Automatic date update in version.in
[binutils-gdb.git] / gdb / value.h
blobe8d3c9fd907a56f43a58c876edb323d6bb17bf93
1 /* Definitions for values of C expressions, for GDB.
3 Copyright (C) 1986-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #if !defined (VALUE_H)
21 #define VALUE_H 1
23 #include "frame.h"
24 #include "extension.h"
25 #include "gdbsupport/gdb_ref_ptr.h"
26 #include "gmp-utils.h"
28 struct block;
29 struct expression;
30 struct regcache;
31 struct symbol;
32 struct type;
33 struct ui_file;
34 struct language_defn;
35 struct value_print_options;
37 /* Values can be partially 'optimized out' and/or 'unavailable'.
38 These are distinct states and have different string representations
39 and related error strings.
41 'unavailable' has a specific meaning in this context. It means the
42 value exists in the program (at the machine level), but GDB has no
43 means to get to it. Such a value is normally printed as
44 <unavailable>. Examples of how to end up with an unavailable value
45 would be:
47 - We're inspecting a traceframe, and the memory or registers the
48 debug information says the value lives on haven't been collected.
50 - We're inspecting a core dump, the memory or registers the debug
51 information says the value lives aren't present in the dump
52 (that is, we have a partial/trimmed core dump, or we don't fully
53 understand/handle the core dump's format).
55 - We're doing live debugging, but the debug API has no means to
56 get at where the value lives in the machine, like e.g., ptrace
57 not having access to some register or register set.
59 - Any other similar scenario.
61 OTOH, "optimized out" is about what the compiler decided to generate
62 (or not generate). A chunk of a value that was optimized out does
63 not actually exist in the program. There's no way to get at it
64 short of compiling the program differently.
66 A register that has not been saved in a frame is likewise considered
67 optimized out, except not-saved registers have a different string
68 representation and related error strings. E.g., we'll print them as
69 <not-saved> instead of <optimized out>, as in:
71 (gdb) p/x $rax
72 $1 = <not saved>
73 (gdb) info registers rax
74 rax <not saved>
76 If the debug info describes a variable as being in such a register,
77 we'll still print the variable as <optimized out>. IOW, <not saved>
78 is reserved for inspecting registers at the machine level.
80 When comparing value contents, optimized out chunks, unavailable
81 chunks, and valid contents data are all considered different. See
82 value_contents_eq for more info.
85 extern bool overload_resolution;
87 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
89 struct range
91 /* Lowest offset in the range. */
92 LONGEST offset;
94 /* Length of the range. */
95 ULONGEST length;
97 /* Returns true if THIS is strictly less than OTHER, useful for
98 searching. We keep ranges sorted by offset and coalesce
99 overlapping and contiguous ranges, so this just compares the
100 starting offset. */
102 bool operator< (const range &other) const
104 return offset < other.offset;
107 /* Returns true if THIS is equal to OTHER. */
108 bool operator== (const range &other) const
110 return offset == other.offset && length == other.length;
114 /* A policy class to interface gdb::ref_ptr with struct value. */
116 struct value_ref_policy
118 static void incref (struct value *ptr);
119 static void decref (struct value *ptr);
122 /* A gdb:;ref_ptr pointer to a struct value. */
124 typedef gdb::ref_ptr<struct value, value_ref_policy> value_ref_ptr;
126 /* Note that the fields in this structure are arranged to save a bit
127 of memory. */
129 struct value
131 private:
133 /* Values can only be created via "static constructors". */
134 explicit value (struct type *type_)
135 : m_modifiable (true),
136 m_lazy (true),
137 m_initialized (true),
138 m_stack (false),
139 m_is_zero (false),
140 m_in_history (false),
141 m_type (type_),
142 m_enclosing_type (type_)
146 /* Values can only be destroyed via the reference-counting
147 mechanism. */
148 ~value ();
150 DISABLE_COPY_AND_ASSIGN (value);
152 public:
154 /* Allocate a lazy value for type TYPE. Its actual content is
155 "lazily" allocated too: the content field of the return value is
156 NULL; it will be allocated when it is fetched from the target. */
157 static struct value *allocate_lazy (struct type *type);
159 /* Allocate a value and its contents for type TYPE. */
160 static struct value *allocate (struct type *type);
162 /* Allocate a lazy value representing register REGNUM in the frame previous
163 to NEXT_FRAME. If TYPE is non-nullptr, use it as the value type.
164 Otherwise, use `register_type` to obtain the type. */
165 static struct value *allocate_register_lazy (const frame_info_ptr &next_frame,
166 int regnum,
167 type *type = nullptr);
169 /* Same as `allocate_register_lazy`, but make the value non-lazy.
171 The caller is responsible for filling the value's contents. */
172 static struct value *allocate_register (const frame_info_ptr &next_frame,
173 int regnum, type *type = nullptr);
175 /* Create a computed lvalue, with type TYPE, function pointers
176 FUNCS, and closure CLOSURE. */
177 static struct value *allocate_computed (struct type *type,
178 const struct lval_funcs *funcs,
179 void *closure);
181 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
182 static struct value *allocate_optimized_out (struct type *type);
184 /* Create a value of type TYPE that is zero, and return it. */
185 static struct value *zero (struct type *type, enum lval_type lv);
187 /* Return a copy of the value. It contains the same contents, for
188 the same memory address, but it's a different block of
189 storage. */
190 struct value *copy () const;
192 /* Type of the value. */
193 struct type *type () const
194 { return m_type; }
196 /* This is being used to change the type of an existing value, that
197 code should instead be creating a new value with the changed type
198 (but possibly shared content). */
199 void deprecated_set_type (struct type *type)
200 { m_type = type; }
202 /* Return the gdbarch associated with the value. */
203 struct gdbarch *arch () const;
205 /* Only used for bitfields; number of bits contained in them. */
206 LONGEST bitsize () const
207 { return m_bitsize; }
209 void set_bitsize (LONGEST bit)
210 { m_bitsize = bit; }
212 /* Only used for bitfields; position of start of field. For
213 little-endian targets, it is the position of the LSB. For
214 big-endian targets, it is the position of the MSB. */
215 LONGEST bitpos () const
216 { return m_bitpos; }
218 void set_bitpos (LONGEST bit)
219 { m_bitpos = bit; }
221 /* Only used for bitfields; the containing value. This allows a
222 single read from the target when displaying multiple
223 bitfields. */
224 value *parent () const
225 { return m_parent.get (); }
227 void set_parent (struct value *parent)
228 { m_parent = value_ref_ptr::new_reference (parent); }
230 /* Describes offset of a value within lval of a structure in bytes.
231 If lval == lval_memory, this is an offset to the address. If
232 lval == lval_register, this is a further offset from
233 location.address within the registers structure. Note also the
234 member embedded_offset below. */
235 LONGEST offset () const
236 { return m_offset; }
238 void set_offset (LONGEST offset)
239 { m_offset = offset; }
241 /* The comment from "struct value" reads: ``Is it modifiable? Only
242 relevant if lval != not_lval.''. Shouldn't the value instead be
243 not_lval and be done with it? */
244 bool deprecated_modifiable () const
245 { return m_modifiable; }
247 /* Set or clear the modifiable flag. */
248 void set_modifiable (bool val)
249 { m_modifiable = val; }
251 LONGEST pointed_to_offset () const
252 { return m_pointed_to_offset; }
254 void set_pointed_to_offset (LONGEST val)
255 { m_pointed_to_offset = val; }
257 LONGEST embedded_offset () const
258 { return m_embedded_offset; }
260 void set_embedded_offset (LONGEST val)
261 { m_embedded_offset = val; }
263 /* If false, contents of this value are in the contents field. If
264 true, contents are in inferior. If the lval field is lval_memory,
265 the contents are in inferior memory at location.address plus offset.
266 The lval field may also be lval_register.
268 WARNING: This field is used by the code which handles watchpoints
269 (see breakpoint.c) to decide whether a particular value can be
270 watched by hardware watchpoints. If the lazy flag is set for some
271 member of a value chain, it is assumed that this member of the
272 chain doesn't need to be watched as part of watching the value
273 itself. This is how GDB avoids watching the entire struct or array
274 when the user wants to watch a single struct member or array
275 element. If you ever change the way lazy flag is set and reset, be
276 sure to consider this use as well! */
278 bool lazy () const
279 { return m_lazy; }
281 void set_lazy (bool val)
282 { m_lazy = val; }
284 /* If a value represents a C++ object, then the `type' field gives the
285 object's compile-time type. If the object actually belongs to some
286 class derived from `type', perhaps with other base classes and
287 additional members, then `type' is just a subobject of the real
288 thing, and the full object is probably larger than `type' would
289 suggest.
291 If `type' is a dynamic class (i.e. one with a vtable), then GDB can
292 actually determine the object's run-time type by looking at the
293 run-time type information in the vtable. When this information is
294 available, we may elect to read in the entire object, for several
295 reasons:
297 - When printing the value, the user would probably rather see the
298 full object, not just the limited portion apparent from the
299 compile-time type.
301 - If `type' has virtual base classes, then even printing `type'
302 alone may require reaching outside the `type' portion of the
303 object to wherever the virtual base class has been stored.
305 When we store the entire object, `enclosing_type' is the run-time
306 type -- the complete object -- and `embedded_offset' is the offset
307 of `type' within that larger type, in bytes. The contents()
308 method takes `embedded_offset' into account, so most GDB code
309 continues to see the `type' portion of the value, just as the
310 inferior would.
312 If `type' is a pointer to an object, then `enclosing_type' is a
313 pointer to the object's run-time type, and `pointed_to_offset' is
314 the offset in bytes from the full object to the pointed-to object
315 -- that is, the value `embedded_offset' would have if we followed
316 the pointer and fetched the complete object. (I don't really see
317 the point. Why not just determine the run-time type when you
318 indirect, and avoid the special case? The contents don't matter
319 until you indirect anyway.)
321 If we're not doing anything fancy, `enclosing_type' is equal to
322 `type', and `embedded_offset' is zero, so everything works
323 normally. */
325 struct type *enclosing_type () const
326 { return m_enclosing_type; }
328 void set_enclosing_type (struct type *new_type);
330 bool stack () const
331 { return m_stack; }
333 void set_stack (bool val)
334 { m_stack = val; }
336 /* If this value is lval_computed, return its lval_funcs
337 structure. */
338 const struct lval_funcs *computed_funcs () const;
340 /* If this value is lval_computed, return its closure. The meaning
341 of the returned value depends on the functions this value
342 uses. */
343 void *computed_closure () const;
345 enum lval_type lval () const
346 { return m_lval; }
348 /* Set the 'lval' of this value. */
349 void set_lval (lval_type val)
350 { m_lval = val; }
352 /* Set or return field indicating whether a variable is initialized or
353 not, based on debugging information supplied by the compiler.
354 true = initialized; false = uninitialized. */
355 bool initialized () const
356 { return m_initialized; }
358 void set_initialized (bool value)
359 { m_initialized = value; }
361 /* If lval == lval_memory, return the address in the inferior. If
362 lval == lval_register, return the byte offset into the registers
363 structure. Otherwise, return 0. The returned address
364 includes the offset, if any. */
365 CORE_ADDR address () const;
367 /* Like address, except the result does not include value's
368 offset. */
369 CORE_ADDR raw_address () const;
371 /* Set the address of a value. */
372 void set_address (CORE_ADDR);
374 struct internalvar **deprecated_internalvar_hack ()
375 { return &m_location.internalvar; }
377 /* Return this value's next frame id.
379 The value must be of lval == lval_register. */
380 frame_id next_frame_id ()
382 gdb_assert (m_lval == lval_register);
384 return m_location.reg.next_frame_id;
387 /* Return this value's register number.
389 The value must be of lval == lval_register. */
390 int regnum ()
392 gdb_assert (m_lval == lval_register);
394 return m_location.reg.regnum;
398 /* contents() and contents_raw() both return the address of the gdb
399 buffer used to hold a copy of the contents of the lval.
400 contents() is used when the contents of the buffer are needed --
401 it uses fetch_lazy() to load the buffer from the process being
402 debugged if it hasn't already been loaded (contents_writeable()
403 is used when a writeable but fetched buffer is required)..
404 contents_raw() is used when data is being stored into the buffer,
405 or when it is certain that the contents of the buffer are valid.
407 Note: The contents pointer is adjusted by the offset required to
408 get to the real subobject, if the value happens to represent
409 something embedded in a larger run-time object. */
410 gdb::array_view<gdb_byte> contents_raw ();
412 /* Actual contents of the value. For use of this value; setting it
413 uses the stuff above. Not valid if lazy is nonzero. Target
414 byte-order. We force it to be aligned properly for any possible
415 value. Note that a value therefore extends beyond what is
416 declared here. */
417 gdb::array_view<const gdb_byte> contents ();
419 /* The ALL variants of the above two methods do not adjust the
420 returned pointer by the embedded_offset value. */
421 gdb::array_view<const gdb_byte> contents_all ();
422 gdb::array_view<gdb_byte> contents_all_raw ();
424 gdb::array_view<gdb_byte> contents_writeable ();
426 /* Like contents_all, but does not require that the returned bits be
427 valid. This should only be used in situations where you plan to
428 check the validity manually. */
429 gdb::array_view<const gdb_byte> contents_for_printing ();
431 /* Like contents_for_printing, but accepts a constant value pointer.
432 Unlike contents_for_printing however, the pointed value must
433 _not_ be lazy. */
434 gdb::array_view<const gdb_byte> contents_for_printing () const;
436 /* Load the actual content of a lazy value. Fetch the data from the
437 user's process and clear the lazy flag to indicate that the data in
438 the buffer is valid.
440 If the value is zero-length, we avoid calling read_memory, which
441 would abort. We mark the value as fetched anyway -- all 0 bytes of
442 it. */
443 void fetch_lazy ();
445 /* Compare LENGTH bytes of this value's contents starting at OFFSET1
446 with LENGTH bytes of VAL2's contents starting at OFFSET2.
448 Note that "contents" refers to the whole value's contents
449 (value_contents_all), without any embedded offset adjustment. For
450 example, to compare a complete object value with itself, including
451 its enclosing type chunk, you'd do:
453 int len = check_typedef (val->enclosing_type ())->length ();
454 val->contents_eq (0, val, 0, len);
456 Returns true iff the set of available/valid contents match.
458 Optimized-out contents are equal to optimized-out contents, and are
459 not equal to non-optimized-out contents.
461 Unavailable contents are equal to unavailable contents, and are not
462 equal to non-unavailable contents.
464 For example, if 'x's represent an unavailable byte, and 'V' and 'Z'
465 represent different available/valid bytes, in a value with length
468 offset: 0 4 8 12 16
469 contents: xxxxVVVVxxxxVVZZ
471 then:
473 val->contents_eq(0, val, 8, 6) => true
474 val->contents_eq(0, val, 4, 4) => false
475 val->contents_eq(0, val, 8, 8) => false
476 val->contents_eq(4, val, 12, 2) => true
477 val->contents_eq(4, val, 12, 4) => true
478 val->contents_eq(3, val, 4, 4) => true
480 If 'x's represent an unavailable byte, 'o' represents an optimized
481 out byte, in a value with length 8:
483 offset: 0 4 8
484 contents: xxxxoooo
486 then:
488 val->contents_eq(0, val, 2, 2) => true
489 val->contents_eq(4, val, 6, 2) => true
490 val->contents_eq(0, val, 4, 4) => true
492 We only know whether a value chunk is unavailable or optimized out
493 if we've tried to read it. As this routine is used by printing
494 routines, which may be printing values in the value history, long
495 after the inferior is gone, it works with const values. Therefore,
496 this routine must not be called with lazy values. */
498 bool contents_eq (LONGEST offset1, const struct value *val2, LONGEST offset2,
499 LONGEST length) const;
501 /* An overload of contents_eq that compares the entirety of both
502 values. */
503 bool contents_eq (const struct value *val2) const;
505 /* Given a value, determine whether the bits starting at OFFSET and
506 extending for LENGTH bits are a synthetic pointer. */
508 bool bits_synthetic_pointer (LONGEST offset, LONGEST length) const;
510 /* Increase this value's reference count. */
511 void incref ()
512 { ++m_reference_count; }
514 /* Decrease this value's reference count. When the reference count
515 drops to 0, it will be freed. */
516 void decref ();
518 /* Given a value, determine whether the contents bytes starting at
519 OFFSET and extending for LENGTH bytes are available. This returns
520 true if all bytes in the given range are available, false if any
521 byte is unavailable. */
522 bool bytes_available (LONGEST offset, ULONGEST length) const;
524 /* Given a value, determine whether the contents bits starting at
525 OFFSET and extending for LENGTH bits are available. This returns
526 true if all bits in the given range are available, false if any
527 bit is unavailable. */
528 bool bits_available (LONGEST offset, ULONGEST length) const;
530 /* Like bytes_available, but return false if any byte in the
531 whole object is unavailable. */
532 bool entirely_available ();
534 /* Like entirely_available, but return false if any byte in the
535 whole object is available. */
536 bool entirely_unavailable ()
537 { return entirely_covered_by_range_vector (m_unavailable); }
539 /* Mark this value's content bytes starting at OFFSET and extending
540 for LENGTH bytes as unavailable. */
541 void mark_bytes_unavailable (LONGEST offset, ULONGEST length);
543 /* Mark this value's content bits starting at OFFSET and extending
544 for LENGTH bits as unavailable. */
545 void mark_bits_unavailable (LONGEST offset, ULONGEST length);
547 /* If true, this is the value of a variable which does not actually
548 exist in the program, at least partially. If the value is lazy,
549 this may fetch it now. */
550 bool optimized_out ();
552 /* Given a value, return true if any of the contents bits starting at
553 OFFSET and extending for LENGTH bits is optimized out, false
554 otherwise. */
555 bool bits_any_optimized_out (int bit_offset, int bit_length) const;
557 /* Like optimized_out, but return true iff the whole value is
558 optimized out. */
559 bool entirely_optimized_out ()
561 return entirely_covered_by_range_vector (m_optimized_out);
564 /* Mark this value's content bytes starting at OFFSET and extending
565 for LENGTH bytes as optimized out. */
566 void mark_bytes_optimized_out (int offset, int length);
568 /* Mark this value's content bits starting at OFFSET and extending
569 for LENGTH bits as optimized out. */
570 void mark_bits_optimized_out (LONGEST offset, LONGEST length);
572 /* Return a version of this that is non-lvalue. */
573 struct value *non_lval ();
575 /* Write contents of this value at ADDR and set its lval type to be
576 LVAL_MEMORY. */
577 void force_lval (CORE_ADDR);
579 /* Set this values's location as appropriate for a component of
580 WHOLE --- regardless of what kind of lvalue WHOLE is. */
581 void set_component_location (const struct value *whole);
583 /* Build a value wrapping and representing WORKER. The value takes
584 ownership of the xmethod_worker object. */
585 static struct value *from_xmethod (xmethod_worker_up &&worker);
587 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
588 struct type *result_type_of_xmethod (gdb::array_view<value *> argv);
590 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value
591 METHOD. */
592 struct value *call_xmethod (gdb::array_view<value *> argv);
594 /* Update this value before discarding OBJFILE. COPIED_TYPES is
595 used to prevent cycles / duplicates. */
596 void preserve (struct objfile *objfile, htab_t copied_types);
598 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object
599 at VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and
600 store the contents in DEST_VAL, zero or sign extending if the
601 type of DEST_VAL is wider than BITSIZE. VALADDR points to the
602 contents of this value. If this value's contents required to
603 extract the bitfield from are unavailable/optimized out, DEST_VAL
604 is correspondingly marked unavailable/optimized out. */
605 void unpack_bitfield (struct value *dest_val,
606 LONGEST bitpos, LONGEST bitsize,
607 const gdb_byte *valaddr, LONGEST embedded_offset)
608 const;
610 /* Copy LENGTH bytes of this value's (all) contents
611 (value_contents_all) starting at SRC_OFFSET byte, into DST
612 value's (all) contents, starting at DST_OFFSET. If unavailable
613 contents are being copied from this value, the corresponding DST
614 contents are marked unavailable accordingly. DST must not be
615 lazy. If this value is lazy, it will be fetched now.
617 It is assumed the contents of DST in the [DST_OFFSET,
618 DST_OFFSET+LENGTH) range are wholly available. */
619 void contents_copy (struct value *dst, LONGEST dst_offset,
620 LONGEST src_offset, LONGEST length);
622 /* Given a value (offset by OFFSET bytes)
623 of a struct or union type ARG_TYPE,
624 extract and return the value of one of its (non-static) fields.
625 FIELDNO says which field. */
626 struct value *primitive_field (LONGEST offset, int fieldno,
627 struct type *arg_type);
629 /* Create a new value by extracting it from this value. TYPE is the
630 type of the new value. BIT_OFFSET and BIT_LENGTH describe the
631 offset and field width of the value to extract from this value --
632 BIT_LENGTH may differ from TYPE's length in the case where this
633 value's type is packed.
635 When the value does come from a non-byte-aligned offset or field
636 width, it will be marked non_lval. */
637 struct value *from_component_bitsize (struct type *type,
638 LONGEST bit_offset,
639 LONGEST bit_length);
641 /* Record this value on the value history, and return its location
642 in the history. The value is removed from the value chain. */
643 int record_latest ();
645 private:
647 /* Type of value; either not an lval, or one of the various
648 different possible kinds of lval. */
649 enum lval_type m_lval = not_lval;
651 /* Is it modifiable? Only relevant if lval != not_lval. */
652 bool m_modifiable : 1;
654 /* If false, contents of this value are in the contents field. If
655 true, contents are in inferior. If the lval field is lval_memory,
656 the contents are in inferior memory at location.address plus offset.
657 The lval field may also be lval_register.
659 WARNING: This field is used by the code which handles watchpoints
660 (see breakpoint.c) to decide whether a particular value can be
661 watched by hardware watchpoints. If the lazy flag is set for
662 some member of a value chain, it is assumed that this member of
663 the chain doesn't need to be watched as part of watching the
664 value itself. This is how GDB avoids watching the entire struct
665 or array when the user wants to watch a single struct member or
666 array element. If you ever change the way lazy flag is set and
667 reset, be sure to consider this use as well! */
668 bool m_lazy : 1;
670 /* If value is a variable, is it initialized or not. */
671 bool m_initialized : 1;
673 /* If value is from the stack. If this is set, read_stack will be
674 used instead of read_memory to enable extra caching. */
675 bool m_stack : 1;
677 /* True if this is a zero value, created by 'value::zero'; false
678 otherwise. */
679 bool m_is_zero : 1;
681 /* True if this a value recorded in value history; false otherwise. */
682 bool m_in_history : 1;
684 /* Location of value (if lval). */
685 union
687 /* If lval == lval_memory, this is the address in the inferior */
688 CORE_ADDR address;
690 /*If lval == lval_register, the value is from a register. */
691 struct
693 /* Register number. */
694 int regnum;
696 /* Frame ID of the next physical (non-inline) frame to which a register
697 value is relative. */
698 frame_id next_frame_id;
699 } reg;
701 /* Pointer to internal variable. */
702 struct internalvar *internalvar;
704 /* Pointer to xmethod worker. */
705 struct xmethod_worker *xm_worker;
707 /* If lval == lval_computed, this is a set of function pointers
708 to use to access and describe the value, and a closure pointer
709 for them to use. */
710 struct
712 /* Functions to call. */
713 const struct lval_funcs *funcs;
715 /* Closure for those functions to use. */
716 void *closure;
717 } computed;
718 } m_location {};
720 /* Describes offset of a value within lval of a structure in target
721 addressable memory units. Note also the member embedded_offset
722 below. */
723 LONGEST m_offset = 0;
725 /* Only used for bitfields; number of bits contained in them. */
726 LONGEST m_bitsize = 0;
728 /* Only used for bitfields; position of start of field. For
729 little-endian targets, it is the position of the LSB. For
730 big-endian targets, it is the position of the MSB. */
731 LONGEST m_bitpos = 0;
733 /* The number of references to this value. When a value is created,
734 the value chain holds a reference, so REFERENCE_COUNT is 1. If
735 release_value is called, this value is removed from the chain but
736 the caller of release_value now has a reference to this value.
737 The caller must arrange for a call to value_free later. */
738 int m_reference_count = 1;
740 /* Only used for bitfields; the containing value. This allows a
741 single read from the target when displaying multiple
742 bitfields. */
743 value_ref_ptr m_parent;
745 /* Type of the value. */
746 struct type *m_type;
748 /* If a value represents a C++ object, then the `type' field gives
749 the object's compile-time type. If the object actually belongs
750 to some class derived from `type', perhaps with other base
751 classes and additional members, then `type' is just a subobject
752 of the real thing, and the full object is probably larger than
753 `type' would suggest.
755 If `type' is a dynamic class (i.e. one with a vtable), then GDB
756 can actually determine the object's run-time type by looking at
757 the run-time type information in the vtable. When this
758 information is available, we may elect to read in the entire
759 object, for several reasons:
761 - When printing the value, the user would probably rather see the
762 full object, not just the limited portion apparent from the
763 compile-time type.
765 - If `type' has virtual base classes, then even printing `type'
766 alone may require reaching outside the `type' portion of the
767 object to wherever the virtual base class has been stored.
769 When we store the entire object, `enclosing_type' is the run-time
770 type -- the complete object -- and `embedded_offset' is the
771 offset of `type' within that larger type, in target addressable memory
772 units. The contents() method takes `embedded_offset' into account,
773 so most GDB code continues to see the `type' portion of the value, just
774 as the inferior would.
776 If `type' is a pointer to an object, then `enclosing_type' is a
777 pointer to the object's run-time type, and `pointed_to_offset' is
778 the offset in target addressable memory units from the full object
779 to the pointed-to object -- that is, the value `embedded_offset' would
780 have if we followed the pointer and fetched the complete object.
781 (I don't really see the point. Why not just determine the
782 run-time type when you indirect, and avoid the special case? The
783 contents don't matter until you indirect anyway.)
785 If we're not doing anything fancy, `enclosing_type' is equal to
786 `type', and `embedded_offset' is zero, so everything works
787 normally. */
788 struct type *m_enclosing_type;
789 LONGEST m_embedded_offset = 0;
790 LONGEST m_pointed_to_offset = 0;
792 /* Actual contents of the value. Target byte-order.
794 May be nullptr if the value is lazy or is entirely optimized out.
795 Guaranteed to be non-nullptr otherwise. */
796 gdb::unique_xmalloc_ptr<gdb_byte> m_contents;
798 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
799 rather than available, since the common and default case is for a
800 value to be available. This is filled in at value read time.
801 The unavailable ranges are tracked in bits. Note that a contents
802 bit that has been optimized out doesn't really exist in the
803 program, so it can't be marked unavailable either. */
804 std::vector<range> m_unavailable;
806 /* Likewise, but for optimized out contents (a chunk of the value of
807 a variable that does not actually exist in the program). If LVAL
808 is lval_register, this is a register ($pc, $sp, etc., never a
809 program variable) that has not been saved in the frame. Not
810 saved registers and optimized-out program variables values are
811 treated pretty much the same, except not-saved registers have a
812 different string representation and related error strings. */
813 std::vector<range> m_optimized_out;
815 /* This is only non-zero for values of TYPE_CODE_ARRAY and if the size of
816 the array in inferior memory is greater than max_value_size. If these
817 conditions are met then, when the value is loaded from the inferior
818 GDB will only load a portion of the array into memory, and
819 limited_length will be set to indicate the length in octets that were
820 loaded from the inferior. */
821 ULONGEST m_limited_length = 0;
823 /* Allocate a value and its contents for type TYPE. If CHECK_SIZE
824 is true, then apply the usual max-value-size checks. */
825 static struct value *allocate (struct type *type, bool check_size);
827 /* Helper for fetch_lazy when the value is a bitfield. */
828 void fetch_lazy_bitfield ();
830 /* Helper for fetch_lazy when the value is in memory. */
831 void fetch_lazy_memory ();
833 /* Helper for fetch_lazy when the value is in a register. */
834 void fetch_lazy_register ();
836 /* Try to limit ourselves to only fetching the limited number of
837 elements. However, if this limited number of elements still
838 puts us over max_value_size, then we still refuse it and
839 return failure here, which will ultimately throw an error. */
840 bool set_limited_array_length ();
842 /* Allocate the contents of this value if it has not been allocated
843 yet. If CHECK_SIZE is true, then apply the usual max-value-size
844 checks. */
845 void allocate_contents (bool check_size);
847 /* Helper function for value_contents_eq. The only difference is that
848 this function is bit rather than byte based.
850 Compare LENGTH bits of this value's contents starting at OFFSET1
851 bits with LENGTH bits of VAL2's contents starting at OFFSET2
852 bits. Return true if the available bits match. */
853 bool contents_bits_eq (int offset1, const struct value *val2, int offset2,
854 int length) const;
856 void require_not_optimized_out () const;
857 void require_available () const;
859 /* Returns true if this value is entirely covered by RANGES. If the
860 value is lazy, it'll be read now. Note that RANGE is a pointer
861 to pointer because reading the value might change *RANGE. */
862 bool entirely_covered_by_range_vector (const std::vector<range> &ranges);
864 /* Copy the ranges metadata from this value that overlaps
865 [SRC_BIT_OFFSET, SRC_BIT_OFFSET+BIT_LENGTH) into DST,
866 adjusted. */
867 void ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
868 int src_bit_offset, int bit_length) const;
870 /* Copy LENGTH target addressable memory units of this value's (all)
871 contents (value_contents_all) starting at SRC_OFFSET, into DST
872 value's (all) contents, starting at DST_OFFSET. If unavailable
873 contents are being copied from this, the corresponding DST
874 contents are marked unavailable accordingly. Neither DST nor
875 this value may be lazy values.
877 It is assumed the contents of DST in the [DST_OFFSET,
878 DST_OFFSET+LENGTH) range are wholly available. */
879 void contents_copy_raw (struct value *dst, LONGEST dst_offset,
880 LONGEST src_offset, LONGEST length);
882 /* A helper for value_from_component_bitsize that copies bits from
883 this value to DEST. */
884 void contents_copy_raw_bitwise (struct value *dst, LONGEST dst_bit_offset,
885 LONGEST src_bit_offset, LONGEST bit_length);
888 inline void
889 value_ref_policy::incref (struct value *ptr)
891 ptr->incref ();
894 inline void
895 value_ref_policy::decref (struct value *ptr)
897 ptr->decref ();
900 /* Returns value_type or value_enclosing_type depending on
901 value_print_options.objectprint.
903 If RESOLVE_SIMPLE_TYPES is 0 the enclosing type will be resolved
904 only for pointers and references, else it will be returned
905 for all the types (e.g. structures). This option is useful
906 to prevent retrieving enclosing type for the base classes fields.
908 REAL_TYPE_FOUND is used to inform whether the real type was found
909 (or just static type was used). The NULL may be passed if it is not
910 necessary. */
912 extern struct type *value_actual_type (struct value *value,
913 int resolve_simple_types,
914 int *real_type_found);
916 /* For lval_computed values, this structure holds functions used to
917 retrieve and set the value (or portions of the value).
919 For each function, 'V' is the 'this' pointer: an lval_funcs
920 function F may always assume that the V it receives is an
921 lval_computed value, and has F in the appropriate slot of its
922 lval_funcs structure. */
924 struct lval_funcs
926 /* Fill in VALUE's contents. This is used to "un-lazy" values. If
927 a problem arises in obtaining VALUE's bits, this function should
928 call 'error'. If it is NULL value_fetch_lazy on "un-lazy"
929 non-optimized-out value is an internal error. */
930 void (*read) (struct value *v);
932 /* Handle an assignment TOVAL = FROMVAL by writing the value of
933 FROMVAL to TOVAL's location. The contents of TOVAL have not yet
934 been updated. If a problem arises in doing so, this function
935 should call 'error'. If it is NULL such TOVAL assignment is an error as
936 TOVAL is not considered as an lvalue. */
937 void (*write) (struct value *toval, struct value *fromval);
939 /* Return true if any part of V is optimized out, false otherwise.
940 This will only be called for lazy values -- if the value has been
941 fetched, then the value's optimized-out bits are consulted
942 instead. */
943 bool (*is_optimized_out) (struct value *v);
945 /* If non-NULL, this is used to implement pointer indirection for
946 this value. This method may return NULL, in which case value_ind
947 will fall back to ordinary indirection. */
948 struct value *(*indirect) (struct value *value);
950 /* If non-NULL, this is used to implement reference resolving for
951 this value. This method may return NULL, in which case coerce_ref
952 will fall back to ordinary references resolving. */
953 struct value *(*coerce_ref) (const struct value *value);
955 /* If non-NULL, this is used to determine whether the indicated bits
956 of VALUE are a synthetic pointer. */
957 bool (*check_synthetic_pointer) (const struct value *value,
958 LONGEST offset, int length);
960 /* Return a duplicate of VALUE's closure, for use in a new value.
961 This may simply return the same closure, if VALUE's is
962 reference-counted or statically allocated.
964 This may be NULL, in which case VALUE's closure is re-used in the
965 new value. */
966 void *(*copy_closure) (const struct value *v);
968 /* Drop VALUE's reference to its closure. Maybe this frees the
969 closure; maybe this decrements a reference count; maybe the
970 closure is statically allocated and this does nothing.
972 This may be NULL, in which case no action is taken to free
973 VALUE's closure. */
974 void (*free_closure) (struct value *v);
977 /* Throw an error complaining that the value has been optimized
978 out. */
980 extern void error_value_optimized_out (void);
982 /* Pointer to internal variable. */
983 #define VALUE_INTERNALVAR(val) (*((val)->deprecated_internalvar_hack ()))
985 /* Return value after lval_funcs->coerce_ref (after check_typedef). Return
986 NULL if lval_funcs->coerce_ref is not applicable for whatever reason. */
988 extern struct value *coerce_ref_if_computed (const struct value *arg);
990 /* Setup a new value type and enclosing value type for dereferenced value VALUE.
991 ENC_TYPE is the new enclosing type that should be set. ORIGINAL_TYPE and
992 ORIGINAL_VAL are the type and value of the original reference or
993 pointer. ORIGINAL_VALUE_ADDRESS is the address within VALUE, that is
994 the address that was dereferenced.
996 Note, that VALUE is modified by this function.
998 It is a common implementation for coerce_ref and value_ind. */
1000 extern struct value * readjust_indirect_value_type (struct value *value,
1001 struct type *enc_type,
1002 const struct type *original_type,
1003 struct value *original_val,
1004 CORE_ADDR original_value_address);
1006 /* Convert a REF to the object referenced. */
1008 extern struct value *coerce_ref (struct value *value);
1010 /* If ARG is an array, convert it to a pointer.
1011 If ARG is a function, convert it to a function pointer.
1013 References are dereferenced. */
1015 extern struct value *coerce_array (struct value *value);
1017 /* Read LENGTH addressable memory units starting at MEMADDR into BUFFER,
1018 which is (or will be copied to) VAL's contents buffer offset by
1019 BIT_OFFSET bits. Marks value contents ranges as unavailable if
1020 the corresponding memory is likewise unavailable. STACK indicates
1021 whether the memory is known to be stack memory. */
1023 extern void read_value_memory (struct value *val, LONGEST bit_offset,
1024 bool stack, CORE_ADDR memaddr,
1025 gdb_byte *buffer, size_t length);
1027 /* Cast SCALAR_VALUE to the element type of VECTOR_TYPE, then replicate
1028 into each element of a new vector value with VECTOR_TYPE. */
1030 struct value *value_vector_widen (struct value *scalar_value,
1031 struct type *vector_type);
1035 #include "symtab.h"
1036 #include "gdbtypes.h"
1037 #include "expression.h"
1039 class frame_info_ptr;
1040 struct fn_field;
1042 extern int print_address_demangle (const struct value_print_options *,
1043 struct gdbarch *, CORE_ADDR,
1044 struct ui_file *, int);
1046 /* Returns true if VAL is of floating-point type. In addition,
1047 throws an error if the value is an invalid floating-point value. */
1048 extern bool is_floating_value (struct value *val);
1050 extern LONGEST value_as_long (struct value *val);
1051 extern CORE_ADDR value_as_address (struct value *val);
1053 /* Extract the value from VAL as a MPZ. This coerces arrays and
1054 handles various integer-like types as well. */
1056 extern gdb_mpz value_as_mpz (struct value *val);
1058 extern LONGEST unpack_long (struct type *type, const gdb_byte *valaddr);
1059 extern CORE_ADDR unpack_pointer (struct type *type, const gdb_byte *valaddr);
1061 extern LONGEST unpack_field_as_long (struct type *type,
1062 const gdb_byte *valaddr,
1063 int fieldno);
1065 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
1066 VALADDR, and store the result in *RESULT.
1067 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
1068 BITSIZE is zero, then the length is taken from FIELD_TYPE.
1070 Extracting bits depends on endianness of the machine. Compute the
1071 number of least significant bits to discard. For big endian machines,
1072 we compute the total number of bits in the anonymous object, subtract
1073 off the bit count from the MSB of the object to the MSB of the
1074 bitfield, then the size of the bitfield, which leaves the LSB discard
1075 count. For little endian machines, the discard count is simply the
1076 number of bits from the LSB of the anonymous object to the LSB of the
1077 bitfield.
1079 If the field is signed, we also do sign extension. */
1081 extern LONGEST unpack_bits_as_long (struct type *field_type,
1082 const gdb_byte *valaddr,
1083 LONGEST bitpos, LONGEST bitsize);
1085 extern int unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
1086 LONGEST embedded_offset, int fieldno,
1087 const struct value *val, LONGEST *result);
1089 extern struct value *value_field_bitfield (struct type *type, int fieldno,
1090 const gdb_byte *valaddr,
1091 LONGEST embedded_offset,
1092 const struct value *val);
1094 extern void pack_long (gdb_byte *buf, struct type *type, LONGEST num);
1096 extern struct value *value_from_longest (struct type *type, LONGEST num);
1097 extern struct value *value_from_ulongest (struct type *type, ULONGEST num);
1098 extern struct value *value_from_pointer (struct type *type, CORE_ADDR addr);
1099 extern struct value *value_from_host_double (struct type *type, double d);
1100 extern struct value *value_from_history_ref (const char *, const char **);
1101 extern struct value *value_from_component (struct value *, struct type *,
1102 LONGEST);
1104 /* Convert the value V into a newly allocated value. */
1105 extern struct value *value_from_mpz (struct type *type, const gdb_mpz &v);
1107 extern struct value *value_at (struct type *type, CORE_ADDR addr);
1109 /* Return a new value given a type and an address. The new value is
1110 lazy. If FRAME is given, it is used when resolving dynamic
1111 properties. */
1113 extern struct value *value_at_lazy (struct type *type, CORE_ADDR addr,
1114 const frame_info_ptr &frame = nullptr);
1116 /* Like value_at, but ensures that the result is marked not_lval.
1117 This can be important if the memory is "volatile". */
1118 extern struct value *value_at_non_lval (struct type *type, CORE_ADDR addr);
1120 extern struct value *value_from_contents_and_address_unresolved
1121 (struct type *, const gdb_byte *, CORE_ADDR);
1122 extern struct value *value_from_contents_and_address
1123 (struct type *, const gdb_byte *, CORE_ADDR,
1124 const frame_info_ptr &frame = nullptr);
1125 extern struct value *value_from_contents (struct type *, const gdb_byte *);
1127 extern value *default_value_from_register (gdbarch *gdbarch, type *type,
1128 int regnum,
1129 const frame_info_ptr &this_frame);
1131 extern struct value *value_from_register (struct type *type, int regnum,
1132 const frame_info_ptr &frame);
1134 extern CORE_ADDR address_from_register (int regnum,
1135 const frame_info_ptr &frame);
1137 extern struct value *value_of_variable (struct symbol *var,
1138 const struct block *b);
1140 extern struct value *address_of_variable (struct symbol *var,
1141 const struct block *b);
1143 /* Return a value with the contents of register REGNUM as found in the frame
1144 previous to NEXT_FRAME. */
1146 extern value *value_of_register (int regnum, const frame_info_ptr &next_frame);
1148 /* Same as the above, but the value is not fetched. */
1150 extern value *value_of_register_lazy (const frame_info_ptr &next_frame, int regnum);
1152 /* Return the symbol's reading requirement. */
1154 extern enum symbol_needs_kind symbol_read_needs (struct symbol *);
1156 /* Return true if the symbol needs a frame. This is a wrapper for
1157 symbol_read_needs that simply checks for SYMBOL_NEEDS_FRAME. */
1159 extern int symbol_read_needs_frame (struct symbol *);
1161 extern struct value *read_var_value (struct symbol *var,
1162 const struct block *var_block,
1163 const frame_info_ptr &frame);
1165 extern struct value *allocate_repeat_value (struct type *type, int count);
1167 extern struct value *value_mark (void);
1169 extern void value_free_to_mark (const struct value *mark);
1171 /* A helper class that uses value_mark at construction time and calls
1172 value_free_to_mark in the destructor. This is used to clear out
1173 temporary values created during the lifetime of this object. */
1174 class scoped_value_mark
1176 public:
1178 scoped_value_mark ()
1179 : m_value (value_mark ())
1183 ~scoped_value_mark ()
1185 free_to_mark ();
1188 scoped_value_mark (scoped_value_mark &&other) = default;
1190 DISABLE_COPY_AND_ASSIGN (scoped_value_mark);
1192 /* Free the values currently on the value stack. */
1193 void free_to_mark ()
1195 if (!m_freed)
1197 value_free_to_mark (m_value);
1198 m_freed = true;
1202 private:
1204 const struct value *m_value;
1205 bool m_freed = false;
1208 /* Create not_lval value representing a NULL-terminated C string. The
1209 resulting value has type TYPE_CODE_ARRAY. The string passed in should
1210 not include embedded null characters.
1212 PTR points to the string data; COUNT is number of characters (does
1213 not include the NULL terminator) pointed to by PTR, each character is of
1214 type (and size of) CHAR_TYPE. */
1216 extern struct value *value_cstring (const gdb_byte *ptr, ssize_t count,
1217 struct type *char_type);
1219 /* Specialisation of value_cstring above. In this case PTR points to
1220 single byte characters. CHAR_TYPE must have a length of 1. */
1221 inline struct value *value_cstring (const char *ptr, ssize_t count,
1222 struct type *char_type)
1224 gdb_assert (char_type->length () == 1);
1225 return value_cstring ((const gdb_byte *) ptr, count, char_type);
1228 /* Create a not_lval value with type TYPE_CODE_STRING, the resulting value
1229 has type TYPE_CODE_STRING.
1231 PTR points to the string data; COUNT is number of characters pointed to
1232 by PTR, each character has the type (and size of) CHAR_TYPE.
1234 Note that string types are like array of char types with a lower bound
1235 defined by the language (usually zero or one). Also the string may
1236 contain embedded null characters. */
1238 extern struct value *value_string (const gdb_byte *ptr, ssize_t count,
1239 struct type *char_type);
1241 /* Specialisation of value_string above. In this case PTR points to
1242 single byte characters. CHAR_TYPE must have a length of 1. */
1243 inline struct value *value_string (const char *ptr, ssize_t count,
1244 struct type *char_type)
1246 gdb_assert (char_type->length () == 1);
1247 return value_string ((const gdb_byte *) ptr, count, char_type);
1250 extern struct value *value_array (int lowbound,
1251 gdb::array_view<struct value *> elemvec);
1253 extern struct value *value_concat (struct value *arg1, struct value *arg2);
1255 extern struct value *value_binop (struct value *arg1, struct value *arg2,
1256 enum exp_opcode op);
1258 extern struct value *value_ptradd (struct value *arg1, LONGEST arg2);
1260 extern LONGEST value_ptrdiff (struct value *arg1, struct value *arg2);
1262 /* Return true if VAL does not live in target memory, but should in order
1263 to operate on it. Otherwise return false. */
1265 extern bool value_must_coerce_to_target (struct value *arg1);
1267 extern struct value *value_coerce_to_target (struct value *arg1);
1269 extern struct value *value_coerce_array (struct value *arg1);
1271 extern struct value *value_coerce_function (struct value *arg1);
1273 extern struct value *value_ind (struct value *arg1);
1275 extern struct value *value_addr (struct value *arg1);
1277 extern struct value *value_ref (struct value *arg1, enum type_code refcode);
1279 extern struct value *value_assign (struct value *toval,
1280 struct value *fromval);
1282 /* The unary + operation. */
1283 extern struct value *value_pos (struct value *arg1);
1285 /* The unary - operation. */
1286 extern struct value *value_neg (struct value *arg1);
1288 /* The unary ~ operation -- but note that it also implements the GCC
1289 extension, where ~ of a complex number is the complex
1290 conjugate. */
1291 extern struct value *value_complement (struct value *arg1);
1293 extern struct value *value_struct_elt (struct value **argp,
1294 std::optional<gdb::array_view <value *>> args,
1295 const char *name, int *static_memfuncp,
1296 const char *err);
1298 extern struct value *value_struct_elt_bitpos (struct value **argp,
1299 int bitpos,
1300 struct type *field_type,
1301 const char *err);
1303 extern struct value *value_aggregate_elt (struct type *curtype,
1304 const char *name,
1305 struct type *expect_type,
1306 int want_address,
1307 enum noside noside);
1309 extern struct value *value_static_field (struct type *type, int fieldno);
1311 enum oload_search_type { NON_METHOD, METHOD, BOTH };
1313 extern int find_overload_match (gdb::array_view<value *> args,
1314 const char *name,
1315 enum oload_search_type method,
1316 struct value **objp, struct symbol *fsym,
1317 struct value **valp, struct symbol **symp,
1318 int *staticp, const int no_adl,
1319 enum noside noside);
1321 extern struct value *value_field (struct value *arg1, int fieldno);
1323 extern struct type *value_rtti_indirect_type (struct value *, int *, LONGEST *,
1324 int *);
1326 extern struct value *value_full_object (struct value *, struct type *, int,
1327 int, int);
1329 extern struct value *value_cast_pointers (struct type *, struct value *, int);
1331 extern struct value *value_cast (struct type *type, struct value *arg2);
1333 extern struct value *value_reinterpret_cast (struct type *type,
1334 struct value *arg);
1336 extern struct value *value_dynamic_cast (struct type *type, struct value *arg);
1338 extern struct value *value_one (struct type *type);
1340 extern struct value *value_repeat (struct value *arg1, int count);
1342 extern struct value *value_subscript (struct value *array, LONGEST index);
1344 /* Assuming VAL is array-like (see type::is_array_like), return an
1345 array form of VAL. */
1346 extern struct value *value_to_array (struct value *val);
1348 extern struct value *value_bitstring_subscript (struct type *type,
1349 struct value *bitstring,
1350 LONGEST index);
1352 extern struct value *register_value_being_returned (struct type *valtype,
1353 struct regcache *retbuf);
1355 extern int value_bit_index (struct type *type, const gdb_byte *addr,
1356 int index);
1358 extern enum return_value_convention
1359 struct_return_convention (struct gdbarch *gdbarch, struct value *function,
1360 struct type *value_type);
1362 extern int using_struct_return (struct gdbarch *gdbarch,
1363 struct value *function,
1364 struct type *value_type);
1366 extern value *evaluate_var_value (enum noside noside, const block *blk,
1367 symbol *var);
1369 extern value *evaluate_var_msym_value (enum noside noside,
1370 struct objfile *objfile,
1371 minimal_symbol *msymbol);
1373 namespace expr { class operation; };
1374 extern void fetch_subexp_value (struct expression *exp,
1375 expr::operation *op,
1376 struct value **valp, struct value **resultp,
1377 std::vector<value_ref_ptr> *val_chain,
1378 bool preserve_errors);
1380 extern struct value *parse_and_eval (const char *exp, parser_flags flags = 0);
1382 extern struct value *parse_to_comma_and_eval (const char **expp);
1384 extern struct type *parse_and_eval_type (const char *p, int length);
1386 extern CORE_ADDR parse_and_eval_address (const char *exp);
1388 extern LONGEST parse_and_eval_long (const char *exp);
1390 extern void unop_promote (const struct language_defn *language,
1391 struct gdbarch *gdbarch,
1392 struct value **arg1);
1394 extern void binop_promote (const struct language_defn *language,
1395 struct gdbarch *gdbarch,
1396 struct value **arg1, struct value **arg2);
1398 extern struct value *access_value_history (int num);
1400 /* Return the number of items in the value history. */
1402 extern ULONGEST value_history_count ();
1404 extern struct value *value_of_internalvar (struct gdbarch *gdbarch,
1405 struct internalvar *var);
1407 extern int get_internalvar_integer (struct internalvar *var, LONGEST *l);
1409 extern void set_internalvar (struct internalvar *var, struct value *val);
1411 extern void set_internalvar_integer (struct internalvar *var, LONGEST l);
1413 extern void set_internalvar_string (struct internalvar *var,
1414 const char *string);
1416 extern void clear_internalvar (struct internalvar *var);
1418 extern void set_internalvar_component (struct internalvar *var,
1419 LONGEST offset,
1420 LONGEST bitpos, LONGEST bitsize,
1421 struct value *newvalue);
1423 extern struct internalvar *lookup_only_internalvar (const char *name);
1425 extern struct internalvar *create_internalvar (const char *name);
1427 extern void complete_internalvar (completion_tracker &tracker,
1428 const char *name);
1430 /* An internalvar can be dynamically computed by supplying a vector of
1431 function pointers to perform various operations. */
1433 struct internalvar_funcs
1435 /* Compute the value of the variable. The DATA argument passed to
1436 the function is the same argument that was passed to
1437 `create_internalvar_type_lazy'. */
1439 struct value *(*make_value) (struct gdbarch *arch,
1440 struct internalvar *var,
1441 void *data);
1443 /* Update the agent expression EXPR with bytecode to compute the
1444 value. VALUE is the agent value we are updating. The DATA
1445 argument passed to this function is the same argument that was
1446 passed to `create_internalvar_type_lazy'. If this pointer is
1447 NULL, then the internalvar cannot be compiled to an agent
1448 expression. */
1450 void (*compile_to_ax) (struct internalvar *var,
1451 struct agent_expr *expr,
1452 struct axs_value *value,
1453 void *data);
1456 extern struct internalvar *create_internalvar_type_lazy (const char *name,
1457 const struct internalvar_funcs *funcs,
1458 void *data);
1460 /* Compile an internal variable to an agent expression. VAR is the
1461 variable to compile; EXPR and VALUE are the agent expression we are
1462 updating. This will return 0 if there is no known way to compile
1463 VAR, and 1 if VAR was successfully compiled. It may also throw an
1464 exception on error. */
1466 extern int compile_internalvar_to_ax (struct internalvar *var,
1467 struct agent_expr *expr,
1468 struct axs_value *value);
1470 extern struct internalvar *lookup_internalvar (const char *name);
1472 extern int value_equal (struct value *arg1, struct value *arg2);
1474 extern int value_equal_contents (struct value *arg1, struct value *arg2);
1476 extern int value_less (struct value *arg1, struct value *arg2);
1478 /* Simulate the C operator ! -- return true if ARG1 contains zero. */
1479 extern bool value_logical_not (struct value *arg1);
1481 /* Returns true if the value VAL represents a true value. */
1482 static inline bool
1483 value_true (struct value *val)
1485 return !value_logical_not (val);
1488 /* C++ */
1490 extern struct value *value_of_this (const struct language_defn *lang);
1492 extern struct value *value_of_this_silent (const struct language_defn *lang);
1494 extern struct value *value_x_binop (struct value *arg1, struct value *arg2,
1495 enum exp_opcode op,
1496 enum exp_opcode otherop,
1497 enum noside noside);
1499 extern struct value *value_x_unop (struct value *arg1, enum exp_opcode op,
1500 enum noside noside);
1502 extern struct value *value_fn_field (struct value **arg1p, struct fn_field *f,
1503 int j, struct type *type, LONGEST offset);
1505 extern int binop_types_user_defined_p (enum exp_opcode op,
1506 struct type *type1,
1507 struct type *type2);
1509 extern int binop_user_defined_p (enum exp_opcode op, struct value *arg1,
1510 struct value *arg2);
1512 extern int unop_user_defined_p (enum exp_opcode op, struct value *arg1);
1514 extern int destructor_name_p (const char *name, struct type *type);
1516 extern value_ref_ptr release_value (struct value *val);
1518 extern void modify_field (struct type *type, gdb_byte *addr,
1519 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize);
1521 extern void type_print (struct type *type, const char *varstring,
1522 struct ui_file *stream, int show);
1524 extern std::string type_to_string (struct type *type);
1526 extern gdb_byte *baseclass_addr (struct type *type, int index,
1527 gdb_byte *valaddr,
1528 struct value **valuep, int *errp);
1530 extern void print_longest (struct ui_file *stream, int format,
1531 int use_local, LONGEST val);
1533 extern void print_floating (const gdb_byte *valaddr, struct type *type,
1534 struct ui_file *stream);
1536 extern void value_print (struct value *val, struct ui_file *stream,
1537 const struct value_print_options *options);
1539 /* Release values from the value chain and return them. Values
1540 created after MARK are released. If MARK is nullptr, or if MARK is
1541 not found on the value chain, then all values are released. Values
1542 are returned in reverse order of creation; that is, newest
1543 first. */
1545 extern std::vector<value_ref_ptr> value_release_to_mark
1546 (const struct value *mark);
1548 extern void common_val_print (struct value *val,
1549 struct ui_file *stream, int recurse,
1550 const struct value_print_options *options,
1551 const struct language_defn *language);
1553 extern int val_print_string (struct type *elttype, const char *encoding,
1554 CORE_ADDR addr, int len,
1555 struct ui_file *stream,
1556 const struct value_print_options *options);
1558 extern void print_variable_and_value (const char *name,
1559 struct symbol *var,
1560 const frame_info_ptr &frame,
1561 struct ui_file *stream,
1562 int indent);
1564 extern void typedef_print (struct type *type, struct symbol *news,
1565 struct ui_file *stream);
1567 extern const char *internalvar_name (const struct internalvar *var);
1569 extern void preserve_values (struct objfile *);
1571 /* From values.c */
1573 extern struct value *make_cv_value (int, int, struct value *);
1575 /* From valops.c */
1577 extern struct value *varying_to_slice (struct value *);
1579 extern struct value *value_slice (struct value *, int, int);
1581 /* Create a complex number. The type is the complex type; the values
1582 are cast to the underlying scalar type before the complex number is
1583 created. */
1585 extern struct value *value_literal_complex (struct value *, struct value *,
1586 struct type *);
1588 /* Return the real part of a complex value. */
1590 extern struct value *value_real_part (struct value *value);
1592 /* Return the imaginary part of a complex value. */
1594 extern struct value *value_imaginary_part (struct value *value);
1596 extern struct value *find_function_in_inferior (const char *,
1597 struct objfile **);
1599 extern struct value *value_allocate_space_in_inferior (int);
1601 /* User function handler. */
1603 typedef struct value *(*internal_function_fn) (struct gdbarch *gdbarch,
1604 const struct language_defn *language,
1605 void *cookie,
1606 int argc,
1607 struct value **argv);
1609 /* Add a new internal function. NAME is the name of the function; DOC
1610 is a documentation string describing the function. HANDLER is
1611 called when the function is invoked. COOKIE is an arbitrary
1612 pointer which is passed to HANDLER and is intended for "user
1613 data". */
1615 extern void add_internal_function (const char *name, const char *doc,
1616 internal_function_fn handler,
1617 void *cookie);
1619 /* This overload takes an allocated documentation string. */
1621 extern void add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
1622 gdb::unique_xmalloc_ptr<char> &&doc,
1623 internal_function_fn handler,
1624 void *cookie);
1626 struct value *call_internal_function (struct gdbarch *gdbarch,
1627 const struct language_defn *language,
1628 struct value *function,
1629 int argc, struct value **argv);
1631 const char *value_internal_function_name (struct value *);
1633 /* Destroy the values currently allocated. This is called when GDB is
1634 exiting (e.g., on quit_force). */
1635 extern void finalize_values ();
1637 /* Convert VALUE to a gdb_mpq. The caller must ensure that VALUE is
1638 of floating-point, fixed-point, or integer type. */
1639 extern gdb_mpq value_to_gdb_mpq (struct value *value);
1641 /* Return true if LEN (in bytes) exceeds the max-value-size setting,
1642 otherwise, return false. If the user has disabled (set to unlimited)
1643 the max-value-size setting then this function will always return false. */
1644 extern bool exceeds_max_value_size (ULONGEST length);
1646 /* While an instance of this class is live, and array values that are
1647 created, that are larger than max_value_size, will be restricted in size
1648 to a particular number of elements. */
1650 struct scoped_array_length_limiting
1652 /* Limit any large array values to only contain ELEMENTS elements. */
1653 scoped_array_length_limiting (int elements);
1655 /* Restore the previous array value limit. */
1656 ~scoped_array_length_limiting ();
1658 private:
1659 /* Used to hold the previous array value element limit. */
1660 std::optional<int> m_old_value;
1663 /* Helpers for building pseudo register values from raw registers. */
1665 /* Create a value for pseudo register PSEUDO_REG_NUM by using bytes from
1666 raw register RAW_REG_NUM starting at RAW_OFFSET.
1668 The size of the pseudo register specifies how many bytes to use. The
1669 offset plus the size must not overflow the raw register's size. */
1671 value *pseudo_from_raw_part (const frame_info_ptr &next_frame, int pseudo_reg_num,
1672 int raw_reg_num, int raw_offset);
1674 /* Write PSEUDO_BUF, the contents of a pseudo register, to part of raw register
1675 RAW_REG_NUM starting at RAW_OFFSET. */
1677 void pseudo_to_raw_part (const frame_info_ptr &next_frame,
1678 gdb::array_view<const gdb_byte> pseudo_buf,
1679 int raw_reg_num, int raw_offset);
1681 /* Create a value for pseudo register PSEUDO_REG_NUM by concatenating raw
1682 registers RAW_REG_1_NUM and RAW_REG_2_NUM.
1684 The sum of the sizes of raw registers must be equal to the size of the
1685 pseudo register. */
1687 value *pseudo_from_concat_raw (const frame_info_ptr &next_frame, int pseudo_reg_num,
1688 int raw_reg_1_num, int raw_reg_2_num);
1690 /* Write PSEUDO_BUF, the contents of a pseudo register, to the two raw registers
1691 RAW_REG_1_NUM and RAW_REG_2_NUM. */
1693 void pseudo_to_concat_raw (const frame_info_ptr &next_frame,
1694 gdb::array_view<const gdb_byte> pseudo_buf,
1695 int raw_reg_1_num, int raw_reg_2_num);
1697 /* Same as the above, but with three raw registers. */
1699 value *pseudo_from_concat_raw (const frame_info_ptr &next_frame, int pseudo_reg_num,
1700 int raw_reg_1_num, int raw_reg_2_num,
1701 int raw_reg_3_num);
1703 /* Write PSEUDO_BUF, the contents of a pseudo register, to the three raw
1704 registers RAW_REG_1_NUM, RAW_REG_2_NUM and RAW_REG_3_NUM. */
1706 void pseudo_to_concat_raw (const frame_info_ptr &next_frame,
1707 gdb::array_view<const gdb_byte> pseudo_buf,
1708 int raw_reg_1_num, int raw_reg_2_num,
1709 int raw_reg_3_num);
1711 #endif /* !defined (VALUE_H) */