1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2014 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
21 /* Notes on implementation:
23 Thread Local Store (TLS)
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
95 elfNN_aarch64_check_relocs()
97 This function is invoked for each relocation.
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
107 elfNN_aarch64_allocate_dynrelocs ()
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
115 elfNN_aarch64_size_dynamic_sections ()
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
122 elfNN_aarch64_relocate_section ()
124 Calls elfNN_aarch64_final_link_relocate ()
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
134 elfNN_aarch64_final_link_relocate ()
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
140 #include "libiberty.h"
142 #include "bfd_stdint.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
162 #define HOWTO64(...) EMPTY_HOWTO (0)
163 #define HOWTO32(...) HOWTO (__VA_ARGS__)
164 #define LOG_FILE_ALIGN 2
167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
189 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC)
203 #define ELIMINATE_COPY_RELOCS 0
205 /* Return size of a relocation entry. HTAB is the bfd's
206 elf_aarch64_link_hash_entry. */
207 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
209 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
210 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
211 #define PLT_ENTRY_SIZE (32)
212 #define PLT_SMALL_ENTRY_SIZE (16)
213 #define PLT_TLSDESC_ENTRY_SIZE (32)
215 /* Encoding of the nop instruction */
216 #define INSN_NOP 0xd503201f
218 #define aarch64_compute_jump_table_size(htab) \
219 (((htab)->root.srelplt == NULL) ? 0 \
220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
222 /* The first entry in a procedure linkage table looks like this
223 if the distance between the PLTGOT and the PLT is < 4GB use
224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
225 in x16 and needs to work out PLTGOT[1] by using an address of
226 [x16,#-GOT_ENTRY_SIZE]. */
227 static const bfd_byte elfNN_aarch64_small_plt0_entry
[PLT_ENTRY_SIZE
] =
229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
239 0x1f, 0x20, 0x03, 0xd5, /* nop */
240 0x1f, 0x20, 0x03, 0xd5, /* nop */
241 0x1f, 0x20, 0x03, 0xd5, /* nop */
244 /* Per function entry in a procedure linkage table looks like this
245 if the distance between the PLTGOT and the PLT is < 4GB use
246 these PLT entries. */
247 static const bfd_byte elfNN_aarch64_small_plt_entry
[PLT_SMALL_ENTRY_SIZE
] =
249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
260 static const bfd_byte
261 elfNN_aarch64_tlsdesc_small_plt_entry
[PLT_TLSDESC_ENTRY_SIZE
] =
263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
274 0x1f, 0x20, 0x03, 0xd5, /* nop */
275 0x1f, 0x20, 0x03, 0xd5, /* nop */
278 #define elf_info_to_howto elfNN_aarch64_info_to_howto
279 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
281 #define AARCH64_ELF_ABI_VERSION 0
283 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
284 #define ALL_ONES (~ (bfd_vma) 0)
286 /* Indexed by the bfd interal reloc enumerators.
287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
290 static reloc_howto_type elfNN_aarch64_howto_table
[] =
294 /* Basic data relocations. */
297 HOWTO (R_AARCH64_NULL
, /* type */
299 0, /* size (0 = byte, 1 = short, 2 = long) */
301 FALSE
, /* pc_relative */
303 complain_overflow_dont
, /* complain_on_overflow */
304 bfd_elf_generic_reloc
, /* special_function */
305 "R_AARCH64_NULL", /* name */
306 FALSE
, /* partial_inplace */
309 FALSE
), /* pcrel_offset */
311 HOWTO (R_AARCH64_NONE
, /* type */
313 0, /* size (0 = byte, 1 = short, 2 = long) */
315 FALSE
, /* pc_relative */
317 complain_overflow_dont
, /* complain_on_overflow */
318 bfd_elf_generic_reloc
, /* special_function */
319 "R_AARCH64_NONE", /* name */
320 FALSE
, /* partial_inplace */
323 FALSE
), /* pcrel_offset */
327 HOWTO64 (AARCH64_R (ABS64
), /* type */
329 4, /* size (4 = long long) */
331 FALSE
, /* pc_relative */
333 complain_overflow_unsigned
, /* complain_on_overflow */
334 bfd_elf_generic_reloc
, /* special_function */
335 AARCH64_R_STR (ABS64
), /* name */
336 FALSE
, /* partial_inplace */
337 ALL_ONES
, /* src_mask */
338 ALL_ONES
, /* dst_mask */
339 FALSE
), /* pcrel_offset */
342 HOWTO (AARCH64_R (ABS32
), /* type */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
346 FALSE
, /* pc_relative */
348 complain_overflow_unsigned
, /* complain_on_overflow */
349 bfd_elf_generic_reloc
, /* special_function */
350 AARCH64_R_STR (ABS32
), /* name */
351 FALSE
, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE
), /* pcrel_offset */
357 HOWTO (AARCH64_R (ABS16
), /* type */
359 1, /* size (0 = byte, 1 = short, 2 = long) */
361 FALSE
, /* pc_relative */
363 complain_overflow_unsigned
, /* complain_on_overflow */
364 bfd_elf_generic_reloc
, /* special_function */
365 AARCH64_R_STR (ABS16
), /* name */
366 FALSE
, /* partial_inplace */
367 0xffff, /* src_mask */
368 0xffff, /* dst_mask */
369 FALSE
), /* pcrel_offset */
371 /* .xword: (S+A-P) */
372 HOWTO64 (AARCH64_R (PREL64
), /* type */
374 4, /* size (4 = long long) */
376 TRUE
, /* pc_relative */
378 complain_overflow_signed
, /* complain_on_overflow */
379 bfd_elf_generic_reloc
, /* special_function */
380 AARCH64_R_STR (PREL64
), /* name */
381 FALSE
, /* partial_inplace */
382 ALL_ONES
, /* src_mask */
383 ALL_ONES
, /* dst_mask */
384 TRUE
), /* pcrel_offset */
387 HOWTO (AARCH64_R (PREL32
), /* type */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
391 TRUE
, /* pc_relative */
393 complain_overflow_signed
, /* complain_on_overflow */
394 bfd_elf_generic_reloc
, /* special_function */
395 AARCH64_R_STR (PREL32
), /* name */
396 FALSE
, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 TRUE
), /* pcrel_offset */
402 HOWTO (AARCH64_R (PREL16
), /* type */
404 1, /* size (0 = byte, 1 = short, 2 = long) */
406 TRUE
, /* pc_relative */
408 complain_overflow_signed
, /* complain_on_overflow */
409 bfd_elf_generic_reloc
, /* special_function */
410 AARCH64_R_STR (PREL16
), /* name */
411 FALSE
, /* partial_inplace */
412 0xffff, /* src_mask */
413 0xffff, /* dst_mask */
414 TRUE
), /* pcrel_offset */
416 /* Group relocations to create a 16, 32, 48 or 64 bit
417 unsigned data or abs address inline. */
419 /* MOVZ: ((S+A) >> 0) & 0xffff */
420 HOWTO (AARCH64_R (MOVW_UABS_G0
), /* type */
422 2, /* size (0 = byte, 1 = short, 2 = long) */
424 FALSE
, /* pc_relative */
426 complain_overflow_unsigned
, /* complain_on_overflow */
427 bfd_elf_generic_reloc
, /* special_function */
428 AARCH64_R_STR (MOVW_UABS_G0
), /* name */
429 FALSE
, /* partial_inplace */
430 0xffff, /* src_mask */
431 0xffff, /* dst_mask */
432 FALSE
), /* pcrel_offset */
434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC
), /* type */
437 2, /* size (0 = byte, 1 = short, 2 = long) */
439 FALSE
, /* pc_relative */
441 complain_overflow_dont
, /* complain_on_overflow */
442 bfd_elf_generic_reloc
, /* special_function */
443 AARCH64_R_STR (MOVW_UABS_G0_NC
), /* name */
444 FALSE
, /* partial_inplace */
445 0xffff, /* src_mask */
446 0xffff, /* dst_mask */
447 FALSE
), /* pcrel_offset */
449 /* MOVZ: ((S+A) >> 16) & 0xffff */
450 HOWTO (AARCH64_R (MOVW_UABS_G1
), /* type */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
454 FALSE
, /* pc_relative */
456 complain_overflow_unsigned
, /* complain_on_overflow */
457 bfd_elf_generic_reloc
, /* special_function */
458 AARCH64_R_STR (MOVW_UABS_G1
), /* name */
459 FALSE
, /* partial_inplace */
460 0xffff, /* src_mask */
461 0xffff, /* dst_mask */
462 FALSE
), /* pcrel_offset */
464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC
), /* type */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
469 FALSE
, /* pc_relative */
471 complain_overflow_dont
, /* complain_on_overflow */
472 bfd_elf_generic_reloc
, /* special_function */
473 AARCH64_R_STR (MOVW_UABS_G1_NC
), /* name */
474 FALSE
, /* partial_inplace */
475 0xffff, /* src_mask */
476 0xffff, /* dst_mask */
477 FALSE
), /* pcrel_offset */
479 /* MOVZ: ((S+A) >> 32) & 0xffff */
480 HOWTO64 (AARCH64_R (MOVW_UABS_G2
), /* type */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
484 FALSE
, /* pc_relative */
486 complain_overflow_unsigned
, /* complain_on_overflow */
487 bfd_elf_generic_reloc
, /* special_function */
488 AARCH64_R_STR (MOVW_UABS_G2
), /* name */
489 FALSE
, /* partial_inplace */
490 0xffff, /* src_mask */
491 0xffff, /* dst_mask */
492 FALSE
), /* pcrel_offset */
494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC
), /* type */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
499 FALSE
, /* pc_relative */
501 complain_overflow_dont
, /* complain_on_overflow */
502 bfd_elf_generic_reloc
, /* special_function */
503 AARCH64_R_STR (MOVW_UABS_G2_NC
), /* name */
504 FALSE
, /* partial_inplace */
505 0xffff, /* src_mask */
506 0xffff, /* dst_mask */
507 FALSE
), /* pcrel_offset */
509 /* MOVZ: ((S+A) >> 48) & 0xffff */
510 HOWTO64 (AARCH64_R (MOVW_UABS_G3
), /* type */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
514 FALSE
, /* pc_relative */
516 complain_overflow_unsigned
, /* complain_on_overflow */
517 bfd_elf_generic_reloc
, /* special_function */
518 AARCH64_R_STR (MOVW_UABS_G3
), /* name */
519 FALSE
, /* partial_inplace */
520 0xffff, /* src_mask */
521 0xffff, /* dst_mask */
522 FALSE
), /* pcrel_offset */
524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
525 signed data or abs address inline. Will change instruction
526 to MOVN or MOVZ depending on sign of calculated value. */
528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
529 HOWTO (AARCH64_R (MOVW_SABS_G0
), /* type */
531 2, /* size (0 = byte, 1 = short, 2 = long) */
533 FALSE
, /* pc_relative */
535 complain_overflow_signed
, /* complain_on_overflow */
536 bfd_elf_generic_reloc
, /* special_function */
537 AARCH64_R_STR (MOVW_SABS_G0
), /* name */
538 FALSE
, /* partial_inplace */
539 0xffff, /* src_mask */
540 0xffff, /* dst_mask */
541 FALSE
), /* pcrel_offset */
543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
544 HOWTO64 (AARCH64_R (MOVW_SABS_G1
), /* type */
546 2, /* size (0 = byte, 1 = short, 2 = long) */
548 FALSE
, /* pc_relative */
550 complain_overflow_signed
, /* complain_on_overflow */
551 bfd_elf_generic_reloc
, /* special_function */
552 AARCH64_R_STR (MOVW_SABS_G1
), /* name */
553 FALSE
, /* partial_inplace */
554 0xffff, /* src_mask */
555 0xffff, /* dst_mask */
556 FALSE
), /* pcrel_offset */
558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
559 HOWTO64 (AARCH64_R (MOVW_SABS_G2
), /* type */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
563 FALSE
, /* pc_relative */
565 complain_overflow_signed
, /* complain_on_overflow */
566 bfd_elf_generic_reloc
, /* special_function */
567 AARCH64_R_STR (MOVW_SABS_G2
), /* name */
568 FALSE
, /* partial_inplace */
569 0xffff, /* src_mask */
570 0xffff, /* dst_mask */
571 FALSE
), /* pcrel_offset */
573 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
574 addresses: PG(x) is (x & ~0xfff). */
576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
577 HOWTO (AARCH64_R (LD_PREL_LO19
), /* type */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
581 TRUE
, /* pc_relative */
583 complain_overflow_signed
, /* complain_on_overflow */
584 bfd_elf_generic_reloc
, /* special_function */
585 AARCH64_R_STR (LD_PREL_LO19
), /* name */
586 FALSE
, /* partial_inplace */
587 0x7ffff, /* src_mask */
588 0x7ffff, /* dst_mask */
589 TRUE
), /* pcrel_offset */
591 /* ADR: (S+A-P) & 0x1fffff */
592 HOWTO (AARCH64_R (ADR_PREL_LO21
), /* type */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
596 TRUE
, /* pc_relative */
598 complain_overflow_signed
, /* complain_on_overflow */
599 bfd_elf_generic_reloc
, /* special_function */
600 AARCH64_R_STR (ADR_PREL_LO21
), /* name */
601 FALSE
, /* partial_inplace */
602 0x1fffff, /* src_mask */
603 0x1fffff, /* dst_mask */
604 TRUE
), /* pcrel_offset */
606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21
), /* type */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
611 TRUE
, /* pc_relative */
613 complain_overflow_signed
, /* complain_on_overflow */
614 bfd_elf_generic_reloc
, /* special_function */
615 AARCH64_R_STR (ADR_PREL_PG_HI21
), /* name */
616 FALSE
, /* partial_inplace */
617 0x1fffff, /* src_mask */
618 0x1fffff, /* dst_mask */
619 TRUE
), /* pcrel_offset */
621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC
), /* type */
624 2, /* size (0 = byte, 1 = short, 2 = long) */
626 TRUE
, /* pc_relative */
628 complain_overflow_dont
, /* complain_on_overflow */
629 bfd_elf_generic_reloc
, /* special_function */
630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC
), /* name */
631 FALSE
, /* partial_inplace */
632 0x1fffff, /* src_mask */
633 0x1fffff, /* dst_mask */
634 TRUE
), /* pcrel_offset */
636 /* ADD: (S+A) & 0xfff [no overflow check] */
637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC
), /* type */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
641 FALSE
, /* pc_relative */
643 complain_overflow_dont
, /* complain_on_overflow */
644 bfd_elf_generic_reloc
, /* special_function */
645 AARCH64_R_STR (ADD_ABS_LO12_NC
), /* name */
646 FALSE
, /* partial_inplace */
647 0x3ffc00, /* src_mask */
648 0x3ffc00, /* dst_mask */
649 FALSE
), /* pcrel_offset */
651 /* LD/ST8: (S+A) & 0xfff */
652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC
), /* type */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
656 FALSE
, /* pc_relative */
658 complain_overflow_dont
, /* complain_on_overflow */
659 bfd_elf_generic_reloc
, /* special_function */
660 AARCH64_R_STR (LDST8_ABS_LO12_NC
), /* name */
661 FALSE
, /* partial_inplace */
662 0xfff, /* src_mask */
663 0xfff, /* dst_mask */
664 FALSE
), /* pcrel_offset */
666 /* Relocations for control-flow instructions. */
668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
669 HOWTO (AARCH64_R (TSTBR14
), /* type */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
673 TRUE
, /* pc_relative */
675 complain_overflow_signed
, /* complain_on_overflow */
676 bfd_elf_generic_reloc
, /* special_function */
677 AARCH64_R_STR (TSTBR14
), /* name */
678 FALSE
, /* partial_inplace */
679 0x3fff, /* src_mask */
680 0x3fff, /* dst_mask */
681 TRUE
), /* pcrel_offset */
683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
684 HOWTO (AARCH64_R (CONDBR19
), /* type */
686 2, /* size (0 = byte, 1 = short, 2 = long) */
688 TRUE
, /* pc_relative */
690 complain_overflow_signed
, /* complain_on_overflow */
691 bfd_elf_generic_reloc
, /* special_function */
692 AARCH64_R_STR (CONDBR19
), /* name */
693 FALSE
, /* partial_inplace */
694 0x7ffff, /* src_mask */
695 0x7ffff, /* dst_mask */
696 TRUE
), /* pcrel_offset */
698 /* B: ((S+A-P) >> 2) & 0x3ffffff */
699 HOWTO (AARCH64_R (JUMP26
), /* type */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
703 TRUE
, /* pc_relative */
705 complain_overflow_signed
, /* complain_on_overflow */
706 bfd_elf_generic_reloc
, /* special_function */
707 AARCH64_R_STR (JUMP26
), /* name */
708 FALSE
, /* partial_inplace */
709 0x3ffffff, /* src_mask */
710 0x3ffffff, /* dst_mask */
711 TRUE
), /* pcrel_offset */
713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
714 HOWTO (AARCH64_R (CALL26
), /* type */
716 2, /* size (0 = byte, 1 = short, 2 = long) */
718 TRUE
, /* pc_relative */
720 complain_overflow_signed
, /* complain_on_overflow */
721 bfd_elf_generic_reloc
, /* special_function */
722 AARCH64_R_STR (CALL26
), /* name */
723 FALSE
, /* partial_inplace */
724 0x3ffffff, /* src_mask */
725 0x3ffffff, /* dst_mask */
726 TRUE
), /* pcrel_offset */
728 /* LD/ST16: (S+A) & 0xffe */
729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC
), /* type */
731 2, /* size (0 = byte, 1 = short, 2 = long) */
733 FALSE
, /* pc_relative */
735 complain_overflow_dont
, /* complain_on_overflow */
736 bfd_elf_generic_reloc
, /* special_function */
737 AARCH64_R_STR (LDST16_ABS_LO12_NC
), /* name */
738 FALSE
, /* partial_inplace */
739 0xffe, /* src_mask */
740 0xffe, /* dst_mask */
741 FALSE
), /* pcrel_offset */
743 /* LD/ST32: (S+A) & 0xffc */
744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC
), /* type */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
748 FALSE
, /* pc_relative */
750 complain_overflow_dont
, /* complain_on_overflow */
751 bfd_elf_generic_reloc
, /* special_function */
752 AARCH64_R_STR (LDST32_ABS_LO12_NC
), /* name */
753 FALSE
, /* partial_inplace */
754 0xffc, /* src_mask */
755 0xffc, /* dst_mask */
756 FALSE
), /* pcrel_offset */
758 /* LD/ST64: (S+A) & 0xff8 */
759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC
), /* type */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
763 FALSE
, /* pc_relative */
765 complain_overflow_dont
, /* complain_on_overflow */
766 bfd_elf_generic_reloc
, /* special_function */
767 AARCH64_R_STR (LDST64_ABS_LO12_NC
), /* name */
768 FALSE
, /* partial_inplace */
769 0xff8, /* src_mask */
770 0xff8, /* dst_mask */
771 FALSE
), /* pcrel_offset */
773 /* LD/ST128: (S+A) & 0xff0 */
774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC
), /* type */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
778 FALSE
, /* pc_relative */
780 complain_overflow_dont
, /* complain_on_overflow */
781 bfd_elf_generic_reloc
, /* special_function */
782 AARCH64_R_STR (LDST128_ABS_LO12_NC
), /* name */
783 FALSE
, /* partial_inplace */
784 0xff0, /* src_mask */
785 0xff0, /* dst_mask */
786 FALSE
), /* pcrel_offset */
788 /* Set a load-literal immediate field to bits
789 0x1FFFFC of G(S)-P */
790 HOWTO (AARCH64_R (GOT_LD_PREL19
), /* type */
792 2, /* size (0 = byte,1 = short,2 = long) */
794 TRUE
, /* pc_relative */
796 complain_overflow_signed
, /* complain_on_overflow */
797 bfd_elf_generic_reloc
, /* special_function */
798 AARCH64_R_STR (GOT_LD_PREL19
), /* name */
799 FALSE
, /* partial_inplace */
800 0xffffe0, /* src_mask */
801 0xffffe0, /* dst_mask */
802 TRUE
), /* pcrel_offset */
804 /* Get to the page for the GOT entry for the symbol
805 (G(S) - P) using an ADRP instruction. */
806 HOWTO (AARCH64_R (ADR_GOT_PAGE
), /* type */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
810 TRUE
, /* pc_relative */
812 complain_overflow_dont
, /* complain_on_overflow */
813 bfd_elf_generic_reloc
, /* special_function */
814 AARCH64_R_STR (ADR_GOT_PAGE
), /* name */
815 FALSE
, /* partial_inplace */
816 0x1fffff, /* src_mask */
817 0x1fffff, /* dst_mask */
818 TRUE
), /* pcrel_offset */
820 /* LD64: GOT offset G(S) & 0xff8 */
821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC
), /* type */
823 2, /* size (0 = byte, 1 = short, 2 = long) */
825 FALSE
, /* pc_relative */
827 complain_overflow_dont
, /* complain_on_overflow */
828 bfd_elf_generic_reloc
, /* special_function */
829 AARCH64_R_STR (LD64_GOT_LO12_NC
), /* name */
830 FALSE
, /* partial_inplace */
831 0xff8, /* src_mask */
832 0xff8, /* dst_mask */
833 FALSE
), /* pcrel_offset */
835 /* LD32: GOT offset G(S) & 0xffc */
836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC
), /* type */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
840 FALSE
, /* pc_relative */
842 complain_overflow_dont
, /* complain_on_overflow */
843 bfd_elf_generic_reloc
, /* special_function */
844 AARCH64_R_STR (LD32_GOT_LO12_NC
), /* name */
845 FALSE
, /* partial_inplace */
846 0xffc, /* src_mask */
847 0xffc, /* dst_mask */
848 FALSE
), /* pcrel_offset */
850 /* Get to the page for the GOT entry for the symbol
851 (G(S) - P) using an ADRP instruction. */
852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21
), /* type */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
856 TRUE
, /* pc_relative */
858 complain_overflow_dont
, /* complain_on_overflow */
859 bfd_elf_generic_reloc
, /* special_function */
860 AARCH64_R_STR (TLSGD_ADR_PAGE21
), /* name */
861 FALSE
, /* partial_inplace */
862 0x1fffff, /* src_mask */
863 0x1fffff, /* dst_mask */
864 TRUE
), /* pcrel_offset */
866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC
), /* type */
869 2, /* size (0 = byte, 1 = short, 2 = long) */
871 FALSE
, /* pc_relative */
873 complain_overflow_dont
, /* complain_on_overflow */
874 bfd_elf_generic_reloc
, /* special_function */
875 AARCH64_R_STR (TLSGD_ADD_LO12_NC
), /* name */
876 FALSE
, /* partial_inplace */
877 0xfff, /* src_mask */
878 0xfff, /* dst_mask */
879 FALSE
), /* pcrel_offset */
881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1
), /* type */
883 2, /* size (0 = byte, 1 = short, 2 = long) */
885 FALSE
, /* pc_relative */
887 complain_overflow_dont
, /* complain_on_overflow */
888 bfd_elf_generic_reloc
, /* special_function */
889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1
), /* name */
890 FALSE
, /* partial_inplace */
891 0xffff, /* src_mask */
892 0xffff, /* dst_mask */
893 FALSE
), /* pcrel_offset */
895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC
), /* type */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
899 FALSE
, /* pc_relative */
901 complain_overflow_dont
, /* complain_on_overflow */
902 bfd_elf_generic_reloc
, /* special_function */
903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC
), /* name */
904 FALSE
, /* partial_inplace */
905 0xffff, /* src_mask */
906 0xffff, /* dst_mask */
907 FALSE
), /* pcrel_offset */
909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21
), /* type */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
913 FALSE
, /* pc_relative */
915 complain_overflow_dont
, /* complain_on_overflow */
916 bfd_elf_generic_reloc
, /* special_function */
917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21
), /* name */
918 FALSE
, /* partial_inplace */
919 0x1fffff, /* src_mask */
920 0x1fffff, /* dst_mask */
921 FALSE
), /* pcrel_offset */
923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC
), /* type */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
927 FALSE
, /* pc_relative */
929 complain_overflow_dont
, /* complain_on_overflow */
930 bfd_elf_generic_reloc
, /* special_function */
931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC
), /* name */
932 FALSE
, /* partial_inplace */
933 0xff8, /* src_mask */
934 0xff8, /* dst_mask */
935 FALSE
), /* pcrel_offset */
937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC
), /* type */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
941 FALSE
, /* pc_relative */
943 complain_overflow_dont
, /* complain_on_overflow */
944 bfd_elf_generic_reloc
, /* special_function */
945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC
), /* name */
946 FALSE
, /* partial_inplace */
947 0xffc, /* src_mask */
948 0xffc, /* dst_mask */
949 FALSE
), /* pcrel_offset */
951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19
), /* type */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
955 FALSE
, /* pc_relative */
957 complain_overflow_dont
, /* complain_on_overflow */
958 bfd_elf_generic_reloc
, /* special_function */
959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19
), /* name */
960 FALSE
, /* partial_inplace */
961 0x1ffffc, /* src_mask */
962 0x1ffffc, /* dst_mask */
963 FALSE
), /* pcrel_offset */
965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2
), /* type */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
969 FALSE
, /* pc_relative */
971 complain_overflow_dont
, /* complain_on_overflow */
972 bfd_elf_generic_reloc
, /* special_function */
973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2
), /* name */
974 FALSE
, /* partial_inplace */
975 0xffff, /* src_mask */
976 0xffff, /* dst_mask */
977 FALSE
), /* pcrel_offset */
979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1
), /* type */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
983 FALSE
, /* pc_relative */
985 complain_overflow_dont
, /* complain_on_overflow */
986 bfd_elf_generic_reloc
, /* special_function */
987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1
), /* name */
988 FALSE
, /* partial_inplace */
989 0xffff, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE
), /* pcrel_offset */
993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC
), /* type */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
997 FALSE
, /* pc_relative */
999 complain_overflow_dont
, /* complain_on_overflow */
1000 bfd_elf_generic_reloc
, /* special_function */
1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC
), /* name */
1002 FALSE
, /* partial_inplace */
1003 0xffff, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE
), /* pcrel_offset */
1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0
), /* type */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 FALSE
, /* pc_relative */
1013 complain_overflow_dont
, /* complain_on_overflow */
1014 bfd_elf_generic_reloc
, /* special_function */
1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0
), /* name */
1016 FALSE
, /* partial_inplace */
1017 0xffff, /* src_mask */
1018 0xffff, /* dst_mask */
1019 FALSE
), /* pcrel_offset */
1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC
), /* type */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 FALSE
, /* pc_relative */
1027 complain_overflow_dont
, /* complain_on_overflow */
1028 bfd_elf_generic_reloc
, /* special_function */
1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC
), /* name */
1030 FALSE
, /* partial_inplace */
1031 0xffff, /* src_mask */
1032 0xffff, /* dst_mask */
1033 FALSE
), /* pcrel_offset */
1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12
), /* type */
1036 12, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 FALSE
, /* pc_relative */
1041 complain_overflow_dont
, /* complain_on_overflow */
1042 bfd_elf_generic_reloc
, /* special_function */
1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12
), /* name */
1044 FALSE
, /* partial_inplace */
1045 0xfff, /* src_mask */
1046 0xfff, /* dst_mask */
1047 FALSE
), /* pcrel_offset */
1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12
), /* type */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 FALSE
, /* pc_relative */
1055 complain_overflow_dont
, /* complain_on_overflow */
1056 bfd_elf_generic_reloc
, /* special_function */
1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12
), /* name */
1058 FALSE
, /* partial_inplace */
1059 0xfff, /* src_mask */
1060 0xfff, /* dst_mask */
1061 FALSE
), /* pcrel_offset */
1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC
), /* type */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 FALSE
, /* pc_relative */
1069 complain_overflow_dont
, /* complain_on_overflow */
1070 bfd_elf_generic_reloc
, /* special_function */
1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC
), /* name */
1072 FALSE
, /* partial_inplace */
1073 0xfff, /* src_mask */
1074 0xfff, /* dst_mask */
1075 FALSE
), /* pcrel_offset */
1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19
), /* type */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 TRUE
, /* pc_relative */
1083 complain_overflow_dont
, /* complain_on_overflow */
1084 bfd_elf_generic_reloc
, /* special_function */
1085 AARCH64_R_STR (TLSDESC_LD_PREL19
), /* name */
1086 FALSE
, /* partial_inplace */
1087 0x1ffffc, /* src_mask */
1088 0x1ffffc, /* dst_mask */
1089 TRUE
), /* pcrel_offset */
1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21
), /* type */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 TRUE
, /* pc_relative */
1097 complain_overflow_dont
, /* complain_on_overflow */
1098 bfd_elf_generic_reloc
, /* special_function */
1099 AARCH64_R_STR (TLSDESC_ADR_PREL21
), /* name */
1100 FALSE
, /* partial_inplace */
1101 0x1fffff, /* src_mask */
1102 0x1fffff, /* dst_mask */
1103 TRUE
), /* pcrel_offset */
1105 /* Get to the page for the GOT entry for the symbol
1106 (G(S) - P) using an ADRP instruction. */
1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21
), /* type */
1108 12, /* rightshift */
1109 2, /* size (0 = byte, 1 = short, 2 = long) */
1111 TRUE
, /* pc_relative */
1113 complain_overflow_dont
, /* complain_on_overflow */
1114 bfd_elf_generic_reloc
, /* special_function */
1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21
), /* name */
1116 FALSE
, /* partial_inplace */
1117 0x1fffff, /* src_mask */
1118 0x1fffff, /* dst_mask */
1119 TRUE
), /* pcrel_offset */
1121 /* LD64: GOT offset G(S) & 0xff8. */
1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC
), /* type */
1124 2, /* size (0 = byte, 1 = short, 2 = long) */
1126 FALSE
, /* pc_relative */
1128 complain_overflow_dont
, /* complain_on_overflow */
1129 bfd_elf_generic_reloc
, /* special_function */
1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC
), /* name */
1131 FALSE
, /* partial_inplace */
1132 0xff8, /* src_mask */
1133 0xff8, /* dst_mask */
1134 FALSE
), /* pcrel_offset */
1136 /* LD32: GOT offset G(S) & 0xffc. */
1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC
), /* type */
1139 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 FALSE
, /* pc_relative */
1143 complain_overflow_dont
, /* complain_on_overflow */
1144 bfd_elf_generic_reloc
, /* special_function */
1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC
), /* name */
1146 FALSE
, /* partial_inplace */
1147 0xffc, /* src_mask */
1148 0xffc, /* dst_mask */
1149 FALSE
), /* pcrel_offset */
1151 /* ADD: GOT offset G(S) & 0xfff. */
1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC
), /* type */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1156 FALSE
, /* pc_relative */
1158 complain_overflow_dont
, /* complain_on_overflow */
1159 bfd_elf_generic_reloc
, /* special_function */
1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC
), /* name */
1161 FALSE
, /* partial_inplace */
1162 0xfff, /* src_mask */
1163 0xfff, /* dst_mask */
1164 FALSE
), /* pcrel_offset */
1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1
), /* type */
1167 16, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1170 FALSE
, /* pc_relative */
1172 complain_overflow_dont
, /* complain_on_overflow */
1173 bfd_elf_generic_reloc
, /* special_function */
1174 AARCH64_R_STR (TLSDESC_OFF_G1
), /* name */
1175 FALSE
, /* partial_inplace */
1176 0xffff, /* src_mask */
1177 0xffff, /* dst_mask */
1178 FALSE
), /* pcrel_offset */
1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC
), /* type */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 FALSE
, /* pc_relative */
1186 complain_overflow_dont
, /* complain_on_overflow */
1187 bfd_elf_generic_reloc
, /* special_function */
1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC
), /* name */
1189 FALSE
, /* partial_inplace */
1190 0xffff, /* src_mask */
1191 0xffff, /* dst_mask */
1192 FALSE
), /* pcrel_offset */
1194 HOWTO64 (AARCH64_R (TLSDESC_LDR
), /* type */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 FALSE
, /* pc_relative */
1200 complain_overflow_dont
, /* complain_on_overflow */
1201 bfd_elf_generic_reloc
, /* special_function */
1202 AARCH64_R_STR (TLSDESC_LDR
), /* name */
1203 FALSE
, /* partial_inplace */
1206 FALSE
), /* pcrel_offset */
1208 HOWTO64 (AARCH64_R (TLSDESC_ADD
), /* type */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1212 FALSE
, /* pc_relative */
1214 complain_overflow_dont
, /* complain_on_overflow */
1215 bfd_elf_generic_reloc
, /* special_function */
1216 AARCH64_R_STR (TLSDESC_ADD
), /* name */
1217 FALSE
, /* partial_inplace */
1220 FALSE
), /* pcrel_offset */
1222 HOWTO (AARCH64_R (TLSDESC_CALL
), /* type */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1226 FALSE
, /* pc_relative */
1228 complain_overflow_dont
, /* complain_on_overflow */
1229 bfd_elf_generic_reloc
, /* special_function */
1230 AARCH64_R_STR (TLSDESC_CALL
), /* name */
1231 FALSE
, /* partial_inplace */
1234 FALSE
), /* pcrel_offset */
1236 HOWTO (AARCH64_R (COPY
), /* type */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1240 FALSE
, /* pc_relative */
1242 complain_overflow_bitfield
, /* complain_on_overflow */
1243 bfd_elf_generic_reloc
, /* special_function */
1244 AARCH64_R_STR (COPY
), /* name */
1245 TRUE
, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 FALSE
), /* pcrel_offset */
1250 HOWTO (AARCH64_R (GLOB_DAT
), /* type */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 FALSE
, /* pc_relative */
1256 complain_overflow_bitfield
, /* complain_on_overflow */
1257 bfd_elf_generic_reloc
, /* special_function */
1258 AARCH64_R_STR (GLOB_DAT
), /* name */
1259 TRUE
, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 FALSE
), /* pcrel_offset */
1264 HOWTO (AARCH64_R (JUMP_SLOT
), /* type */
1266 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 FALSE
, /* pc_relative */
1270 complain_overflow_bitfield
, /* complain_on_overflow */
1271 bfd_elf_generic_reloc
, /* special_function */
1272 AARCH64_R_STR (JUMP_SLOT
), /* name */
1273 TRUE
, /* partial_inplace */
1274 0xffffffff, /* src_mask */
1275 0xffffffff, /* dst_mask */
1276 FALSE
), /* pcrel_offset */
1278 HOWTO (AARCH64_R (RELATIVE
), /* type */
1280 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 FALSE
, /* pc_relative */
1284 complain_overflow_bitfield
, /* complain_on_overflow */
1285 bfd_elf_generic_reloc
, /* special_function */
1286 AARCH64_R_STR (RELATIVE
), /* name */
1287 TRUE
, /* partial_inplace */
1288 ALL_ONES
, /* src_mask */
1289 ALL_ONES
, /* dst_mask */
1290 FALSE
), /* pcrel_offset */
1292 HOWTO (AARCH64_R (TLS_DTPMOD
), /* type */
1294 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 FALSE
, /* pc_relative */
1298 complain_overflow_dont
, /* complain_on_overflow */
1299 bfd_elf_generic_reloc
, /* special_function */
1301 AARCH64_R_STR (TLS_DTPMOD64
), /* name */
1303 AARCH64_R_STR (TLS_DTPMOD
), /* name */
1305 FALSE
, /* partial_inplace */
1307 ALL_ONES
, /* dst_mask */
1308 FALSE
), /* pc_reloffset */
1310 HOWTO (AARCH64_R (TLS_DTPREL
), /* type */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 FALSE
, /* pc_relative */
1316 complain_overflow_dont
, /* complain_on_overflow */
1317 bfd_elf_generic_reloc
, /* special_function */
1319 AARCH64_R_STR (TLS_DTPREL64
), /* name */
1321 AARCH64_R_STR (TLS_DTPREL
), /* name */
1323 FALSE
, /* partial_inplace */
1325 ALL_ONES
, /* dst_mask */
1326 FALSE
), /* pcrel_offset */
1328 HOWTO (AARCH64_R (TLS_TPREL
), /* type */
1330 2, /* size (0 = byte, 1 = short, 2 = long) */
1332 FALSE
, /* pc_relative */
1334 complain_overflow_dont
, /* complain_on_overflow */
1335 bfd_elf_generic_reloc
, /* special_function */
1337 AARCH64_R_STR (TLS_TPREL64
), /* name */
1339 AARCH64_R_STR (TLS_TPREL
), /* name */
1341 FALSE
, /* partial_inplace */
1343 ALL_ONES
, /* dst_mask */
1344 FALSE
), /* pcrel_offset */
1346 HOWTO (AARCH64_R (TLSDESC
), /* type */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1350 FALSE
, /* pc_relative */
1352 complain_overflow_dont
, /* complain_on_overflow */
1353 bfd_elf_generic_reloc
, /* special_function */
1354 AARCH64_R_STR (TLSDESC
), /* name */
1355 FALSE
, /* partial_inplace */
1357 ALL_ONES
, /* dst_mask */
1358 FALSE
), /* pcrel_offset */
1360 HOWTO (AARCH64_R (IRELATIVE
), /* type */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1364 FALSE
, /* pc_relative */
1366 complain_overflow_bitfield
, /* complain_on_overflow */
1367 bfd_elf_generic_reloc
, /* special_function */
1368 AARCH64_R_STR (IRELATIVE
), /* name */
1369 FALSE
, /* partial_inplace */
1371 ALL_ONES
, /* dst_mask */
1372 FALSE
), /* pcrel_offset */
1377 static reloc_howto_type elfNN_aarch64_howto_none
=
1378 HOWTO (R_AARCH64_NONE
, /* type */
1380 0, /* size (0 = byte, 1 = short, 2 = long) */
1382 FALSE
, /* pc_relative */
1384 complain_overflow_dont
,/* complain_on_overflow */
1385 bfd_elf_generic_reloc
, /* special_function */
1386 "R_AARCH64_NONE", /* name */
1387 FALSE
, /* partial_inplace */
1390 FALSE
); /* pcrel_offset */
1392 /* Given HOWTO, return the bfd internal relocation enumerator. */
1394 static bfd_reloc_code_real_type
1395 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type
*howto
)
1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table
);
1399 const ptrdiff_t offset
1400 = howto
- elfNN_aarch64_howto_table
;
1402 if (offset
> 0 && offset
< size
- 1)
1403 return BFD_RELOC_AARCH64_RELOC_START
+ offset
;
1405 if (howto
== &elfNN_aarch64_howto_none
)
1406 return BFD_RELOC_AARCH64_NONE
;
1408 return BFD_RELOC_AARCH64_RELOC_START
;
1411 /* Given R_TYPE, return the bfd internal relocation enumerator. */
1413 static bfd_reloc_code_real_type
1414 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type
)
1416 static bfd_boolean initialized_p
= FALSE
;
1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */
1418 static unsigned int offsets
[R_AARCH64_end
];
1420 if (initialized_p
== FALSE
)
1424 for (i
= 1; i
< ARRAY_SIZE (elfNN_aarch64_howto_table
) - 1; ++i
)
1425 if (elfNN_aarch64_howto_table
[i
].type
!= 0)
1426 offsets
[elfNN_aarch64_howto_table
[i
].type
] = i
;
1428 initialized_p
= TRUE
;
1431 if (r_type
== R_AARCH64_NONE
|| r_type
== R_AARCH64_NULL
)
1432 return BFD_RELOC_AARCH64_NONE
;
1434 return BFD_RELOC_AARCH64_RELOC_START
+ offsets
[r_type
];
1437 struct elf_aarch64_reloc_map
1439 bfd_reloc_code_real_type from
;
1440 bfd_reloc_code_real_type to
;
1443 /* Map bfd generic reloc to AArch64-specific reloc. */
1444 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map
[] =
1446 {BFD_RELOC_NONE
, BFD_RELOC_AARCH64_NONE
},
1448 /* Basic data relocations. */
1449 {BFD_RELOC_CTOR
, BFD_RELOC_AARCH64_NN
},
1450 {BFD_RELOC_64
, BFD_RELOC_AARCH64_64
},
1451 {BFD_RELOC_32
, BFD_RELOC_AARCH64_32
},
1452 {BFD_RELOC_16
, BFD_RELOC_AARCH64_16
},
1453 {BFD_RELOC_64_PCREL
, BFD_RELOC_AARCH64_64_PCREL
},
1454 {BFD_RELOC_32_PCREL
, BFD_RELOC_AARCH64_32_PCREL
},
1455 {BFD_RELOC_16_PCREL
, BFD_RELOC_AARCH64_16_PCREL
},
1458 /* Given the bfd internal relocation enumerator in CODE, return the
1459 corresponding howto entry. */
1461 static reloc_howto_type
*
1462 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code
)
1466 /* Convert bfd generic reloc to AArch64-specific reloc. */
1467 if (code
< BFD_RELOC_AARCH64_RELOC_START
1468 || code
> BFD_RELOC_AARCH64_RELOC_END
)
1469 for (i
= 0; i
< ARRAY_SIZE (elf_aarch64_reloc_map
); i
++)
1470 if (elf_aarch64_reloc_map
[i
].from
== code
)
1472 code
= elf_aarch64_reloc_map
[i
].to
;
1476 if (code
> BFD_RELOC_AARCH64_RELOC_START
1477 && code
< BFD_RELOC_AARCH64_RELOC_END
)
1478 if (elfNN_aarch64_howto_table
[code
- BFD_RELOC_AARCH64_RELOC_START
].type
)
1479 return &elfNN_aarch64_howto_table
[code
- BFD_RELOC_AARCH64_RELOC_START
];
1481 if (code
== BFD_RELOC_AARCH64_NONE
)
1482 return &elfNN_aarch64_howto_none
;
1487 static reloc_howto_type
*
1488 elfNN_aarch64_howto_from_type (unsigned int r_type
)
1490 bfd_reloc_code_real_type val
;
1491 reloc_howto_type
*howto
;
1496 bfd_set_error (bfd_error_bad_value
);
1501 if (r_type
== R_AARCH64_NONE
)
1502 return &elfNN_aarch64_howto_none
;
1504 val
= elfNN_aarch64_bfd_reloc_from_type (r_type
);
1505 howto
= elfNN_aarch64_howto_from_bfd_reloc (val
);
1510 bfd_set_error (bfd_error_bad_value
);
1515 elfNN_aarch64_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*bfd_reloc
,
1516 Elf_Internal_Rela
*elf_reloc
)
1518 unsigned int r_type
;
1520 r_type
= ELFNN_R_TYPE (elf_reloc
->r_info
);
1521 bfd_reloc
->howto
= elfNN_aarch64_howto_from_type (r_type
);
1524 static reloc_howto_type
*
1525 elfNN_aarch64_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1526 bfd_reloc_code_real_type code
)
1528 reloc_howto_type
*howto
= elfNN_aarch64_howto_from_bfd_reloc (code
);
1533 bfd_set_error (bfd_error_bad_value
);
1537 static reloc_howto_type
*
1538 elfNN_aarch64_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1543 for (i
= 1; i
< ARRAY_SIZE (elfNN_aarch64_howto_table
) - 1; ++i
)
1544 if (elfNN_aarch64_howto_table
[i
].name
!= NULL
1545 && strcasecmp (elfNN_aarch64_howto_table
[i
].name
, r_name
) == 0)
1546 return &elfNN_aarch64_howto_table
[i
];
1551 #define TARGET_LITTLE_SYM bfd_elfNN_littleaarch64_vec
1552 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
1553 #define TARGET_BIG_SYM bfd_elfNN_bigaarch64_vec
1554 #define TARGET_BIG_NAME "elfNN-bigaarch64"
1556 /* The linker script knows the section names for placement.
1557 The entry_names are used to do simple name mangling on the stubs.
1558 Given a function name, and its type, the stub can be found. The
1559 name can be changed. The only requirement is the %s be present. */
1560 #define STUB_ENTRY_NAME "__%s_veneer"
1562 /* The name of the dynamic interpreter. This is put in the .interp
1564 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
1566 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
1567 (((1 << 25) - 1) << 2)
1568 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
1571 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
1572 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
1575 aarch64_valid_for_adrp_p (bfd_vma value
, bfd_vma place
)
1577 bfd_signed_vma offset
= (bfd_signed_vma
) (PG (value
) - PG (place
)) >> 12;
1578 return offset
<= AARCH64_MAX_ADRP_IMM
&& offset
>= AARCH64_MIN_ADRP_IMM
;
1582 aarch64_valid_branch_p (bfd_vma value
, bfd_vma place
)
1584 bfd_signed_vma offset
= (bfd_signed_vma
) (value
- place
);
1585 return (offset
<= AARCH64_MAX_FWD_BRANCH_OFFSET
1586 && offset
>= AARCH64_MAX_BWD_BRANCH_OFFSET
);
1589 static const uint32_t aarch64_adrp_branch_stub
[] =
1591 0x90000010, /* adrp ip0, X */
1592 /* R_AARCH64_ADR_HI21_PCREL(X) */
1593 0x91000210, /* add ip0, ip0, :lo12:X */
1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
1595 0xd61f0200, /* br ip0 */
1598 static const uint32_t aarch64_long_branch_stub
[] =
1601 0x58000090, /* ldr ip0, 1f */
1603 0x18000090, /* ldr wip0, 1f */
1605 0x10000011, /* adr ip1, #0 */
1606 0x8b110210, /* add ip0, ip0, ip1 */
1607 0xd61f0200, /* br ip0 */
1608 0x00000000, /* 1: .xword or .word
1609 R_AARCH64_PRELNN(X) + 12
1614 /* Section name for stubs is the associated section name plus this
1616 #define STUB_SUFFIX ".stub"
1618 enum elf_aarch64_stub_type
1621 aarch64_stub_adrp_branch
,
1622 aarch64_stub_long_branch
,
1625 struct elf_aarch64_stub_hash_entry
1627 /* Base hash table entry structure. */
1628 struct bfd_hash_entry root
;
1630 /* The stub section. */
1633 /* Offset within stub_sec of the beginning of this stub. */
1634 bfd_vma stub_offset
;
1636 /* Given the symbol's value and its section we can determine its final
1637 value when building the stubs (so the stub knows where to jump). */
1638 bfd_vma target_value
;
1639 asection
*target_section
;
1641 enum elf_aarch64_stub_type stub_type
;
1643 /* The symbol table entry, if any, that this was derived from. */
1644 struct elf_aarch64_link_hash_entry
*h
;
1646 /* Destination symbol type */
1647 unsigned char st_type
;
1649 /* Where this stub is being called from, or, in the case of combined
1650 stub sections, the first input section in the group. */
1653 /* The name for the local symbol at the start of this stub. The
1654 stub name in the hash table has to be unique; this does not, so
1655 it can be friendlier. */
1659 /* Used to build a map of a section. This is required for mixed-endian
1662 typedef struct elf_elf_section_map
1667 elf_aarch64_section_map
;
1670 typedef struct _aarch64_elf_section_data
1672 struct bfd_elf_section_data elf
;
1673 unsigned int mapcount
;
1674 unsigned int mapsize
;
1675 elf_aarch64_section_map
*map
;
1677 _aarch64_elf_section_data
;
1679 #define elf_aarch64_section_data(sec) \
1680 ((_aarch64_elf_section_data *) elf_section_data (sec))
1682 /* The size of the thread control block which is defined to be two pointers. */
1683 #define TCB_SIZE (ARCH_SIZE/8)*2
1685 struct elf_aarch64_local_symbol
1687 unsigned int got_type
;
1688 bfd_signed_vma got_refcount
;
1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
1692 offset is from the end of the jump table and reserved entries
1695 The magic value (bfd_vma) -1 indicates that an offset has not be
1697 bfd_vma tlsdesc_got_jump_table_offset
;
1700 struct elf_aarch64_obj_tdata
1702 struct elf_obj_tdata root
;
1704 /* local symbol descriptors */
1705 struct elf_aarch64_local_symbol
*locals
;
1707 /* Zero to warn when linking objects with incompatible enum sizes. */
1708 int no_enum_size_warning
;
1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
1711 int no_wchar_size_warning
;
1714 #define elf_aarch64_tdata(bfd) \
1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
1717 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
1719 #define is_aarch64_elf(bfd) \
1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1721 && elf_tdata (bfd) != NULL \
1722 && elf_object_id (bfd) == AARCH64_ELF_DATA)
1725 elfNN_aarch64_mkobject (bfd
*abfd
)
1727 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_aarch64_obj_tdata
),
1731 #define elf_aarch64_hash_entry(ent) \
1732 ((struct elf_aarch64_link_hash_entry *)(ent))
1734 #define GOT_UNKNOWN 0
1735 #define GOT_NORMAL 1
1736 #define GOT_TLS_GD 2
1737 #define GOT_TLS_IE 4
1738 #define GOT_TLSDESC_GD 8
1740 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
1742 /* AArch64 ELF linker hash entry. */
1743 struct elf_aarch64_link_hash_entry
1745 struct elf_link_hash_entry root
;
1747 /* Track dynamic relocs copied for this symbol. */
1748 struct elf_dyn_relocs
*dyn_relocs
;
1750 /* Since PLT entries have variable size, we need to record the
1751 index into .got.plt instead of recomputing it from the PLT
1753 bfd_signed_vma plt_got_offset
;
1755 /* Bit mask representing the type of GOT entry(s) if any required by
1757 unsigned int got_type
;
1759 /* A pointer to the most recently used stub hash entry against this
1761 struct elf_aarch64_stub_hash_entry
*stub_cache
;
1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
1764 is from the end of the jump table and reserved entries within the PLTGOT.
1766 The magic value (bfd_vma) -1 indicates that an offset has not
1768 bfd_vma tlsdesc_got_jump_table_offset
;
1772 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry
*h
,
1774 unsigned long r_symndx
)
1777 return elf_aarch64_hash_entry (h
)->got_type
;
1779 if (! elf_aarch64_locals (abfd
))
1782 return elf_aarch64_locals (abfd
)[r_symndx
].got_type
;
1785 /* Get the AArch64 elf linker hash table from a link_info structure. */
1786 #define elf_aarch64_hash_table(info) \
1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
1789 #define aarch64_stub_hash_lookup(table, string, create, copy) \
1790 ((struct elf_aarch64_stub_hash_entry *) \
1791 bfd_hash_lookup ((table), (string), (create), (copy)))
1793 /* AArch64 ELF linker hash table. */
1794 struct elf_aarch64_link_hash_table
1796 /* The main hash table. */
1797 struct elf_link_hash_table root
;
1799 /* Nonzero to force PIC branch veneers. */
1802 /* The number of bytes in the initial entry in the PLT. */
1803 bfd_size_type plt_header_size
;
1805 /* The number of bytes in the subsequent PLT etries. */
1806 bfd_size_type plt_entry_size
;
1808 /* Short-cuts to get to dynamic linker sections. */
1812 /* Small local sym cache. */
1813 struct sym_cache sym_cache
;
1815 /* For convenience in allocate_dynrelocs. */
1818 /* The amount of space used by the reserved portion of the sgotplt
1819 section, plus whatever space is used by the jump slots. */
1820 bfd_vma sgotplt_jump_table_size
;
1822 /* The stub hash table. */
1823 struct bfd_hash_table stub_hash_table
;
1825 /* Linker stub bfd. */
1828 /* Linker call-backs. */
1829 asection
*(*add_stub_section
) (const char *, asection
*);
1830 void (*layout_sections_again
) (void);
1832 /* Array to keep track of which stub sections have been created, and
1833 information on stub grouping. */
1836 /* This is the section to which stubs in the group will be
1839 /* The stub section. */
1843 /* Assorted information used by elfNN_aarch64_size_stubs. */
1844 unsigned int bfd_count
;
1846 asection
**input_list
;
1848 /* The offset into splt of the PLT entry for the TLS descriptor
1849 resolver. Special values are 0, if not necessary (or not found
1850 to be necessary yet), and -1 if needed but not determined
1852 bfd_vma tlsdesc_plt
;
1854 /* The GOT offset for the lazy trampoline. Communicated to the
1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
1856 indicates an offset is not allocated. */
1857 bfd_vma dt_tlsdesc_got
;
1859 /* Used by local STT_GNU_IFUNC symbols. */
1860 htab_t loc_hash_table
;
1861 void * loc_hash_memory
;
1864 /* Create an entry in an AArch64 ELF linker hash table. */
1866 static struct bfd_hash_entry
*
1867 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1868 struct bfd_hash_table
*table
,
1871 struct elf_aarch64_link_hash_entry
*ret
=
1872 (struct elf_aarch64_link_hash_entry
*) entry
;
1874 /* Allocate the structure if it has not already been allocated by a
1877 ret
= bfd_hash_allocate (table
,
1878 sizeof (struct elf_aarch64_link_hash_entry
));
1880 return (struct bfd_hash_entry
*) ret
;
1882 /* Call the allocation method of the superclass. */
1883 ret
= ((struct elf_aarch64_link_hash_entry
*)
1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1888 ret
->dyn_relocs
= NULL
;
1889 ret
->got_type
= GOT_UNKNOWN
;
1890 ret
->plt_got_offset
= (bfd_vma
) - 1;
1891 ret
->stub_cache
= NULL
;
1892 ret
->tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
1895 return (struct bfd_hash_entry
*) ret
;
1898 /* Initialize an entry in the stub hash table. */
1900 static struct bfd_hash_entry
*
1901 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
1902 struct bfd_hash_table
*table
, const char *string
)
1904 /* Allocate the structure if it has not already been allocated by a
1908 entry
= bfd_hash_allocate (table
,
1910 elf_aarch64_stub_hash_entry
));
1915 /* Call the allocation method of the superclass. */
1916 entry
= bfd_hash_newfunc (entry
, table
, string
);
1919 struct elf_aarch64_stub_hash_entry
*eh
;
1921 /* Initialize the local fields. */
1922 eh
= (struct elf_aarch64_stub_hash_entry
*) entry
;
1923 eh
->stub_sec
= NULL
;
1924 eh
->stub_offset
= 0;
1925 eh
->target_value
= 0;
1926 eh
->target_section
= NULL
;
1927 eh
->stub_type
= aarch64_stub_none
;
1935 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols
1937 as global symbol. We reuse indx and dynstr_index for local symbol
1938 hash since they aren't used by global symbols in this backend. */
1941 elfNN_aarch64_local_htab_hash (const void *ptr
)
1943 struct elf_link_hash_entry
*h
1944 = (struct elf_link_hash_entry
*) ptr
;
1945 return ELF_LOCAL_SYMBOL_HASH (h
->indx
, h
->dynstr_index
);
1948 /* Compare local hash entries. */
1951 elfNN_aarch64_local_htab_eq (const void *ptr1
, const void *ptr2
)
1953 struct elf_link_hash_entry
*h1
1954 = (struct elf_link_hash_entry
*) ptr1
;
1955 struct elf_link_hash_entry
*h2
1956 = (struct elf_link_hash_entry
*) ptr2
;
1958 return h1
->indx
== h2
->indx
&& h1
->dynstr_index
== h2
->dynstr_index
;
1961 /* Find and/or create a hash entry for local symbol. */
1963 static struct elf_link_hash_entry
*
1964 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table
*htab
,
1965 bfd
*abfd
, const Elf_Internal_Rela
*rel
,
1968 struct elf_aarch64_link_hash_entry e
, *ret
;
1969 asection
*sec
= abfd
->sections
;
1970 hashval_t h
= ELF_LOCAL_SYMBOL_HASH (sec
->id
,
1971 ELFNN_R_SYM (rel
->r_info
));
1974 e
.root
.indx
= sec
->id
;
1975 e
.root
.dynstr_index
= ELFNN_R_SYM (rel
->r_info
);
1976 slot
= htab_find_slot_with_hash (htab
->loc_hash_table
, &e
, h
,
1977 create
? INSERT
: NO_INSERT
);
1984 ret
= (struct elf_aarch64_link_hash_entry
*) *slot
;
1988 ret
= (struct elf_aarch64_link_hash_entry
*)
1989 objalloc_alloc ((struct objalloc
*) htab
->loc_hash_memory
,
1990 sizeof (struct elf_aarch64_link_hash_entry
));
1993 memset (ret
, 0, sizeof (*ret
));
1994 ret
->root
.indx
= sec
->id
;
1995 ret
->root
.dynstr_index
= ELFNN_R_SYM (rel
->r_info
);
1996 ret
->root
.dynindx
= -1;
2002 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2005 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info
*info
,
2006 struct elf_link_hash_entry
*dir
,
2007 struct elf_link_hash_entry
*ind
)
2009 struct elf_aarch64_link_hash_entry
*edir
, *eind
;
2011 edir
= (struct elf_aarch64_link_hash_entry
*) dir
;
2012 eind
= (struct elf_aarch64_link_hash_entry
*) ind
;
2014 if (eind
->dyn_relocs
!= NULL
)
2016 if (edir
->dyn_relocs
!= NULL
)
2018 struct elf_dyn_relocs
**pp
;
2019 struct elf_dyn_relocs
*p
;
2021 /* Add reloc counts against the indirect sym to the direct sym
2022 list. Merge any entries against the same section. */
2023 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
;)
2025 struct elf_dyn_relocs
*q
;
2027 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
2028 if (q
->sec
== p
->sec
)
2030 q
->pc_count
+= p
->pc_count
;
2031 q
->count
+= p
->count
;
2038 *pp
= edir
->dyn_relocs
;
2041 edir
->dyn_relocs
= eind
->dyn_relocs
;
2042 eind
->dyn_relocs
= NULL
;
2045 if (ind
->root
.type
== bfd_link_hash_indirect
)
2047 /* Copy over PLT info. */
2048 if (dir
->got
.refcount
<= 0)
2050 edir
->got_type
= eind
->got_type
;
2051 eind
->got_type
= GOT_UNKNOWN
;
2055 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
2058 /* Create an AArch64 elf linker hash table. */
2060 static struct bfd_link_hash_table
*
2061 elfNN_aarch64_link_hash_table_create (bfd
*abfd
)
2063 struct elf_aarch64_link_hash_table
*ret
;
2064 bfd_size_type amt
= sizeof (struct elf_aarch64_link_hash_table
);
2066 ret
= bfd_zmalloc (amt
);
2070 if (!_bfd_elf_link_hash_table_init
2071 (&ret
->root
, abfd
, elfNN_aarch64_link_hash_newfunc
,
2072 sizeof (struct elf_aarch64_link_hash_entry
), AARCH64_ELF_DATA
))
2078 ret
->plt_header_size
= PLT_ENTRY_SIZE
;
2079 ret
->plt_entry_size
= PLT_SMALL_ENTRY_SIZE
;
2081 ret
->dt_tlsdesc_got
= (bfd_vma
) - 1;
2083 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
2084 sizeof (struct elf_aarch64_stub_hash_entry
)))
2090 ret
->loc_hash_table
= htab_try_create (1024,
2091 elfNN_aarch64_local_htab_hash
,
2092 elfNN_aarch64_local_htab_eq
,
2094 ret
->loc_hash_memory
= objalloc_create ();
2095 if (!ret
->loc_hash_table
|| !ret
->loc_hash_memory
)
2101 return &ret
->root
.root
;
2104 /* Free the derived linker hash table. */
2107 elfNN_aarch64_hash_table_free (struct bfd_link_hash_table
*hash
)
2109 struct elf_aarch64_link_hash_table
*ret
2110 = (struct elf_aarch64_link_hash_table
*) hash
;
2112 if (ret
->loc_hash_table
)
2113 htab_delete (ret
->loc_hash_table
);
2114 if (ret
->loc_hash_memory
)
2115 objalloc_free ((struct objalloc
*) ret
->loc_hash_memory
);
2117 bfd_hash_table_free (&ret
->stub_hash_table
);
2118 _bfd_elf_link_hash_table_free (hash
);
2122 aarch64_relocate (unsigned int r_type
, bfd
*input_bfd
, asection
*input_section
,
2123 bfd_vma offset
, bfd_vma value
)
2125 reloc_howto_type
*howto
;
2128 howto
= elfNN_aarch64_howto_from_type (r_type
);
2129 place
= (input_section
->output_section
->vma
+ input_section
->output_offset
2132 r_type
= elfNN_aarch64_bfd_reloc_from_type (r_type
);
2133 value
= _bfd_aarch64_elf_resolve_relocation (r_type
, place
, value
, 0, FALSE
);
2134 return _bfd_aarch64_elf_put_addend (input_bfd
,
2135 input_section
->contents
+ offset
, r_type
,
2139 static enum elf_aarch64_stub_type
2140 aarch64_select_branch_stub (bfd_vma value
, bfd_vma place
)
2142 if (aarch64_valid_for_adrp_p (value
, place
))
2143 return aarch64_stub_adrp_branch
;
2144 return aarch64_stub_long_branch
;
2147 /* Determine the type of stub needed, if any, for a call. */
2149 static enum elf_aarch64_stub_type
2150 aarch64_type_of_stub (struct bfd_link_info
*info
,
2151 asection
*input_sec
,
2152 const Elf_Internal_Rela
*rel
,
2153 unsigned char st_type
,
2154 struct elf_aarch64_link_hash_entry
*hash
,
2155 bfd_vma destination
)
2158 bfd_signed_vma branch_offset
;
2159 unsigned int r_type
;
2160 struct elf_aarch64_link_hash_table
*globals
;
2161 enum elf_aarch64_stub_type stub_type
= aarch64_stub_none
;
2162 bfd_boolean via_plt_p
;
2164 if (st_type
!= STT_FUNC
)
2167 globals
= elf_aarch64_hash_table (info
);
2168 via_plt_p
= (globals
->root
.splt
!= NULL
&& hash
!= NULL
2169 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1);
2174 /* Determine where the call point is. */
2175 location
= (input_sec
->output_offset
2176 + input_sec
->output_section
->vma
+ rel
->r_offset
);
2178 branch_offset
= (bfd_signed_vma
) (destination
- location
);
2180 r_type
= ELFNN_R_TYPE (rel
->r_info
);
2182 /* We don't want to redirect any old unconditional jump in this way,
2183 only one which is being used for a sibcall, where it is
2184 acceptable for the IP0 and IP1 registers to be clobbered. */
2185 if ((r_type
== AARCH64_R (CALL26
) || r_type
== AARCH64_R (JUMP26
))
2186 && (branch_offset
> AARCH64_MAX_FWD_BRANCH_OFFSET
2187 || branch_offset
< AARCH64_MAX_BWD_BRANCH_OFFSET
))
2189 stub_type
= aarch64_stub_long_branch
;
2195 /* Build a name for an entry in the stub hash table. */
2198 elfNN_aarch64_stub_name (const asection
*input_section
,
2199 const asection
*sym_sec
,
2200 const struct elf_aarch64_link_hash_entry
*hash
,
2201 const Elf_Internal_Rela
*rel
)
2208 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 16 + 1;
2209 stub_name
= bfd_malloc (len
);
2210 if (stub_name
!= NULL
)
2211 snprintf (stub_name
, len
, "%08x_%s+%" BFD_VMA_FMT
"x",
2212 (unsigned int) input_section
->id
,
2213 hash
->root
.root
.root
.string
,
2218 len
= 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2219 stub_name
= bfd_malloc (len
);
2220 if (stub_name
!= NULL
)
2221 snprintf (stub_name
, len
, "%08x_%x:%x+%" BFD_VMA_FMT
"x",
2222 (unsigned int) input_section
->id
,
2223 (unsigned int) sym_sec
->id
,
2224 (unsigned int) ELFNN_R_SYM (rel
->r_info
),
2231 /* Look up an entry in the stub hash. Stub entries are cached because
2232 creating the stub name takes a bit of time. */
2234 static struct elf_aarch64_stub_hash_entry
*
2235 elfNN_aarch64_get_stub_entry (const asection
*input_section
,
2236 const asection
*sym_sec
,
2237 struct elf_link_hash_entry
*hash
,
2238 const Elf_Internal_Rela
*rel
,
2239 struct elf_aarch64_link_hash_table
*htab
)
2241 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2242 struct elf_aarch64_link_hash_entry
*h
=
2243 (struct elf_aarch64_link_hash_entry
*) hash
;
2244 const asection
*id_sec
;
2246 if ((input_section
->flags
& SEC_CODE
) == 0)
2249 /* If this input section is part of a group of sections sharing one
2250 stub section, then use the id of the first section in the group.
2251 Stub names need to include a section id, as there may well be
2252 more than one stub used to reach say, printf, and we need to
2253 distinguish between them. */
2254 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
2256 if (h
!= NULL
&& h
->stub_cache
!= NULL
2257 && h
->stub_cache
->h
== h
&& h
->stub_cache
->id_sec
== id_sec
)
2259 stub_entry
= h
->stub_cache
;
2265 stub_name
= elfNN_aarch64_stub_name (id_sec
, sym_sec
, h
, rel
);
2266 if (stub_name
== NULL
)
2269 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
2270 stub_name
, FALSE
, FALSE
);
2272 h
->stub_cache
= stub_entry
;
2280 /* Add a new stub entry to the stub hash. Not all fields of the new
2281 stub entry are initialised. */
2283 static struct elf_aarch64_stub_hash_entry
*
2284 elfNN_aarch64_add_stub (const char *stub_name
,
2286 struct elf_aarch64_link_hash_table
*htab
)
2290 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2292 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
2293 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
2294 if (stub_sec
== NULL
)
2296 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
2297 if (stub_sec
== NULL
)
2303 namelen
= strlen (link_sec
->name
);
2304 len
= namelen
+ sizeof (STUB_SUFFIX
);
2305 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
2309 memcpy (s_name
, link_sec
->name
, namelen
);
2310 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
2311 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
2312 if (stub_sec
== NULL
)
2314 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
2316 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
2319 /* Enter this entry into the linker stub hash table. */
2320 stub_entry
= aarch64_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
2322 if (stub_entry
== NULL
)
2324 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
2325 section
->owner
, stub_name
);
2329 stub_entry
->stub_sec
= stub_sec
;
2330 stub_entry
->stub_offset
= 0;
2331 stub_entry
->id_sec
= link_sec
;
2337 aarch64_build_one_stub (struct bfd_hash_entry
*gen_entry
,
2338 void *in_arg ATTRIBUTE_UNUSED
)
2340 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2345 unsigned int template_size
;
2346 const uint32_t *template;
2349 /* Massage our args to the form they really have. */
2350 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
2352 stub_sec
= stub_entry
->stub_sec
;
2354 /* Make a note of the offset within the stubs for this entry. */
2355 stub_entry
->stub_offset
= stub_sec
->size
;
2356 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
2358 stub_bfd
= stub_sec
->owner
;
2360 /* This is the address of the stub destination. */
2361 sym_value
= (stub_entry
->target_value
2362 + stub_entry
->target_section
->output_offset
2363 + stub_entry
->target_section
->output_section
->vma
);
2365 if (stub_entry
->stub_type
== aarch64_stub_long_branch
)
2367 bfd_vma place
= (stub_entry
->stub_offset
+ stub_sec
->output_section
->vma
2368 + stub_sec
->output_offset
);
2370 /* See if we can relax the stub. */
2371 if (aarch64_valid_for_adrp_p (sym_value
, place
))
2372 stub_entry
->stub_type
= aarch64_select_branch_stub (sym_value
, place
);
2375 switch (stub_entry
->stub_type
)
2377 case aarch64_stub_adrp_branch
:
2378 template = aarch64_adrp_branch_stub
;
2379 template_size
= sizeof (aarch64_adrp_branch_stub
);
2381 case aarch64_stub_long_branch
:
2382 template = aarch64_long_branch_stub
;
2383 template_size
= sizeof (aarch64_long_branch_stub
);
2390 for (i
= 0; i
< (template_size
/ sizeof template[0]); i
++)
2392 bfd_putl32 (template[i
], loc
);
2396 template_size
= (template_size
+ 7) & ~7;
2397 stub_sec
->size
+= template_size
;
2399 switch (stub_entry
->stub_type
)
2401 case aarch64_stub_adrp_branch
:
2402 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21
), stub_bfd
, stub_sec
,
2403 stub_entry
->stub_offset
, sym_value
))
2404 /* The stub would not have been relaxed if the offset was out
2408 _bfd_final_link_relocate
2409 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC
)),
2413 stub_entry
->stub_offset
+ 4,
2418 case aarch64_stub_long_branch
:
2419 /* We want the value relative to the address 12 bytes back from the
2421 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type
2422 (AARCH64_R (PRELNN
)), stub_bfd
, stub_sec
,
2424 stub_entry
->stub_offset
+ 16,
2434 /* As above, but don't actually build the stub. Just bump offset so
2435 we know stub section sizes. */
2438 aarch64_size_one_stub (struct bfd_hash_entry
*gen_entry
,
2439 void *in_arg ATTRIBUTE_UNUSED
)
2441 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2444 /* Massage our args to the form they really have. */
2445 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
2447 switch (stub_entry
->stub_type
)
2449 case aarch64_stub_adrp_branch
:
2450 size
= sizeof (aarch64_adrp_branch_stub
);
2452 case aarch64_stub_long_branch
:
2453 size
= sizeof (aarch64_long_branch_stub
);
2461 size
= (size
+ 7) & ~7;
2462 stub_entry
->stub_sec
->size
+= size
;
2466 /* External entry points for sizing and building linker stubs. */
2468 /* Set up various things so that we can make a list of input sections
2469 for each output section included in the link. Returns -1 on error,
2470 0 when no stubs will be needed, and 1 on success. */
2473 elfNN_aarch64_setup_section_lists (bfd
*output_bfd
,
2474 struct bfd_link_info
*info
)
2477 unsigned int bfd_count
;
2478 int top_id
, top_index
;
2480 asection
**input_list
, **list
;
2482 struct elf_aarch64_link_hash_table
*htab
=
2483 elf_aarch64_hash_table (info
);
2485 if (!is_elf_hash_table (htab
))
2488 /* Count the number of input BFDs and find the top input section id. */
2489 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2490 input_bfd
!= NULL
; input_bfd
= input_bfd
->link_next
)
2493 for (section
= input_bfd
->sections
;
2494 section
!= NULL
; section
= section
->next
)
2496 if (top_id
< section
->id
)
2497 top_id
= section
->id
;
2500 htab
->bfd_count
= bfd_count
;
2502 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2503 htab
->stub_group
= bfd_zmalloc (amt
);
2504 if (htab
->stub_group
== NULL
)
2507 /* We can't use output_bfd->section_count here to find the top output
2508 section index as some sections may have been removed, and
2509 _bfd_strip_section_from_output doesn't renumber the indices. */
2510 for (section
= output_bfd
->sections
, top_index
= 0;
2511 section
!= NULL
; section
= section
->next
)
2513 if (top_index
< section
->index
)
2514 top_index
= section
->index
;
2517 htab
->top_index
= top_index
;
2518 amt
= sizeof (asection
*) * (top_index
+ 1);
2519 input_list
= bfd_malloc (amt
);
2520 htab
->input_list
= input_list
;
2521 if (input_list
== NULL
)
2524 /* For sections we aren't interested in, mark their entries with a
2525 value we can check later. */
2526 list
= input_list
+ top_index
;
2528 *list
= bfd_abs_section_ptr
;
2529 while (list
-- != input_list
);
2531 for (section
= output_bfd
->sections
;
2532 section
!= NULL
; section
= section
->next
)
2534 if ((section
->flags
& SEC_CODE
) != 0)
2535 input_list
[section
->index
] = NULL
;
2541 /* Used by elfNN_aarch64_next_input_section and group_sections. */
2542 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2544 /* The linker repeatedly calls this function for each input section,
2545 in the order that input sections are linked into output sections.
2546 Build lists of input sections to determine groupings between which
2547 we may insert linker stubs. */
2550 elfNN_aarch64_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
2552 struct elf_aarch64_link_hash_table
*htab
=
2553 elf_aarch64_hash_table (info
);
2555 if (isec
->output_section
->index
<= htab
->top_index
)
2557 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
2559 if (*list
!= bfd_abs_section_ptr
)
2561 /* Steal the link_sec pointer for our list. */
2562 /* This happens to make the list in reverse order,
2563 which is what we want. */
2564 PREV_SEC (isec
) = *list
;
2570 /* See whether we can group stub sections together. Grouping stub
2571 sections may result in fewer stubs. More importantly, we need to
2572 put all .init* and .fini* stubs at the beginning of the .init or
2573 .fini output sections respectively, because glibc splits the
2574 _init and _fini functions into multiple parts. Putting a stub in
2575 the middle of a function is not a good idea. */
2578 group_sections (struct elf_aarch64_link_hash_table
*htab
,
2579 bfd_size_type stub_group_size
,
2580 bfd_boolean stubs_always_before_branch
)
2582 asection
**list
= htab
->input_list
+ htab
->top_index
;
2586 asection
*tail
= *list
;
2588 if (tail
== bfd_abs_section_ptr
)
2591 while (tail
!= NULL
)
2595 bfd_size_type total
;
2599 while ((prev
= PREV_SEC (curr
)) != NULL
2600 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2604 /* OK, the size from the start of CURR to the end is less
2605 than stub_group_size and thus can be handled by one stub
2606 section. (Or the tail section is itself larger than
2607 stub_group_size, in which case we may be toast.)
2608 We should really be keeping track of the total size of
2609 stubs added here, as stubs contribute to the final output
2613 prev
= PREV_SEC (tail
);
2614 /* Set up this stub group. */
2615 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2617 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2619 /* But wait, there's more! Input sections up to stub_group_size
2620 bytes before the stub section can be handled by it too. */
2621 if (!stubs_always_before_branch
)
2625 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2629 prev
= PREV_SEC (tail
);
2630 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2636 while (list
-- != htab
->input_list
);
2638 free (htab
->input_list
);
2643 /* Determine and set the size of the stub section for a final link.
2645 The basic idea here is to examine all the relocations looking for
2646 PC-relative calls to a target that is unreachable with a "bl"
2650 elfNN_aarch64_size_stubs (bfd
*output_bfd
,
2652 struct bfd_link_info
*info
,
2653 bfd_signed_vma group_size
,
2654 asection
* (*add_stub_section
) (const char *,
2656 void (*layout_sections_again
) (void))
2658 bfd_size_type stub_group_size
;
2659 bfd_boolean stubs_always_before_branch
;
2660 bfd_boolean stub_changed
= 0;
2661 struct elf_aarch64_link_hash_table
*htab
= elf_aarch64_hash_table (info
);
2663 /* Propagate mach to stub bfd, because it may not have been
2664 finalized when we created stub_bfd. */
2665 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
2666 bfd_get_mach (output_bfd
));
2668 /* Stash our params away. */
2669 htab
->stub_bfd
= stub_bfd
;
2670 htab
->add_stub_section
= add_stub_section
;
2671 htab
->layout_sections_again
= layout_sections_again
;
2672 stubs_always_before_branch
= group_size
< 0;
2674 stub_group_size
= -group_size
;
2676 stub_group_size
= group_size
;
2678 if (stub_group_size
== 1)
2680 /* Default values. */
2681 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
2682 stub_group_size
= 127 * 1024 * 1024;
2685 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
2690 unsigned int bfd_indx
;
2693 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2694 input_bfd
!= NULL
; input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2696 Elf_Internal_Shdr
*symtab_hdr
;
2698 Elf_Internal_Sym
*local_syms
= NULL
;
2700 /* We'll need the symbol table in a second. */
2701 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2702 if (symtab_hdr
->sh_info
== 0)
2705 /* Walk over each section attached to the input bfd. */
2706 for (section
= input_bfd
->sections
;
2707 section
!= NULL
; section
= section
->next
)
2709 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2711 /* If there aren't any relocs, then there's nothing more
2713 if ((section
->flags
& SEC_RELOC
) == 0
2714 || section
->reloc_count
== 0
2715 || (section
->flags
& SEC_CODE
) == 0)
2718 /* If this section is a link-once section that will be
2719 discarded, then don't create any stubs. */
2720 if (section
->output_section
== NULL
2721 || section
->output_section
->owner
!= output_bfd
)
2724 /* Get the relocs. */
2726 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
2727 NULL
, info
->keep_memory
);
2728 if (internal_relocs
== NULL
)
2729 goto error_ret_free_local
;
2731 /* Now examine each relocation. */
2732 irela
= internal_relocs
;
2733 irelaend
= irela
+ section
->reloc_count
;
2734 for (; irela
< irelaend
; irela
++)
2736 unsigned int r_type
, r_indx
;
2737 enum elf_aarch64_stub_type stub_type
;
2738 struct elf_aarch64_stub_hash_entry
*stub_entry
;
2741 bfd_vma destination
;
2742 struct elf_aarch64_link_hash_entry
*hash
;
2743 const char *sym_name
;
2745 const asection
*id_sec
;
2746 unsigned char st_type
;
2749 r_type
= ELFNN_R_TYPE (irela
->r_info
);
2750 r_indx
= ELFNN_R_SYM (irela
->r_info
);
2752 if (r_type
>= (unsigned int) R_AARCH64_end
)
2754 bfd_set_error (bfd_error_bad_value
);
2755 error_ret_free_internal
:
2756 if (elf_section_data (section
)->relocs
== NULL
)
2757 free (internal_relocs
);
2758 goto error_ret_free_local
;
2761 /* Only look for stubs on unconditional branch and
2762 branch and link instructions. */
2763 if (r_type
!= (unsigned int) AARCH64_R (CALL26
)
2764 && r_type
!= (unsigned int) AARCH64_R (JUMP26
))
2767 /* Now determine the call target, its name, value,
2774 if (r_indx
< symtab_hdr
->sh_info
)
2776 /* It's a local symbol. */
2777 Elf_Internal_Sym
*sym
;
2778 Elf_Internal_Shdr
*hdr
;
2780 if (local_syms
== NULL
)
2783 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2784 if (local_syms
== NULL
)
2786 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
2787 symtab_hdr
->sh_info
, 0,
2789 if (local_syms
== NULL
)
2790 goto error_ret_free_internal
;
2793 sym
= local_syms
+ r_indx
;
2794 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
2795 sym_sec
= hdr
->bfd_section
;
2797 /* This is an undefined symbol. It can never
2801 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
2802 sym_value
= sym
->st_value
;
2803 destination
= (sym_value
+ irela
->r_addend
2804 + sym_sec
->output_offset
2805 + sym_sec
->output_section
->vma
);
2806 st_type
= ELF_ST_TYPE (sym
->st_info
);
2808 = bfd_elf_string_from_elf_section (input_bfd
,
2809 symtab_hdr
->sh_link
,
2816 e_indx
= r_indx
- symtab_hdr
->sh_info
;
2817 hash
= ((struct elf_aarch64_link_hash_entry
*)
2818 elf_sym_hashes (input_bfd
)[e_indx
]);
2820 while (hash
->root
.root
.type
== bfd_link_hash_indirect
2821 || hash
->root
.root
.type
== bfd_link_hash_warning
)
2822 hash
= ((struct elf_aarch64_link_hash_entry
*)
2823 hash
->root
.root
.u
.i
.link
);
2825 if (hash
->root
.root
.type
== bfd_link_hash_defined
2826 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
2828 struct elf_aarch64_link_hash_table
*globals
=
2829 elf_aarch64_hash_table (info
);
2830 sym_sec
= hash
->root
.root
.u
.def
.section
;
2831 sym_value
= hash
->root
.root
.u
.def
.value
;
2832 /* For a destination in a shared library,
2833 use the PLT stub as target address to
2834 decide whether a branch stub is
2836 if (globals
->root
.splt
!= NULL
&& hash
!= NULL
2837 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1)
2839 sym_sec
= globals
->root
.splt
;
2840 sym_value
= hash
->root
.plt
.offset
;
2841 if (sym_sec
->output_section
!= NULL
)
2842 destination
= (sym_value
2843 + sym_sec
->output_offset
2845 sym_sec
->output_section
->vma
);
2847 else if (sym_sec
->output_section
!= NULL
)
2848 destination
= (sym_value
+ irela
->r_addend
2849 + sym_sec
->output_offset
2850 + sym_sec
->output_section
->vma
);
2852 else if (hash
->root
.root
.type
== bfd_link_hash_undefined
2853 || (hash
->root
.root
.type
2854 == bfd_link_hash_undefweak
))
2856 /* For a shared library, use the PLT stub as
2857 target address to decide whether a long
2858 branch stub is needed.
2859 For absolute code, they cannot be handled. */
2860 struct elf_aarch64_link_hash_table
*globals
=
2861 elf_aarch64_hash_table (info
);
2863 if (globals
->root
.splt
!= NULL
&& hash
!= NULL
2864 && hash
->root
.plt
.offset
!= (bfd_vma
) - 1)
2866 sym_sec
= globals
->root
.splt
;
2867 sym_value
= hash
->root
.plt
.offset
;
2868 if (sym_sec
->output_section
!= NULL
)
2869 destination
= (sym_value
2870 + sym_sec
->output_offset
2872 sym_sec
->output_section
->vma
);
2879 bfd_set_error (bfd_error_bad_value
);
2880 goto error_ret_free_internal
;
2882 st_type
= ELF_ST_TYPE (hash
->root
.type
);
2883 sym_name
= hash
->root
.root
.root
.string
;
2886 /* Determine what (if any) linker stub is needed. */
2887 stub_type
= aarch64_type_of_stub
2888 (info
, section
, irela
, st_type
, hash
, destination
);
2889 if (stub_type
== aarch64_stub_none
)
2892 /* Support for grouping stub sections. */
2893 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
2895 /* Get the name of this stub. */
2896 stub_name
= elfNN_aarch64_stub_name (id_sec
, sym_sec
, hash
,
2899 goto error_ret_free_internal
;
2902 aarch64_stub_hash_lookup (&htab
->stub_hash_table
,
2903 stub_name
, FALSE
, FALSE
);
2904 if (stub_entry
!= NULL
)
2906 /* The proper stub has already been created. */
2911 stub_entry
= elfNN_aarch64_add_stub (stub_name
, section
,
2913 if (stub_entry
== NULL
)
2916 goto error_ret_free_internal
;
2919 stub_entry
->target_value
= sym_value
;
2920 stub_entry
->target_section
= sym_sec
;
2921 stub_entry
->stub_type
= stub_type
;
2922 stub_entry
->h
= hash
;
2923 stub_entry
->st_type
= st_type
;
2925 if (sym_name
== NULL
)
2926 sym_name
= "unnamed";
2927 len
= sizeof (STUB_ENTRY_NAME
) + strlen (sym_name
);
2928 stub_entry
->output_name
= bfd_alloc (htab
->stub_bfd
, len
);
2929 if (stub_entry
->output_name
== NULL
)
2932 goto error_ret_free_internal
;
2935 snprintf (stub_entry
->output_name
, len
, STUB_ENTRY_NAME
,
2938 stub_changed
= TRUE
;
2941 /* We're done with the internal relocs, free them. */
2942 if (elf_section_data (section
)->relocs
== NULL
)
2943 free (internal_relocs
);
2950 /* OK, we've added some stubs. Find out the new size of the
2952 for (stub_sec
= htab
->stub_bfd
->sections
;
2953 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
2956 bfd_hash_traverse (&htab
->stub_hash_table
, aarch64_size_one_stub
, htab
);
2958 /* Ask the linker to do its stuff. */
2959 (*htab
->layout_sections_again
) ();
2960 stub_changed
= FALSE
;
2965 error_ret_free_local
:
2969 /* Build all the stubs associated with the current output file. The
2970 stubs are kept in a hash table attached to the main linker hash
2971 table. We also set up the .plt entries for statically linked PIC
2972 functions here. This function is called via aarch64_elf_finish in the
2976 elfNN_aarch64_build_stubs (struct bfd_link_info
*info
)
2979 struct bfd_hash_table
*table
;
2980 struct elf_aarch64_link_hash_table
*htab
;
2982 htab
= elf_aarch64_hash_table (info
);
2984 for (stub_sec
= htab
->stub_bfd
->sections
;
2985 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
2989 /* Ignore non-stub sections. */
2990 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
2993 /* Allocate memory to hold the linker stubs. */
2994 size
= stub_sec
->size
;
2995 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
2996 if (stub_sec
->contents
== NULL
&& size
!= 0)
3001 /* Build the stubs as directed by the stub hash table. */
3002 table
= &htab
->stub_hash_table
;
3003 bfd_hash_traverse (table
, aarch64_build_one_stub
, info
);
3009 /* Add an entry to the code/data map for section SEC. */
3012 elfNN_aarch64_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
3014 struct _aarch64_elf_section_data
*sec_data
=
3015 elf_aarch64_section_data (sec
);
3016 unsigned int newidx
;
3018 if (sec_data
->map
== NULL
)
3020 sec_data
->map
= bfd_malloc (sizeof (elf_aarch64_section_map
));
3021 sec_data
->mapcount
= 0;
3022 sec_data
->mapsize
= 1;
3025 newidx
= sec_data
->mapcount
++;
3027 if (sec_data
->mapcount
> sec_data
->mapsize
)
3029 sec_data
->mapsize
*= 2;
3030 sec_data
->map
= bfd_realloc_or_free
3031 (sec_data
->map
, sec_data
->mapsize
* sizeof (elf_aarch64_section_map
));
3036 sec_data
->map
[newidx
].vma
= vma
;
3037 sec_data
->map
[newidx
].type
= type
;
3042 /* Initialise maps of insn/data for input BFDs. */
3044 bfd_elfNN_aarch64_init_maps (bfd
*abfd
)
3046 Elf_Internal_Sym
*isymbuf
;
3047 Elf_Internal_Shdr
*hdr
;
3048 unsigned int i
, localsyms
;
3050 /* Make sure that we are dealing with an AArch64 elf binary. */
3051 if (!is_aarch64_elf (abfd
))
3054 if ((abfd
->flags
& DYNAMIC
) != 0)
3057 hdr
= &elf_symtab_hdr (abfd
);
3058 localsyms
= hdr
->sh_info
;
3060 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3061 should contain the number of local symbols, which should come before any
3062 global symbols. Mapping symbols are always local. */
3063 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
, NULL
);
3065 /* No internal symbols read? Skip this BFD. */
3066 if (isymbuf
== NULL
)
3069 for (i
= 0; i
< localsyms
; i
++)
3071 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
3072 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3075 if (sec
!= NULL
&& ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
3077 name
= bfd_elf_string_from_elf_section (abfd
,
3081 if (bfd_is_aarch64_special_symbol_name
3082 (name
, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP
))
3083 elfNN_aarch64_section_map_add (sec
, name
[1], isym
->st_value
);
3088 /* Set option values needed during linking. */
3090 bfd_elfNN_aarch64_set_options (struct bfd
*output_bfd
,
3091 struct bfd_link_info
*link_info
,
3093 int no_wchar_warn
, int pic_veneer
)
3095 struct elf_aarch64_link_hash_table
*globals
;
3097 globals
= elf_aarch64_hash_table (link_info
);
3098 globals
->pic_veneer
= pic_veneer
;
3100 BFD_ASSERT (is_aarch64_elf (output_bfd
));
3101 elf_aarch64_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
3102 elf_aarch64_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
3106 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry
*h
,
3107 struct elf_aarch64_link_hash_table
3108 *globals
, struct bfd_link_info
*info
,
3109 bfd_vma value
, bfd
*output_bfd
,
3110 bfd_boolean
*unresolved_reloc_p
)
3112 bfd_vma off
= (bfd_vma
) - 1;
3113 asection
*basegot
= globals
->root
.sgot
;
3114 bfd_boolean dyn
= globals
->root
.dynamic_sections_created
;
3118 BFD_ASSERT (basegot
!= NULL
);
3119 off
= h
->got
.offset
;
3120 BFD_ASSERT (off
!= (bfd_vma
) - 1);
3121 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
3123 && SYMBOL_REFERENCES_LOCAL (info
, h
))
3124 || (ELF_ST_VISIBILITY (h
->other
)
3125 && h
->root
.type
== bfd_link_hash_undefweak
))
3127 /* This is actually a static link, or it is a -Bsymbolic link
3128 and the symbol is defined locally. We must initialize this
3129 entry in the global offset table. Since the offset must
3130 always be a multiple of 8 (4 in the case of ILP32), we use
3131 the least significant bit to record whether we have
3132 initialized it already.
3133 When doing a dynamic link, we create a .rel(a).got relocation
3134 entry to initialize the value. This is done in the
3135 finish_dynamic_symbol routine. */
3140 bfd_put_NN (output_bfd
, value
, basegot
->contents
+ off
);
3145 *unresolved_reloc_p
= FALSE
;
3147 off
= off
+ basegot
->output_section
->vma
+ basegot
->output_offset
;
3153 /* Change R_TYPE to a more efficient access model where possible,
3154 return the new reloc type. */
3156 static bfd_reloc_code_real_type
3157 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type
,
3158 struct elf_link_hash_entry
*h
)
3160 bfd_boolean is_local
= h
== NULL
;
3164 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
3165 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
3167 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
3168 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
);
3170 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
3171 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
3173 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
3174 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
);
3176 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
3177 return is_local
? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
: r_type
;
3179 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
3180 return is_local
? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
: r_type
;
3182 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
:
3183 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
3184 /* Instructions with these relocations will become NOPs. */
3185 return BFD_RELOC_AARCH64_NONE
;
3195 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type
)
3199 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
3200 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
3201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
3202 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
3205 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
3206 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
3209 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
:
3210 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
3211 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
3212 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC
:
3213 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
3214 return GOT_TLSDESC_GD
;
3216 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
3217 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
3218 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
3221 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
:
3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
:
3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
3224 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
:
3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
:
3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
:
3238 aarch64_can_relax_tls (bfd
*input_bfd
,
3239 struct bfd_link_info
*info
,
3240 bfd_reloc_code_real_type r_type
,
3241 struct elf_link_hash_entry
*h
,
3242 unsigned long r_symndx
)
3244 unsigned int symbol_got_type
;
3245 unsigned int reloc_got_type
;
3247 if (! IS_AARCH64_TLS_RELOC (r_type
))
3250 symbol_got_type
= elfNN_aarch64_symbol_got_type (h
, input_bfd
, r_symndx
);
3251 reloc_got_type
= aarch64_reloc_got_type (r_type
);
3253 if (symbol_got_type
== GOT_TLS_IE
&& GOT_TLS_GD_ANY_P (reloc_got_type
))
3259 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
)
3265 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
3268 static bfd_reloc_code_real_type
3269 aarch64_tls_transition (bfd
*input_bfd
,
3270 struct bfd_link_info
*info
,
3271 unsigned int r_type
,
3272 struct elf_link_hash_entry
*h
,
3273 unsigned long r_symndx
)
3275 bfd_reloc_code_real_type bfd_r_type
3276 = elfNN_aarch64_bfd_reloc_from_type (r_type
);
3278 if (! aarch64_can_relax_tls (input_bfd
, info
, bfd_r_type
, h
, r_symndx
))
3281 return aarch64_tls_transition_without_check (bfd_r_type
, h
);
3284 /* Return the base VMA address which should be subtracted from real addresses
3285 when resolving R_AARCH64_TLS_DTPREL relocation. */
3288 dtpoff_base (struct bfd_link_info
*info
)
3290 /* If tls_sec is NULL, we should have signalled an error already. */
3291 BFD_ASSERT (elf_hash_table (info
)->tls_sec
!= NULL
);
3292 return elf_hash_table (info
)->tls_sec
->vma
;
3295 /* Return the base VMA address which should be subtracted from real addresses
3296 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
3299 tpoff_base (struct bfd_link_info
*info
)
3301 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3303 /* If tls_sec is NULL, we should have signalled an error already. */
3304 if (htab
->tls_sec
== NULL
)
3307 bfd_vma base
= align_power ((bfd_vma
) TCB_SIZE
,
3308 htab
->tls_sec
->alignment_power
);
3309 return htab
->tls_sec
->vma
- base
;
3313 symbol_got_offset_ref (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3314 unsigned long r_symndx
)
3316 /* Calculate the address of the GOT entry for symbol
3317 referred to in h. */
3319 return &h
->got
.offset
;
3323 struct elf_aarch64_local_symbol
*l
;
3325 l
= elf_aarch64_locals (input_bfd
);
3326 return &l
[r_symndx
].got_offset
;
3331 symbol_got_offset_mark (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3332 unsigned long r_symndx
)
3335 p
= symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
3340 symbol_got_offset_mark_p (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3341 unsigned long r_symndx
)
3344 value
= * symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
3349 symbol_got_offset (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3350 unsigned long r_symndx
)
3353 value
= * symbol_got_offset_ref (input_bfd
, h
, r_symndx
);
3359 symbol_tlsdesc_got_offset_ref (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3360 unsigned long r_symndx
)
3362 /* Calculate the address of the GOT entry for symbol
3363 referred to in h. */
3366 struct elf_aarch64_link_hash_entry
*eh
;
3367 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
3368 return &eh
->tlsdesc_got_jump_table_offset
;
3373 struct elf_aarch64_local_symbol
*l
;
3375 l
= elf_aarch64_locals (input_bfd
);
3376 return &l
[r_symndx
].tlsdesc_got_jump_table_offset
;
3381 symbol_tlsdesc_got_offset_mark (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3382 unsigned long r_symndx
)
3385 p
= symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
3390 symbol_tlsdesc_got_offset_mark_p (bfd
*input_bfd
,
3391 struct elf_link_hash_entry
*h
,
3392 unsigned long r_symndx
)
3395 value
= * symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
3400 symbol_tlsdesc_got_offset (bfd
*input_bfd
, struct elf_link_hash_entry
*h
,
3401 unsigned long r_symndx
)
3404 value
= * symbol_tlsdesc_got_offset_ref (input_bfd
, h
, r_symndx
);
3409 /* Perform a relocation as part of a final link. */
3410 static bfd_reloc_status_type
3411 elfNN_aarch64_final_link_relocate (reloc_howto_type
*howto
,
3414 asection
*input_section
,
3416 Elf_Internal_Rela
*rel
,
3418 struct bfd_link_info
*info
,
3420 struct elf_link_hash_entry
*h
,
3421 bfd_boolean
*unresolved_reloc_p
,
3422 bfd_boolean save_addend
,
3423 bfd_vma
*saved_addend
,
3424 Elf_Internal_Sym
*sym
)
3426 Elf_Internal_Shdr
*symtab_hdr
;
3427 unsigned int r_type
= howto
->type
;
3428 bfd_reloc_code_real_type bfd_r_type
3429 = elfNN_aarch64_bfd_reloc_from_howto (howto
);
3430 bfd_reloc_code_real_type new_bfd_r_type
;
3431 unsigned long r_symndx
;
3432 bfd_byte
*hit_data
= contents
+ rel
->r_offset
;
3434 bfd_signed_vma signed_addend
;
3435 struct elf_aarch64_link_hash_table
*globals
;
3436 bfd_boolean weak_undef_p
;
3438 globals
= elf_aarch64_hash_table (info
);
3440 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
3442 BFD_ASSERT (is_aarch64_elf (input_bfd
));
3444 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
3446 /* It is possible to have linker relaxations on some TLS access
3447 models. Update our information here. */
3448 new_bfd_r_type
= aarch64_tls_transition (input_bfd
, info
, r_type
, h
, r_symndx
);
3449 if (new_bfd_r_type
!= bfd_r_type
)
3451 bfd_r_type
= new_bfd_r_type
;
3452 howto
= elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type
);
3453 BFD_ASSERT (howto
!= NULL
);
3454 r_type
= howto
->type
;
3457 place
= input_section
->output_section
->vma
3458 + input_section
->output_offset
+ rel
->r_offset
;
3460 /* Get addend, accumulating the addend for consecutive relocs
3461 which refer to the same offset. */
3462 signed_addend
= saved_addend
? *saved_addend
: 0;
3463 signed_addend
+= rel
->r_addend
;
3465 weak_undef_p
= (h
? h
->root
.type
== bfd_link_hash_undefweak
3466 : bfd_is_und_section (sym_sec
));
3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
3469 it here if it is defined in a non-shared object. */
3471 && h
->type
== STT_GNU_IFUNC
3479 if ((input_section
->flags
& SEC_ALLOC
) == 0
3480 || h
->plt
.offset
== (bfd_vma
) -1)
3483 /* STT_GNU_IFUNC symbol must go through PLT. */
3484 plt
= globals
->root
.splt
? globals
->root
.splt
: globals
->root
.iplt
;
3485 value
= (plt
->output_section
->vma
+ plt
->output_offset
+ h
->plt
.offset
);
3490 if (h
->root
.root
.string
)
3491 name
= h
->root
.root
.string
;
3493 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
, sym
,
3495 (*_bfd_error_handler
)
3496 (_("%B: relocation %s against STT_GNU_IFUNC "
3497 "symbol `%s' isn't handled by %s"), input_bfd
,
3498 howto
->name
, name
, __FUNCTION__
);
3499 bfd_set_error (bfd_error_bad_value
);
3502 case BFD_RELOC_AARCH64_NN
:
3503 if (rel
->r_addend
!= 0)
3505 if (h
->root
.root
.string
)
3506 name
= h
->root
.root
.string
;
3508 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
3510 (*_bfd_error_handler
)
3511 (_("%B: relocation %s against STT_GNU_IFUNC "
3512 "symbol `%s' has non-zero addend: %d"),
3513 input_bfd
, howto
->name
, name
, rel
->r_addend
);
3514 bfd_set_error (bfd_error_bad_value
);
3518 /* Generate dynamic relocation only when there is a
3519 non-GOT reference in a shared object. */
3520 if (info
->shared
&& h
->non_got_ref
)
3522 Elf_Internal_Rela outrel
;
3525 /* Need a dynamic relocation to get the real function
3527 outrel
.r_offset
= _bfd_elf_section_offset (output_bfd
,
3531 if (outrel
.r_offset
== (bfd_vma
) -1
3532 || outrel
.r_offset
== (bfd_vma
) -2)
3535 outrel
.r_offset
+= (input_section
->output_section
->vma
3536 + input_section
->output_offset
);
3538 if (h
->dynindx
== -1
3540 || info
->executable
)
3542 /* This symbol is resolved locally. */
3543 outrel
.r_info
= ELFNN_R_INFO (0, AARCH64_R (IRELATIVE
));
3544 outrel
.r_addend
= (h
->root
.u
.def
.value
3545 + h
->root
.u
.def
.section
->output_section
->vma
3546 + h
->root
.u
.def
.section
->output_offset
);
3550 outrel
.r_info
= ELFNN_R_INFO (h
->dynindx
, r_type
);
3551 outrel
.r_addend
= 0;
3554 sreloc
= globals
->root
.irelifunc
;
3555 elf_append_rela (output_bfd
, sreloc
, &outrel
);
3557 /* If this reloc is against an external symbol, we
3558 do not want to fiddle with the addend. Otherwise,
3559 we need to include the symbol value so that it
3560 becomes an addend for the dynamic reloc. For an
3561 internal symbol, we have updated addend. */
3562 return bfd_reloc_ok
;
3565 case BFD_RELOC_AARCH64_JUMP26
:
3566 case BFD_RELOC_AARCH64_CALL26
:
3567 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
3570 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
,
3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
3576 base_got
= globals
->root
.sgot
;
3577 off
= h
->got
.offset
;
3579 if (base_got
== NULL
)
3582 if (off
== (bfd_vma
) -1)
3586 /* We can't use h->got.offset here to save state, or
3587 even just remember the offset, as finish_dynamic_symbol
3588 would use that as offset into .got. */
3590 if (globals
->root
.splt
!= NULL
)
3592 plt_index
= ((h
->plt
.offset
- globals
->plt_header_size
) /
3593 globals
->plt_entry_size
);
3594 off
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
3595 base_got
= globals
->root
.sgotplt
;
3599 plt_index
= h
->plt
.offset
/ globals
->plt_entry_size
;
3600 off
= plt_index
* GOT_ENTRY_SIZE
;
3601 base_got
= globals
->root
.igotplt
;
3604 if (h
->dynindx
== -1
3608 /* This references the local definition. We must
3609 initialize this entry in the global offset table.
3610 Since the offset must always be a multiple of 8,
3611 we use the least significant bit to record
3612 whether we have initialized it already.
3614 When doing a dynamic link, we create a .rela.got
3615 relocation entry to initialize the value. This
3616 is done in the finish_dynamic_symbol routine. */
3621 bfd_put_NN (output_bfd
, value
,
3622 base_got
->contents
+ off
);
3623 /* Note that this is harmless as -1 | 1 still is -1. */
3627 value
= (base_got
->output_section
->vma
3628 + base_got
->output_offset
+ off
);
3631 value
= aarch64_calculate_got_entry_vma (h
, globals
, info
,
3633 unresolved_reloc_p
);
3634 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
3636 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
, howto
, value
);
3637 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
3638 case BFD_RELOC_AARCH64_ADD_LO12
:
3645 case BFD_RELOC_AARCH64_NONE
:
3646 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
3647 *unresolved_reloc_p
= FALSE
;
3648 return bfd_reloc_ok
;
3650 case BFD_RELOC_AARCH64_NN
:
3652 /* When generating a shared object or relocatable executable, these
3653 relocations are copied into the output file to be resolved at
3655 if (((info
->shared
== TRUE
) || globals
->root
.is_relocatable_executable
)
3656 && (input_section
->flags
& SEC_ALLOC
)
3658 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
3659 || h
->root
.type
!= bfd_link_hash_undefweak
))
3661 Elf_Internal_Rela outrel
;
3663 bfd_boolean skip
, relocate
;
3666 *unresolved_reloc_p
= FALSE
;
3671 outrel
.r_addend
= signed_addend
;
3673 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3675 if (outrel
.r_offset
== (bfd_vma
) - 1)
3677 else if (outrel
.r_offset
== (bfd_vma
) - 2)
3683 outrel
.r_offset
+= (input_section
->output_section
->vma
3684 + input_section
->output_offset
);
3687 memset (&outrel
, 0, sizeof outrel
);
3690 && (!info
->shared
|| !info
->symbolic
|| !h
->def_regular
))
3691 outrel
.r_info
= ELFNN_R_INFO (h
->dynindx
, r_type
);
3696 /* On SVR4-ish systems, the dynamic loader cannot
3697 relocate the text and data segments independently,
3698 so the symbol does not matter. */
3700 outrel
.r_info
= ELFNN_R_INFO (symbol
, AARCH64_R (RELATIVE
));
3701 outrel
.r_addend
+= value
;
3704 sreloc
= elf_section_data (input_section
)->sreloc
;
3705 if (sreloc
== NULL
|| sreloc
->contents
== NULL
)
3706 return bfd_reloc_notsupported
;
3708 loc
= sreloc
->contents
+ sreloc
->reloc_count
++ * RELOC_SIZE (globals
);
3709 bfd_elfNN_swap_reloca_out (output_bfd
, &outrel
, loc
);
3711 if (sreloc
->reloc_count
* RELOC_SIZE (globals
) > sreloc
->size
)
3713 /* Sanity to check that we have previously allocated
3714 sufficient space in the relocation section for the
3715 number of relocations we actually want to emit. */
3719 /* If this reloc is against an external symbol, we do not want to
3720 fiddle with the addend. Otherwise, we need to include the symbol
3721 value so that it becomes an addend for the dynamic reloc. */
3723 return bfd_reloc_ok
;
3725 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
3726 contents
, rel
->r_offset
, value
,
3730 value
+= signed_addend
;
3733 case BFD_RELOC_AARCH64_JUMP26
:
3734 case BFD_RELOC_AARCH64_CALL26
:
3736 asection
*splt
= globals
->root
.splt
;
3737 bfd_boolean via_plt_p
=
3738 splt
!= NULL
&& h
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) - 1;
3740 /* A call to an undefined weak symbol is converted to a jump to
3741 the next instruction unless a PLT entry will be created.
3742 The jump to the next instruction is optimized as a NOP.
3743 Do the same for local undefined symbols. */
3744 if (weak_undef_p
&& ! via_plt_p
)
3746 bfd_putl32 (INSN_NOP
, hit_data
);
3747 return bfd_reloc_ok
;
3750 /* If the call goes through a PLT entry, make sure to
3751 check distance to the right destination address. */
3754 value
= (splt
->output_section
->vma
3755 + splt
->output_offset
+ h
->plt
.offset
);
3756 *unresolved_reloc_p
= FALSE
;
3759 /* If the target symbol is global and marked as a function the
3760 relocation applies a function call or a tail call. In this
3761 situation we can veneer out of range branches. The veneers
3762 use IP0 and IP1 hence cannot be used arbitrary out of range
3763 branches that occur within the body of a function. */
3764 if (h
&& h
->type
== STT_FUNC
)
3766 /* Check if a stub has to be inserted because the destination
3768 if (! aarch64_valid_branch_p (value
, place
))
3770 /* The target is out of reach, so redirect the branch to
3771 the local stub for this function. */
3772 struct elf_aarch64_stub_hash_entry
*stub_entry
;
3773 stub_entry
= elfNN_aarch64_get_stub_entry (input_section
,
3776 if (stub_entry
!= NULL
)
3777 value
= (stub_entry
->stub_offset
3778 + stub_entry
->stub_sec
->output_offset
3779 + stub_entry
->stub_sec
->output_section
->vma
);
3783 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
3784 signed_addend
, weak_undef_p
);
3787 case BFD_RELOC_AARCH64_16
:
3789 case BFD_RELOC_AARCH64_32
:
3791 case BFD_RELOC_AARCH64_ADD_LO12
:
3792 case BFD_RELOC_AARCH64_ADR_LO21_PCREL
:
3793 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
3794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
:
3795 case BFD_RELOC_AARCH64_BRANCH19
:
3796 case BFD_RELOC_AARCH64_LD_LO19_PCREL
:
3797 case BFD_RELOC_AARCH64_LDST8_LO12
:
3798 case BFD_RELOC_AARCH64_LDST16_LO12
:
3799 case BFD_RELOC_AARCH64_LDST32_LO12
:
3800 case BFD_RELOC_AARCH64_LDST64_LO12
:
3801 case BFD_RELOC_AARCH64_LDST128_LO12
:
3802 case BFD_RELOC_AARCH64_MOVW_G0_S
:
3803 case BFD_RELOC_AARCH64_MOVW_G1_S
:
3804 case BFD_RELOC_AARCH64_MOVW_G2_S
:
3805 case BFD_RELOC_AARCH64_MOVW_G0
:
3806 case BFD_RELOC_AARCH64_MOVW_G0_NC
:
3807 case BFD_RELOC_AARCH64_MOVW_G1
:
3808 case BFD_RELOC_AARCH64_MOVW_G1_NC
:
3809 case BFD_RELOC_AARCH64_MOVW_G2
:
3810 case BFD_RELOC_AARCH64_MOVW_G2_NC
:
3811 case BFD_RELOC_AARCH64_MOVW_G3
:
3812 case BFD_RELOC_AARCH64_16_PCREL
:
3813 case BFD_RELOC_AARCH64_32_PCREL
:
3814 case BFD_RELOC_AARCH64_64_PCREL
:
3815 case BFD_RELOC_AARCH64_TSTBR14
:
3816 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
3817 signed_addend
, weak_undef_p
);
3820 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
3821 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
3822 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
3823 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
3824 if (globals
->root
.sgot
== NULL
)
3825 BFD_ASSERT (h
!= NULL
);
3829 value
= aarch64_calculate_got_entry_vma (h
, globals
, info
, value
,
3831 unresolved_reloc_p
);
3832 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
3837 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
3838 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
3839 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
3840 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
3841 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
3842 if (globals
->root
.sgot
== NULL
)
3843 return bfd_reloc_notsupported
;
3845 value
= (symbol_got_offset (input_bfd
, h
, r_symndx
)
3846 + globals
->root
.sgot
->output_section
->vma
3847 + globals
->root
.sgot
->output_offset
);
3849 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
3851 *unresolved_reloc_p
= FALSE
;
3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
:
3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
:
3856 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
:
3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
:
3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
3861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
:
3862 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
3863 signed_addend
- tpoff_base (info
),
3865 *unresolved_reloc_p
= FALSE
;
3868 case BFD_RELOC_AARCH64_TLSDESC_ADD
:
3869 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
:
3870 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
3871 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
3872 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC
:
3873 case BFD_RELOC_AARCH64_TLSDESC_LDR
:
3874 if (globals
->root
.sgot
== NULL
)
3875 return bfd_reloc_notsupported
;
3876 value
= (symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
)
3877 + globals
->root
.sgotplt
->output_section
->vma
3878 + globals
->root
.sgotplt
->output_offset
3879 + globals
->sgotplt_jump_table_size
);
3881 value
= _bfd_aarch64_elf_resolve_relocation (bfd_r_type
, place
, value
,
3883 *unresolved_reloc_p
= FALSE
;
3887 return bfd_reloc_notsupported
;
3891 *saved_addend
= value
;
3893 /* Only apply the final relocation in a sequence. */
3895 return bfd_reloc_continue
;
3897 return _bfd_aarch64_elf_put_addend (input_bfd
, hit_data
, bfd_r_type
,
3901 /* Handle TLS relaxations. Relaxing is possible for symbols that use
3902 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
3905 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
3906 is to then call final_link_relocate. Return other values in the
3909 static bfd_reloc_status_type
3910 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table
*globals
,
3911 bfd
*input_bfd
, bfd_byte
*contents
,
3912 Elf_Internal_Rela
*rel
, struct elf_link_hash_entry
*h
)
3914 bfd_boolean is_local
= h
== NULL
;
3915 unsigned int r_type
= ELFNN_R_TYPE (rel
->r_info
);
3918 BFD_ASSERT (globals
&& input_bfd
&& contents
&& rel
);
3920 switch (elfNN_aarch64_bfd_reloc_from_type (r_type
))
3922 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
3923 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
3926 /* GD->LE relaxation:
3927 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var
3929 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var
3931 bfd_putl32 (0xd2a00000, contents
+ rel
->r_offset
);
3932 return bfd_reloc_continue
;
3936 /* GD->IE relaxation:
3937 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
3939 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
3941 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
3942 return bfd_reloc_continue
;
3945 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
3948 /* GD->LE relaxation:
3949 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
3951 bfd_putl32 (0xf2800000, contents
+ rel
->r_offset
);
3952 return bfd_reloc_continue
;
3956 /* GD->IE relaxation:
3957 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var]
3959 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
3961 bfd_putl32 (insn
, contents
+ rel
->r_offset
);
3962 return bfd_reloc_continue
;
3965 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
3968 /* GD->LE relaxation
3969 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var
3970 bl __tls_get_addr => mrs x1, tpidr_el0
3971 nop => add x0, x1, x0
3974 /* First kill the tls_get_addr reloc on the bl instruction. */
3975 BFD_ASSERT (rel
->r_offset
+ 4 == rel
[1].r_offset
);
3976 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
3978 bfd_putl32 (0xf2800000, contents
+ rel
->r_offset
);
3979 bfd_putl32 (0xd53bd041, contents
+ rel
->r_offset
+ 4);
3980 bfd_putl32 (0x8b000020, contents
+ rel
->r_offset
+ 8);
3981 return bfd_reloc_continue
;
3985 /* GD->IE relaxation
3986 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var]
3987 BL __tls_get_addr => mrs x1, tpidr_el0
3989 NOP => add x0, x1, x0
3992 BFD_ASSERT (ELFNN_R_TYPE (rel
[1].r_info
) == AARCH64_R (CALL26
));
3994 /* Remove the relocation on the BL instruction. */
3995 rel
[1].r_info
= ELFNN_R_INFO (STN_UNDEF
, R_AARCH64_NONE
);
3997 bfd_putl32 (0xf9400000, contents
+ rel
->r_offset
);
3999 /* We choose to fixup the BL and NOP instructions using the
4000 offset from the second relocation to allow flexibility in
4001 scheduling instructions between the ADD and BL. */
4002 bfd_putl32 (0xd53bd041, contents
+ rel
[1].r_offset
);
4003 bfd_putl32 (0x8b000020, contents
+ rel
[1].r_offset
+ 4);
4004 return bfd_reloc_continue
;
4007 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
:
4008 case BFD_RELOC_AARCH64_TLSDESC_CALL
:
4009 /* GD->IE/LE relaxation:
4010 add x0, x0, #:tlsdesc_lo12:var => nop
4013 bfd_putl32 (INSN_NOP
, contents
+ rel
->r_offset
);
4014 return bfd_reloc_ok
;
4016 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4017 /* IE->LE relaxation:
4018 adrp xd, :gottprel:var => movz xd, :tprel_g1:var
4022 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
4023 bfd_putl32 (0xd2a00000 | (insn
& 0x1f), contents
+ rel
->r_offset
);
4025 return bfd_reloc_continue
;
4027 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
4028 /* IE->LE relaxation:
4029 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var
4033 insn
= bfd_getl32 (contents
+ rel
->r_offset
);
4034 bfd_putl32 (0xf2800000 | (insn
& 0x1f), contents
+ rel
->r_offset
);
4036 return bfd_reloc_continue
;
4039 return bfd_reloc_continue
;
4042 return bfd_reloc_ok
;
4045 /* Relocate an AArch64 ELF section. */
4048 elfNN_aarch64_relocate_section (bfd
*output_bfd
,
4049 struct bfd_link_info
*info
,
4051 asection
*input_section
,
4053 Elf_Internal_Rela
*relocs
,
4054 Elf_Internal_Sym
*local_syms
,
4055 asection
**local_sections
)
4057 Elf_Internal_Shdr
*symtab_hdr
;
4058 struct elf_link_hash_entry
**sym_hashes
;
4059 Elf_Internal_Rela
*rel
;
4060 Elf_Internal_Rela
*relend
;
4062 struct elf_aarch64_link_hash_table
*globals
;
4063 bfd_boolean save_addend
= FALSE
;
4066 globals
= elf_aarch64_hash_table (info
);
4068 symtab_hdr
= &elf_symtab_hdr (input_bfd
);
4069 sym_hashes
= elf_sym_hashes (input_bfd
);
4072 relend
= relocs
+ input_section
->reloc_count
;
4073 for (; rel
< relend
; rel
++)
4075 unsigned int r_type
;
4076 bfd_reloc_code_real_type bfd_r_type
;
4077 bfd_reloc_code_real_type relaxed_bfd_r_type
;
4078 reloc_howto_type
*howto
;
4079 unsigned long r_symndx
;
4080 Elf_Internal_Sym
*sym
;
4082 struct elf_link_hash_entry
*h
;
4084 bfd_reloc_status_type r
;
4087 bfd_boolean unresolved_reloc
= FALSE
;
4088 char *error_message
= NULL
;
4090 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
4091 r_type
= ELFNN_R_TYPE (rel
->r_info
);
4093 bfd_reloc
.howto
= elfNN_aarch64_howto_from_type (r_type
);
4094 howto
= bfd_reloc
.howto
;
4098 (*_bfd_error_handler
)
4099 (_("%B: unrecognized relocation (0x%x) in section `%A'"),
4100 input_bfd
, input_section
, r_type
);
4103 bfd_r_type
= elfNN_aarch64_bfd_reloc_from_howto (howto
);
4109 if (r_symndx
< symtab_hdr
->sh_info
)
4111 sym
= local_syms
+ r_symndx
;
4112 sym_type
= ELFNN_ST_TYPE (sym
->st_info
);
4113 sec
= local_sections
[r_symndx
];
4115 /* An object file might have a reference to a local
4116 undefined symbol. This is a daft object file, but we
4117 should at least do something about it. */
4118 if (r_type
!= R_AARCH64_NONE
&& r_type
!= R_AARCH64_NULL
4119 && bfd_is_und_section (sec
)
4120 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
4122 if (!info
->callbacks
->undefined_symbol
4123 (info
, bfd_elf_string_from_elf_section
4124 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
4125 input_bfd
, input_section
, rel
->r_offset
, TRUE
))
4129 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
4131 /* Relocate against local STT_GNU_IFUNC symbol. */
4132 if (!info
->relocatable
4133 && ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
)
4135 h
= elfNN_aarch64_get_local_sym_hash (globals
, input_bfd
,
4140 /* Set STT_GNU_IFUNC symbol value. */
4141 h
->root
.u
.def
.value
= sym
->st_value
;
4142 h
->root
.u
.def
.section
= sec
;
4147 bfd_boolean warned
, ignored
;
4149 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
4150 r_symndx
, symtab_hdr
, sym_hashes
,
4152 unresolved_reloc
, warned
, ignored
);
4157 if (sec
!= NULL
&& discarded_section (sec
))
4158 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
4159 rel
, 1, relend
, howto
, 0, contents
);
4161 if (info
->relocatable
)
4163 /* This is a relocatable link. We don't have to change
4164 anything, unless the reloc is against a section symbol,
4165 in which case we have to adjust according to where the
4166 section symbol winds up in the output section. */
4167 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
4168 rel
->r_addend
+= sec
->output_offset
;
4173 name
= h
->root
.root
.string
;
4176 name
= (bfd_elf_string_from_elf_section
4177 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
4178 if (name
== NULL
|| *name
== '\0')
4179 name
= bfd_section_name (input_bfd
, sec
);
4183 && r_type
!= R_AARCH64_NONE
4184 && r_type
!= R_AARCH64_NULL
4186 || h
->root
.type
== bfd_link_hash_defined
4187 || h
->root
.type
== bfd_link_hash_defweak
)
4188 && IS_AARCH64_TLS_RELOC (bfd_r_type
) != (sym_type
== STT_TLS
))
4190 (*_bfd_error_handler
)
4191 ((sym_type
== STT_TLS
4192 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4193 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4195 input_section
, (long) rel
->r_offset
, howto
->name
, name
);
4198 /* We relax only if we can see that there can be a valid transition
4199 from a reloc type to another.
4200 We call elfNN_aarch64_final_link_relocate unless we're completely
4201 done, i.e., the relaxation produced the final output we want. */
4203 relaxed_bfd_r_type
= aarch64_tls_transition (input_bfd
, info
, r_type
,
4205 if (relaxed_bfd_r_type
!= bfd_r_type
)
4207 bfd_r_type
= relaxed_bfd_r_type
;
4208 howto
= elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type
);
4209 BFD_ASSERT (howto
!= NULL
);
4210 r_type
= howto
->type
;
4211 r
= elfNN_aarch64_tls_relax (globals
, input_bfd
, contents
, rel
, h
);
4212 unresolved_reloc
= 0;
4215 r
= bfd_reloc_continue
;
4217 /* There may be multiple consecutive relocations for the
4218 same offset. In that case we are supposed to treat the
4219 output of each relocation as the addend for the next. */
4220 if (rel
+ 1 < relend
4221 && rel
->r_offset
== rel
[1].r_offset
4222 && ELFNN_R_TYPE (rel
[1].r_info
) != R_AARCH64_NONE
4223 && ELFNN_R_TYPE (rel
[1].r_info
) != R_AARCH64_NULL
)
4226 save_addend
= FALSE
;
4228 if (r
== bfd_reloc_continue
)
4229 r
= elfNN_aarch64_final_link_relocate (howto
, input_bfd
, output_bfd
,
4230 input_section
, contents
, rel
,
4231 relocation
, info
, sec
,
4232 h
, &unresolved_reloc
,
4233 save_addend
, &addend
, sym
);
4235 switch (elfNN_aarch64_bfd_reloc_from_type (r_type
))
4237 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
4238 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
4239 if (! symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
4241 bfd_boolean need_relocs
= FALSE
;
4246 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
4247 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
4250 (info
->shared
|| indx
!= 0) &&
4252 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
4253 || h
->root
.type
!= bfd_link_hash_undefweak
);
4255 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
4259 Elf_Internal_Rela rela
;
4260 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLS_DTPMOD
));
4262 rela
.r_offset
= globals
->root
.sgot
->output_section
->vma
+
4263 globals
->root
.sgot
->output_offset
+ off
;
4266 loc
= globals
->root
.srelgot
->contents
;
4267 loc
+= globals
->root
.srelgot
->reloc_count
++
4268 * RELOC_SIZE (htab
);
4269 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
4273 bfd_put_NN (output_bfd
,
4274 relocation
- dtpoff_base (info
),
4275 globals
->root
.sgot
->contents
+ off
4280 /* This TLS symbol is global. We emit a
4281 relocation to fixup the tls offset at load
4284 ELFNN_R_INFO (indx
, AARCH64_R (TLS_DTPREL
));
4287 (globals
->root
.sgot
->output_section
->vma
4288 + globals
->root
.sgot
->output_offset
+ off
4291 loc
= globals
->root
.srelgot
->contents
;
4292 loc
+= globals
->root
.srelgot
->reloc_count
++
4293 * RELOC_SIZE (globals
);
4294 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
4295 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
4296 globals
->root
.sgot
->contents
+ off
4302 bfd_put_NN (output_bfd
, (bfd_vma
) 1,
4303 globals
->root
.sgot
->contents
+ off
);
4304 bfd_put_NN (output_bfd
,
4305 relocation
- dtpoff_base (info
),
4306 globals
->root
.sgot
->contents
+ off
4310 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
4314 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4315 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC
:
4316 if (! symbol_got_offset_mark_p (input_bfd
, h
, r_symndx
))
4318 bfd_boolean need_relocs
= FALSE
;
4323 off
= symbol_got_offset (input_bfd
, h
, r_symndx
);
4325 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
4328 (info
->shared
|| indx
!= 0) &&
4330 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
4331 || h
->root
.type
!= bfd_link_hash_undefweak
);
4333 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
4337 Elf_Internal_Rela rela
;
4340 rela
.r_addend
= relocation
- dtpoff_base (info
);
4344 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLS_TPREL
));
4345 rela
.r_offset
= globals
->root
.sgot
->output_section
->vma
+
4346 globals
->root
.sgot
->output_offset
+ off
;
4348 loc
= globals
->root
.srelgot
->contents
;
4349 loc
+= globals
->root
.srelgot
->reloc_count
++
4350 * RELOC_SIZE (htab
);
4352 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
4354 bfd_put_NN (output_bfd
, rela
.r_addend
,
4355 globals
->root
.sgot
->contents
+ off
);
4358 bfd_put_NN (output_bfd
, relocation
- tpoff_base (info
),
4359 globals
->root
.sgot
->contents
+ off
);
4361 symbol_got_offset_mark (input_bfd
, h
, r_symndx
);
4365 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
:
4366 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
:
4367 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
4368 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
:
4369 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
:
4370 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
4371 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
:
4372 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
4375 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
:
4376 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
4377 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC
:
4378 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd
, h
, r_symndx
))
4380 bfd_boolean need_relocs
= FALSE
;
4381 int indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
4382 bfd_vma off
= symbol_tlsdesc_got_offset (input_bfd
, h
, r_symndx
);
4384 need_relocs
= (h
== NULL
4385 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
4386 || h
->root
.type
!= bfd_link_hash_undefweak
);
4388 BFD_ASSERT (globals
->root
.srelgot
!= NULL
);
4389 BFD_ASSERT (globals
->root
.sgot
!= NULL
);
4394 Elf_Internal_Rela rela
;
4395 rela
.r_info
= ELFNN_R_INFO (indx
, AARCH64_R (TLSDESC
));
4398 rela
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
4399 + globals
->root
.sgotplt
->output_offset
4400 + off
+ globals
->sgotplt_jump_table_size
);
4403 rela
.r_addend
= relocation
- dtpoff_base (info
);
4405 /* Allocate the next available slot in the PLT reloc
4406 section to hold our R_AARCH64_TLSDESC, the next
4407 available slot is determined from reloc_count,
4408 which we step. But note, reloc_count was
4409 artifically moved down while allocating slots for
4410 real PLT relocs such that all of the PLT relocs
4411 will fit above the initial reloc_count and the
4412 extra stuff will fit below. */
4413 loc
= globals
->root
.srelplt
->contents
;
4414 loc
+= globals
->root
.srelplt
->reloc_count
++
4415 * RELOC_SIZE (globals
);
4417 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
4419 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
4420 globals
->root
.sgotplt
->contents
+ off
+
4421 globals
->sgotplt_jump_table_size
);
4422 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
4423 globals
->root
.sgotplt
->contents
+ off
+
4424 globals
->sgotplt_jump_table_size
+
4428 symbol_tlsdesc_got_offset_mark (input_bfd
, h
, r_symndx
);
4439 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4440 because such sections are not SEC_ALLOC and thus ld.so will
4441 not process them. */
4442 if (unresolved_reloc
4443 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
4445 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
4446 +rel
->r_offset
) != (bfd_vma
) - 1)
4448 (*_bfd_error_handler
)
4450 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4451 input_bfd
, input_section
, (long) rel
->r_offset
, howto
->name
,
4452 h
->root
.root
.string
);
4456 if (r
!= bfd_reloc_ok
&& r
!= bfd_reloc_continue
)
4460 case bfd_reloc_overflow
:
4461 /* If the overflowing reloc was to an undefined symbol,
4462 we have already printed one error message and there
4463 is no point complaining again. */
4465 h
->root
.type
!= bfd_link_hash_undefined
)
4466 && (!((*info
->callbacks
->reloc_overflow
)
4467 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
4468 (bfd_vma
) 0, input_bfd
, input_section
,
4473 case bfd_reloc_undefined
:
4474 if (!((*info
->callbacks
->undefined_symbol
)
4475 (info
, name
, input_bfd
, input_section
,
4476 rel
->r_offset
, TRUE
)))
4480 case bfd_reloc_outofrange
:
4481 error_message
= _("out of range");
4484 case bfd_reloc_notsupported
:
4485 error_message
= _("unsupported relocation");
4488 case bfd_reloc_dangerous
:
4489 /* error_message should already be set. */
4493 error_message
= _("unknown error");
4497 BFD_ASSERT (error_message
!= NULL
);
4498 if (!((*info
->callbacks
->reloc_dangerous
)
4499 (info
, error_message
, input_bfd
, input_section
,
4510 /* Set the right machine number. */
4513 elfNN_aarch64_object_p (bfd
*abfd
)
4516 bfd_default_set_arch_mach (abfd
, bfd_arch_aarch64
, bfd_mach_aarch64_ilp32
);
4518 bfd_default_set_arch_mach (abfd
, bfd_arch_aarch64
, bfd_mach_aarch64
);
4523 /* Function to keep AArch64 specific flags in the ELF header. */
4526 elfNN_aarch64_set_private_flags (bfd
*abfd
, flagword flags
)
4528 if (elf_flags_init (abfd
) && elf_elfheader (abfd
)->e_flags
!= flags
)
4533 elf_elfheader (abfd
)->e_flags
= flags
;
4534 elf_flags_init (abfd
) = TRUE
;
4540 /* Merge backend specific data from an object file to the output
4541 object file when linking. */
4544 elfNN_aarch64_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4548 bfd_boolean flags_compatible
= TRUE
;
4551 /* Check if we have the same endianess. */
4552 if (!_bfd_generic_verify_endian_match (ibfd
, obfd
))
4555 if (!is_aarch64_elf (ibfd
) || !is_aarch64_elf (obfd
))
4558 /* The input BFD must have had its flags initialised. */
4559 /* The following seems bogus to me -- The flags are initialized in
4560 the assembler but I don't think an elf_flags_init field is
4561 written into the object. */
4562 /* BFD_ASSERT (elf_flags_init (ibfd)); */
4564 in_flags
= elf_elfheader (ibfd
)->e_flags
;
4565 out_flags
= elf_elfheader (obfd
)->e_flags
;
4567 if (!elf_flags_init (obfd
))
4569 /* If the input is the default architecture and had the default
4570 flags then do not bother setting the flags for the output
4571 architecture, instead allow future merges to do this. If no
4572 future merges ever set these flags then they will retain their
4573 uninitialised values, which surprise surprise, correspond
4574 to the default values. */
4575 if (bfd_get_arch_info (ibfd
)->the_default
4576 && elf_elfheader (ibfd
)->e_flags
== 0)
4579 elf_flags_init (obfd
) = TRUE
;
4580 elf_elfheader (obfd
)->e_flags
= in_flags
;
4582 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
4583 && bfd_get_arch_info (obfd
)->the_default
)
4584 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
4585 bfd_get_mach (ibfd
));
4590 /* Identical flags must be compatible. */
4591 if (in_flags
== out_flags
)
4594 /* Check to see if the input BFD actually contains any sections. If
4595 not, its flags may not have been initialised either, but it
4596 cannot actually cause any incompatiblity. Do not short-circuit
4597 dynamic objects; their section list may be emptied by
4598 elf_link_add_object_symbols.
4600 Also check to see if there are no code sections in the input.
4601 In this case there is no need to check for code specific flags.
4602 XXX - do we need to worry about floating-point format compatability
4603 in data sections ? */
4604 if (!(ibfd
->flags
& DYNAMIC
))
4606 bfd_boolean null_input_bfd
= TRUE
;
4607 bfd_boolean only_data_sections
= TRUE
;
4609 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
4611 if ((bfd_get_section_flags (ibfd
, sec
)
4612 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
4613 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
4614 only_data_sections
= FALSE
;
4616 null_input_bfd
= FALSE
;
4620 if (null_input_bfd
|| only_data_sections
)
4624 return flags_compatible
;
4627 /* Display the flags field. */
4630 elfNN_aarch64_print_private_bfd_data (bfd
*abfd
, void *ptr
)
4632 FILE *file
= (FILE *) ptr
;
4633 unsigned long flags
;
4635 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
4637 /* Print normal ELF private data. */
4638 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
4640 flags
= elf_elfheader (abfd
)->e_flags
;
4641 /* Ignore init flag - it may not be set, despite the flags field
4642 containing valid data. */
4644 /* xgettext:c-format */
4645 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
4648 fprintf (file
, _("<Unrecognised flag bits set>"));
4655 /* Update the got entry reference counts for the section being removed. */
4658 elfNN_aarch64_gc_sweep_hook (bfd
*abfd
,
4659 struct bfd_link_info
*info
,
4661 const Elf_Internal_Rela
* relocs
)
4663 struct elf_aarch64_link_hash_table
*htab
;
4664 Elf_Internal_Shdr
*symtab_hdr
;
4665 struct elf_link_hash_entry
**sym_hashes
;
4666 struct elf_aarch64_local_symbol
*locals
;
4667 const Elf_Internal_Rela
*rel
, *relend
;
4669 if (info
->relocatable
)
4672 htab
= elf_aarch64_hash_table (info
);
4677 elf_section_data (sec
)->local_dynrel
= NULL
;
4679 symtab_hdr
= &elf_symtab_hdr (abfd
);
4680 sym_hashes
= elf_sym_hashes (abfd
);
4682 locals
= elf_aarch64_locals (abfd
);
4684 relend
= relocs
+ sec
->reloc_count
;
4685 for (rel
= relocs
; rel
< relend
; rel
++)
4687 unsigned long r_symndx
;
4688 unsigned int r_type
;
4689 struct elf_link_hash_entry
*h
= NULL
;
4691 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
4693 if (r_symndx
>= symtab_hdr
->sh_info
)
4696 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
4697 while (h
->root
.type
== bfd_link_hash_indirect
4698 || h
->root
.type
== bfd_link_hash_warning
)
4699 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4703 Elf_Internal_Sym
*isym
;
4705 /* A local symbol. */
4706 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
4709 /* Check relocation against local STT_GNU_IFUNC symbol. */
4711 && ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
4713 h
= elfNN_aarch64_get_local_sym_hash (htab
, abfd
, rel
, FALSE
);
4721 struct elf_aarch64_link_hash_entry
*eh
;
4722 struct elf_dyn_relocs
**pp
;
4723 struct elf_dyn_relocs
*p
;
4725 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
4727 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
4730 /* Everything must go for SEC. */
4736 r_type
= ELFNN_R_TYPE (rel
->r_info
);
4737 switch (aarch64_tls_transition (abfd
,info
, r_type
, h
,r_symndx
))
4739 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
4740 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
4741 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
4742 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
4743 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
:
4744 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
4745 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
4746 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC
:
4747 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
4748 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
4749 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
4750 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
4751 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
4752 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
:
4753 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
:
4754 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
4755 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
:
4756 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
4757 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
:
4758 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
4759 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
:
4762 if (h
->got
.refcount
> 0)
4763 h
->got
.refcount
-= 1;
4765 if (h
->type
== STT_GNU_IFUNC
)
4767 if (h
->plt
.refcount
> 0)
4768 h
->plt
.refcount
-= 1;
4771 else if (locals
!= NULL
)
4773 if (locals
[r_symndx
].got_refcount
> 0)
4774 locals
[r_symndx
].got_refcount
-= 1;
4778 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
:
4779 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
4780 case BFD_RELOC_AARCH64_ADR_LO21_PCREL
:
4781 if (h
!= NULL
&& info
->executable
)
4783 if (h
->plt
.refcount
> 0)
4784 h
->plt
.refcount
-= 1;
4788 case BFD_RELOC_AARCH64_CALL26
:
4789 case BFD_RELOC_AARCH64_JUMP26
:
4790 /* If this is a local symbol then we resolve it
4791 directly without creating a PLT entry. */
4795 if (h
->plt
.refcount
> 0)
4796 h
->plt
.refcount
-= 1;
4799 case BFD_RELOC_AARCH64_NN
:
4800 if (h
!= NULL
&& info
->executable
)
4802 if (h
->plt
.refcount
> 0)
4803 h
->plt
.refcount
-= 1;
4815 /* Adjust a symbol defined by a dynamic object and referenced by a
4816 regular object. The current definition is in some section of the
4817 dynamic object, but we're not including those sections. We have to
4818 change the definition to something the rest of the link can
4822 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info
*info
,
4823 struct elf_link_hash_entry
*h
)
4825 struct elf_aarch64_link_hash_table
*htab
;
4828 /* If this is a function, put it in the procedure linkage table. We
4829 will fill in the contents of the procedure linkage table later,
4830 when we know the address of the .got section. */
4831 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
4833 if (h
->plt
.refcount
<= 0
4834 || (h
->type
!= STT_GNU_IFUNC
4835 && (SYMBOL_CALLS_LOCAL (info
, h
)
4836 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
4837 && h
->root
.type
== bfd_link_hash_undefweak
))))
4839 /* This case can occur if we saw a CALL26 reloc in
4840 an input file, but the symbol wasn't referred to
4841 by a dynamic object or all references were
4842 garbage collected. In which case we can end up
4844 h
->plt
.offset
= (bfd_vma
) - 1;
4851 /* It's possible that we incorrectly decided a .plt reloc was
4852 needed for an R_X86_64_PC32 reloc to a non-function sym in
4853 check_relocs. We can't decide accurately between function and
4854 non-function syms in check-relocs; Objects loaded later in
4855 the link may change h->type. So fix it now. */
4856 h
->plt
.offset
= (bfd_vma
) - 1;
4859 /* If this is a weak symbol, and there is a real definition, the
4860 processor independent code will have arranged for us to see the
4861 real definition first, and we can just use the same value. */
4862 if (h
->u
.weakdef
!= NULL
)
4864 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
4865 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
4866 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
4867 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
4868 if (ELIMINATE_COPY_RELOCS
|| info
->nocopyreloc
)
4869 h
->non_got_ref
= h
->u
.weakdef
->non_got_ref
;
4873 /* If we are creating a shared library, we must presume that the
4874 only references to the symbol are via the global offset table.
4875 For such cases we need not do anything here; the relocations will
4876 be handled correctly by relocate_section. */
4880 /* If there are no references to this symbol that do not use the
4881 GOT, we don't need to generate a copy reloc. */
4882 if (!h
->non_got_ref
)
4885 /* If -z nocopyreloc was given, we won't generate them either. */
4886 if (info
->nocopyreloc
)
4892 /* We must allocate the symbol in our .dynbss section, which will
4893 become part of the .bss section of the executable. There will be
4894 an entry for this symbol in the .dynsym section. The dynamic
4895 object will contain position independent code, so all references
4896 from the dynamic object to this symbol will go through the global
4897 offset table. The dynamic linker will use the .dynsym entry to
4898 determine the address it must put in the global offset table, so
4899 both the dynamic object and the regular object will refer to the
4900 same memory location for the variable. */
4902 htab
= elf_aarch64_hash_table (info
);
4904 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
4905 to copy the initial value out of the dynamic object and into the
4906 runtime process image. */
4907 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
4909 htab
->srelbss
->size
+= RELOC_SIZE (htab
);
4915 return _bfd_elf_adjust_dynamic_copy (h
, s
);
4920 elfNN_aarch64_allocate_local_symbols (bfd
*abfd
, unsigned number
)
4922 struct elf_aarch64_local_symbol
*locals
;
4923 locals
= elf_aarch64_locals (abfd
);
4926 locals
= (struct elf_aarch64_local_symbol
*)
4927 bfd_zalloc (abfd
, number
* sizeof (struct elf_aarch64_local_symbol
));
4930 elf_aarch64_locals (abfd
) = locals
;
4935 /* Create the .got section to hold the global offset table. */
4938 aarch64_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
4940 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4943 struct elf_link_hash_entry
*h
;
4944 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
4946 /* This function may be called more than once. */
4947 s
= bfd_get_linker_section (abfd
, ".got");
4951 flags
= bed
->dynamic_sec_flags
;
4953 s
= bfd_make_section_anyway_with_flags (abfd
,
4954 (bed
->rela_plts_and_copies_p
4955 ? ".rela.got" : ".rel.got"),
4956 (bed
->dynamic_sec_flags
4959 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
4963 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
4965 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
4968 htab
->sgot
->size
+= GOT_ENTRY_SIZE
;
4970 if (bed
->want_got_sym
)
4972 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
4973 (or .got.plt) section. We don't do this in the linker script
4974 because we don't want to define the symbol if we are not creating
4975 a global offset table. */
4976 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
4977 "_GLOBAL_OFFSET_TABLE_");
4978 elf_hash_table (info
)->hgot
= h
;
4983 if (bed
->want_got_plt
)
4985 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
4987 || !bfd_set_section_alignment (abfd
, s
,
4988 bed
->s
->log_file_align
))
4993 /* The first bit of the global offset table is the header. */
4994 s
->size
+= bed
->got_header_size
;
4999 /* Look through the relocs for a section during the first phase. */
5002 elfNN_aarch64_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
5003 asection
*sec
, const Elf_Internal_Rela
*relocs
)
5005 Elf_Internal_Shdr
*symtab_hdr
;
5006 struct elf_link_hash_entry
**sym_hashes
;
5007 const Elf_Internal_Rela
*rel
;
5008 const Elf_Internal_Rela
*rel_end
;
5011 struct elf_aarch64_link_hash_table
*htab
;
5013 if (info
->relocatable
)
5016 BFD_ASSERT (is_aarch64_elf (abfd
));
5018 htab
= elf_aarch64_hash_table (info
);
5021 symtab_hdr
= &elf_symtab_hdr (abfd
);
5022 sym_hashes
= elf_sym_hashes (abfd
);
5024 rel_end
= relocs
+ sec
->reloc_count
;
5025 for (rel
= relocs
; rel
< rel_end
; rel
++)
5027 struct elf_link_hash_entry
*h
;
5028 unsigned long r_symndx
;
5029 unsigned int r_type
;
5030 bfd_reloc_code_real_type bfd_r_type
;
5031 Elf_Internal_Sym
*isym
;
5033 r_symndx
= ELFNN_R_SYM (rel
->r_info
);
5034 r_type
= ELFNN_R_TYPE (rel
->r_info
);
5036 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
5038 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
5043 if (r_symndx
< symtab_hdr
->sh_info
)
5045 /* A local symbol. */
5046 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
5051 /* Check relocation against local STT_GNU_IFUNC symbol. */
5052 if (ELF_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
5054 h
= elfNN_aarch64_get_local_sym_hash (htab
, abfd
, rel
,
5059 /* Fake a STT_GNU_IFUNC symbol. */
5060 h
->type
= STT_GNU_IFUNC
;
5063 h
->forced_local
= 1;
5064 h
->root
.type
= bfd_link_hash_defined
;
5071 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
5072 while (h
->root
.type
== bfd_link_hash_indirect
5073 || h
->root
.type
== bfd_link_hash_warning
)
5074 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5076 /* PR15323, ref flags aren't set for references in the same
5078 h
->root
.non_ir_ref
= 1;
5081 /* Could be done earlier, if h were already available. */
5082 bfd_r_type
= aarch64_tls_transition (abfd
, info
, r_type
, h
, r_symndx
);
5086 /* Create the ifunc sections for static executables. If we
5087 never see an indirect function symbol nor we are building
5088 a static executable, those sections will be empty and
5089 won't appear in output. */
5095 case BFD_RELOC_AARCH64_NN
:
5096 case BFD_RELOC_AARCH64_CALL26
:
5097 case BFD_RELOC_AARCH64_JUMP26
:
5098 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
5099 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
5100 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
5101 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
5102 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
5103 case BFD_RELOC_AARCH64_ADD_LO12
:
5104 if (htab
->root
.dynobj
== NULL
)
5105 htab
->root
.dynobj
= abfd
;
5106 if (!_bfd_elf_create_ifunc_sections (htab
->root
.dynobj
, info
))
5111 /* It is referenced by a non-shared object. */
5113 h
->root
.non_ir_ref
= 1;
5118 case BFD_RELOC_AARCH64_NN
:
5120 /* We don't need to handle relocs into sections not going into
5121 the "real" output. */
5122 if ((sec
->flags
& SEC_ALLOC
) == 0)
5130 h
->plt
.refcount
+= 1;
5131 h
->pointer_equality_needed
= 1;
5134 /* No need to do anything if we're not creating a shared
5140 struct elf_dyn_relocs
*p
;
5141 struct elf_dyn_relocs
**head
;
5143 /* We must copy these reloc types into the output file.
5144 Create a reloc section in dynobj and make room for
5148 if (htab
->root
.dynobj
== NULL
)
5149 htab
->root
.dynobj
= abfd
;
5151 sreloc
= _bfd_elf_make_dynamic_reloc_section
5152 (sec
, htab
->root
.dynobj
, LOG_FILE_ALIGN
, abfd
, /*rela? */ TRUE
);
5158 /* If this is a global symbol, we count the number of
5159 relocations we need for this symbol. */
5162 struct elf_aarch64_link_hash_entry
*eh
;
5163 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
5164 head
= &eh
->dyn_relocs
;
5168 /* Track dynamic relocs needed for local syms too.
5169 We really need local syms available to do this
5175 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
5180 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
5184 /* Beware of type punned pointers vs strict aliasing
5186 vpp
= &(elf_section_data (s
)->local_dynrel
);
5187 head
= (struct elf_dyn_relocs
**) vpp
;
5191 if (p
== NULL
|| p
->sec
!= sec
)
5193 bfd_size_type amt
= sizeof *p
;
5194 p
= ((struct elf_dyn_relocs
*)
5195 bfd_zalloc (htab
->root
.dynobj
, amt
));
5208 /* RR: We probably want to keep a consistency check that
5209 there are no dangling GOT_PAGE relocs. */
5210 case BFD_RELOC_AARCH64_ADR_GOT_PAGE
:
5211 case BFD_RELOC_AARCH64_GOT_LD_PREL19
:
5212 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
:
5213 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC
:
5214 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC
:
5215 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21
:
5216 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
:
5217 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC
:
5218 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC
:
5219 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21
:
5220 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21
:
5221 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
:
5222 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC
:
5223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
:
5224 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12
:
5225 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC
:
5226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0
:
5227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
:
5228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
:
5229 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
:
5230 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
:
5233 unsigned old_got_type
;
5235 got_type
= aarch64_reloc_got_type (bfd_r_type
);
5239 h
->got
.refcount
+= 1;
5240 old_got_type
= elf_aarch64_hash_entry (h
)->got_type
;
5244 struct elf_aarch64_local_symbol
*locals
;
5246 if (!elfNN_aarch64_allocate_local_symbols
5247 (abfd
, symtab_hdr
->sh_info
))
5250 locals
= elf_aarch64_locals (abfd
);
5251 BFD_ASSERT (r_symndx
< symtab_hdr
->sh_info
);
5252 locals
[r_symndx
].got_refcount
+= 1;
5253 old_got_type
= locals
[r_symndx
].got_type
;
5256 /* If a variable is accessed with both general dynamic TLS
5257 methods, two slots may be created. */
5258 if (GOT_TLS_GD_ANY_P (old_got_type
) && GOT_TLS_GD_ANY_P (got_type
))
5259 got_type
|= old_got_type
;
5261 /* We will already have issued an error message if there
5262 is a TLS/non-TLS mismatch, based on the symbol type.
5263 So just combine any TLS types needed. */
5264 if (old_got_type
!= GOT_UNKNOWN
&& old_got_type
!= GOT_NORMAL
5265 && got_type
!= GOT_NORMAL
)
5266 got_type
|= old_got_type
;
5268 /* If the symbol is accessed by both IE and GD methods, we
5269 are able to relax. Turn off the GD flag, without
5270 messing up with any other kind of TLS types that may be
5272 if ((got_type
& GOT_TLS_IE
) && GOT_TLS_GD_ANY_P (got_type
))
5273 got_type
&= ~ (GOT_TLSDESC_GD
| GOT_TLS_GD
);
5275 if (old_got_type
!= got_type
)
5278 elf_aarch64_hash_entry (h
)->got_type
= got_type
;
5281 struct elf_aarch64_local_symbol
*locals
;
5282 locals
= elf_aarch64_locals (abfd
);
5283 BFD_ASSERT (r_symndx
< symtab_hdr
->sh_info
);
5284 locals
[r_symndx
].got_type
= got_type
;
5288 if (htab
->root
.dynobj
== NULL
)
5289 htab
->root
.dynobj
= abfd
;
5290 if (! aarch64_elf_create_got_section (htab
->root
.dynobj
, info
))
5295 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL
:
5296 case BFD_RELOC_AARCH64_ADR_HI21_PCREL
:
5297 case BFD_RELOC_AARCH64_ADR_LO21_PCREL
:
5298 if (h
!= NULL
&& info
->executable
)
5300 /* If this reloc is in a read-only section, we might
5301 need a copy reloc. We can't check reliably at this
5302 stage whether the section is read-only, as input
5303 sections have not yet been mapped to output sections.
5304 Tentatively set the flag for now, and correct in
5305 adjust_dynamic_symbol. */
5307 h
->plt
.refcount
+= 1;
5308 h
->pointer_equality_needed
= 1;
5310 /* FIXME:: RR need to handle these in shared libraries
5311 and essentially bomb out as these being non-PIC
5312 relocations in shared libraries. */
5315 case BFD_RELOC_AARCH64_CALL26
:
5316 case BFD_RELOC_AARCH64_JUMP26
:
5317 /* If this is a local symbol then we resolve it
5318 directly without creating a PLT entry. */
5323 if (h
->plt
.refcount
<= 0)
5324 h
->plt
.refcount
= 1;
5326 h
->plt
.refcount
+= 1;
5337 /* Treat mapping symbols as special target symbols. */
5340 elfNN_aarch64_is_target_special_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
5343 return bfd_is_aarch64_special_symbol_name (sym
->name
,
5344 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY
);
5347 /* This is a copy of elf_find_function () from elf.c except that
5348 AArch64 mapping symbols are ignored when looking for function names. */
5351 aarch64_elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
5355 const char **filename_ptr
,
5356 const char **functionname_ptr
)
5358 const char *filename
= NULL
;
5359 asymbol
*func
= NULL
;
5360 bfd_vma low_func
= 0;
5363 for (p
= symbols
; *p
!= NULL
; p
++)
5367 q
= (elf_symbol_type
*) * p
;
5369 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
5374 filename
= bfd_asymbol_name (&q
->symbol
);
5378 /* Skip mapping symbols. */
5379 if ((q
->symbol
.flags
& BSF_LOCAL
)
5380 && (bfd_is_aarch64_special_symbol_name
5381 (q
->symbol
.name
, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY
)))
5384 if (bfd_get_section (&q
->symbol
) == section
5385 && q
->symbol
.value
>= low_func
&& q
->symbol
.value
<= offset
)
5387 func
= (asymbol
*) q
;
5388 low_func
= q
->symbol
.value
;
5398 *filename_ptr
= filename
;
5399 if (functionname_ptr
)
5400 *functionname_ptr
= bfd_asymbol_name (func
);
5406 /* Find the nearest line to a particular section and offset, for error
5407 reporting. This code is a duplicate of the code in elf.c, except
5408 that it uses aarch64_elf_find_function. */
5411 elfNN_aarch64_find_nearest_line (bfd
*abfd
,
5415 const char **filename_ptr
,
5416 const char **functionname_ptr
,
5417 unsigned int *line_ptr
)
5419 bfd_boolean found
= FALSE
;
5421 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64
5422 toolchain uses it. */
5424 if (_bfd_dwarf2_find_nearest_line (abfd
, dwarf_debug_sections
,
5425 section
, symbols
, offset
,
5426 filename_ptr
, functionname_ptr
,
5428 &elf_tdata (abfd
)->dwarf2_find_line_info
))
5430 if (!*functionname_ptr
)
5431 aarch64_elf_find_function (abfd
, section
, symbols
, offset
,
5432 *filename_ptr
? NULL
: filename_ptr
,
5438 if (!_bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
5439 &found
, filename_ptr
,
5440 functionname_ptr
, line_ptr
,
5441 &elf_tdata (abfd
)->line_info
))
5444 if (found
&& (*functionname_ptr
|| *line_ptr
))
5447 if (symbols
== NULL
)
5450 if (!aarch64_elf_find_function (abfd
, section
, symbols
, offset
,
5451 filename_ptr
, functionname_ptr
))
5459 elfNN_aarch64_find_inliner_info (bfd
*abfd
,
5460 const char **filename_ptr
,
5461 const char **functionname_ptr
,
5462 unsigned int *line_ptr
)
5465 found
= _bfd_dwarf2_find_inliner_info
5466 (abfd
, filename_ptr
,
5467 functionname_ptr
, line_ptr
, &elf_tdata (abfd
)->dwarf2_find_line_info
);
5473 elfNN_aarch64_post_process_headers (bfd
*abfd
,
5474 struct bfd_link_info
*link_info
)
5476 Elf_Internal_Ehdr
*i_ehdrp
; /* ELF file header, internal form. */
5478 i_ehdrp
= elf_elfheader (abfd
);
5479 i_ehdrp
->e_ident
[EI_ABIVERSION
] = AARCH64_ELF_ABI_VERSION
;
5481 _bfd_elf_post_process_headers (abfd
, link_info
);
5484 static enum elf_reloc_type_class
5485 elfNN_aarch64_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5486 const asection
*rel_sec ATTRIBUTE_UNUSED
,
5487 const Elf_Internal_Rela
*rela
)
5489 switch ((int) ELFNN_R_TYPE (rela
->r_info
))
5491 case AARCH64_R (RELATIVE
):
5492 return reloc_class_relative
;
5493 case AARCH64_R (JUMP_SLOT
):
5494 return reloc_class_plt
;
5495 case AARCH64_R (COPY
):
5496 return reloc_class_copy
;
5498 return reloc_class_normal
;
5502 /* Set the right machine number for an AArch64 ELF file. */
5505 elfNN_aarch64_section_flags (flagword
*flags
, const Elf_Internal_Shdr
*hdr
)
5507 if (hdr
->sh_type
== SHT_NOTE
)
5508 *flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_CONTENTS
;
5513 /* Handle an AArch64 specific section when reading an object file. This is
5514 called when bfd_section_from_shdr finds a section with an unknown
5518 elfNN_aarch64_section_from_shdr (bfd
*abfd
,
5519 Elf_Internal_Shdr
*hdr
,
5520 const char *name
, int shindex
)
5522 /* There ought to be a place to keep ELF backend specific flags, but
5523 at the moment there isn't one. We just keep track of the
5524 sections by their name, instead. Fortunately, the ABI gives
5525 names for all the AArch64 specific sections, so we will probably get
5527 switch (hdr
->sh_type
)
5529 case SHT_AARCH64_ATTRIBUTES
:
5536 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
5542 /* A structure used to record a list of sections, independently
5543 of the next and prev fields in the asection structure. */
5544 typedef struct section_list
5547 struct section_list
*next
;
5548 struct section_list
*prev
;
5552 /* Unfortunately we need to keep a list of sections for which
5553 an _aarch64_elf_section_data structure has been allocated. This
5554 is because it is possible for functions like elfNN_aarch64_write_section
5555 to be called on a section which has had an elf_data_structure
5556 allocated for it (and so the used_by_bfd field is valid) but
5557 for which the AArch64 extended version of this structure - the
5558 _aarch64_elf_section_data structure - has not been allocated. */
5559 static section_list
*sections_with_aarch64_elf_section_data
= NULL
;
5562 record_section_with_aarch64_elf_section_data (asection
*sec
)
5564 struct section_list
*entry
;
5566 entry
= bfd_malloc (sizeof (*entry
));
5570 entry
->next
= sections_with_aarch64_elf_section_data
;
5572 if (entry
->next
!= NULL
)
5573 entry
->next
->prev
= entry
;
5574 sections_with_aarch64_elf_section_data
= entry
;
5577 static struct section_list
*
5578 find_aarch64_elf_section_entry (asection
*sec
)
5580 struct section_list
*entry
;
5581 static struct section_list
*last_entry
= NULL
;
5583 /* This is a short cut for the typical case where the sections are added
5584 to the sections_with_aarch64_elf_section_data list in forward order and
5585 then looked up here in backwards order. This makes a real difference
5586 to the ld-srec/sec64k.exp linker test. */
5587 entry
= sections_with_aarch64_elf_section_data
;
5588 if (last_entry
!= NULL
)
5590 if (last_entry
->sec
== sec
)
5592 else if (last_entry
->next
!= NULL
&& last_entry
->next
->sec
== sec
)
5593 entry
= last_entry
->next
;
5596 for (; entry
; entry
= entry
->next
)
5597 if (entry
->sec
== sec
)
5601 /* Record the entry prior to this one - it is the entry we are
5602 most likely to want to locate next time. Also this way if we
5603 have been called from
5604 unrecord_section_with_aarch64_elf_section_data () we will not
5605 be caching a pointer that is about to be freed. */
5606 last_entry
= entry
->prev
;
5612 unrecord_section_with_aarch64_elf_section_data (asection
*sec
)
5614 struct section_list
*entry
;
5616 entry
= find_aarch64_elf_section_entry (sec
);
5620 if (entry
->prev
!= NULL
)
5621 entry
->prev
->next
= entry
->next
;
5622 if (entry
->next
!= NULL
)
5623 entry
->next
->prev
= entry
->prev
;
5624 if (entry
== sections_with_aarch64_elf_section_data
)
5625 sections_with_aarch64_elf_section_data
= entry
->next
;
5634 struct bfd_link_info
*info
;
5637 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
5638 asection
*, struct elf_link_hash_entry
*);
5639 } output_arch_syminfo
;
5641 enum map_symbol_type
5648 /* Output a single mapping symbol. */
5651 elfNN_aarch64_output_map_sym (output_arch_syminfo
*osi
,
5652 enum map_symbol_type type
, bfd_vma offset
)
5654 static const char *names
[2] = { "$x", "$d" };
5655 Elf_Internal_Sym sym
;
5657 sym
.st_value
= (osi
->sec
->output_section
->vma
5658 + osi
->sec
->output_offset
+ offset
);
5661 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5662 sym
.st_shndx
= osi
->sec_shndx
;
5663 return osi
->func (osi
->finfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
5668 /* Output mapping symbols for PLT entries associated with H. */
5671 elfNN_aarch64_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
5673 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
5676 if (h
->root
.type
== bfd_link_hash_indirect
)
5679 if (h
->root
.type
== bfd_link_hash_warning
)
5680 /* When warning symbols are created, they **replace** the "real"
5681 entry in the hash table, thus we never get to see the real
5682 symbol in a hash traversal. So look at it now. */
5683 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5685 if (h
->plt
.offset
== (bfd_vma
) - 1)
5688 addr
= h
->plt
.offset
;
5691 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
5698 /* Output a single local symbol for a generated stub. */
5701 elfNN_aarch64_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
5702 bfd_vma offset
, bfd_vma size
)
5704 Elf_Internal_Sym sym
;
5706 sym
.st_value
= (osi
->sec
->output_section
->vma
5707 + osi
->sec
->output_offset
+ offset
);
5710 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5711 sym
.st_shndx
= osi
->sec_shndx
;
5712 return osi
->func (osi
->finfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
5716 aarch64_map_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
5718 struct elf_aarch64_stub_hash_entry
*stub_entry
;
5722 output_arch_syminfo
*osi
;
5724 /* Massage our args to the form they really have. */
5725 stub_entry
= (struct elf_aarch64_stub_hash_entry
*) gen_entry
;
5726 osi
= (output_arch_syminfo
*) in_arg
;
5728 stub_sec
= stub_entry
->stub_sec
;
5730 /* Ensure this stub is attached to the current section being
5732 if (stub_sec
!= osi
->sec
)
5735 addr
= (bfd_vma
) stub_entry
->stub_offset
;
5737 stub_name
= stub_entry
->output_name
;
5739 switch (stub_entry
->stub_type
)
5741 case aarch64_stub_adrp_branch
:
5742 if (!elfNN_aarch64_output_stub_sym (osi
, stub_name
, addr
,
5743 sizeof (aarch64_adrp_branch_stub
)))
5745 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
5748 case aarch64_stub_long_branch
:
5749 if (!elfNN_aarch64_output_stub_sym
5750 (osi
, stub_name
, addr
, sizeof (aarch64_long_branch_stub
)))
5752 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_INSN
, addr
))
5754 if (!elfNN_aarch64_output_map_sym (osi
, AARCH64_MAP_DATA
, addr
+ 16))
5764 /* Output mapping symbols for linker generated sections. */
5767 elfNN_aarch64_output_arch_local_syms (bfd
*output_bfd
,
5768 struct bfd_link_info
*info
,
5770 int (*func
) (void *, const char *,
5773 struct elf_link_hash_entry
5776 output_arch_syminfo osi
;
5777 struct elf_aarch64_link_hash_table
*htab
;
5779 htab
= elf_aarch64_hash_table (info
);
5785 /* Long calls stubs. */
5786 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
5790 for (stub_sec
= htab
->stub_bfd
->sections
;
5791 stub_sec
!= NULL
; stub_sec
= stub_sec
->next
)
5793 /* Ignore non-stub sections. */
5794 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5799 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
5800 (output_bfd
, osi
.sec
->output_section
);
5802 bfd_hash_traverse (&htab
->stub_hash_table
, aarch64_map_one_stub
,
5807 /* Finally, output mapping symbols for the PLT. */
5808 if (!htab
->root
.splt
|| htab
->root
.splt
->size
== 0)
5811 /* For now live without mapping symbols for the plt. */
5812 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
5813 (output_bfd
, htab
->root
.splt
->output_section
);
5814 osi
.sec
= htab
->root
.splt
;
5816 elf_link_hash_traverse (&htab
->root
, elfNN_aarch64_output_plt_map
,
5823 /* Allocate target specific section data. */
5826 elfNN_aarch64_new_section_hook (bfd
*abfd
, asection
*sec
)
5828 if (!sec
->used_by_bfd
)
5830 _aarch64_elf_section_data
*sdata
;
5831 bfd_size_type amt
= sizeof (*sdata
);
5833 sdata
= bfd_zalloc (abfd
, amt
);
5836 sec
->used_by_bfd
= sdata
;
5839 record_section_with_aarch64_elf_section_data (sec
);
5841 return _bfd_elf_new_section_hook (abfd
, sec
);
5846 unrecord_section_via_map_over_sections (bfd
*abfd ATTRIBUTE_UNUSED
,
5848 void *ignore ATTRIBUTE_UNUSED
)
5850 unrecord_section_with_aarch64_elf_section_data (sec
);
5854 elfNN_aarch64_close_and_cleanup (bfd
*abfd
)
5857 bfd_map_over_sections (abfd
,
5858 unrecord_section_via_map_over_sections
, NULL
);
5860 return _bfd_elf_close_and_cleanup (abfd
);
5864 elfNN_aarch64_bfd_free_cached_info (bfd
*abfd
)
5867 bfd_map_over_sections (abfd
,
5868 unrecord_section_via_map_over_sections
, NULL
);
5870 return _bfd_free_cached_info (abfd
);
5873 /* Create dynamic sections. This is different from the ARM backend in that
5874 the got, plt, gotplt and their relocation sections are all created in the
5875 standard part of the bfd elf backend. */
5878 elfNN_aarch64_create_dynamic_sections (bfd
*dynobj
,
5879 struct bfd_link_info
*info
)
5881 struct elf_aarch64_link_hash_table
*htab
;
5883 /* We need to create .got section. */
5884 if (!aarch64_elf_create_got_section (dynobj
, info
))
5887 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
5890 htab
= elf_aarch64_hash_table (info
);
5891 htab
->sdynbss
= bfd_get_linker_section (dynobj
, ".dynbss");
5893 htab
->srelbss
= bfd_get_linker_section (dynobj
, ".rela.bss");
5895 if (!htab
->sdynbss
|| (!info
->shared
&& !htab
->srelbss
))
5902 /* Allocate space in .plt, .got and associated reloc sections for
5906 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
5908 struct bfd_link_info
*info
;
5909 struct elf_aarch64_link_hash_table
*htab
;
5910 struct elf_aarch64_link_hash_entry
*eh
;
5911 struct elf_dyn_relocs
*p
;
5913 /* An example of a bfd_link_hash_indirect symbol is versioned
5914 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
5915 -> __gxx_personality_v0(bfd_link_hash_defined)
5917 There is no need to process bfd_link_hash_indirect symbols here
5918 because we will also be presented with the concrete instance of
5919 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
5920 called to copy all relevant data from the generic to the concrete
5923 if (h
->root
.type
== bfd_link_hash_indirect
)
5926 if (h
->root
.type
== bfd_link_hash_warning
)
5927 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5929 info
= (struct bfd_link_info
*) inf
;
5930 htab
= elf_aarch64_hash_table (info
);
5932 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
5933 here if it is defined and referenced in a non-shared object. */
5934 if (h
->type
== STT_GNU_IFUNC
5937 else if (htab
->root
.dynamic_sections_created
&& h
->plt
.refcount
> 0)
5939 /* Make sure this symbol is output as a dynamic symbol.
5940 Undefined weak syms won't yet be marked as dynamic. */
5941 if (h
->dynindx
== -1 && !h
->forced_local
)
5943 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
5947 if (info
->shared
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
5949 asection
*s
= htab
->root
.splt
;
5951 /* If this is the first .plt entry, make room for the special
5954 s
->size
+= htab
->plt_header_size
;
5956 h
->plt
.offset
= s
->size
;
5958 /* If this symbol is not defined in a regular file, and we are
5959 not generating a shared library, then set the symbol to this
5960 location in the .plt. This is required to make function
5961 pointers compare as equal between the normal executable and
5962 the shared library. */
5963 if (!info
->shared
&& !h
->def_regular
)
5965 h
->root
.u
.def
.section
= s
;
5966 h
->root
.u
.def
.value
= h
->plt
.offset
;
5969 /* Make room for this entry. For now we only create the
5970 small model PLT entries. We later need to find a way
5971 of relaxing into these from the large model PLT entries. */
5972 s
->size
+= PLT_SMALL_ENTRY_SIZE
;
5974 /* We also need to make an entry in the .got.plt section, which
5975 will be placed in the .got section by the linker script. */
5976 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
;
5978 /* We also need to make an entry in the .rela.plt section. */
5979 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
5981 /* We need to ensure that all GOT entries that serve the PLT
5982 are consecutive with the special GOT slots [0] [1] and
5983 [2]. Any addtional relocations, such as
5984 R_AARCH64_TLSDESC, must be placed after the PLT related
5985 entries. We abuse the reloc_count such that during
5986 sizing we adjust reloc_count to indicate the number of
5987 PLT related reserved entries. In subsequent phases when
5988 filling in the contents of the reloc entries, PLT related
5989 entries are placed by computing their PLT index (0
5990 .. reloc_count). While other none PLT relocs are placed
5991 at the slot indicated by reloc_count and reloc_count is
5994 htab
->root
.srelplt
->reloc_count
++;
5998 h
->plt
.offset
= (bfd_vma
) - 1;
6004 h
->plt
.offset
= (bfd_vma
) - 1;
6008 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
6009 eh
->tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
6011 if (h
->got
.refcount
> 0)
6014 unsigned got_type
= elf_aarch64_hash_entry (h
)->got_type
;
6016 h
->got
.offset
= (bfd_vma
) - 1;
6018 dyn
= htab
->root
.dynamic_sections_created
;
6020 /* Make sure this symbol is output as a dynamic symbol.
6021 Undefined weak syms won't yet be marked as dynamic. */
6022 if (dyn
&& h
->dynindx
== -1 && !h
->forced_local
)
6024 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
6028 if (got_type
== GOT_UNKNOWN
)
6031 else if (got_type
== GOT_NORMAL
)
6033 h
->got
.offset
= htab
->root
.sgot
->size
;
6034 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
6035 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6036 || h
->root
.type
!= bfd_link_hash_undefweak
)
6038 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
6040 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
6046 if (got_type
& GOT_TLSDESC_GD
)
6048 eh
->tlsdesc_got_jump_table_offset
=
6049 (htab
->root
.sgotplt
->size
6050 - aarch64_compute_jump_table_size (htab
));
6051 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
* 2;
6052 h
->got
.offset
= (bfd_vma
) - 2;
6055 if (got_type
& GOT_TLS_GD
)
6057 h
->got
.offset
= htab
->root
.sgot
->size
;
6058 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
* 2;
6061 if (got_type
& GOT_TLS_IE
)
6063 h
->got
.offset
= htab
->root
.sgot
->size
;
6064 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
6067 indx
= h
&& h
->dynindx
!= -1 ? h
->dynindx
: 0;
6068 if ((ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6069 || h
->root
.type
!= bfd_link_hash_undefweak
)
6072 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, 0, h
)))
6074 if (got_type
& GOT_TLSDESC_GD
)
6076 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
6077 /* Note reloc_count not incremented here! We have
6078 already adjusted reloc_count for this relocation
6081 /* TLSDESC PLT is now needed, but not yet determined. */
6082 htab
->tlsdesc_plt
= (bfd_vma
) - 1;
6085 if (got_type
& GOT_TLS_GD
)
6086 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
) * 2;
6088 if (got_type
& GOT_TLS_IE
)
6089 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
6095 h
->got
.offset
= (bfd_vma
) - 1;
6098 if (eh
->dyn_relocs
== NULL
)
6101 /* In the shared -Bsymbolic case, discard space allocated for
6102 dynamic pc-relative relocs against symbols which turn out to be
6103 defined in regular objects. For the normal shared case, discard
6104 space for pc-relative relocs that have become local due to symbol
6105 visibility changes. */
6109 /* Relocs that use pc_count are those that appear on a call
6110 insn, or certain REL relocs that can generated via assembly.
6111 We want calls to protected symbols to resolve directly to the
6112 function rather than going via the plt. If people want
6113 function pointer comparisons to work as expected then they
6114 should avoid writing weird assembly. */
6115 if (SYMBOL_CALLS_LOCAL (info
, h
))
6117 struct elf_dyn_relocs
**pp
;
6119 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
;)
6121 p
->count
-= p
->pc_count
;
6130 /* Also discard relocs on undefined weak syms with non-default
6132 if (eh
->dyn_relocs
!= NULL
&& h
->root
.type
== bfd_link_hash_undefweak
)
6134 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
6135 eh
->dyn_relocs
= NULL
;
6137 /* Make sure undefined weak symbols are output as a dynamic
6139 else if (h
->dynindx
== -1
6141 && !bfd_elf_link_record_dynamic_symbol (info
, h
))
6146 else if (ELIMINATE_COPY_RELOCS
)
6148 /* For the non-shared case, discard space for relocs against
6149 symbols which turn out to need copy relocs or are not
6155 || (htab
->root
.dynamic_sections_created
6156 && (h
->root
.type
== bfd_link_hash_undefweak
6157 || h
->root
.type
== bfd_link_hash_undefined
))))
6159 /* Make sure this symbol is output as a dynamic symbol.
6160 Undefined weak syms won't yet be marked as dynamic. */
6161 if (h
->dynindx
== -1
6163 && !bfd_elf_link_record_dynamic_symbol (info
, h
))
6166 /* If that succeeded, we know we'll be keeping all the
6168 if (h
->dynindx
!= -1)
6172 eh
->dyn_relocs
= NULL
;
6177 /* Finally, allocate space. */
6178 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
6182 sreloc
= elf_section_data (p
->sec
)->sreloc
;
6184 BFD_ASSERT (sreloc
!= NULL
);
6186 sreloc
->size
+= p
->count
* RELOC_SIZE (htab
);
6192 /* Allocate space in .plt, .got and associated reloc sections for
6193 ifunc dynamic relocs. */
6196 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry
*h
,
6199 struct bfd_link_info
*info
;
6200 struct elf_aarch64_link_hash_table
*htab
;
6201 struct elf_aarch64_link_hash_entry
*eh
;
6203 /* An example of a bfd_link_hash_indirect symbol is versioned
6204 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
6205 -> __gxx_personality_v0(bfd_link_hash_defined)
6207 There is no need to process bfd_link_hash_indirect symbols here
6208 because we will also be presented with the concrete instance of
6209 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
6210 called to copy all relevant data from the generic to the concrete
6213 if (h
->root
.type
== bfd_link_hash_indirect
)
6216 if (h
->root
.type
== bfd_link_hash_warning
)
6217 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6219 info
= (struct bfd_link_info
*) inf
;
6220 htab
= elf_aarch64_hash_table (info
);
6222 eh
= (struct elf_aarch64_link_hash_entry
*) h
;
6224 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
6225 here if it is defined and referenced in a non-shared object. */
6226 if (h
->type
== STT_GNU_IFUNC
6228 return _bfd_elf_allocate_ifunc_dyn_relocs (info
, h
,
6230 htab
->plt_entry_size
,
6231 htab
->plt_header_size
,
6236 /* Allocate space in .plt, .got and associated reloc sections for
6237 local dynamic relocs. */
6240 elfNN_aarch64_allocate_local_dynrelocs (void **slot
, void *inf
)
6242 struct elf_link_hash_entry
*h
6243 = (struct elf_link_hash_entry
*) *slot
;
6245 if (h
->type
!= STT_GNU_IFUNC
6249 || h
->root
.type
!= bfd_link_hash_defined
)
6252 return elfNN_aarch64_allocate_dynrelocs (h
, inf
);
6255 /* Allocate space in .plt, .got and associated reloc sections for
6256 local ifunc dynamic relocs. */
6259 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot
, void *inf
)
6261 struct elf_link_hash_entry
*h
6262 = (struct elf_link_hash_entry
*) *slot
;
6264 if (h
->type
!= STT_GNU_IFUNC
6268 || h
->root
.type
!= bfd_link_hash_defined
)
6271 return elfNN_aarch64_allocate_ifunc_dynrelocs (h
, inf
);
6274 /* This is the most important function of all . Innocuosly named
6277 elfNN_aarch64_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
6278 struct bfd_link_info
*info
)
6280 struct elf_aarch64_link_hash_table
*htab
;
6286 htab
= elf_aarch64_hash_table ((info
));
6287 dynobj
= htab
->root
.dynobj
;
6289 BFD_ASSERT (dynobj
!= NULL
);
6291 if (htab
->root
.dynamic_sections_created
)
6293 if (info
->executable
)
6295 s
= bfd_get_linker_section (dynobj
, ".interp");
6298 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
6299 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
6303 /* Set up .got offsets for local syms, and space for local dynamic
6305 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6307 struct elf_aarch64_local_symbol
*locals
= NULL
;
6308 Elf_Internal_Shdr
*symtab_hdr
;
6312 if (!is_aarch64_elf (ibfd
))
6315 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
6317 struct elf_dyn_relocs
*p
;
6319 for (p
= (struct elf_dyn_relocs
*)
6320 (elf_section_data (s
)->local_dynrel
); p
!= NULL
; p
= p
->next
)
6322 if (!bfd_is_abs_section (p
->sec
)
6323 && bfd_is_abs_section (p
->sec
->output_section
))
6325 /* Input section has been discarded, either because
6326 it is a copy of a linkonce section or due to
6327 linker script /DISCARD/, so we'll be discarding
6330 else if (p
->count
!= 0)
6332 srel
= elf_section_data (p
->sec
)->sreloc
;
6333 srel
->size
+= p
->count
* RELOC_SIZE (htab
);
6334 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
6335 info
->flags
|= DF_TEXTREL
;
6340 locals
= elf_aarch64_locals (ibfd
);
6344 symtab_hdr
= &elf_symtab_hdr (ibfd
);
6345 srel
= htab
->root
.srelgot
;
6346 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
6348 locals
[i
].got_offset
= (bfd_vma
) - 1;
6349 locals
[i
].tlsdesc_got_jump_table_offset
= (bfd_vma
) - 1;
6350 if (locals
[i
].got_refcount
> 0)
6352 unsigned got_type
= locals
[i
].got_type
;
6353 if (got_type
& GOT_TLSDESC_GD
)
6355 locals
[i
].tlsdesc_got_jump_table_offset
=
6356 (htab
->root
.sgotplt
->size
6357 - aarch64_compute_jump_table_size (htab
));
6358 htab
->root
.sgotplt
->size
+= GOT_ENTRY_SIZE
* 2;
6359 locals
[i
].got_offset
= (bfd_vma
) - 2;
6362 if (got_type
& GOT_TLS_GD
)
6364 locals
[i
].got_offset
= htab
->root
.sgot
->size
;
6365 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
* 2;
6368 if (got_type
& GOT_TLS_IE
)
6370 locals
[i
].got_offset
= htab
->root
.sgot
->size
;
6371 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
6374 if (got_type
== GOT_UNKNOWN
)
6378 if (got_type
== GOT_NORMAL
)
6384 if (got_type
& GOT_TLSDESC_GD
)
6386 htab
->root
.srelplt
->size
+= RELOC_SIZE (htab
);
6387 /* Note RELOC_COUNT not incremented here! */
6388 htab
->tlsdesc_plt
= (bfd_vma
) - 1;
6391 if (got_type
& GOT_TLS_GD
)
6392 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
) * 2;
6394 if (got_type
& GOT_TLS_IE
)
6395 htab
->root
.srelgot
->size
+= RELOC_SIZE (htab
);
6400 locals
[i
].got_refcount
= (bfd_vma
) - 1;
6406 /* Allocate global sym .plt and .got entries, and space for global
6407 sym dynamic relocs. */
6408 elf_link_hash_traverse (&htab
->root
, elfNN_aarch64_allocate_dynrelocs
,
6411 /* Allocate global ifunc sym .plt and .got entries, and space for global
6412 ifunc sym dynamic relocs. */
6413 elf_link_hash_traverse (&htab
->root
, elfNN_aarch64_allocate_ifunc_dynrelocs
,
6416 /* Allocate .plt and .got entries, and space for local symbols. */
6417 htab_traverse (htab
->loc_hash_table
,
6418 elfNN_aarch64_allocate_local_dynrelocs
,
6421 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
6422 htab_traverse (htab
->loc_hash_table
,
6423 elfNN_aarch64_allocate_local_ifunc_dynrelocs
,
6426 /* For every jump slot reserved in the sgotplt, reloc_count is
6427 incremented. However, when we reserve space for TLS descriptors,
6428 it's not incremented, so in order to compute the space reserved
6429 for them, it suffices to multiply the reloc count by the jump
6432 if (htab
->root
.srelplt
)
6433 htab
->sgotplt_jump_table_size
= aarch64_compute_jump_table_size (htab
);
6435 if (htab
->tlsdesc_plt
)
6437 if (htab
->root
.splt
->size
== 0)
6438 htab
->root
.splt
->size
+= PLT_ENTRY_SIZE
;
6440 htab
->tlsdesc_plt
= htab
->root
.splt
->size
;
6441 htab
->root
.splt
->size
+= PLT_TLSDESC_ENTRY_SIZE
;
6443 /* If we're not using lazy TLS relocations, don't generate the
6444 GOT entry required. */
6445 if (!(info
->flags
& DF_BIND_NOW
))
6447 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
6448 htab
->root
.sgot
->size
+= GOT_ENTRY_SIZE
;
6452 /* We now have determined the sizes of the various dynamic sections.
6453 Allocate memory for them. */
6455 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
6457 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
6460 if (s
== htab
->root
.splt
6461 || s
== htab
->root
.sgot
6462 || s
== htab
->root
.sgotplt
6463 || s
== htab
->root
.iplt
6464 || s
== htab
->root
.igotplt
|| s
== htab
->sdynbss
)
6466 /* Strip this section if we don't need it; see the
6469 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, s
), ".rela"))
6471 if (s
->size
!= 0 && s
!= htab
->root
.srelplt
)
6474 /* We use the reloc_count field as a counter if we need
6475 to copy relocs into the output file. */
6476 if (s
!= htab
->root
.srelplt
)
6481 /* It's not one of our sections, so don't allocate space. */
6487 /* If we don't need this section, strip it from the
6488 output file. This is mostly to handle .rela.bss and
6489 .rela.plt. We must create both sections in
6490 create_dynamic_sections, because they must be created
6491 before the linker maps input sections to output
6492 sections. The linker does that before
6493 adjust_dynamic_symbol is called, and it is that
6494 function which decides whether anything needs to go
6495 into these sections. */
6497 s
->flags
|= SEC_EXCLUDE
;
6501 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
6504 /* Allocate memory for the section contents. We use bfd_zalloc
6505 here in case unused entries are not reclaimed before the
6506 section's contents are written out. This should not happen,
6507 but this way if it does, we get a R_AARCH64_NONE reloc instead
6509 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
6510 if (s
->contents
== NULL
)
6514 if (htab
->root
.dynamic_sections_created
)
6516 /* Add some entries to the .dynamic section. We fill in the
6517 values later, in elfNN_aarch64_finish_dynamic_sections, but we
6518 must add the entries now so that we get the correct size for
6519 the .dynamic section. The DT_DEBUG entry is filled in by the
6520 dynamic linker and used by the debugger. */
6521 #define add_dynamic_entry(TAG, VAL) \
6522 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
6524 if (info
->executable
)
6526 if (!add_dynamic_entry (DT_DEBUG
, 0))
6530 if (htab
->root
.splt
->size
!= 0)
6532 if (!add_dynamic_entry (DT_PLTGOT
, 0)
6533 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
6534 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
6535 || !add_dynamic_entry (DT_JMPREL
, 0))
6538 if (htab
->tlsdesc_plt
6539 && (!add_dynamic_entry (DT_TLSDESC_PLT
, 0)
6540 || !add_dynamic_entry (DT_TLSDESC_GOT
, 0)))
6546 if (!add_dynamic_entry (DT_RELA
, 0)
6547 || !add_dynamic_entry (DT_RELASZ
, 0)
6548 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
6551 /* If any dynamic relocs apply to a read-only section,
6552 then we need a DT_TEXTREL entry. */
6553 if ((info
->flags
& DF_TEXTREL
) != 0)
6555 if (!add_dynamic_entry (DT_TEXTREL
, 0))
6560 #undef add_dynamic_entry
6566 elf_aarch64_update_plt_entry (bfd
*output_bfd
,
6567 bfd_reloc_code_real_type r_type
,
6568 bfd_byte
*plt_entry
, bfd_vma value
)
6570 reloc_howto_type
*howto
= elfNN_aarch64_howto_from_bfd_reloc (r_type
);
6572 _bfd_aarch64_elf_put_addend (output_bfd
, plt_entry
, r_type
, howto
, value
);
6576 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry
*h
,
6577 struct elf_aarch64_link_hash_table
6578 *htab
, bfd
*output_bfd
,
6579 struct bfd_link_info
*info
)
6581 bfd_byte
*plt_entry
;
6584 bfd_vma gotplt_entry_address
;
6585 bfd_vma plt_entry_address
;
6586 Elf_Internal_Rela rela
;
6588 asection
*plt
, *gotplt
, *relplt
;
6590 /* When building a static executable, use .iplt, .igot.plt and
6591 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6592 if (htab
->root
.splt
!= NULL
)
6594 plt
= htab
->root
.splt
;
6595 gotplt
= htab
->root
.sgotplt
;
6596 relplt
= htab
->root
.srelplt
;
6600 plt
= htab
->root
.iplt
;
6601 gotplt
= htab
->root
.igotplt
;
6602 relplt
= htab
->root
.irelplt
;
6605 /* Get the index in the procedure linkage table which
6606 corresponds to this symbol. This is the index of this symbol
6607 in all the symbols for which we are making plt entries. The
6608 first entry in the procedure linkage table is reserved.
6610 Get the offset into the .got table of the entry that
6611 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
6612 bytes. The first three are reserved for the dynamic linker.
6614 For static executables, we don't reserve anything. */
6616 if (plt
== htab
->root
.splt
)
6618 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
6619 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
6623 plt_index
= h
->plt
.offset
/ htab
->plt_entry_size
;
6624 got_offset
= plt_index
* GOT_ENTRY_SIZE
;
6627 plt_entry
= plt
->contents
+ h
->plt
.offset
;
6628 plt_entry_address
= plt
->output_section
->vma
6629 + plt
->output_offset
+ h
->plt
.offset
;
6630 gotplt_entry_address
= gotplt
->output_section
->vma
+
6631 gotplt
->output_offset
+ got_offset
;
6633 /* Copy in the boiler-plate for the PLTn entry. */
6634 memcpy (plt_entry
, elfNN_aarch64_small_plt_entry
, PLT_SMALL_ENTRY_SIZE
);
6636 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6637 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6638 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
6640 PG (gotplt_entry_address
) -
6641 PG (plt_entry_address
));
6643 /* Fill in the lo12 bits for the load from the pltgot. */
6644 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_LDSTNN_LO12
,
6646 PG_OFFSET (gotplt_entry_address
));
6648 /* Fill in the lo12 bits for the add from the pltgot entry. */
6649 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADD_LO12
,
6651 PG_OFFSET (gotplt_entry_address
));
6653 /* All the GOTPLT Entries are essentially initialized to PLT0. */
6654 bfd_put_NN (output_bfd
,
6655 plt
->output_section
->vma
+ plt
->output_offset
,
6656 gotplt
->contents
+ got_offset
);
6658 rela
.r_offset
= gotplt_entry_address
;
6660 if (h
->dynindx
== -1
6661 || ((info
->executable
6662 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
6664 && h
->type
== STT_GNU_IFUNC
))
6666 /* If an STT_GNU_IFUNC symbol is locally defined, generate
6667 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
6668 rela
.r_info
= ELFNN_R_INFO (0, AARCH64_R (IRELATIVE
));
6669 rela
.r_addend
= (h
->root
.u
.def
.value
6670 + h
->root
.u
.def
.section
->output_section
->vma
6671 + h
->root
.u
.def
.section
->output_offset
);
6675 /* Fill in the entry in the .rela.plt section. */
6676 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (JUMP_SLOT
));
6680 /* Compute the relocation entry to used based on PLT index and do
6681 not adjust reloc_count. The reloc_count has already been adjusted
6682 to account for this entry. */
6683 loc
= relplt
->contents
+ plt_index
* RELOC_SIZE (htab
);
6684 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
6687 /* Size sections even though they're not dynamic. We use it to setup
6688 _TLS_MODULE_BASE_, if needed. */
6691 elfNN_aarch64_always_size_sections (bfd
*output_bfd
,
6692 struct bfd_link_info
*info
)
6696 if (info
->relocatable
)
6699 tls_sec
= elf_hash_table (info
)->tls_sec
;
6703 struct elf_link_hash_entry
*tlsbase
;
6705 tlsbase
= elf_link_hash_lookup (elf_hash_table (info
),
6706 "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
6710 struct bfd_link_hash_entry
*h
= NULL
;
6711 const struct elf_backend_data
*bed
=
6712 get_elf_backend_data (output_bfd
);
6714 if (!(_bfd_generic_link_add_one_symbol
6715 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
6716 tls_sec
, 0, NULL
, FALSE
, bed
->collect
, &h
)))
6719 tlsbase
->type
= STT_TLS
;
6720 tlsbase
= (struct elf_link_hash_entry
*) h
;
6721 tlsbase
->def_regular
= 1;
6722 tlsbase
->other
= STV_HIDDEN
;
6723 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
6730 /* Finish up dynamic symbol handling. We set the contents of various
6731 dynamic sections here. */
6733 elfNN_aarch64_finish_dynamic_symbol (bfd
*output_bfd
,
6734 struct bfd_link_info
*info
,
6735 struct elf_link_hash_entry
*h
,
6736 Elf_Internal_Sym
*sym
)
6738 struct elf_aarch64_link_hash_table
*htab
;
6739 htab
= elf_aarch64_hash_table (info
);
6741 if (h
->plt
.offset
!= (bfd_vma
) - 1)
6743 asection
*plt
, *gotplt
, *relplt
;
6745 /* This symbol has an entry in the procedure linkage table. Set
6748 /* When building a static executable, use .iplt, .igot.plt and
6749 .rela.iplt sections for STT_GNU_IFUNC symbols. */
6750 if (htab
->root
.splt
!= NULL
)
6752 plt
= htab
->root
.splt
;
6753 gotplt
= htab
->root
.sgotplt
;
6754 relplt
= htab
->root
.srelplt
;
6758 plt
= htab
->root
.iplt
;
6759 gotplt
= htab
->root
.igotplt
;
6760 relplt
= htab
->root
.irelplt
;
6763 /* This symbol has an entry in the procedure linkage table. Set
6765 if ((h
->dynindx
== -1
6766 && !((h
->forced_local
|| info
->executable
)
6768 && h
->type
== STT_GNU_IFUNC
))
6774 elfNN_aarch64_create_small_pltn_entry (h
, htab
, output_bfd
, info
);
6775 if (!h
->def_regular
)
6777 /* Mark the symbol as undefined, rather than as defined in
6778 the .plt section. Leave the value alone. This is a clue
6779 for the dynamic linker, to make function pointer
6780 comparisons work between an application and shared
6782 sym
->st_shndx
= SHN_UNDEF
;
6786 if (h
->got
.offset
!= (bfd_vma
) - 1
6787 && elf_aarch64_hash_entry (h
)->got_type
== GOT_NORMAL
)
6789 Elf_Internal_Rela rela
;
6792 /* This symbol has an entry in the global offset table. Set it
6794 if (htab
->root
.sgot
== NULL
|| htab
->root
.srelgot
== NULL
)
6797 rela
.r_offset
= (htab
->root
.sgot
->output_section
->vma
6798 + htab
->root
.sgot
->output_offset
6799 + (h
->got
.offset
& ~(bfd_vma
) 1));
6802 && h
->type
== STT_GNU_IFUNC
)
6806 /* Generate R_AARCH64_GLOB_DAT. */
6813 if (!h
->pointer_equality_needed
)
6816 /* For non-shared object, we can't use .got.plt, which
6817 contains the real function address if we need pointer
6818 equality. We load the GOT entry with the PLT entry. */
6819 plt
= htab
->root
.splt
? htab
->root
.splt
: htab
->root
.iplt
;
6820 bfd_put_NN (output_bfd
, (plt
->output_section
->vma
6821 + plt
->output_offset
6823 htab
->root
.sgot
->contents
6824 + (h
->got
.offset
& ~(bfd_vma
) 1));
6828 else if (info
->shared
&& SYMBOL_REFERENCES_LOCAL (info
, h
))
6830 if (!h
->def_regular
)
6833 BFD_ASSERT ((h
->got
.offset
& 1) != 0);
6834 rela
.r_info
= ELFNN_R_INFO (0, AARCH64_R (RELATIVE
));
6835 rela
.r_addend
= (h
->root
.u
.def
.value
6836 + h
->root
.u
.def
.section
->output_section
->vma
6837 + h
->root
.u
.def
.section
->output_offset
);
6842 BFD_ASSERT ((h
->got
.offset
& 1) == 0);
6843 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
6844 htab
->root
.sgot
->contents
+ h
->got
.offset
);
6845 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (GLOB_DAT
));
6849 loc
= htab
->root
.srelgot
->contents
;
6850 loc
+= htab
->root
.srelgot
->reloc_count
++ * RELOC_SIZE (htab
);
6851 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
6856 Elf_Internal_Rela rela
;
6859 /* This symbol needs a copy reloc. Set it up. */
6861 if (h
->dynindx
== -1
6862 || (h
->root
.type
!= bfd_link_hash_defined
6863 && h
->root
.type
!= bfd_link_hash_defweak
)
6864 || htab
->srelbss
== NULL
)
6867 rela
.r_offset
= (h
->root
.u
.def
.value
6868 + h
->root
.u
.def
.section
->output_section
->vma
6869 + h
->root
.u
.def
.section
->output_offset
);
6870 rela
.r_info
= ELFNN_R_INFO (h
->dynindx
, AARCH64_R (COPY
));
6872 loc
= htab
->srelbss
->contents
;
6873 loc
+= htab
->srelbss
->reloc_count
++ * RELOC_SIZE (htab
);
6874 bfd_elfNN_swap_reloca_out (output_bfd
, &rela
, loc
);
6877 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
6878 be NULL for local symbols. */
6880 && (h
== elf_hash_table (info
)->hdynamic
6881 || h
== elf_hash_table (info
)->hgot
))
6882 sym
->st_shndx
= SHN_ABS
;
6887 /* Finish up local dynamic symbol handling. We set the contents of
6888 various dynamic sections here. */
6891 elfNN_aarch64_finish_local_dynamic_symbol (void **slot
, void *inf
)
6893 struct elf_link_hash_entry
*h
6894 = (struct elf_link_hash_entry
*) *slot
;
6895 struct bfd_link_info
*info
6896 = (struct bfd_link_info
*) inf
;
6898 return elfNN_aarch64_finish_dynamic_symbol (info
->output_bfd
,
6903 elfNN_aarch64_init_small_plt0_entry (bfd
*output_bfd ATTRIBUTE_UNUSED
,
6904 struct elf_aarch64_link_hash_table
6907 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
6908 small and large plts and at the minute just generates
6911 /* PLT0 of the small PLT looks like this in ELF64 -
6912 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
6913 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
6914 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
6916 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
6917 // GOTPLT entry for this.
6919 PLT0 will be slightly different in ELF32 due to different got entry
6922 bfd_vma plt_got_2nd_ent
; /* Address of GOT[2]. */
6926 memcpy (htab
->root
.splt
->contents
, elfNN_aarch64_small_plt0_entry
,
6928 elf_section_data (htab
->root
.splt
->output_section
)->this_hdr
.sh_entsize
=
6931 plt_got_2nd_ent
= (htab
->root
.sgotplt
->output_section
->vma
6932 + htab
->root
.sgotplt
->output_offset
6933 + GOT_ENTRY_SIZE
* 2);
6935 plt_base
= htab
->root
.splt
->output_section
->vma
+
6936 htab
->root
.splt
->output_offset
;
6938 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
6939 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
6940 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
6941 htab
->root
.splt
->contents
+ 4,
6942 PG (plt_got_2nd_ent
) - PG (plt_base
+ 4));
6944 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_LDSTNN_LO12
,
6945 htab
->root
.splt
->contents
+ 8,
6946 PG_OFFSET (plt_got_2nd_ent
));
6948 elf_aarch64_update_plt_entry (output_bfd
, BFD_RELOC_AARCH64_ADD_LO12
,
6949 htab
->root
.splt
->contents
+ 12,
6950 PG_OFFSET (plt_got_2nd_ent
));
6954 elfNN_aarch64_finish_dynamic_sections (bfd
*output_bfd
,
6955 struct bfd_link_info
*info
)
6957 struct elf_aarch64_link_hash_table
*htab
;
6961 htab
= elf_aarch64_hash_table (info
);
6962 dynobj
= htab
->root
.dynobj
;
6963 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
6965 if (htab
->root
.dynamic_sections_created
)
6967 ElfNN_External_Dyn
*dyncon
, *dynconend
;
6969 if (sdyn
== NULL
|| htab
->root
.sgot
== NULL
)
6972 dyncon
= (ElfNN_External_Dyn
*) sdyn
->contents
;
6973 dynconend
= (ElfNN_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
6974 for (; dyncon
< dynconend
; dyncon
++)
6976 Elf_Internal_Dyn dyn
;
6979 bfd_elfNN_swap_dyn_in (dynobj
, dyncon
, &dyn
);
6987 s
= htab
->root
.sgotplt
;
6988 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
6992 dyn
.d_un
.d_ptr
= htab
->root
.srelplt
->output_section
->vma
;
6996 s
= htab
->root
.srelplt
;
6997 dyn
.d_un
.d_val
= s
->size
;
7001 /* The procedure linkage table relocs (DT_JMPREL) should
7002 not be included in the overall relocs (DT_RELA).
7003 Therefore, we override the DT_RELASZ entry here to
7004 make it not include the JMPREL relocs. Since the
7005 linker script arranges for .rela.plt to follow all
7006 other relocation sections, we don't have to worry
7007 about changing the DT_RELA entry. */
7008 if (htab
->root
.srelplt
!= NULL
)
7010 s
= htab
->root
.srelplt
;
7011 dyn
.d_un
.d_val
-= s
->size
;
7015 case DT_TLSDESC_PLT
:
7016 s
= htab
->root
.splt
;
7017 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
7018 + htab
->tlsdesc_plt
;
7021 case DT_TLSDESC_GOT
:
7022 s
= htab
->root
.sgot
;
7023 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
7024 + htab
->dt_tlsdesc_got
;
7028 bfd_elfNN_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
7033 /* Fill in the special first entry in the procedure linkage table. */
7034 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
7036 elfNN_aarch64_init_small_plt0_entry (output_bfd
, htab
);
7038 elf_section_data (htab
->root
.splt
->output_section
)->
7039 this_hdr
.sh_entsize
= htab
->plt_entry_size
;
7042 if (htab
->tlsdesc_plt
)
7044 bfd_put_NN (output_bfd
, (bfd_vma
) 0,
7045 htab
->root
.sgot
->contents
+ htab
->dt_tlsdesc_got
);
7047 memcpy (htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
,
7048 elfNN_aarch64_tlsdesc_small_plt_entry
,
7049 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry
));
7052 bfd_vma adrp1_addr
=
7053 htab
->root
.splt
->output_section
->vma
7054 + htab
->root
.splt
->output_offset
+ htab
->tlsdesc_plt
+ 4;
7056 bfd_vma adrp2_addr
= adrp1_addr
+ 4;
7059 htab
->root
.sgot
->output_section
->vma
7060 + htab
->root
.sgot
->output_offset
;
7062 bfd_vma pltgot_addr
=
7063 htab
->root
.sgotplt
->output_section
->vma
7064 + htab
->root
.sgotplt
->output_offset
;
7066 bfd_vma dt_tlsdesc_got
= got_addr
+ htab
->dt_tlsdesc_got
;
7068 bfd_byte
*plt_entry
=
7069 htab
->root
.splt
->contents
+ htab
->tlsdesc_plt
;
7071 /* adrp x2, DT_TLSDESC_GOT */
7072 elf_aarch64_update_plt_entry (output_bfd
,
7073 BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
7075 (PG (dt_tlsdesc_got
)
7076 - PG (adrp1_addr
)));
7079 elf_aarch64_update_plt_entry (output_bfd
,
7080 BFD_RELOC_AARCH64_ADR_HI21_PCREL
,
7083 - PG (adrp2_addr
)));
7085 /* ldr x2, [x2, #0] */
7086 elf_aarch64_update_plt_entry (output_bfd
,
7087 BFD_RELOC_AARCH64_LDSTNN_LO12
,
7089 PG_OFFSET (dt_tlsdesc_got
));
7092 elf_aarch64_update_plt_entry (output_bfd
,
7093 BFD_RELOC_AARCH64_ADD_LO12
,
7095 PG_OFFSET (pltgot_addr
));
7100 if (htab
->root
.sgotplt
)
7102 if (bfd_is_abs_section (htab
->root
.sgotplt
->output_section
))
7104 (*_bfd_error_handler
)
7105 (_("discarded output section: `%A'"), htab
->root
.sgotplt
);
7109 /* Fill in the first three entries in the global offset table. */
7110 if (htab
->root
.sgotplt
->size
> 0)
7112 bfd_put_NN (output_bfd
, (bfd_vma
) 0, htab
->root
.sgotplt
->contents
);
7114 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
7115 bfd_put_NN (output_bfd
,
7117 htab
->root
.sgotplt
->contents
+ GOT_ENTRY_SIZE
);
7118 bfd_put_NN (output_bfd
,
7120 htab
->root
.sgotplt
->contents
+ GOT_ENTRY_SIZE
* 2);
7123 if (htab
->root
.sgot
)
7125 if (htab
->root
.sgot
->size
> 0)
7128 sdyn
? sdyn
->output_section
->vma
+ sdyn
->output_offset
: 0;
7129 bfd_put_NN (output_bfd
, addr
, htab
->root
.sgot
->contents
);
7133 elf_section_data (htab
->root
.sgotplt
->output_section
)->
7134 this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
7137 if (htab
->root
.sgot
&& htab
->root
.sgot
->size
> 0)
7138 elf_section_data (htab
->root
.sgot
->output_section
)->this_hdr
.sh_entsize
7141 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
7142 htab_traverse (htab
->loc_hash_table
,
7143 elfNN_aarch64_finish_local_dynamic_symbol
,
7149 /* Return address for Ith PLT stub in section PLT, for relocation REL
7150 or (bfd_vma) -1 if it should not be included. */
7153 elfNN_aarch64_plt_sym_val (bfd_vma i
, const asection
*plt
,
7154 const arelent
*rel ATTRIBUTE_UNUSED
)
7156 return plt
->vma
+ PLT_ENTRY_SIZE
+ i
* PLT_SMALL_ENTRY_SIZE
;
7160 /* We use this so we can override certain functions
7161 (though currently we don't). */
7163 const struct elf_size_info elfNN_aarch64_size_info
=
7165 sizeof (ElfNN_External_Ehdr
),
7166 sizeof (ElfNN_External_Phdr
),
7167 sizeof (ElfNN_External_Shdr
),
7168 sizeof (ElfNN_External_Rel
),
7169 sizeof (ElfNN_External_Rela
),
7170 sizeof (ElfNN_External_Sym
),
7171 sizeof (ElfNN_External_Dyn
),
7172 sizeof (Elf_External_Note
),
7173 4, /* Hash table entry size. */
7174 1, /* Internal relocs per external relocs. */
7175 ARCH_SIZE
, /* Arch size. */
7176 LOG_FILE_ALIGN
, /* Log_file_align. */
7177 ELFCLASSNN
, EV_CURRENT
,
7178 bfd_elfNN_write_out_phdrs
,
7179 bfd_elfNN_write_shdrs_and_ehdr
,
7180 bfd_elfNN_checksum_contents
,
7181 bfd_elfNN_write_relocs
,
7182 bfd_elfNN_swap_symbol_in
,
7183 bfd_elfNN_swap_symbol_out
,
7184 bfd_elfNN_slurp_reloc_table
,
7185 bfd_elfNN_slurp_symbol_table
,
7186 bfd_elfNN_swap_dyn_in
,
7187 bfd_elfNN_swap_dyn_out
,
7188 bfd_elfNN_swap_reloc_in
,
7189 bfd_elfNN_swap_reloc_out
,
7190 bfd_elfNN_swap_reloca_in
,
7191 bfd_elfNN_swap_reloca_out
7194 #define ELF_ARCH bfd_arch_aarch64
7195 #define ELF_MACHINE_CODE EM_AARCH64
7196 #define ELF_MAXPAGESIZE 0x10000
7197 #define ELF_MINPAGESIZE 0x1000
7198 #define ELF_COMMONPAGESIZE 0x1000
7200 #define bfd_elfNN_close_and_cleanup \
7201 elfNN_aarch64_close_and_cleanup
7203 #define bfd_elfNN_bfd_free_cached_info \
7204 elfNN_aarch64_bfd_free_cached_info
7206 #define bfd_elfNN_bfd_is_target_special_symbol \
7207 elfNN_aarch64_is_target_special_symbol
7209 #define bfd_elfNN_bfd_link_hash_table_create \
7210 elfNN_aarch64_link_hash_table_create
7212 #define bfd_elfNN_bfd_link_hash_table_free \
7213 elfNN_aarch64_hash_table_free
7215 #define bfd_elfNN_bfd_merge_private_bfd_data \
7216 elfNN_aarch64_merge_private_bfd_data
7218 #define bfd_elfNN_bfd_print_private_bfd_data \
7219 elfNN_aarch64_print_private_bfd_data
7221 #define bfd_elfNN_bfd_reloc_type_lookup \
7222 elfNN_aarch64_reloc_type_lookup
7224 #define bfd_elfNN_bfd_reloc_name_lookup \
7225 elfNN_aarch64_reloc_name_lookup
7227 #define bfd_elfNN_bfd_set_private_flags \
7228 elfNN_aarch64_set_private_flags
7230 #define bfd_elfNN_find_inliner_info \
7231 elfNN_aarch64_find_inliner_info
7233 #define bfd_elfNN_find_nearest_line \
7234 elfNN_aarch64_find_nearest_line
7236 #define bfd_elfNN_mkobject \
7237 elfNN_aarch64_mkobject
7239 #define bfd_elfNN_new_section_hook \
7240 elfNN_aarch64_new_section_hook
7242 #define elf_backend_adjust_dynamic_symbol \
7243 elfNN_aarch64_adjust_dynamic_symbol
7245 #define elf_backend_always_size_sections \
7246 elfNN_aarch64_always_size_sections
7248 #define elf_backend_check_relocs \
7249 elfNN_aarch64_check_relocs
7251 #define elf_backend_copy_indirect_symbol \
7252 elfNN_aarch64_copy_indirect_symbol
7254 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
7255 to them in our hash. */
7256 #define elf_backend_create_dynamic_sections \
7257 elfNN_aarch64_create_dynamic_sections
7259 #define elf_backend_init_index_section \
7260 _bfd_elf_init_2_index_sections
7262 #define elf_backend_finish_dynamic_sections \
7263 elfNN_aarch64_finish_dynamic_sections
7265 #define elf_backend_finish_dynamic_symbol \
7266 elfNN_aarch64_finish_dynamic_symbol
7268 #define elf_backend_gc_sweep_hook \
7269 elfNN_aarch64_gc_sweep_hook
7271 #define elf_backend_object_p \
7272 elfNN_aarch64_object_p
7274 #define elf_backend_output_arch_local_syms \
7275 elfNN_aarch64_output_arch_local_syms
7277 #define elf_backend_plt_sym_val \
7278 elfNN_aarch64_plt_sym_val
7280 #define elf_backend_post_process_headers \
7281 elfNN_aarch64_post_process_headers
7283 #define elf_backend_relocate_section \
7284 elfNN_aarch64_relocate_section
7286 #define elf_backend_reloc_type_class \
7287 elfNN_aarch64_reloc_type_class
7289 #define elf_backend_section_flags \
7290 elfNN_aarch64_section_flags
7292 #define elf_backend_section_from_shdr \
7293 elfNN_aarch64_section_from_shdr
7295 #define elf_backend_size_dynamic_sections \
7296 elfNN_aarch64_size_dynamic_sections
7298 #define elf_backend_size_info \
7299 elfNN_aarch64_size_info
7301 #define elf_backend_can_refcount 1
7302 #define elf_backend_can_gc_sections 1
7303 #define elf_backend_plt_readonly 1
7304 #define elf_backend_want_got_plt 1
7305 #define elf_backend_want_plt_sym 0
7306 #define elf_backend_may_use_rel_p 0
7307 #define elf_backend_may_use_rela_p 1
7308 #define elf_backend_default_use_rela_p 1
7309 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
7310 #define elf_backend_default_execstack 0
7312 #undef elf_backend_obj_attrs_section
7313 #define elf_backend_obj_attrs_section ".ARM.attributes"
7315 #include "elfNN-target.h"