Fix RELOC_FOR_GLOBAL_SYMBOLS macro so that it can cope with user defined symbols...
[binutils-gdb.git] / gdb / ia64-linux-nat.c
blob7a8e742daea3f5083a5843f7b15e9854fdb608db
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
4 Copyright (C) 1999-2024 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "ia64-tdep.h"
27 #include "linux-nat.h"
29 #include <signal.h>
30 #include "nat/gdb_ptrace.h"
31 #include "gdbsupport/gdb_wait.h"
32 #ifdef HAVE_SYS_REG_H
33 #include <sys/reg.h>
34 #endif
35 #include <sys/syscall.h>
36 #include <sys/user.h>
38 #include <asm/ptrace_offsets.h>
39 #include <sys/procfs.h>
41 /* Prototypes for supply_gregset etc. */
42 #include "gregset.h"
44 #include "inf-ptrace.h"
46 class ia64_linux_nat_target final : public linux_nat_target
48 public:
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache *, int) override;
51 void store_registers (struct regcache *, int) override;
53 enum target_xfer_status xfer_partial (enum target_object object,
54 const char *annex,
55 gdb_byte *readbuf,
56 const gdb_byte *writebuf,
57 ULONGEST offset, ULONGEST len,
58 ULONGEST *xfered_len) override;
60 /* Override watchpoint routines. */
62 /* The IA-64 architecture can step over a watch point (without
63 triggering it again) if the "dd" (data debug fault disable) bit
64 in the processor status word is set.
66 This PSR bit is set in
67 ia64_linux_nat_target::stopped_by_watchpoint when the code there
68 has determined that a hardware watchpoint has indeed been hit.
69 The CPU will then be able to execute one instruction without
70 triggering a watchpoint. */
71 bool have_steppable_watchpoint () override { return true; }
73 int can_use_hw_breakpoint (enum bptype, int, int) override;
74 bool stopped_by_watchpoint () override;
75 bool stopped_data_address (CORE_ADDR *) override;
76 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
77 struct expression *) override;
78 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
79 struct expression *) override;
80 /* Override linux_nat_target low methods. */
81 void low_new_thread (struct lwp_info *lp) override;
82 bool low_status_is_event (int status) override;
84 void enable_watchpoints_in_psr (ptid_t ptid);
87 static ia64_linux_nat_target the_ia64_linux_nat_target;
89 /* These must match the order of the register names.
91 Some sort of lookup table is needed because the offsets associated
92 with the registers are all over the board. */
94 static int u_offsets[] =
96 /* general registers */
97 -1, /* gr0 not available; i.e, it's always zero. */
98 PT_R1,
99 PT_R2,
100 PT_R3,
101 PT_R4,
102 PT_R5,
103 PT_R6,
104 PT_R7,
105 PT_R8,
106 PT_R9,
107 PT_R10,
108 PT_R11,
109 PT_R12,
110 PT_R13,
111 PT_R14,
112 PT_R15,
113 PT_R16,
114 PT_R17,
115 PT_R18,
116 PT_R19,
117 PT_R20,
118 PT_R21,
119 PT_R22,
120 PT_R23,
121 PT_R24,
122 PT_R25,
123 PT_R26,
124 PT_R27,
125 PT_R28,
126 PT_R29,
127 PT_R30,
128 PT_R31,
129 /* gr32 through gr127 not directly available via the ptrace interface. */
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136 /* Floating point registers */
137 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
138 PT_F2,
139 PT_F3,
140 PT_F4,
141 PT_F5,
142 PT_F6,
143 PT_F7,
144 PT_F8,
145 PT_F9,
146 PT_F10,
147 PT_F11,
148 PT_F12,
149 PT_F13,
150 PT_F14,
151 PT_F15,
152 PT_F16,
153 PT_F17,
154 PT_F18,
155 PT_F19,
156 PT_F20,
157 PT_F21,
158 PT_F22,
159 PT_F23,
160 PT_F24,
161 PT_F25,
162 PT_F26,
163 PT_F27,
164 PT_F28,
165 PT_F29,
166 PT_F30,
167 PT_F31,
168 PT_F32,
169 PT_F33,
170 PT_F34,
171 PT_F35,
172 PT_F36,
173 PT_F37,
174 PT_F38,
175 PT_F39,
176 PT_F40,
177 PT_F41,
178 PT_F42,
179 PT_F43,
180 PT_F44,
181 PT_F45,
182 PT_F46,
183 PT_F47,
184 PT_F48,
185 PT_F49,
186 PT_F50,
187 PT_F51,
188 PT_F52,
189 PT_F53,
190 PT_F54,
191 PT_F55,
192 PT_F56,
193 PT_F57,
194 PT_F58,
195 PT_F59,
196 PT_F60,
197 PT_F61,
198 PT_F62,
199 PT_F63,
200 PT_F64,
201 PT_F65,
202 PT_F66,
203 PT_F67,
204 PT_F68,
205 PT_F69,
206 PT_F70,
207 PT_F71,
208 PT_F72,
209 PT_F73,
210 PT_F74,
211 PT_F75,
212 PT_F76,
213 PT_F77,
214 PT_F78,
215 PT_F79,
216 PT_F80,
217 PT_F81,
218 PT_F82,
219 PT_F83,
220 PT_F84,
221 PT_F85,
222 PT_F86,
223 PT_F87,
224 PT_F88,
225 PT_F89,
226 PT_F90,
227 PT_F91,
228 PT_F92,
229 PT_F93,
230 PT_F94,
231 PT_F95,
232 PT_F96,
233 PT_F97,
234 PT_F98,
235 PT_F99,
236 PT_F100,
237 PT_F101,
238 PT_F102,
239 PT_F103,
240 PT_F104,
241 PT_F105,
242 PT_F106,
243 PT_F107,
244 PT_F108,
245 PT_F109,
246 PT_F110,
247 PT_F111,
248 PT_F112,
249 PT_F113,
250 PT_F114,
251 PT_F115,
252 PT_F116,
253 PT_F117,
254 PT_F118,
255 PT_F119,
256 PT_F120,
257 PT_F121,
258 PT_F122,
259 PT_F123,
260 PT_F124,
261 PT_F125,
262 PT_F126,
263 PT_F127,
264 /* Predicate registers - we don't fetch these individually. */
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1,
273 /* branch registers */
274 PT_B0,
275 PT_B1,
276 PT_B2,
277 PT_B3,
278 PT_B4,
279 PT_B5,
280 PT_B6,
281 PT_B7,
282 /* Virtual frame pointer and virtual return address pointer. */
283 -1, -1,
284 /* other registers */
285 PT_PR,
286 PT_CR_IIP, /* ip */
287 PT_CR_IPSR, /* psr */
288 PT_CFM, /* cfm */
289 /* kernel registers not visible via ptrace interface (?) */
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 /* hole */
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 PT_AR_RSC,
294 PT_AR_BSP,
295 PT_AR_BSPSTORE,
296 PT_AR_RNAT,
298 -1, /* Not available: FCR, IA32 floating control register. */
299 -1, -1,
300 -1, /* Not available: EFLAG */
301 -1, /* Not available: CSD */
302 -1, /* Not available: SSD */
303 -1, /* Not available: CFLG */
304 -1, /* Not available: FSR */
305 -1, /* Not available: FIR */
306 -1, /* Not available: FDR */
308 PT_AR_CCV,
309 -1, -1, -1,
310 PT_AR_UNAT,
311 -1, -1, -1,
312 PT_AR_FPSR,
313 -1, -1, -1,
314 -1, /* Not available: ITC */
315 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
316 -1, -1, -1, -1, -1, -1, -1, -1, -1,
317 PT_AR_PFS,
318 PT_AR_LC,
319 PT_AR_EC,
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
327 /* nat bits - not fetched directly; instead we obtain these bits from
328 either rnat or unat or from memory. */
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 -1, -1, -1, -1, -1, -1, -1, -1,
344 -1, -1, -1, -1, -1, -1, -1, -1,
347 static CORE_ADDR
348 ia64_register_addr (struct gdbarch *gdbarch, int regno)
350 CORE_ADDR addr;
352 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
353 error (_("Invalid register number %d."), regno);
355 if (u_offsets[regno] == -1)
356 addr = 0;
357 else
358 addr = (CORE_ADDR) u_offsets[regno];
360 return addr;
363 static int
364 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
366 return regno < 0
367 || regno >= gdbarch_num_regs (gdbarch)
368 || u_offsets[regno] == -1;
371 static int
372 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
374 /* Rationale behind not permitting stores to bspstore...
376 The IA-64 architecture provides bspstore and bsp which refer
377 memory locations in the RSE's backing store. bspstore is the
378 next location which will be written when the RSE needs to write
379 to memory. bsp is the address at which r32 in the current frame
380 would be found if it were written to the backing store.
382 The IA-64 architecture provides read-only access to bsp and
383 read/write access to bspstore (but only when the RSE is in
384 the enforced lazy mode). It should be noted that stores
385 to bspstore also affect the value of bsp. Changing bspstore
386 does not affect the number of dirty entries between bspstore
387 and bsp, so changing bspstore by N words will also cause bsp
388 to be changed by (roughly) N as well. (It could be N-1 or N+1
389 depending upon where the NaT collection bits fall.)
391 OTOH, the Linux kernel provides read/write access to bsp (and
392 currently read/write access to bspstore as well). But it
393 is definitely the case that if you change one, the other
394 will change at the same time. It is more useful to gdb to
395 be able to change bsp. So in order to prevent strange and
396 undesirable things from happening when a dummy stack frame
397 is popped (after calling an inferior function), we allow
398 bspstore to be read, but not written. (Note that popping
399 a (generic) dummy stack frame causes all registers that
400 were previously read from the inferior process to be written
401 back.) */
403 return regno < 0
404 || regno >= gdbarch_num_regs (gdbarch)
405 || u_offsets[regno] == -1
406 || regno == IA64_BSPSTORE_REGNUM;
409 void
410 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
412 int regi;
413 const greg_t *regp = (const greg_t *) gregsetp;
415 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
417 regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
420 /* FIXME: NAT collection bits are at index 32; gotta deal with these
421 somehow... */
423 regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
425 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
427 regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
430 regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
431 regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
432 regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
433 regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
434 regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
435 regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
436 regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
437 regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
438 regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
439 regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
440 regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
441 regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
442 regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
445 void
446 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
448 int regi;
449 greg_t *regp = (greg_t *) gregsetp;
451 #define COPY_REG(_idx_,_regi_) \
452 if ((regno == -1) || regno == _regi_) \
453 regcache->raw_collect (_regi_, regp + _idx_)
455 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
457 COPY_REG (regi - IA64_GR0_REGNUM, regi);
460 /* FIXME: NAT collection bits at index 32? */
462 COPY_REG (33, IA64_PR_REGNUM);
464 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
466 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
469 COPY_REG (42, IA64_IP_REGNUM);
470 COPY_REG (43, IA64_CFM_REGNUM);
471 COPY_REG (44, IA64_PSR_REGNUM);
472 COPY_REG (45, IA64_RSC_REGNUM);
473 COPY_REG (46, IA64_BSP_REGNUM);
474 COPY_REG (47, IA64_BSPSTORE_REGNUM);
475 COPY_REG (48, IA64_RNAT_REGNUM);
476 COPY_REG (49, IA64_CCV_REGNUM);
477 COPY_REG (50, IA64_UNAT_REGNUM);
478 COPY_REG (51, IA64_FPSR_REGNUM);
479 COPY_REG (52, IA64_PFS_REGNUM);
480 COPY_REG (53, IA64_LC_REGNUM);
481 COPY_REG (54, IA64_EC_REGNUM);
484 /* Given a pointer to a floating point register set in /proc format
485 (fpregset_t *), unpack the register contents and supply them as gdb's
486 idea of the current floating point register values. */
488 void
489 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
491 int regi;
492 const char *from;
493 const gdb_byte f_zero[16] = { 0 };
494 const gdb_byte f_one[16] =
495 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
497 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
498 did the same. So ignore whatever might be recorded in fpregset_t
499 for fr0/fr1 and always supply their expected values. */
501 /* fr0 is always read as zero. */
502 regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
503 /* fr1 is always read as one (1.0). */
504 regcache->raw_supply (IA64_FR1_REGNUM, f_one);
506 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
508 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
509 regcache->raw_supply (regi, from);
513 /* Given a pointer to a floating point register set in /proc format
514 (fpregset_t *), update the register specified by REGNO from gdb's idea
515 of the current floating point register set. If REGNO is -1, update
516 them all. */
518 void
519 fill_fpregset (const struct regcache *regcache,
520 fpregset_t *fpregsetp, int regno)
522 int regi;
524 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
526 if ((regno == -1) || (regno == regi))
527 regcache->raw_collect (regi, &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
531 #define IA64_PSR_DB (1UL << 24)
532 #define IA64_PSR_DD (1UL << 39)
534 void
535 ia64_linux_nat_target::enable_watchpoints_in_psr (ptid_t ptid)
537 struct regcache *regcache = get_thread_regcache (this, ptid);
538 ULONGEST psr;
540 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
541 if (!(psr & IA64_PSR_DB))
543 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
544 watchpoints and breakpoints. */
545 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
549 static long debug_registers[8];
551 static void
552 store_debug_register (ptid_t ptid, int idx, long val)
554 int tid;
556 tid = ptid.lwp ();
557 if (tid == 0)
558 tid = ptid.pid ();
560 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
563 static void
564 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
565 long *dbr_mask)
567 if (dbr_addr)
568 store_debug_register (ptid, 2 * idx, *dbr_addr);
569 if (dbr_mask)
570 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
573 static int
574 is_power_of_2 (int val)
576 int i, onecount;
578 onecount = 0;
579 for (i = 0; i < 8 * sizeof (val); i++)
580 if (val & (1 << i))
581 onecount++;
583 return onecount <= 1;
587 ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
588 enum target_hw_bp_type type,
589 struct expression *cond)
591 int idx;
592 long dbr_addr, dbr_mask;
593 int max_watchpoints = 4;
595 if (len <= 0 || !is_power_of_2 (len))
596 return -1;
598 for (idx = 0; idx < max_watchpoints; idx++)
600 dbr_mask = debug_registers[idx * 2 + 1];
601 if ((dbr_mask & (0x3UL << 62)) == 0)
603 /* Exit loop if both r and w bits clear. */
604 break;
608 if (idx == max_watchpoints)
609 return -1;
611 dbr_addr = (long) addr;
612 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
613 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
614 switch (type)
616 case hw_write:
617 dbr_mask |= (1L << 62); /* Set w bit */
618 break;
619 case hw_read:
620 dbr_mask |= (1L << 63); /* Set r bit */
621 break;
622 case hw_access:
623 dbr_mask |= (3L << 62); /* Set both r and w bits */
624 break;
625 default:
626 return -1;
629 debug_registers[2 * idx] = dbr_addr;
630 debug_registers[2 * idx + 1] = dbr_mask;
632 for (const lwp_info *lp : all_lwps ())
634 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
635 enable_watchpoints_in_psr (lp->ptid);
638 return 0;
642 ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
643 enum target_hw_bp_type type,
644 struct expression *cond)
646 int idx;
647 long dbr_addr, dbr_mask;
648 int max_watchpoints = 4;
650 if (len <= 0 || !is_power_of_2 (len))
651 return -1;
653 for (idx = 0; idx < max_watchpoints; idx++)
655 dbr_addr = debug_registers[2 * idx];
656 dbr_mask = debug_registers[2 * idx + 1];
657 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
659 debug_registers[2 * idx] = 0;
660 debug_registers[2 * idx + 1] = 0;
661 dbr_addr = 0;
662 dbr_mask = 0;
664 for (const lwp_info *lp : all_lwps ())
665 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
667 return 0;
670 return -1;
673 void
674 ia64_linux_nat_target::low_new_thread (struct lwp_info *lp)
676 int i, any;
678 any = 0;
679 for (i = 0; i < 8; i++)
681 if (debug_registers[i] != 0)
682 any = 1;
683 store_debug_register (lp->ptid, i, debug_registers[i]);
686 if (any)
687 enable_watchpoints_in_psr (lp->ptid);
690 bool
691 ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
693 CORE_ADDR psr;
694 siginfo_t siginfo;
695 regcache *regcache = get_thread_regcache (inferior_thread ());
697 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
698 return false;
700 if (siginfo.si_signo != SIGTRAP
701 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
702 return false;
704 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
705 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
706 for the next instruction. */
707 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
709 *addr_p = (CORE_ADDR) siginfo.si_addr;
710 return true;
713 bool
714 ia64_linux_nat_target::stopped_by_watchpoint ()
716 CORE_ADDR addr;
717 return stopped_data_address (&addr);
721 ia64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
722 int cnt, int othertype)
724 return 1;
728 /* Fetch register REGNUM from the inferior. */
730 static void
731 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
733 struct gdbarch *gdbarch = regcache->arch ();
734 CORE_ADDR addr;
735 size_t size;
736 PTRACE_TYPE_RET *buf;
737 pid_t pid;
738 int i;
740 /* r0 cannot be fetched but is always zero. */
741 if (regnum == IA64_GR0_REGNUM)
743 const gdb_byte zero[8] = { 0 };
745 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
746 regcache->raw_supply (regnum, zero);
747 return;
750 /* fr0 cannot be fetched but is always zero. */
751 if (regnum == IA64_FR0_REGNUM)
753 const gdb_byte f_zero[16] = { 0 };
755 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
756 regcache->raw_supply (regnum, f_zero);
757 return;
760 /* fr1 cannot be fetched but is always one (1.0). */
761 if (regnum == IA64_FR1_REGNUM)
763 const gdb_byte f_one[16] =
764 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
766 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
767 regcache->raw_supply (regnum, f_one);
768 return;
771 if (ia64_cannot_fetch_register (gdbarch, regnum))
773 regcache->raw_supply (regnum, NULL);
774 return;
777 pid = get_ptrace_pid (regcache->ptid ());
779 /* This isn't really an address, but ptrace thinks of it as one. */
780 addr = ia64_register_addr (gdbarch, regnum);
781 size = register_size (gdbarch, regnum);
783 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
784 buf = (PTRACE_TYPE_RET *) alloca (size);
786 /* Read the register contents from the inferior a chunk at a time. */
787 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
789 errno = 0;
790 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
791 if (errno != 0)
792 error (_("Couldn't read register %s (#%d): %s."),
793 gdbarch_register_name (gdbarch, regnum),
794 regnum, safe_strerror (errno));
796 addr += sizeof (PTRACE_TYPE_RET);
798 regcache->raw_supply (regnum, buf);
801 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
802 for all registers. */
804 void
805 ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
807 if (regnum == -1)
808 for (regnum = 0;
809 regnum < gdbarch_num_regs (regcache->arch ());
810 regnum++)
811 ia64_linux_fetch_register (regcache, regnum);
812 else
813 ia64_linux_fetch_register (regcache, regnum);
816 /* Store register REGNUM into the inferior. */
818 static void
819 ia64_linux_store_register (const struct regcache *regcache, int regnum)
821 struct gdbarch *gdbarch = regcache->arch ();
822 CORE_ADDR addr;
823 size_t size;
824 PTRACE_TYPE_RET *buf;
825 pid_t pid;
826 int i;
828 if (ia64_cannot_store_register (gdbarch, regnum))
829 return;
831 pid = get_ptrace_pid (regcache->ptid ());
833 /* This isn't really an address, but ptrace thinks of it as one. */
834 addr = ia64_register_addr (gdbarch, regnum);
835 size = register_size (gdbarch, regnum);
837 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
838 buf = (PTRACE_TYPE_RET *) alloca (size);
840 /* Write the register contents into the inferior a chunk at a time. */
841 regcache->raw_collect (regnum, buf);
842 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
844 errno = 0;
845 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
846 if (errno != 0)
847 error (_("Couldn't write register %s (#%d): %s."),
848 gdbarch_register_name (gdbarch, regnum),
849 regnum, safe_strerror (errno));
851 addr += sizeof (PTRACE_TYPE_RET);
855 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
856 this for all registers. */
858 void
859 ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
861 if (regnum == -1)
862 for (regnum = 0;
863 regnum < gdbarch_num_regs (regcache->arch ());
864 regnum++)
865 ia64_linux_store_register (regcache, regnum);
866 else
867 ia64_linux_store_register (regcache, regnum);
870 /* Implement the xfer_partial target_ops method. */
872 enum target_xfer_status
873 ia64_linux_nat_target::xfer_partial (enum target_object object,
874 const char *annex,
875 gdb_byte *readbuf, const gdb_byte *writebuf,
876 ULONGEST offset, ULONGEST len,
877 ULONGEST *xfered_len)
879 if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
881 static long gate_table_size;
882 gdb_byte *tmp_buf;
883 long res;
885 /* Probe for the table size once. */
886 if (gate_table_size == 0)
887 gate_table_size = syscall (__NR_getunwind, NULL, 0);
888 if (gate_table_size < 0)
889 return TARGET_XFER_E_IO;
891 if (offset >= gate_table_size)
892 return TARGET_XFER_EOF;
894 tmp_buf = (gdb_byte *) alloca (gate_table_size);
895 res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
896 if (res < 0)
897 return TARGET_XFER_E_IO;
898 gdb_assert (res == gate_table_size);
900 if (offset + len > gate_table_size)
901 len = gate_table_size - offset;
903 memcpy (readbuf, tmp_buf + offset, len);
904 *xfered_len = len;
905 return TARGET_XFER_OK;
908 return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
909 offset, len, xfered_len);
912 /* For break.b instruction ia64 CPU forgets the immediate value and generates
913 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
914 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
915 difference for the signals here. */
917 bool
918 ia64_linux_nat_target::low_status_is_event (int status)
920 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
921 || WSTOPSIG (status) == SIGILL);
924 void _initialize_ia64_linux_nat ();
925 void
926 _initialize_ia64_linux_nat ()
928 /* Register the target. */
929 linux_target = &the_ia64_linux_nat_target;
930 add_inf_child_target (&the_ia64_linux_nat_target);