR0_REGNUM,
616 HPPA_TR0_REGNUM + 1,
617 HPPA_TR0_REGNUM + 2,
618 HPPA_CR27_REGNUM
621 static struct hppa_hpux_sigtramp_unwind_cache *
622 hppa_hpux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
623 void **this_cache)
626 struct gdbarch *gdbarch = get_frame_arch (this_frame);
627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
628 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
629 struct hppa_hpux_sigtramp_unwind_cache *info;
630 unsigned int flag;
631 CORE_ADDR sp, scptr, off;
632 int i, incr, szoff;
634 if (*this_cache)
635 return *this_cache;
637 info = FRAME_OBSTACK_ZALLOC (struct hppa_hpux_sigtramp_unwind_cache);
638 *this_cache = info;
639 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
641 sp = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
643 if (IS_32BIT_TARGET (gdbarch))
644 scptr = sp - 1352;
645 else
646 scptr = sp - 1520;
648 off = scptr;
650 /* See /usr/include/machine/save_state.h for the structure of the save_state_t
651 structure. */
653 flag = read_memory_unsigned_integer (scptr + HPPA_HPUX_SS_FLAGS_OFFSET,
654 4, byte_order);
656 if (!(flag & HPPA_HPUX_SS_WIDEREGS))
658 /* Narrow registers. */
659 off = scptr + HPPA_HPUX_SS_NARROW_OFFSET;
660 incr = 4;
661 szoff = 0;
663 else
665 /* Wide registers. */
666 off = scptr + HPPA_HPUX_SS_WIDE_OFFSET + 8;
667 incr = 8;
668 szoff = (tdep->bytes_per_address == 4 ? 4 : 0);
671 for (i = 1; i < 32; i++)
673 info->saved_regs[HPPA_R0_REGNUM + i].addr = off + szoff;
674 off += incr;
677 for (i = 0; i < ARRAY_SIZE (hppa_hpux_tramp_reg); i++)
679 if (hppa_hpux_tramp_reg[i] > 0)
680 info->saved_regs[hppa_hpux_tramp_reg[i]].addr = off + szoff;
682 off += incr;
685 /* TODO: fp regs */
687 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
689 return info;
692 static void
693 hppa_hpux_sigtramp_frame_this_id (struct frame_info *this_frame,
694 void **this_prologue_cache,
695 struct frame_id *this_id)
697 struct hppa_hpux_sigtramp_unwind_cache *info
698 = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
700 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
703 static struct value *
704 hppa_hpux_sigtramp_frame_prev_register (struct frame_info *this_frame,
705 void **this_prologue_cache,
706 int regnum)
708 struct hppa_hpux_sigtramp_unwind_cache *info
709 = hppa_hpux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
711 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
714 static int
715 hppa_hpux_sigtramp_unwind_sniffer (const struct frame_unwind *self,
716 struct frame_info *this_frame,
717 void **this_cache)
719 struct gdbarch *gdbarch = get_frame_arch (this_frame);
720 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
721 struct unwind_table_entry *u;
722 CORE_ADDR pc = get_frame_pc (this_frame);
724 u = find_unwind_entry (pc);
726 /* If this is an export stub, try to get the unwind descriptor for
727 the actual function itself. */
728 if (u && u->stub_unwind.stub_type == EXPORT)
730 gdb_byte buf[HPPA_INSN_SIZE];
731 unsigned long insn;
733 if (!safe_frame_unwind_memory (this_frame, u->region_start,
734 buf, sizeof buf))
735 return 0;
737 insn = extract_unsigned_integer (buf, sizeof buf, byte_order);
738 if ((insn & 0xffe0e000) == 0xe8400000)
739 u = find_unwind_entry(u->region_start + hppa_extract_17 (insn) + 8);
742 if (u && u->HP_UX_interrupt_marker)
743 return 1;
745 return 0;
748 static const struct frame_unwind hppa_hpux_sigtramp_frame_unwind = {
749 SIGTRAMP_FRAME,
750 hppa_hpux_sigtramp_frame_this_id,
751 hppa_hpux_sigtramp_frame_prev_register,
752 NULL,
753 hppa_hpux_sigtramp_unwind_sniffer
756 static CORE_ADDR
757 hppa32_hpux_find_global_pointer (struct gdbarch *gdbarch,
758 struct value *function)
760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
761 CORE_ADDR faddr;
763 faddr = value_as_address (function);
765 /* Is this a plabel? If so, dereference it to get the gp value. */
766 if (faddr & 2)
768 int status;
769 char buf[4];
771 faddr &= ~3;
773 status = target_read_memory (faddr + 4, buf, sizeof (buf));
774 if (status == 0)
775 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
778 return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
781 static CORE_ADDR
782 hppa64_hpux_find_global_pointer (struct gdbarch *gdbarch,
783 struct value *function)
785 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
786 CORE_ADDR faddr;
787 char buf[32];
789 faddr = value_as_address (function);
791 if (in_opd_section (faddr))
793 target_read_memory (faddr, buf, sizeof (buf));
794 return extract_unsigned_integer (&buf[24], 8, byte_order);
796 else
798 return gdbarch_tdep (gdbarch)->solib_get_got_by_pc (faddr);
802 static unsigned int ldsid_pattern[] = {
803 0x000010a0, /* ldsid (rX),rY */
804 0x00001820, /* mtsp rY,sr0 */
805 0xe0000000 /* be,n (sr0,rX) */
808 static CORE_ADDR
809 hppa_hpux_search_pattern (struct gdbarch *gdbarch,
810 CORE_ADDR start, CORE_ADDR end,
811 unsigned int *patterns, int count)
813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
814 int num_insns = (end - start + HPPA_INSN_SIZE) / HPPA_INSN_SIZE;
815 unsigned int *insns;
816 gdb_byte *buf;
817 int offset, i;
819 buf = alloca (num_insns * HPPA_INSN_SIZE);
820 insns = alloca (num_insns * sizeof (unsigned int));
822 read_memory (start, buf, num_insns * HPPA_INSN_SIZE);
823 for (i = 0; i < num_insns; i++, buf += HPPA_INSN_SIZE)
824 insns[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
826 for (offset = 0; offset <= num_insns - count; offset++)
828 for (i = 0; i < count; i++)
830 if ((insns[offset + i] & patterns[i]) != patterns[i])
831 break;
833 if (i == count)
834 break;
837 if (offset <= num_insns - count)
838 return start + offset * HPPA_INSN_SIZE;
839 else
840 return 0;
843 static CORE_ADDR
844 hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
845 int *argreg)
847 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
848 struct objfile *obj;
849 struct obj_section *sec;
850 struct hppa_objfile_private *priv;
851 struct frame_info *frame;
852 struct unwind_table_entry *u;
853 CORE_ADDR addr, rp;
854 char buf[4];
855 unsigned int insn;
857 sec = find_pc_section (pc);
858 obj = sec->objfile;
859 priv = objfile_data (obj, hppa_objfile_priv_data);
861 if (!priv)
862 priv = hppa_init_objfile_priv_data (obj);
863 if (!priv)
864 error (_("Internal error creating objfile private data."));
866 /* Use the cached value if we have one. */
867 if (priv->dummy_call_sequence_addr != 0)
869 *argreg = priv->dummy_call_sequence_reg;
870 return priv->dummy_call_sequence_addr;
873 /* First try a heuristic; if we are in a shared library call, our return
874 pointer is likely to point at an export stub. */
875 frame = get_current_frame ();
876 rp = frame_unwind_register_unsigned (frame, 2);
877 u = find_unwind_entry (rp);
878 if (u && u->stub_unwind.stub_type == EXPORT)
880 addr = hppa_hpux_search_pattern (gdbarch,
881 u->region_start, u->region_end,
882 ldsid_pattern,
883 ARRAY_SIZE (ldsid_pattern));
884 if (addr)
885 goto found_pattern;
888 /* Next thing to try is to look for an export stub. */
889 if (priv->unwind_info)
891 int i;
893 for (i = 0; i < priv->unwind_info->last; i++)
895 struct unwind_table_entry *u;
896 u = &priv->unwind_info->table[i];
897 if (u->stub_unwind.stub_type == EXPORT)
899 addr = hppa_hpux_search_pattern (gdbarch,
900 u->region_start, u->region_end,
901 ldsid_pattern,
902 ARRAY_SIZE (ldsid_pattern));
903 if (addr)
905 goto found_pattern;
911 /* Finally, if this is the main executable, try to locate a sequence
912 from noshlibs */
913 addr = hppa_symbol_address ("noshlibs");
914 sec = find_pc_section (addr);
916 if (sec && sec->objfile == obj)
918 CORE_ADDR start, end;
920 find_pc_partial_function (addr, NULL, &start, &end);
921 if (start != 0 && end != 0)
923 addr = hppa_hpux_search_pattern (gdbarch, start, end, ldsid_pattern,
924 ARRAY_SIZE (ldsid_pattern));
925 if (addr)
926 goto found_pattern;
930 /* Can't find a suitable sequence. */
931 return 0;
933 found_pattern:
934 target_read_memory (addr, buf, sizeof (buf));
935 insn = extract_unsigned_integer (buf, sizeof (buf), byte_order);
936 priv->dummy_call_sequence_addr = addr;
937 priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
939 *argreg = priv->dummy_call_sequence_reg;
940 return priv->dummy_call_sequence_addr;
943 static CORE_ADDR
944 hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
945 int *argreg)
947 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
948 struct objfile *obj;
949 struct obj_section *sec;
950 struct hppa_objfile_private *priv;
951 CORE_ADDR addr;
952 struct minimal_symbol *msym;
953 int i;
955 sec = find_pc_section (pc);
956 obj = sec->objfile;
957 priv = objfile_data (obj, hppa_objfile_priv_data);
959 if (!priv)
960 priv = hppa_init_objfile_priv_data (obj);
961 if (!priv)
962 error (_("Internal error creating objfile private data."));
964 /* Use the cached value if we have one. */
965 if (priv->dummy_call_sequence_addr != 0)
967 *argreg = priv->dummy_call_sequence_reg;
968 return priv->dummy_call_sequence_addr;
971 /* FIXME: Without stub unwind information, locating a suitable sequence is
972 fairly difficult. For now, we implement a very naive and inefficient
973 scheme; try to read in blocks of code, and look for a "bve,n (rp)"
974 instruction. These are likely to occur at the end of functions, so
975 we only look at the last two instructions of each function. */
976 for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
978 CORE_ADDR begin, end;
979 char *name;
980 gdb_byte buf[2 * HPPA_INSN_SIZE];
981 int offset;
983 find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
984 &begin, &end);
986 if (name == NULL || begin == 0 || end == 0)
987 continue;
989 if (target_read_memory (end - sizeof (buf), buf, sizeof (buf)) == 0)
991 for (offset = 0; offset < sizeof (buf); offset++)
993 unsigned int insn;
995 insn = extract_unsigned_integer (buf + offset,
996 HPPA_INSN_SIZE, byte_order);
997 if (insn == 0xe840d002) /* bve,n (rp) */
999 addr = (end - sizeof (buf)) + offset;
1000 goto found_pattern;
1006 /* Can't find a suitable sequence. */
1007 return 0;
1009 found_pattern:
1010 priv->dummy_call_sequence_addr = addr;
1011 /* Right now we only look for a "bve,l (rp)" sequence, so the register is
1012 always HPPA_RP_REGNUM. */
1013 priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
1015 *argreg = priv->dummy_call_sequence_reg;
1016 return priv->dummy_call_sequence_addr;
1019 static CORE_ADDR
1020 hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
1022 struct objfile *objfile;
1023 struct minimal_symbol *funsym, *stubsym;
1024 CORE_ADDR stubaddr;
1026 funsym = lookup_minimal_symbol_by_pc (funcaddr);
1027 stubaddr = 0;
1029 ALL_OBJFILES (objfile)
1031 stubsym = lookup_minimal_symbol_solib_trampoline
1032 (SYMBOL_LINKAGE_NAME (funsym), objfile);
1034 if (stubsym)
1036 struct unwind_table_entry *u;
1038 u = find_unwind_entry (SYMBOL_VALUE (stubsym));
1039 if (u == NULL
1040 || (u->stub_unwind.stub_type != IMPORT
1041 && u->stub_unwind.stub_type != IMPORT_SHLIB))
1042 continue;
1044 stubaddr = SYMBOL_VALUE (stubsym);
1046 /* If we found an IMPORT stub, then we can stop searching;
1047 if we found an IMPORT_SHLIB, we want to continue the search
1048 in the hopes that we will find an IMPORT stub. */
1049 if (u->stub_unwind.stub_type == IMPORT)
1050 break;
1054 return stubaddr;
1057 static int
1058 hppa_hpux_sr_for_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
1060 int sr;
1061 /* The space register to use is encoded in the top 2 bits of the address. */
1062 sr = addr >> (gdbarch_tdep (gdbarch)->bytes_per_address * 8 - 2);
1063 return sr + 4;
1066 static CORE_ADDR
1067 hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
1069 /* In order for us to restore the space register to its starting state,
1070 we need the dummy trampoline to return to the an instruction address in
1071 the same space as where we started the call. We used to place the
1072 breakpoint near the current pc, however, this breaks nested dummy calls
1073 as the nested call will hit the breakpoint address and terminate
1074 prematurely. Instead, we try to look for an address in the same space to
1075 put the breakpoint.
1077 This is similar in spirit to putting the breakpoint at the "entry point"
1078 of an executable. */
1080 struct obj_section *sec;
1081 struct unwind_table_entry *u;
1082 struct minimal_symbol *msym;
1083 CORE_ADDR func;
1084 int i;
1086 sec = find_pc_section (addr);
1087 if (sec)
1089 /* First try the lowest address in the section; we can use it as long
1090 as it is "regular" code (i.e. not a stub) */
1091 u = find_unwind_entry (obj_section_addr (sec));
1092 if (!u || u->stub_unwind.stub_type == 0)
1093 return obj_section_addr (sec);
1095 /* Otherwise, we need to find a symbol for a regular function. We
1096 do this by walking the list of msymbols in the objfile. The symbol
1097 we find should not be the same as the function that was passed in. */
1099 /* FIXME: this is broken, because we can find a function that will be
1100 called by the dummy call target function, which will still not
1101 work. */
1103 find_pc_partial_function (addr, NULL, &func, NULL);
1104 for (i = 0, msym = sec->objfile->msymbols;
1105 i < sec->objfile->minimal_symbol_count;
1106 i++, msym++)
1108 u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
1109 if (func != SYMBOL_VALUE_ADDRESS (msym)
1110 && (!u || u->stub_unwind.stub_type == 0))
1111 return SYMBOL_VALUE_ADDRESS (msym);
1115 warning (_("Cannot find suitable address to place dummy breakpoint; nested "
1116 "calls may fail."));
1117 return addr - 4;
1120 static CORE_ADDR
1121 hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
1122 CORE_ADDR funcaddr,
1123 struct value **args, int nargs,
1124 struct type *value_type,
1125 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1126 struct regcache *regcache)
1128 CORE_ADDR pc, stubaddr;
1129 int argreg = 0;
1131 pc = regcache_read_pc (regcache);
1133 /* Note: we don't want to pass a function descriptor here; push_dummy_call
1134 fills in the PIC register for us. */
1135 funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
1137 /* The simple case is where we call a function in the same space that we are
1138 currently in; in that case we don't really need to do anything. */
1139 if (hppa_hpux_sr_for_addr (gdbarch, pc)
1140 == hppa_hpux_sr_for_addr (gdbarch, funcaddr))
1142 /* Intraspace call. */
1143 *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
1144 *real_pc = funcaddr;
1145 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, *bp_addr);
1147 return sp;
1150 /* In order to make an interspace call, we need to go through a stub.
1151 gcc supplies an appropriate stub called "__gcc_plt_call", however, if
1152 an application is compiled with HP compilers then this stub is not
1153 available. We used to fallback to "__d_plt_call", however that stub
1154 is not entirely useful for us because it doesn't do an interspace
1155 return back to the caller. Also, on hppa64-hpux, there is no
1156 __gcc_plt_call available. In order to keep the code uniform, we
1157 instead don't use either of these stubs, but instead write our own
1158 onto the stack.
1160 A problem arises since the stack is located in a different space than
1161 code, so in order to branch to a stack stub, we will need to do an
1162 interspace branch. Previous versions of gdb did this by modifying code
1163 at the current pc and doing single-stepping to set the pcsq. Since this
1164 is highly undesirable, we use a different scheme:
1166 All we really need to do the branch to the stub is a short instruction
1167 sequence like this:
1169 PA1.1:
1170 ldsid (rX),r1
1171 mtsp r1,sr0
1172 be,n (sr0,rX)
1174 PA2.0:
1175 bve,n (sr0,rX)
1177 Instead of writing these sequences ourselves, we can find it in
1178 the instruction stream that belongs to the current space. While this
1179 seems difficult at first, we are actually guaranteed to find the sequences
1180 in several places:
1182 For 32-bit code:
1183 - in export stubs for shared libraries
1184 - in the "noshlibs" routine in the main module
1186 For 64-bit code:
1187 - at the end of each "regular" function
1189 We cache the address of these sequences in the objfile's private data
1190 since these operations can potentially be quite expensive.
1192 So, what we do is:
1193 - write a stack trampoline
1194 - look for a suitable instruction sequence in the current space
1195 - point the sequence at the trampoline
1196 - set the return address of the trampoline to the current space
1197 (see hppa_hpux_find_dummy_call_bpaddr)
1198 - set the continuing address of the "dummy code" as the sequence.
1202 if (IS_32BIT_TARGET (gdbarch))
1204 static unsigned int hppa32_tramp[] = {
1205 0x0fdf1291, /* stw r31,-8(,sp) */
1206 0x02c010a1, /* ldsid (,r22),r1 */
1207 0x00011820, /* mtsp r1,sr0 */
1208 0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
1209 0x081f0242, /* copy r31,rp */
1210 0x0fd11082, /* ldw -8(,sp),rp */
1211 0x004010a1, /* ldsid (,rp),r1 */
1212 0x00011820, /* mtsp r1,sr0 */
1213 0xe0400000, /* be 0(sr0,rp) */
1214 0x08000240 /* nop */
1217 /* for hppa32, we must call the function through a stub so that on
1218 return it can return to the space of our trampoline. */
1219 stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
1220 if (stubaddr == 0)
1221 error (_("Cannot call external function not referenced by application "
1222 "(no import stub).\n"));
1223 regcache_cooked_write_unsigned (regcache, 22, stubaddr);
1225 write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));
1227 *bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
1228 regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
1230 *real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
1231 if (*real_pc == 0)
1232 error (_("Cannot make interspace call from here."));
1234 regcache_cooked_write_unsigned (regcache, argreg, sp);
1236 sp += sizeof (hppa32_tramp);
1238 else
1240 static unsigned int hppa64_tramp[] = {
1241 0xeac0f000, /* bve,l (r22),%r2 */
1242 0x0fdf12d1, /* std r31,-8(,sp) */
1243 0x0fd110c2, /* ldd -8(,sp),rp */
1244 0xe840d002, /* bve,n (rp) */
1245 0x08000240 /* nop */
1248 /* for hppa64, we don't need to call through a stub; all functions
1249 return via a bve. */
1250 regcache_cooked_write_unsigned (regcache, 22, funcaddr);
1251 write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));
1253 *bp_addr = pc - 4;
1254 regcache_cooked_write_unsigned (regcache, 31, *bp_addr);
1256 *real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
1257 if (*real_pc == 0)
1258 error (_("Cannot make interspace call from here."));
1260 regcache_cooked_write_unsigned (regcache, argreg, sp);
1262 sp += sizeof (hppa64_tramp);
1265 sp = gdbarch_frame_align (gdbarch, sp);
1267 return sp;
1272 static void
1273 hppa_hpux_supply_ss_narrow (struct regcache *regcache,
1274 int regnum, const char *save_state)
1276 const char *ss_narrow = save_state + HPPA_HPUX_SS_NARROW_OFFSET;
1277 int i, offset = 0;
1279 for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
1281 if (regnum == i || regnum == -1)
1282 regcache_raw_supply (regcache, i, ss_narrow + offset);
1284 offset += 4;
1288 static void
1289 hppa_hpux_supply_ss_fpblock (struct regcache *regcache,
1290 int regnum, const char *save_state)
1292 const char *ss_fpblock = save_state + HPPA_HPUX_SS_FPBLOCK_OFFSET;
1293 int i, offset = 0;
1295 /* FIXME: We view the floating-point state as 64 single-precision
1296 registers for 32-bit code, and 32 double-precision register for
1297 64-bit code. This distinction is artificial and should be
1298 eliminated. If that ever happens, we should remove the if-clause
1299 below. */
1301 if (register_size (get_regcache_arch (regcache), HPPA_FP0_REGNUM) == 4)
1303 for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 64; i++)
1305 if (regnum == i || regnum == -1)
1306 regcache_raw_supply (regcache, i, ss_fpblock + offset);
1308 offset += 4;
1311 else
1313 for (i = HPPA_FP0_REGNUM; i < HPPA_FP0_REGNUM + 32; i++)
1315 if (regnum == i || regnum == -1)
1316 regcache_raw_supply (regcache, i, ss_fpblock + offset);
1318 offset += 8;
1323 static void
1324 hppa_hpux_supply_ss_wide (struct regcache *regcache,
1325 int regnum, const char *save_state)
1327 const char *ss_wide = save_state + HPPA_HPUX_SS_WIDE_OFFSET;
1328 int i, offset = 8;
1330 if (register_size (get_regcache_arch (regcache), HPPA_R1_REGNUM) == 4)
1331 offset += 4;
1333 for (i = HPPA_R1_REGNUM; i < HPPA_FP0_REGNUM; i++)
1335 if (regnum == i || regnum == -1)
1336 regcache_raw_supply (regcache, i, ss_wide + offset);
1338 offset += 8;
1342 static void
1343 hppa_hpux_supply_save_state (const struct regset *regset,
1344 struct regcache *regcache,
1345 int regnum, const void *regs, size_t len)
1347 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1349 const char *proc_info = regs;
1350 const char *save_state = proc_info + 8;
1351 ULONGEST flags;
1353 flags = extract_unsigned_integer (save_state + HPPA_HPUX_SS_FLAGS_OFFSET,
1354 4, byte_order);
1355 if (regnum == -1 || regnum == HPPA_FLAGS_REGNUM)
1357 size_t size = register_size (gdbarch, HPPA_FLAGS_REGNUM);
1358 char buf[8];
1360 store_unsigned_integer (buf, size, byte_order, flags);
1361 regcache_raw_supply (regcache, HPPA_FLAGS_REGNUM, buf);
1364 /* If the SS_WIDEREGS flag is set, we really do need the full
1365 `struct save_state'. */
1366 if (flags & HPPA_HPUX_SS_WIDEREGS && len < HPPA_HPUX_SAVE_STATE_SIZE)
1367 error (_("Register set contents too small"));
1369 if (flags & HPPA_HPUX_SS_WIDEREGS)
1370 hppa_hpux_supply_ss_wide (regcache, regnum, save_state);
1371 else
1372 hppa_hpux_supply_ss_narrow (regcache, regnum, save_state);
1374 hppa_hpux_supply_ss_fpblock (regcache, regnum, save_state);
1377 /* HP-UX register set. */
1379 static struct regset hppa_hpux_regset =
1381 NULL,
1382 hppa_hpux_supply_save_state
1385 static const struct regset *
1386 hppa_hpux_regset_from_core_section (struct gdbarch *gdbarch,
1387 const char *sect_name, size_t sect_size)
1389 if (strcmp (sect_name, ".reg") == 0
1390 && sect_size >= HPPA_HPUX_PA89_SAVE_STATE_SIZE + 8)
1391 return &hppa_hpux_regset;
1393 return NULL;
1397 /* Bit in the `ss_flag' member of `struct save_state' that indicates
1398 the state was saved from a system call. From
1399 <machine/save_state.h>. */
1400 #define HPPA_HPUX_SS_INSYSCALL 0x02
1402 static CORE_ADDR
1403 hppa_hpux_read_pc (struct regcache *regcache)
1405 ULONGEST flags;
1407 /* If we're currently in a system call return the contents of %r31. */
1408 regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
1409 if (flags & HPPA_HPUX_SS_INSYSCALL)
1411 ULONGEST pc;
1412 regcache_cooked_read_unsigned (regcache, HPPA_R31_REGNUM, &pc);
1413 return pc & ~0x3;
1416 return hppa_read_pc (regcache);
1419 static void
1420 hppa_hpux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1422 ULONGEST flags;
1424 /* If we're currently in a system call also write PC into %r31. */
1425 regcache_cooked_read_unsigned (regcache, HPPA_FLAGS_REGNUM, &flags);
1426 if (flags & HPPA_HPUX_SS_INSYSCALL)
1427 regcache_cooked_write_unsigned (regcache, HPPA_R31_REGNUM, pc | 0x3);
1429 hppa_write_pc (regcache, pc);
1432 static CORE_ADDR
1433 hppa_hpux_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1435 ULONGEST flags;
1437 /* If we're currently in a system call return the contents of %r31. */
1438 flags = frame_unwind_register_unsigned (next_frame, HPPA_FLAGS_REGNUM);
1439 if (flags & HPPA_HPUX_SS_INSYSCALL)
1440 return frame_unwind_register_unsigned (next_frame, HPPA_R31_REGNUM) & ~0x3;
1442 return hppa_unwind_pc (gdbarch, next_frame);
1446 /* Given the current value of the pc, check to see if it is inside a stub, and
1447 if so, change the value of the pc to point to the caller of the stub.
1448 THIS_FRAME is the current frame in the current list of frames.
1449 BASE contains to stack frame base of the current frame.
1450 SAVE_REGS is the register file stored in the frame cache. */
1451 static void
1452 hppa_hpux_unwind_adjust_stub (struct frame_info *this_frame, CORE_ADDR base,
1453 struct trad_frame_saved_reg *saved_regs)
1455 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1456 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1457 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1458 struct value *pcoq_head_val;
1459 ULONGEST pcoq_head;
1460 CORE_ADDR stubpc;
1461 struct unwind_table_entry *u;
1463 pcoq_head_val = trad_frame_get_prev_register (this_frame, saved_regs,
1464 HPPA_PCOQ_HEAD_REGNUM);
1465 pcoq_head =
1466 extract_unsigned_integer (value_contents_all (pcoq_head_val),
1467 register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM),
1468 byte_order);
1470 u = find_unwind_entry (pcoq_head);
1471 if (u && u->stub_unwind.stub_type == EXPORT)
1473 stubpc = read_memory_integer (base - 24, word_size, byte_order);
1474 trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
1476 else if (hppa_symbol_address ("__gcc_plt_call")
1477 == get_pc_function_start (pcoq_head))
1479 stubpc = read_memory_integer (base - 8, word_size, byte_order);
1480 trad_frame_set_value (saved_regs, HPPA_PCOQ_HEAD_REGNUM, stubpc);
1484 static void
1485 hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1489 if (IS_32BIT_TARGET (gdbarch))
1490 tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
1491 else
1492 tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
1494 tdep->unwind_adjust_stub = hppa_hpux_unwind_adjust_stub;
1496 set_gdbarch_in_solib_return_trampoline
1497 (gdbarch, hppa_hpux_in_solib_return_trampoline);
1498 set_gdbarch_skip_trampoline_code (gdbarch, hppa_hpux_skip_trampoline_code);
1500 set_gdbarch_push_dummy_code (gdbarch, hppa_hpux_push_dummy_code);
1501 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1503 set_gdbarch_read_pc (gdbarch, hppa_hpux_read_pc);
1504 set_gdbarch_write_pc (gdbarch, hppa_hpux_write_pc);
1505 set_gdbarch_unwind_pc (gdbarch, hppa_hpux_unwind_pc);
1506 set_gdbarch_skip_permanent_breakpoint
1507 (gdbarch, hppa_skip_permanent_breakpoint);
1509 set_gdbarch_regset_from_core_section
1510 (gdbarch, hppa_hpux_regset_from_core_section);
1512 frame_unwind_append_unwinder (gdbarch, &hppa_hpux_sigtramp_frame_unwind);
1515 static void
1516 hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1520 tdep->is_elf = 0;
1522 tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
1524 hppa_hpux_init_abi (info, gdbarch);
1525 som_solib_select (gdbarch);
1528 static void
1529 hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1533 tdep->is_elf = 1;
1534 tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
1536 hppa_hpux_init_abi (info, gdbarch);
1537 pa64_solib_select (gdbarch);
1540 static enum gdb_osabi
1541 hppa_hpux_core_osabi_sniffer (bfd *abfd)
1543 if (strcmp (bfd_get_target (abfd), "hpux-core") == 0)
1544 return GDB_OSABI_HPUX_SOM;
1545 else if (strcmp (bfd_get_target (abfd), "elf64-hppa") == 0)
1547 asection *section;
1549 section = bfd_get_section_by_name (abfd, ".kernel");
1550 if (section)
1552 bfd_size_type size;
1553 char *contents;
1555 size = bfd_section_size (abfd, section);
1556 contents = alloca (size);
1557 if (bfd_get_section_contents (abfd, section, contents,
1558 (file_ptr) 0, size)
1559 && strcmp (contents, "HP-UX") == 0)
1560 return GDB_OSABI_HPUX_ELF;
1564 return GDB_OSABI_UNKNOWN;
1567 void
1568 _initialize_hppa_hpux_tdep (void)
1570 /* BFD doesn't set a flavour for HP-UX style core files. It doesn't
1571 set the architecture either. */
1572 gdbarch_register_osabi_sniffer (bfd_arch_unknown,
1573 bfd_target_unknown_flavour,
1574 hppa_hpux_core_osabi_sniffer);
1575 gdbarch_register_osabi_sniffer (bfd_arch_hppa,
1576 bfd_target_elf_flavour,
1577 hppa_hpux_core_osabi_sniffer);
1579 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_HPUX_SOM,
1580 hppa_hpux_som_init_abi);
1581 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_HPUX_ELF,
1582 hppa_hpux_elf_init_abi);