Fix null pointer dereference in process_debug_info()
[binutils-gdb.git] / gdb / arm-linux-tdep.c
blob8511abcd11d6e0a688b51e112b21a3fb954a05dd
1 /* GNU/Linux on ARM target support.
3 Copyright (C) 1999-2024 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "target.h"
21 #include "value.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "regcache.h"
26 #include "solib-svr4.h"
27 #include "osabi.h"
28 #include "regset.h"
29 #include "trad-frame.h"
30 #include "tramp-frame.h"
31 #include "breakpoint.h"
32 #include "auxv.h"
33 #include "xml-syscall.h"
34 #include "expop.h"
36 #include "aarch32-tdep.h"
37 #include "arch/arm.h"
38 #include "arch/arm-get-next-pcs.h"
39 #include "arch/arm-linux.h"
40 #include "arm-tdep.h"
41 #include "arm-linux-tdep.h"
42 #include "linux-tdep.h"
43 #include "glibc-tdep.h"
44 #include "arch-utils.h"
45 #include "inferior.h"
46 #include "infrun.h"
47 #include "gdbthread.h"
48 #include "symfile.h"
50 #include "record-full.h"
51 #include "linux-record.h"
53 #include "cli/cli-utils.h"
54 #include "stap-probe.h"
55 #include "parser-defs.h"
56 #include "user-regs.h"
57 #include <ctype.h>
58 #include "elf/common.h"
60 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
61 is to execute a particular software interrupt, rather than use a
62 particular undefined instruction to provoke a trap. Upon execution
63 of the software interrupt the kernel stops the inferior with a
64 SIGTRAP, and wakes the debugger. */
66 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
68 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
70 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
71 the operand of the swi if old-ABI compatibility is disabled. Therefore,
72 use an undefined instruction instead. This is supported as of kernel
73 version 2.5.70 (May 2003), so should be a safe assumption for EABI
74 binaries. */
76 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
78 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
80 /* All the kernels which support Thumb support using a specific undefined
81 instruction for the Thumb breakpoint. */
83 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
85 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
87 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
88 we must use a length-appropriate breakpoint for 32-bit Thumb
89 instructions. See also thumb_get_next_pc. */
91 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
93 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
95 /* Description of the longjmp buffer. The buffer is treated as an array of
96 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
98 The location of saved registers in this buffer (in particular the PC
99 to use after longjmp is called) varies depending on the ABI (in
100 particular the FP model) and also (possibly) the C Library.
102 For glibc, eglibc, and uclibc the following holds: If the FP model is
103 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
104 buffer. This is also true for the SoftFPA model. However, for the FPA
105 model the PC is at offset 21 in the buffer. */
106 #define ARM_LINUX_JB_ELEMENT_SIZE ARM_INT_REGISTER_SIZE
107 #define ARM_LINUX_JB_PC_FPA 21
108 #define ARM_LINUX_JB_PC_EABI 9
111 Dynamic Linking on ARM GNU/Linux
112 --------------------------------
114 Note: PLT = procedure linkage table
115 GOT = global offset table
117 As much as possible, ELF dynamic linking defers the resolution of
118 jump/call addresses until the last minute. The technique used is
119 inspired by the i386 ELF design, and is based on the following
120 constraints.
122 1) The calling technique should not force a change in the assembly
123 code produced for apps; it MAY cause changes in the way assembly
124 code is produced for position independent code (i.e. shared
125 libraries).
127 2) The technique must be such that all executable areas must not be
128 modified; and any modified areas must not be executed.
130 To do this, there are three steps involved in a typical jump:
132 1) in the code
133 2) through the PLT
134 3) using a pointer from the GOT
136 When the executable or library is first loaded, each GOT entry is
137 initialized to point to the code which implements dynamic name
138 resolution and code finding. This is normally a function in the
139 program interpreter (on ARM GNU/Linux this is usually
140 ld-linux.so.2, but it does not have to be). On the first
141 invocation, the function is located and the GOT entry is replaced
142 with the real function address. Subsequent calls go through steps
143 1, 2 and 3 and end up calling the real code.
145 1) In the code:
147 b function_call
148 bl function_call
150 This is typical ARM code using the 26 bit relative branch or branch
151 and link instructions. The target of the instruction
152 (function_call is usually the address of the function to be called.
153 In position independent code, the target of the instruction is
154 actually an entry in the PLT when calling functions in a shared
155 library. Note that this call is identical to a normal function
156 call, only the target differs.
158 2) In the PLT:
160 The PLT is a synthetic area, created by the linker. It exists in
161 both executables and libraries. It is an array of stubs, one per
162 imported function call. It looks like this:
164 PLT[0]:
165 str lr, [sp, #-4]! @push the return address (lr)
166 ldr lr, [pc, #16] @load from 6 words ahead
167 add lr, pc, lr @form an address for GOT[0]
168 ldr pc, [lr, #8]! @jump to the contents of that addr
170 The return address (lr) is pushed on the stack and used for
171 calculations. The load on the second line loads the lr with
172 &GOT[3] - . - 20. The addition on the third leaves:
174 lr = (&GOT[3] - . - 20) + (. + 8)
175 lr = (&GOT[3] - 12)
176 lr = &GOT[0]
178 On the fourth line, the pc and lr are both updated, so that:
180 pc = GOT[2]
181 lr = &GOT[0] + 8
182 = &GOT[2]
184 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
185 "tight", but allows us to keep all the PLT entries the same size.
187 PLT[n+1]:
188 ldr ip, [pc, #4] @load offset from gotoff
189 add ip, pc, ip @add the offset to the pc
190 ldr pc, [ip] @jump to that address
191 gotoff: .word GOT[n+3] - .
193 The load on the first line, gets an offset from the fourth word of
194 the PLT entry. The add on the second line makes ip = &GOT[n+3],
195 which contains either a pointer to PLT[0] (the fixup trampoline) or
196 a pointer to the actual code.
198 3) In the GOT:
200 The GOT contains helper pointers for both code (PLT) fixups and
201 data fixups. The first 3 entries of the GOT are special. The next
202 M entries (where M is the number of entries in the PLT) belong to
203 the PLT fixups. The next D (all remaining) entries belong to
204 various data fixups. The actual size of the GOT is 3 + M + D.
206 The GOT is also a synthetic area, created by the linker. It exists
207 in both executables and libraries. When the GOT is first
208 initialized , all the GOT entries relating to PLT fixups are
209 pointing to code back at PLT[0].
211 The special entries in the GOT are:
213 GOT[0] = linked list pointer used by the dynamic loader
214 GOT[1] = pointer to the reloc table for this module
215 GOT[2] = pointer to the fixup/resolver code
217 The first invocation of function call comes through and uses the
218 fixup/resolver code. On the entry to the fixup/resolver code:
220 ip = &GOT[n+3]
221 lr = &GOT[2]
222 stack[0] = return address (lr) of the function call
223 [r0, r1, r2, r3] are still the arguments to the function call
225 This is enough information for the fixup/resolver code to work
226 with. Before the fixup/resolver code returns, it actually calls
227 the requested function and repairs &GOT[n+3]. */
229 /* The constants below were determined by examining the following files
230 in the linux kernel sources:
232 arch/arm/kernel/signal.c
233 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
234 include/asm-arm/unistd.h
235 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
237 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
238 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
240 /* For ARM EABI, the syscall number is not in the SWI instruction
241 (instead it is loaded into r7). We recognize the pattern that
242 glibc uses... alternatively, we could arrange to do this by
243 function name, but they are not always exported. */
244 #define ARM_SET_R7_SIGRETURN 0xe3a07077
245 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
246 #define ARM_EABI_SYSCALL 0xef000000
248 /* Equivalent patterns for Thumb2. */
249 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
250 #define THUMB2_SET_R7_SIGRETURN2 0x0777
251 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
252 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
253 #define THUMB2_EABI_SYSCALL 0xdf00
255 /* OABI syscall restart trampoline, used for EABI executables too
256 whenever OABI support has been enabled in the kernel. */
257 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
258 #define ARM_LDR_PC_SP_12 0xe49df00c
259 #define ARM_LDR_PC_SP_4 0xe49df004
261 /* Syscall number for sigreturn. */
262 #define ARM_SIGRETURN 119
263 /* Syscall number for rt_sigreturn. */
264 #define ARM_RT_SIGRETURN 173
266 static CORE_ADDR
267 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
269 /* Operation function pointers for get_next_pcs. */
270 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
271 arm_get_next_pcs_read_memory_unsigned_integer,
272 arm_linux_get_next_pcs_syscall_next_pc,
273 arm_get_next_pcs_addr_bits_remove,
274 arm_get_next_pcs_is_thumb,
275 arm_linux_get_next_pcs_fixup,
278 static void
279 arm_linux_sigtramp_cache (const frame_info_ptr &this_frame,
280 struct trad_frame_cache *this_cache,
281 CORE_ADDR func, int regs_offset)
283 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
284 CORE_ADDR base = sp + regs_offset;
285 int i;
287 for (i = 0; i < 16; i++)
288 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
290 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
292 /* The VFP or iWMMXt registers may be saved on the stack, but there's
293 no reliable way to restore them (yet). */
295 /* Save a frame ID. */
296 trad_frame_set_id (this_cache, frame_id_build (sp, func));
299 /* See arm-linux.h for stack layout details. */
300 static void
301 arm_linux_sigreturn_init (const struct tramp_frame *self,
302 const frame_info_ptr &this_frame,
303 struct trad_frame_cache *this_cache,
304 CORE_ADDR func)
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
309 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
311 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
312 arm_linux_sigtramp_cache (this_frame, this_cache, func,
313 ARM_UCONTEXT_SIGCONTEXT
314 + ARM_SIGCONTEXT_R0);
315 else
316 arm_linux_sigtramp_cache (this_frame, this_cache, func,
317 ARM_SIGCONTEXT_R0);
320 static void
321 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
322 const frame_info_ptr &this_frame,
323 struct trad_frame_cache *this_cache,
324 CORE_ADDR func)
326 struct gdbarch *gdbarch = get_frame_arch (this_frame);
327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
328 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
329 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
331 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
332 arm_linux_sigtramp_cache (this_frame, this_cache, func,
333 ARM_OLD_RT_SIGFRAME_UCONTEXT
334 + ARM_UCONTEXT_SIGCONTEXT
335 + ARM_SIGCONTEXT_R0);
336 else
337 arm_linux_sigtramp_cache (this_frame, this_cache, func,
338 ARM_NEW_RT_SIGFRAME_UCONTEXT
339 + ARM_UCONTEXT_SIGCONTEXT
340 + ARM_SIGCONTEXT_R0);
343 static void
344 arm_linux_restart_syscall_init (const struct tramp_frame *self,
345 const frame_info_ptr &this_frame,
346 struct trad_frame_cache *this_cache,
347 CORE_ADDR func)
349 struct gdbarch *gdbarch = get_frame_arch (this_frame);
350 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
351 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
352 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
353 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
354 int sp_offset;
356 /* There are two variants of this trampoline; with older kernels, the
357 stub is placed on the stack, while newer kernels use the stub from
358 the vector page. They are identical except that the older version
359 increments SP by 12 (to skip stored PC and the stub itself), while
360 the newer version increments SP only by 4 (just the stored PC). */
361 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
362 sp_offset = 4;
363 else
364 sp_offset = 12;
366 /* Update Thumb bit in CPSR. */
367 if (pc & 1)
368 cpsr |= t_bit;
369 else
370 cpsr &= ~t_bit;
372 /* Remove Thumb bit from PC. */
373 pc = gdbarch_addr_bits_remove (gdbarch, pc);
375 /* Save previous register values. */
376 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
377 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
378 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
380 /* Save a frame ID. */
381 trad_frame_set_id (this_cache, frame_id_build (sp, func));
384 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
385 SIGTRAMP_FRAME,
388 { ARM_LINUX_SIGRETURN_INSTR, ULONGEST_MAX },
389 { TRAMP_SENTINEL_INSN }
391 arm_linux_sigreturn_init
394 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
395 SIGTRAMP_FRAME,
398 { ARM_LINUX_RT_SIGRETURN_INSTR, ULONGEST_MAX },
399 { TRAMP_SENTINEL_INSN }
401 arm_linux_rt_sigreturn_init
404 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
405 SIGTRAMP_FRAME,
408 { ARM_SET_R7_SIGRETURN, ULONGEST_MAX },
409 { ARM_EABI_SYSCALL, ULONGEST_MAX },
410 { TRAMP_SENTINEL_INSN }
412 arm_linux_sigreturn_init
415 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
416 SIGTRAMP_FRAME,
419 { ARM_SET_R7_RT_SIGRETURN, ULONGEST_MAX },
420 { ARM_EABI_SYSCALL, ULONGEST_MAX },
421 { TRAMP_SENTINEL_INSN }
423 arm_linux_rt_sigreturn_init
426 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
427 SIGTRAMP_FRAME,
430 { THUMB2_SET_R7_SIGRETURN1, ULONGEST_MAX },
431 { THUMB2_SET_R7_SIGRETURN2, ULONGEST_MAX },
432 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
433 { TRAMP_SENTINEL_INSN }
435 arm_linux_sigreturn_init
438 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
439 SIGTRAMP_FRAME,
442 { THUMB2_SET_R7_RT_SIGRETURN1, ULONGEST_MAX },
443 { THUMB2_SET_R7_RT_SIGRETURN2, ULONGEST_MAX },
444 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
445 { TRAMP_SENTINEL_INSN }
447 arm_linux_rt_sigreturn_init
450 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
451 NORMAL_FRAME,
454 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
455 { ARM_LDR_PC_SP_12, ULONGEST_MAX },
456 { TRAMP_SENTINEL_INSN }
458 arm_linux_restart_syscall_init
461 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
462 NORMAL_FRAME,
465 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
466 { ARM_LDR_PC_SP_4, ULONGEST_MAX },
467 { TRAMP_SENTINEL_INSN }
469 arm_linux_restart_syscall_init
472 /* Core file and register set support. */
474 #define ARM_LINUX_SIZEOF_GREGSET (18 * ARM_INT_REGISTER_SIZE)
476 void
477 arm_linux_supply_gregset (const struct regset *regset,
478 struct regcache *regcache,
479 int regnum, const void *gregs_buf, size_t len)
481 struct gdbarch *gdbarch = regcache->arch ();
482 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
483 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
484 int regno;
485 CORE_ADDR reg_pc;
486 gdb_byte pc_buf[ARM_INT_REGISTER_SIZE];
488 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
489 if (regnum == -1 || regnum == regno)
490 regcache->raw_supply (regno, gregs + ARM_INT_REGISTER_SIZE * regno);
492 if (regnum == ARM_PS_REGNUM || regnum == -1)
494 if (arm_apcs_32)
495 regcache->raw_supply (ARM_PS_REGNUM,
496 gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
497 else
498 regcache->raw_supply (ARM_PS_REGNUM,
499 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
502 if (regnum == ARM_PC_REGNUM || regnum == -1)
504 reg_pc = extract_unsigned_integer (
505 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM,
506 ARM_INT_REGISTER_SIZE, byte_order);
507 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
508 store_unsigned_integer (pc_buf, ARM_INT_REGISTER_SIZE, byte_order,
509 reg_pc);
510 regcache->raw_supply (ARM_PC_REGNUM, pc_buf);
514 void
515 arm_linux_collect_gregset (const struct regset *regset,
516 const struct regcache *regcache,
517 int regnum, void *gregs_buf, size_t len)
519 gdb_byte *gregs = (gdb_byte *) gregs_buf;
520 int regno;
522 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
523 if (regnum == -1 || regnum == regno)
524 regcache->raw_collect (regno,
525 gregs + ARM_INT_REGISTER_SIZE * regno);
527 if (regnum == ARM_PS_REGNUM || regnum == -1)
529 if (arm_apcs_32)
530 regcache->raw_collect (ARM_PS_REGNUM,
531 gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
532 else
533 regcache->raw_collect (ARM_PS_REGNUM,
534 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
537 if (regnum == ARM_PC_REGNUM || regnum == -1)
538 regcache->raw_collect (ARM_PC_REGNUM,
539 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
542 /* Support for register format used by the NWFPE FPA emulator. */
544 #define typeNone 0x00
545 #define typeSingle 0x01
546 #define typeDouble 0x02
547 #define typeExtended 0x03
549 void
550 supply_nwfpe_register (struct regcache *regcache, int regno,
551 const gdb_byte *regs)
553 const gdb_byte *reg_data;
554 gdb_byte reg_tag;
555 gdb_byte buf[ARM_FP_REGISTER_SIZE];
557 reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
558 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
559 memset (buf, 0, ARM_FP_REGISTER_SIZE);
561 switch (reg_tag)
563 case typeSingle:
564 memcpy (buf, reg_data, 4);
565 break;
566 case typeDouble:
567 memcpy (buf, reg_data + 4, 4);
568 memcpy (buf + 4, reg_data, 4);
569 break;
570 case typeExtended:
571 /* We want sign and exponent, then least significant bits,
572 then most significant. NWFPE does sign, most, least. */
573 memcpy (buf, reg_data, 4);
574 memcpy (buf + 4, reg_data + 8, 4);
575 memcpy (buf + 8, reg_data + 4, 4);
576 break;
577 default:
578 break;
581 regcache->raw_supply (regno, buf);
584 void
585 collect_nwfpe_register (const struct regcache *regcache, int regno,
586 gdb_byte *regs)
588 gdb_byte *reg_data;
589 gdb_byte reg_tag;
590 gdb_byte buf[ARM_FP_REGISTER_SIZE];
592 regcache->raw_collect (regno, buf);
594 /* NOTE drow/2006-06-07: This code uses the tag already in the
595 register buffer. I've preserved that when moving the code
596 from the native file to the target file. But this doesn't
597 always make sense. */
599 reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
600 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
602 switch (reg_tag)
604 case typeSingle:
605 memcpy (reg_data, buf, 4);
606 break;
607 case typeDouble:
608 memcpy (reg_data, buf + 4, 4);
609 memcpy (reg_data + 4, buf, 4);
610 break;
611 case typeExtended:
612 memcpy (reg_data, buf, 4);
613 memcpy (reg_data + 4, buf + 8, 4);
614 memcpy (reg_data + 8, buf + 4, 4);
615 break;
616 default:
617 break;
621 void
622 arm_linux_supply_nwfpe (const struct regset *regset,
623 struct regcache *regcache,
624 int regnum, const void *regs_buf, size_t len)
626 const gdb_byte *regs = (const gdb_byte *) regs_buf;
627 int regno;
629 if (regnum == ARM_FPS_REGNUM || regnum == -1)
630 regcache->raw_supply (ARM_FPS_REGNUM,
631 regs + NWFPE_FPSR_OFFSET);
633 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
634 if (regnum == -1 || regnum == regno)
635 supply_nwfpe_register (regcache, regno, regs);
638 void
639 arm_linux_collect_nwfpe (const struct regset *regset,
640 const struct regcache *regcache,
641 int regnum, void *regs_buf, size_t len)
643 gdb_byte *regs = (gdb_byte *) regs_buf;
644 int regno;
646 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
647 if (regnum == -1 || regnum == regno)
648 collect_nwfpe_register (regcache, regno, regs);
650 if (regnum == ARM_FPS_REGNUM || regnum == -1)
651 regcache->raw_collect (ARM_FPS_REGNUM,
652 regs + ARM_INT_REGISTER_SIZE * ARM_FPS_REGNUM);
655 /* Support VFP register format. */
657 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
659 static void
660 arm_linux_supply_vfp (const struct regset *regset,
661 struct regcache *regcache,
662 int regnum, const void *regs_buf, size_t len)
664 const gdb_byte *regs = (const gdb_byte *) regs_buf;
665 int regno;
667 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
668 regcache->raw_supply (ARM_FPSCR_REGNUM, regs + 32 * 8);
670 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
671 if (regnum == -1 || regnum == regno)
672 regcache->raw_supply (regno, regs + (regno - ARM_D0_REGNUM) * 8);
675 static void
676 arm_linux_collect_vfp (const struct regset *regset,
677 const struct regcache *regcache,
678 int regnum, void *regs_buf, size_t len)
680 gdb_byte *regs = (gdb_byte *) regs_buf;
681 int regno;
683 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
684 regcache->raw_collect (ARM_FPSCR_REGNUM, regs + 32 * 8);
686 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
687 if (regnum == -1 || regnum == regno)
688 regcache->raw_collect (regno, regs + (regno - ARM_D0_REGNUM) * 8);
691 static const struct regset arm_linux_gregset =
693 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
696 static const struct regset arm_linux_fpregset =
698 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
701 static const struct regset arm_linux_vfpregset =
703 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
706 /* Iterate over core file register note sections. */
708 static void
709 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
710 iterate_over_regset_sections_cb *cb,
711 void *cb_data,
712 const struct regcache *regcache)
714 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
716 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, ARM_LINUX_SIZEOF_GREGSET,
717 &arm_linux_gregset, NULL, cb_data);
719 if (tdep->vfp_register_count > 0)
720 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, ARM_LINUX_SIZEOF_VFP,
721 &arm_linux_vfpregset, "VFP floating-point", cb_data);
722 else if (tdep->have_fpa_registers)
723 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, ARM_LINUX_SIZEOF_NWFPE,
724 &arm_linux_fpregset, "FPA floating-point", cb_data);
727 /* Determine target description from core file. */
729 static const struct target_desc *
730 arm_linux_core_read_description (struct gdbarch *gdbarch,
731 struct target_ops *target,
732 bfd *abfd)
734 std::optional<gdb::byte_vector> auxv = target_read_auxv_raw (target);
735 CORE_ADDR arm_hwcap = linux_get_hwcap (auxv, target, gdbarch);
737 if (arm_hwcap & HWCAP_VFP)
739 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
740 Neon with VFPv3-D32. */
741 if (arm_hwcap & HWCAP_NEON)
742 return aarch32_read_description (false);
743 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
744 return arm_read_description (ARM_FP_TYPE_VFPV3, false);
746 return arm_read_description (ARM_FP_TYPE_VFPV2, false);
749 return nullptr;
753 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
754 return 1. In addition, set IS_THUMB depending on whether we
755 will return to ARM or Thumb code. Return 0 if it is not a
756 rt_sigreturn/sigreturn syscall. */
757 static int
758 arm_linux_sigreturn_return_addr (const frame_info_ptr &frame,
759 unsigned long svc_number,
760 CORE_ADDR *pc, int *is_thumb)
762 /* Is this a sigreturn or rt_sigreturn syscall? */
763 if (svc_number == 119 || svc_number == 173)
765 if (get_frame_type (frame) == SIGTRAMP_FRAME)
767 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
768 CORE_ADDR cpsr
769 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
771 *is_thumb = (cpsr & t_bit) != 0;
772 *pc = frame_unwind_caller_pc (frame);
773 return 1;
776 return 0;
779 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
780 based on current processor state. In addition, set IS_THUMB depending
781 on whether we will return to ARM or Thumb code. */
783 static CORE_ADDR
784 arm_linux_sigreturn_next_pc (struct regcache *regcache,
785 unsigned long svc_number, int *is_thumb)
787 ULONGEST sp;
788 unsigned long sp_data;
789 CORE_ADDR next_pc = 0;
790 struct gdbarch *gdbarch = regcache->arch ();
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 int pc_offset = 0;
793 int is_sigreturn = 0;
794 CORE_ADDR cpsr;
796 gdb_assert (svc_number == ARM_SIGRETURN
797 || svc_number == ARM_RT_SIGRETURN);
799 is_sigreturn = (svc_number == ARM_SIGRETURN);
800 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
801 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
803 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
804 is_sigreturn);
806 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
808 /* Set IS_THUMB according the CPSR saved on the stack. */
809 cpsr = read_memory_unsigned_integer (sp + pc_offset + 4, 4, byte_order);
810 *is_thumb = ((cpsr & arm_psr_thumb_bit (gdbarch)) != 0);
812 return next_pc;
815 /* Return true if we're at execve syscall-exit-stop. */
817 static bool
818 is_execve_syscall_exit (struct regcache *regs)
820 ULONGEST reg = -1;
822 /* Check that lr is 0. */
823 regcache_cooked_read_unsigned (regs, ARM_LR_REGNUM, &reg);
824 if (reg != 0)
825 return false;
827 /* Check that r0-r8 is 0. */
828 for (int i = 0; i <= 8; ++i)
830 reg = -1;
831 regcache_cooked_read_unsigned (regs, ARM_A1_REGNUM + i, &reg);
832 if (reg != 0)
833 return false;
836 return true;
839 #define arm_sys_execve 11
841 /* At a ptrace syscall-stop, return the syscall number. This either
842 comes from the SWI instruction (OABI) or from r7 (EABI).
844 When the function fails, it should return -1. */
846 static LONGEST
847 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
848 thread_info *thread)
850 struct regcache *regs = get_thread_regcache (thread);
852 ULONGEST pc;
853 ULONGEST cpsr;
854 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
855 int is_thumb;
856 ULONGEST svc_number = -1;
858 if (is_execve_syscall_exit (regs))
859 return arm_sys_execve;
861 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
862 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
863 is_thumb = (cpsr & t_bit) != 0;
865 if (is_thumb)
867 regcache_cooked_read_unsigned (regs, 7, &svc_number);
869 else
871 enum bfd_endian byte_order_for_code =
872 gdbarch_byte_order_for_code (gdbarch);
874 /* PC gets incremented before the syscall-stop, so read the
875 previous instruction. */
876 unsigned long this_instr;
878 ULONGEST val;
879 if (!safe_read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code,
880 &val))
881 return -1;
882 this_instr = val;
884 unsigned long svc_operand = (0x00ffffff & this_instr);
886 if (svc_operand)
888 /* OABI */
889 svc_number = svc_operand - 0x900000;
891 else
893 /* EABI */
894 regcache_cooked_read_unsigned (regs, 7, &svc_number);
898 return svc_number;
901 static CORE_ADDR
902 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
904 CORE_ADDR next_pc = 0;
905 regcache *regcache
906 = gdb::checked_static_cast<struct regcache *> (self->regcache);
907 CORE_ADDR pc = regcache_read_pc (regcache);
908 int is_thumb = arm_is_thumb (regcache);
909 ULONGEST svc_number = 0;
911 if (is_thumb)
913 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
914 next_pc = pc + 2;
916 else
918 struct gdbarch *gdbarch = regcache->arch ();
919 enum bfd_endian byte_order_for_code =
920 gdbarch_byte_order_for_code (gdbarch);
921 unsigned long this_instr =
922 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
924 unsigned long svc_operand = (0x00ffffff & this_instr);
925 if (svc_operand) /* OABI. */
927 svc_number = svc_operand - 0x900000;
929 else /* EABI. */
931 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
934 next_pc = pc + 4;
937 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
939 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
940 update IS_THUMB. */
941 next_pc = arm_linux_sigreturn_next_pc (regcache, svc_number, &is_thumb);
944 /* Addresses for calling Thumb functions have the bit 0 set. */
945 if (is_thumb)
946 next_pc = MAKE_THUMB_ADDR (next_pc);
948 return next_pc;
952 /* Insert a single step breakpoint at the next executed instruction. */
954 static std::vector<CORE_ADDR>
955 arm_linux_software_single_step (struct regcache *regcache)
957 struct gdbarch *gdbarch = regcache->arch ();
958 struct arm_get_next_pcs next_pcs_ctx;
960 /* If the target does have hardware single step, GDB doesn't have
961 to bother software single step. */
962 if (target_can_do_single_step () == 1)
963 return {};
965 arm_get_next_pcs_ctor (&next_pcs_ctx,
966 &arm_linux_get_next_pcs_ops,
967 gdbarch_byte_order (gdbarch),
968 gdbarch_byte_order_for_code (gdbarch),
970 regcache);
972 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
974 for (CORE_ADDR &pc_ref : next_pcs)
975 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
977 return next_pcs;
980 /* Support for displaced stepping of Linux SVC instructions. */
982 static void
983 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
984 struct regcache *regs,
985 arm_displaced_step_copy_insn_closure *dsc)
987 ULONGEST apparent_pc;
988 int within_scratch;
990 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
992 within_scratch = (apparent_pc >= dsc->scratch_base
993 && apparent_pc < (dsc->scratch_base
994 + ARM_DISPLACED_MODIFIED_INSNS * 4 + 4));
996 displaced_debug_printf ("PC is apparently %.8lx after SVC step %s",
997 (unsigned long) apparent_pc,
998 (within_scratch
999 ? "(within scratch space)"
1000 : "(outside scratch space)"));
1002 if (within_scratch)
1003 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
1004 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
1007 static int
1008 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
1009 arm_displaced_step_copy_insn_closure *dsc)
1011 CORE_ADDR return_to = 0;
1013 frame_info_ptr frame;
1014 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
1015 int is_sigreturn = 0;
1016 int is_thumb;
1018 frame = get_current_frame ();
1020 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
1021 &return_to, &is_thumb);
1022 if (is_sigreturn)
1024 struct symtab_and_line sal;
1026 displaced_debug_printf ("found sigreturn/rt_sigreturn SVC call. "
1027 "PC in frame = %lx",
1028 (unsigned long) get_frame_pc (frame));
1030 displaced_debug_printf ("unwind pc = %lx. Setting momentary breakpoint.",
1031 (unsigned long) return_to);
1033 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1034 == NULL);
1036 sal = find_pc_line (return_to, 0);
1037 sal.pc = return_to;
1038 sal.section = find_pc_overlay (return_to);
1039 sal.explicit_pc = 1;
1041 frame = get_prev_frame (frame);
1043 if (frame)
1045 inferior_thread ()->control.step_resume_breakpoint
1046 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1047 bp_step_resume).release ();
1049 /* We need to make sure we actually insert the momentary
1050 breakpoint set above. */
1051 insert_breakpoints ();
1053 else
1054 displaced_debug_printf ("couldn't find previous frame to set momentary "
1055 "breakpoint for sigreturn/rt_sigreturn");
1057 else
1058 displaced_debug_printf ("found SVC call");
1060 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1061 location, else nothing.
1062 Insn: unmodified svc.
1063 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1064 else leave pc alone. */
1067 dsc->cleanup = &arm_linux_cleanup_svc;
1068 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1069 instruction. */
1070 dsc->wrote_to_pc = 1;
1072 return 0;
1076 /* The following two functions implement single-stepping over calls to Linux
1077 kernel helper routines, which perform e.g. atomic operations on architecture
1078 variants which don't support them natively.
1080 When this function is called, the PC will be pointing at the kernel helper
1081 (at an address inaccessible to GDB), and r14 will point to the return
1082 address. Displaced stepping always executes code in the copy area:
1083 so, make the copy-area instruction branch back to the kernel helper (the
1084 "from" address), and make r14 point to the breakpoint in the copy area. In
1085 that way, we regain control once the kernel helper returns, and can clean
1086 up appropriately (as if we had just returned from the kernel helper as it
1087 would have been called from the non-displaced location). */
1089 static void
1090 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1091 struct regcache *regs,
1092 arm_displaced_step_copy_insn_closure *dsc)
1094 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1095 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1098 static void
1099 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1100 CORE_ADDR to, struct regcache *regs,
1101 arm_displaced_step_copy_insn_closure *dsc)
1103 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1105 dsc->numinsns = 1;
1106 dsc->insn_addr = from;
1107 dsc->cleanup = &cleanup_kernel_helper_return;
1108 /* Say we wrote to the PC, else cleanup will set PC to the next
1109 instruction in the helper, which isn't helpful. */
1110 dsc->wrote_to_pc = 1;
1112 /* Preparation: tmp[0] <- r14
1113 r14 <- <scratch space>+4
1114 *(<scratch space>+8) <- from
1115 Insn: ldr pc, [r14, #4]
1116 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1118 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1119 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1120 CANNOT_WRITE_PC);
1121 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1123 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1126 /* Linux-specific displaced step instruction copying function. Detects when
1127 the program has stepped into a Linux kernel helper routine (which must be
1128 handled as a special case). */
1130 static displaced_step_copy_insn_closure_up
1131 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1132 CORE_ADDR from, CORE_ADDR to,
1133 struct regcache *regs)
1135 std::unique_ptr<arm_displaced_step_copy_insn_closure> dsc
1136 (new arm_displaced_step_copy_insn_closure);
1138 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1139 stop at the return location. */
1140 if (from > 0xffff0000)
1142 displaced_debug_printf ("detected kernel helper at %.8lx",
1143 (unsigned long) from);
1145 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc.get ());
1147 else
1149 /* Override the default handling of SVC instructions. */
1150 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1152 arm_process_displaced_insn (gdbarch, from, to, regs, dsc.get ());
1155 arm_displaced_init_closure (gdbarch, from, to, dsc.get ());
1157 /* This is a work around for a problem with g++ 4.8. */
1158 return displaced_step_copy_insn_closure_up (dsc.release ());
1161 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1162 gdbarch.h. */
1164 static int
1165 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1167 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1168 || *s == '[' /* Register indirection or
1169 displacement. */
1170 || isalpha (*s)); /* Register value. */
1173 /* This routine is used to parse a special token in ARM's assembly.
1175 The special tokens parsed by it are:
1177 - Register displacement (e.g, [fp, #-8])
1179 It returns one if the special token has been parsed successfully,
1180 or zero if the current token is not considered special. */
1182 static expr::operation_up
1183 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1184 struct stap_parse_info *p)
1186 if (*p->arg == '[')
1188 /* Temporary holder for lookahead. */
1189 const char *tmp = p->arg;
1190 char *endp;
1191 /* Used to save the register name. */
1192 const char *start;
1193 char *regname;
1194 int len, offset;
1195 int got_minus = 0;
1196 long displacement;
1198 ++tmp;
1199 start = tmp;
1201 /* Register name. */
1202 while (isalnum (*tmp))
1203 ++tmp;
1205 if (*tmp != ',')
1206 return {};
1208 len = tmp - start;
1209 regname = (char *) alloca (len + 2);
1211 offset = 0;
1212 if (isdigit (*start))
1214 /* If we are dealing with a register whose name begins with a
1215 digit, it means we should prefix the name with the letter
1216 `r', because GDB expects this name pattern. Otherwise (e.g.,
1217 we are dealing with the register `fp'), we don't need to
1218 add such a prefix. */
1219 regname[0] = 'r';
1220 offset = 1;
1223 strncpy (regname + offset, start, len);
1224 len += offset;
1225 regname[len] = '\0';
1227 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1228 error (_("Invalid register name `%s' on expression `%s'."),
1229 regname, p->saved_arg);
1231 ++tmp;
1232 tmp = skip_spaces (tmp);
1233 if (*tmp == '#' || *tmp == '$')
1234 ++tmp;
1236 if (*tmp == '-')
1238 ++tmp;
1239 got_minus = 1;
1242 displacement = strtol (tmp, &endp, 10);
1243 tmp = endp;
1245 /* Skipping last `]'. */
1246 if (*tmp++ != ']')
1247 return {};
1248 p->arg = tmp;
1250 using namespace expr;
1252 /* The displacement. */
1253 struct type *long_type = builtin_type (gdbarch)->builtin_long;
1254 if (got_minus)
1255 displacement = -displacement;
1256 operation_up disp = make_operation<long_const_operation> (long_type,
1257 displacement);
1259 /* The register name. */
1260 operation_up reg
1261 = make_operation<register_operation> (regname);
1263 operation_up sum
1264 = make_operation<add_operation> (std::move (reg), std::move (disp));
1266 /* Casting to the expected type. */
1267 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
1268 sum = make_operation<unop_cast_operation> (std::move (sum),
1269 arg_ptr_type);
1270 return make_operation<unop_ind_operation> (std::move (sum));
1273 return {};
1276 /* ARM process record-replay constructs: syscall, signal etc. */
1278 static linux_record_tdep arm_linux_record_tdep;
1280 /* arm_canonicalize_syscall maps from the native arm Linux set
1281 of syscall ids into a canonical set of syscall ids used by
1282 process record. */
1284 static enum gdb_syscall
1285 arm_canonicalize_syscall (int syscall)
1287 switch (syscall)
1289 case 0: return gdb_sys_restart_syscall;
1290 case 1: return gdb_sys_exit;
1291 case 2: return gdb_sys_fork;
1292 case 3: return gdb_sys_read;
1293 case 4: return gdb_sys_write;
1294 case 5: return gdb_sys_open;
1295 case 6: return gdb_sys_close;
1296 case 8: return gdb_sys_creat;
1297 case 9: return gdb_sys_link;
1298 case 10: return gdb_sys_unlink;
1299 case arm_sys_execve: return gdb_sys_execve;
1300 case 12: return gdb_sys_chdir;
1301 case 13: return gdb_sys_time;
1302 case 14: return gdb_sys_mknod;
1303 case 15: return gdb_sys_chmod;
1304 case 16: return gdb_sys_lchown16;
1305 case 19: return gdb_sys_lseek;
1306 case 20: return gdb_sys_getpid;
1307 case 21: return gdb_sys_mount;
1308 case 22: return gdb_sys_oldumount;
1309 case 23: return gdb_sys_setuid16;
1310 case 24: return gdb_sys_getuid16;
1311 case 25: return gdb_sys_stime;
1312 case 26: return gdb_sys_ptrace;
1313 case 27: return gdb_sys_alarm;
1314 case 29: return gdb_sys_pause;
1315 case 30: return gdb_sys_utime;
1316 case 33: return gdb_sys_access;
1317 case 34: return gdb_sys_nice;
1318 case 36: return gdb_sys_sync;
1319 case 37: return gdb_sys_kill;
1320 case 38: return gdb_sys_rename;
1321 case 39: return gdb_sys_mkdir;
1322 case 40: return gdb_sys_rmdir;
1323 case 41: return gdb_sys_dup;
1324 case 42: return gdb_sys_pipe;
1325 case 43: return gdb_sys_times;
1326 case 45: return gdb_sys_brk;
1327 case 46: return gdb_sys_setgid16;
1328 case 47: return gdb_sys_getgid16;
1329 case 49: return gdb_sys_geteuid16;
1330 case 50: return gdb_sys_getegid16;
1331 case 51: return gdb_sys_acct;
1332 case 52: return gdb_sys_umount;
1333 case 54: return gdb_sys_ioctl;
1334 case 55: return gdb_sys_fcntl;
1335 case 57: return gdb_sys_setpgid;
1336 case 60: return gdb_sys_umask;
1337 case 61: return gdb_sys_chroot;
1338 case 62: return gdb_sys_ustat;
1339 case 63: return gdb_sys_dup2;
1340 case 64: return gdb_sys_getppid;
1341 case 65: return gdb_sys_getpgrp;
1342 case 66: return gdb_sys_setsid;
1343 case 67: return gdb_sys_sigaction;
1344 case 70: return gdb_sys_setreuid16;
1345 case 71: return gdb_sys_setregid16;
1346 case 72: return gdb_sys_sigsuspend;
1347 case 73: return gdb_sys_sigpending;
1348 case 74: return gdb_sys_sethostname;
1349 case 75: return gdb_sys_setrlimit;
1350 case 76: return gdb_sys_getrlimit;
1351 case 77: return gdb_sys_getrusage;
1352 case 78: return gdb_sys_gettimeofday;
1353 case 79: return gdb_sys_settimeofday;
1354 case 80: return gdb_sys_getgroups16;
1355 case 81: return gdb_sys_setgroups16;
1356 case 82: return gdb_sys_select;
1357 case 83: return gdb_sys_symlink;
1358 case 85: return gdb_sys_readlink;
1359 case 86: return gdb_sys_uselib;
1360 case 87: return gdb_sys_swapon;
1361 case 88: return gdb_sys_reboot;
1362 case 89: return gdb_old_readdir;
1363 case 90: return gdb_old_mmap;
1364 case 91: return gdb_sys_munmap;
1365 case 92: return gdb_sys_truncate;
1366 case 93: return gdb_sys_ftruncate;
1367 case 94: return gdb_sys_fchmod;
1368 case 95: return gdb_sys_fchown16;
1369 case 96: return gdb_sys_getpriority;
1370 case 97: return gdb_sys_setpriority;
1371 case 99: return gdb_sys_statfs;
1372 case 100: return gdb_sys_fstatfs;
1373 case 102: return gdb_sys_socketcall;
1374 case 103: return gdb_sys_syslog;
1375 case 104: return gdb_sys_setitimer;
1376 case 105: return gdb_sys_getitimer;
1377 case 106: return gdb_sys_stat;
1378 case 107: return gdb_sys_lstat;
1379 case 108: return gdb_sys_fstat;
1380 case 111: return gdb_sys_vhangup;
1381 case 113: /* sys_syscall */
1382 return gdb_sys_no_syscall;
1383 case 114: return gdb_sys_wait4;
1384 case 115: return gdb_sys_swapoff;
1385 case 116: return gdb_sys_sysinfo;
1386 case 117: return gdb_sys_ipc;
1387 case 118: return gdb_sys_fsync;
1388 case 119: return gdb_sys_sigreturn;
1389 case 120: return gdb_sys_clone;
1390 case 121: return gdb_sys_setdomainname;
1391 case 122: return gdb_sys_uname;
1392 case 124: return gdb_sys_adjtimex;
1393 case 125: return gdb_sys_mprotect;
1394 case 126: return gdb_sys_sigprocmask;
1395 case 128: return gdb_sys_init_module;
1396 case 129: return gdb_sys_delete_module;
1397 case 131: return gdb_sys_quotactl;
1398 case 132: return gdb_sys_getpgid;
1399 case 133: return gdb_sys_fchdir;
1400 case 134: return gdb_sys_bdflush;
1401 case 135: return gdb_sys_sysfs;
1402 case 136: return gdb_sys_personality;
1403 case 138: return gdb_sys_setfsuid16;
1404 case 139: return gdb_sys_setfsgid16;
1405 case 140: return gdb_sys_llseek;
1406 case 141: return gdb_sys_getdents;
1407 case 142: return gdb_sys_select;
1408 case 143: return gdb_sys_flock;
1409 case 144: return gdb_sys_msync;
1410 case 145: return gdb_sys_readv;
1411 case 146: return gdb_sys_writev;
1412 case 147: return gdb_sys_getsid;
1413 case 148: return gdb_sys_fdatasync;
1414 case 149: return gdb_sys_sysctl;
1415 case 150: return gdb_sys_mlock;
1416 case 151: return gdb_sys_munlock;
1417 case 152: return gdb_sys_mlockall;
1418 case 153: return gdb_sys_munlockall;
1419 case 154: return gdb_sys_sched_setparam;
1420 case 155: return gdb_sys_sched_getparam;
1421 case 156: return gdb_sys_sched_setscheduler;
1422 case 157: return gdb_sys_sched_getscheduler;
1423 case 158: return gdb_sys_sched_yield;
1424 case 159: return gdb_sys_sched_get_priority_max;
1425 case 160: return gdb_sys_sched_get_priority_min;
1426 case 161: return gdb_sys_sched_rr_get_interval;
1427 case 162: return gdb_sys_nanosleep;
1428 case 163: return gdb_sys_mremap;
1429 case 164: return gdb_sys_setresuid16;
1430 case 165: return gdb_sys_getresuid16;
1431 case 168: return gdb_sys_poll;
1432 case 169: return gdb_sys_nfsservctl;
1433 case 170: return gdb_sys_setresgid;
1434 case 171: return gdb_sys_getresgid;
1435 case 172: return gdb_sys_prctl;
1436 case 173: return gdb_sys_rt_sigreturn;
1437 case 174: return gdb_sys_rt_sigaction;
1438 case 175: return gdb_sys_rt_sigprocmask;
1439 case 176: return gdb_sys_rt_sigpending;
1440 case 177: return gdb_sys_rt_sigtimedwait;
1441 case 178: return gdb_sys_rt_sigqueueinfo;
1442 case 179: return gdb_sys_rt_sigsuspend;
1443 case 180: return gdb_sys_pread64;
1444 case 181: return gdb_sys_pwrite64;
1445 case 182: return gdb_sys_chown;
1446 case 183: return gdb_sys_getcwd;
1447 case 184: return gdb_sys_capget;
1448 case 185: return gdb_sys_capset;
1449 case 186: return gdb_sys_sigaltstack;
1450 case 187: return gdb_sys_sendfile;
1451 case 190: return gdb_sys_vfork;
1452 case 191: return gdb_sys_getrlimit;
1453 case 192: return gdb_sys_mmap2;
1454 case 193: return gdb_sys_truncate64;
1455 case 194: return gdb_sys_ftruncate64;
1456 case 195: return gdb_sys_stat64;
1457 case 196: return gdb_sys_lstat64;
1458 case 197: return gdb_sys_fstat64;
1459 case 198: return gdb_sys_lchown;
1460 case 199: return gdb_sys_getuid;
1461 case 200: return gdb_sys_getgid;
1462 case 201: return gdb_sys_geteuid;
1463 case 202: return gdb_sys_getegid;
1464 case 203: return gdb_sys_setreuid;
1465 case 204: return gdb_sys_setregid;
1466 case 205: return gdb_sys_getgroups;
1467 case 206: return gdb_sys_setgroups;
1468 case 207: return gdb_sys_fchown;
1469 case 208: return gdb_sys_setresuid;
1470 case 209: return gdb_sys_getresuid;
1471 case 210: return gdb_sys_setresgid;
1472 case 211: return gdb_sys_getresgid;
1473 case 212: return gdb_sys_chown;
1474 case 213: return gdb_sys_setuid;
1475 case 214: return gdb_sys_setgid;
1476 case 215: return gdb_sys_setfsuid;
1477 case 216: return gdb_sys_setfsgid;
1478 case 217: return gdb_sys_getdents64;
1479 case 218: return gdb_sys_pivot_root;
1480 case 219: return gdb_sys_mincore;
1481 case 220: return gdb_sys_madvise;
1482 case 221: return gdb_sys_fcntl64;
1483 case 224: return gdb_sys_gettid;
1484 case 225: return gdb_sys_readahead;
1485 case 226: return gdb_sys_setxattr;
1486 case 227: return gdb_sys_lsetxattr;
1487 case 228: return gdb_sys_fsetxattr;
1488 case 229: return gdb_sys_getxattr;
1489 case 230: return gdb_sys_lgetxattr;
1490 case 231: return gdb_sys_fgetxattr;
1491 case 232: return gdb_sys_listxattr;
1492 case 233: return gdb_sys_llistxattr;
1493 case 234: return gdb_sys_flistxattr;
1494 case 235: return gdb_sys_removexattr;
1495 case 236: return gdb_sys_lremovexattr;
1496 case 237: return gdb_sys_fremovexattr;
1497 case 238: return gdb_sys_tkill;
1498 case 239: return gdb_sys_sendfile64;
1499 case 240: return gdb_sys_futex;
1500 case 241: return gdb_sys_sched_setaffinity;
1501 case 242: return gdb_sys_sched_getaffinity;
1502 case 243: return gdb_sys_io_setup;
1503 case 244: return gdb_sys_io_destroy;
1504 case 245: return gdb_sys_io_getevents;
1505 case 246: return gdb_sys_io_submit;
1506 case 247: return gdb_sys_io_cancel;
1507 case 248: return gdb_sys_exit_group;
1508 case 249: return gdb_sys_lookup_dcookie;
1509 case 250: return gdb_sys_epoll_create;
1510 case 251: return gdb_sys_epoll_ctl;
1511 case 252: return gdb_sys_epoll_wait;
1512 case 253: return gdb_sys_remap_file_pages;
1513 case 256: return gdb_sys_set_tid_address;
1514 case 257: return gdb_sys_timer_create;
1515 case 258: return gdb_sys_timer_settime;
1516 case 259: return gdb_sys_timer_gettime;
1517 case 260: return gdb_sys_timer_getoverrun;
1518 case 261: return gdb_sys_timer_delete;
1519 case 262: return gdb_sys_clock_settime;
1520 case 263: return gdb_sys_clock_gettime;
1521 case 264: return gdb_sys_clock_getres;
1522 case 265: return gdb_sys_clock_nanosleep;
1523 case 266: return gdb_sys_statfs64;
1524 case 267: return gdb_sys_fstatfs64;
1525 case 268: return gdb_sys_tgkill;
1526 case 269: return gdb_sys_utimes;
1528 case 270: return gdb_sys_arm_fadvise64_64;
1529 case 271: return gdb_sys_pciconfig_iobase;
1530 case 272: return gdb_sys_pciconfig_read;
1531 case 273: return gdb_sys_pciconfig_write;
1533 case 274: return gdb_sys_mq_open;
1534 case 275: return gdb_sys_mq_unlink;
1535 case 276: return gdb_sys_mq_timedsend;
1536 case 277: return gdb_sys_mq_timedreceive;
1537 case 278: return gdb_sys_mq_notify;
1538 case 279: return gdb_sys_mq_getsetattr;
1539 case 280: return gdb_sys_waitid;
1540 case 281: return gdb_sys_socket;
1541 case 282: return gdb_sys_bind;
1542 case 283: return gdb_sys_connect;
1543 case 284: return gdb_sys_listen;
1544 case 285: return gdb_sys_accept;
1545 case 286: return gdb_sys_getsockname;
1546 case 287: return gdb_sys_getpeername;
1547 case 288: return gdb_sys_socketpair;
1548 case 289: /* send */ return gdb_sys_no_syscall;
1549 case 290: return gdb_sys_sendto;
1550 case 291: return gdb_sys_recv;
1551 case 292: return gdb_sys_recvfrom;
1552 case 293: return gdb_sys_shutdown;
1553 case 294: return gdb_sys_setsockopt;
1554 case 295: return gdb_sys_getsockopt;
1555 case 296: return gdb_sys_sendmsg;
1556 case 297: return gdb_sys_recvmsg;
1557 case 298: return gdb_sys_semop;
1558 case 299: return gdb_sys_semget;
1559 case 300: return gdb_sys_semctl;
1560 case 301: return gdb_sys_msgsnd;
1561 case 302: return gdb_sys_msgrcv;
1562 case 303: return gdb_sys_msgget;
1563 case 304: return gdb_sys_msgctl;
1564 case 305: return gdb_sys_shmat;
1565 case 306: return gdb_sys_shmdt;
1566 case 307: return gdb_sys_shmget;
1567 case 308: return gdb_sys_shmctl;
1568 case 309: return gdb_sys_add_key;
1569 case 310: return gdb_sys_request_key;
1570 case 311: return gdb_sys_keyctl;
1571 case 312: return gdb_sys_semtimedop;
1572 case 313: /* vserver */ return gdb_sys_no_syscall;
1573 case 314: return gdb_sys_ioprio_set;
1574 case 315: return gdb_sys_ioprio_get;
1575 case 316: return gdb_sys_inotify_init;
1576 case 317: return gdb_sys_inotify_add_watch;
1577 case 318: return gdb_sys_inotify_rm_watch;
1578 case 319: return gdb_sys_mbind;
1579 case 320: return gdb_sys_get_mempolicy;
1580 case 321: return gdb_sys_set_mempolicy;
1581 case 322: return gdb_sys_openat;
1582 case 323: return gdb_sys_mkdirat;
1583 case 324: return gdb_sys_mknodat;
1584 case 325: return gdb_sys_fchownat;
1585 case 326: return gdb_sys_futimesat;
1586 case 327: return gdb_sys_fstatat64;
1587 case 328: return gdb_sys_unlinkat;
1588 case 329: return gdb_sys_renameat;
1589 case 330: return gdb_sys_linkat;
1590 case 331: return gdb_sys_symlinkat;
1591 case 332: return gdb_sys_readlinkat;
1592 case 333: return gdb_sys_fchmodat;
1593 case 334: return gdb_sys_faccessat;
1594 case 335: return gdb_sys_pselect6;
1595 case 336: return gdb_sys_ppoll;
1596 case 337: return gdb_sys_unshare;
1597 case 338: return gdb_sys_set_robust_list;
1598 case 339: return gdb_sys_get_robust_list;
1599 case 340: return gdb_sys_splice;
1600 /*case 341: return gdb_sys_arm_sync_file_range;*/
1601 case 342: return gdb_sys_tee;
1602 case 343: return gdb_sys_vmsplice;
1603 case 344: return gdb_sys_move_pages;
1604 case 345: return gdb_sys_getcpu;
1605 case 346: return gdb_sys_epoll_pwait;
1606 case 347: return gdb_sys_kexec_load;
1608 case 348: return gdb_sys_utimensat;
1609 case 349: return gdb_sys_signalfd;
1610 case 350: return gdb_sys_timerfd_create;
1611 case 351: return gdb_sys_eventfd;
1613 case 352: return gdb_sys_fallocate;
1615 case 353: return gdb_sys_timerfd_settime;
1616 case 354: return gdb_sys_timerfd_gettime;
1617 case 355: return gdb_sys_signalfd4;
1619 case 356: return gdb_sys_eventfd2;
1620 case 357: return gdb_sys_epoll_create1;
1621 case 358: return gdb_sys_dup3;
1622 case 359: return gdb_sys_pipe2;
1623 case 360: return gdb_sys_inotify_init1;
1625 case 361: return gdb_sys_preadv;
1626 case 362: return gdb_sys_pwritev;
1627 case 363: return gdb_sys_rt_tgsigqueueinfo;
1628 case 364: return gdb_sys_perf_event_open;
1629 case 365: return gdb_sys_recvmmsg;
1630 case 366: return gdb_sys_accept4;
1631 case 367: return gdb_sys_fanotify_init;
1632 case 368: return gdb_sys_fanotify_mark;
1633 case 369: return gdb_sys_prlimit64;
1634 case 370: return gdb_sys_name_to_handle_at;
1635 case 371: return gdb_sys_open_by_handle_at;
1636 case 372: return gdb_sys_clock_adjtime;
1637 case 373: return gdb_sys_syncfs;
1638 case 374: return gdb_sys_sendmmsg;
1639 case 375: return gdb_sys_setns;
1640 case 376: return gdb_sys_process_vm_readv;
1641 case 377: return gdb_sys_process_vm_writev;
1642 case 378: return gdb_sys_kcmp;
1643 case 379: return gdb_sys_finit_module;
1645 case 384: return gdb_sys_getrandom;
1646 case 983041: /* ARM_breakpoint */ return gdb_sys_no_syscall;
1647 case 983042: /* ARM_cacheflush */ return gdb_sys_no_syscall;
1648 case 983043: /* ARM_usr26 */ return gdb_sys_no_syscall;
1649 case 983044: /* ARM_usr32 */ return gdb_sys_no_syscall;
1650 case 983045: /* ARM_set_tls */ return gdb_sys_no_syscall;
1651 default: return gdb_sys_no_syscall;
1655 /* Record all registers but PC register for process-record. */
1657 static int
1658 arm_all_but_pc_registers_record (struct regcache *regcache)
1660 int i;
1662 for (i = 0; i < ARM_PC_REGNUM; i++)
1664 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1665 return -1;
1668 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1669 return -1;
1671 return 0;
1674 /* Handler for arm system call instruction recording. */
1676 static int
1677 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1679 int ret = 0;
1680 enum gdb_syscall syscall_gdb;
1682 syscall_gdb = arm_canonicalize_syscall (svc_number);
1684 if (syscall_gdb == gdb_sys_no_syscall)
1686 gdb_printf (gdb_stderr,
1687 _("Process record and replay target doesn't "
1688 "support syscall number %s\n"),
1689 plongest (svc_number));
1690 return -1;
1693 if (syscall_gdb == gdb_sys_sigreturn
1694 || syscall_gdb == gdb_sys_rt_sigreturn)
1696 if (arm_all_but_pc_registers_record (regcache))
1697 return -1;
1698 return 0;
1701 ret = record_linux_system_call (syscall_gdb, regcache,
1702 &arm_linux_record_tdep);
1703 if (ret != 0)
1704 return ret;
1706 /* Record the return value of the system call. */
1707 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1708 return -1;
1709 /* Record LR. */
1710 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1711 return -1;
1712 /* Record CPSR. */
1713 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1714 return -1;
1716 return 0;
1719 /* Implement the skip_trampoline_code gdbarch method. */
1721 static CORE_ADDR
1722 arm_linux_skip_trampoline_code (const frame_info_ptr &frame, CORE_ADDR pc)
1724 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1726 if (target_pc != 0)
1727 return target_pc;
1729 return find_solib_trampoline_target (frame, pc);
1732 /* Implement the gcc_target_options gdbarch method. */
1734 static std::string
1735 arm_linux_gcc_target_options (struct gdbarch *gdbarch)
1737 /* GCC doesn't know "-m32". */
1738 return {};
1741 static void
1742 arm_linux_init_abi (struct gdbarch_info info,
1743 struct gdbarch *gdbarch)
1745 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1746 static const char *const stap_register_prefixes[] = { "r", NULL };
1747 static const char *const stap_register_indirection_prefixes[] = { "[",
1748 NULL };
1749 static const char *const stap_register_indirection_suffixes[] = { "]",
1750 NULL };
1751 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
1753 linux_init_abi (info, gdbarch, 1);
1755 tdep->lowest_pc = 0x8000;
1756 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1758 if (tdep->arm_abi == ARM_ABI_AAPCS)
1759 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1760 else
1761 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1762 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1763 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1765 else
1767 if (tdep->arm_abi == ARM_ABI_AAPCS)
1768 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1769 else
1770 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1771 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1772 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1774 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1775 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1776 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1778 if (tdep->fp_model == ARM_FLOAT_AUTO)
1779 tdep->fp_model = ARM_FLOAT_FPA;
1781 switch (tdep->fp_model)
1783 case ARM_FLOAT_FPA:
1784 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1785 break;
1786 case ARM_FLOAT_SOFT_FPA:
1787 case ARM_FLOAT_SOFT_VFP:
1788 case ARM_FLOAT_VFP:
1789 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1790 break;
1791 default:
1792 internal_error
1793 (_("arm_linux_init_abi: Floating point model not supported"));
1794 break;
1796 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1798 set_solib_svr4_fetch_link_map_offsets
1799 (gdbarch, linux_ilp32_fetch_link_map_offsets);
1801 /* Single stepping. */
1802 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1804 /* Shared library handling. */
1805 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1806 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1808 /* Enable TLS support. */
1809 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1810 svr4_fetch_objfile_link_map);
1812 tramp_frame_prepend_unwinder (gdbarch,
1813 &arm_linux_sigreturn_tramp_frame);
1814 tramp_frame_prepend_unwinder (gdbarch,
1815 &arm_linux_rt_sigreturn_tramp_frame);
1816 tramp_frame_prepend_unwinder (gdbarch,
1817 &arm_eabi_linux_sigreturn_tramp_frame);
1818 tramp_frame_prepend_unwinder (gdbarch,
1819 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1820 tramp_frame_prepend_unwinder (gdbarch,
1821 &thumb2_eabi_linux_sigreturn_tramp_frame);
1822 tramp_frame_prepend_unwinder (gdbarch,
1823 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1824 tramp_frame_prepend_unwinder (gdbarch,
1825 &arm_linux_restart_syscall_tramp_frame);
1826 tramp_frame_prepend_unwinder (gdbarch,
1827 &arm_kernel_linux_restart_syscall_tramp_frame);
1829 /* Core file support. */
1830 set_gdbarch_iterate_over_regset_sections
1831 (gdbarch, arm_linux_iterate_over_regset_sections);
1832 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1834 /* Displaced stepping. */
1835 set_gdbarch_displaced_step_copy_insn (gdbarch,
1836 arm_linux_displaced_step_copy_insn);
1837 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1839 /* Reversible debugging, process record. */
1840 set_gdbarch_process_record (gdbarch, arm_process_record);
1842 /* SystemTap functions. */
1843 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1844 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1845 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1846 stap_register_indirection_prefixes);
1847 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1848 stap_register_indirection_suffixes);
1849 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1850 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1851 set_gdbarch_stap_parse_special_token (gdbarch,
1852 arm_stap_parse_special_token);
1854 /* `catch syscall' */
1855 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1856 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1858 /* Syscall record. */
1859 tdep->arm_syscall_record = arm_linux_syscall_record;
1861 /* Initialize the arm_linux_record_tdep. */
1862 /* These values are the size of the type that will be used in a system
1863 call. They are obtained from Linux Kernel source. */
1864 arm_linux_record_tdep.size_pointer
1865 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1866 arm_linux_record_tdep.size__old_kernel_stat = 32;
1867 arm_linux_record_tdep.size_tms = 16;
1868 arm_linux_record_tdep.size_loff_t = 8;
1869 arm_linux_record_tdep.size_flock = 16;
1870 arm_linux_record_tdep.size_oldold_utsname = 45;
1871 arm_linux_record_tdep.size_ustat = 20;
1872 arm_linux_record_tdep.size_old_sigaction = 16;
1873 arm_linux_record_tdep.size_old_sigset_t = 4;
1874 arm_linux_record_tdep.size_rlimit = 8;
1875 arm_linux_record_tdep.size_rusage = 72;
1876 arm_linux_record_tdep.size_timeval = 8;
1877 arm_linux_record_tdep.size_timezone = 8;
1878 arm_linux_record_tdep.size_old_gid_t = 2;
1879 arm_linux_record_tdep.size_old_uid_t = 2;
1880 arm_linux_record_tdep.size_fd_set = 128;
1881 arm_linux_record_tdep.size_old_dirent = 268;
1882 arm_linux_record_tdep.size_statfs = 64;
1883 arm_linux_record_tdep.size_statfs64 = 84;
1884 arm_linux_record_tdep.size_sockaddr = 16;
1885 arm_linux_record_tdep.size_int
1886 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1887 arm_linux_record_tdep.size_long
1888 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1889 arm_linux_record_tdep.size_ulong
1890 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1891 arm_linux_record_tdep.size_msghdr = 28;
1892 arm_linux_record_tdep.size_itimerval = 16;
1893 arm_linux_record_tdep.size_stat = 88;
1894 arm_linux_record_tdep.size_old_utsname = 325;
1895 arm_linux_record_tdep.size_sysinfo = 64;
1896 arm_linux_record_tdep.size_msqid_ds = 88;
1897 arm_linux_record_tdep.size_shmid_ds = 84;
1898 arm_linux_record_tdep.size_new_utsname = 390;
1899 arm_linux_record_tdep.size_timex = 128;
1900 arm_linux_record_tdep.size_mem_dqinfo = 24;
1901 arm_linux_record_tdep.size_if_dqblk = 68;
1902 arm_linux_record_tdep.size_fs_quota_stat = 68;
1903 arm_linux_record_tdep.size_timespec = 8;
1904 arm_linux_record_tdep.size_pollfd = 8;
1905 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1906 arm_linux_record_tdep.size_knfsd_fh = 132;
1907 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1908 arm_linux_record_tdep.size_sigaction = 20;
1909 arm_linux_record_tdep.size_sigset_t = 8;
1910 arm_linux_record_tdep.size_siginfo_t = 128;
1911 arm_linux_record_tdep.size_cap_user_data_t = 12;
1912 arm_linux_record_tdep.size_stack_t = 12;
1913 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1914 arm_linux_record_tdep.size_stat64 = 96;
1915 arm_linux_record_tdep.size_gid_t = 4;
1916 arm_linux_record_tdep.size_uid_t = 4;
1917 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1918 arm_linux_record_tdep.size_flock64 = 24;
1919 arm_linux_record_tdep.size_user_desc = 16;
1920 arm_linux_record_tdep.size_io_event = 32;
1921 arm_linux_record_tdep.size_iocb = 64;
1922 arm_linux_record_tdep.size_epoll_event = 12;
1923 arm_linux_record_tdep.size_itimerspec
1924 = arm_linux_record_tdep.size_timespec * 2;
1925 arm_linux_record_tdep.size_mq_attr = 32;
1926 arm_linux_record_tdep.size_termios = 36;
1927 arm_linux_record_tdep.size_termios2 = 44;
1928 arm_linux_record_tdep.size_pid_t = 4;
1929 arm_linux_record_tdep.size_winsize = 8;
1930 arm_linux_record_tdep.size_serial_struct = 60;
1931 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1932 arm_linux_record_tdep.size_hayes_esp_config = 12;
1933 arm_linux_record_tdep.size_size_t = 4;
1934 arm_linux_record_tdep.size_iovec = 8;
1935 arm_linux_record_tdep.size_time_t = 4;
1937 /* These values are the second argument of system call "sys_ioctl".
1938 They are obtained from Linux Kernel source. */
1939 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1940 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1941 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1942 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1943 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1944 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1945 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1946 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1947 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1948 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1949 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1950 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1951 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1952 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1953 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1954 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1955 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1956 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1957 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1958 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1959 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1960 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1961 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1962 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1963 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1964 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1965 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1966 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1967 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1968 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1969 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1970 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1971 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1972 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1973 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1974 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1975 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1976 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1977 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1978 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1979 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1980 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1981 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1982 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1983 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1984 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1985 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1986 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1987 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1988 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1989 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1990 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1991 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1992 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1993 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1994 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1995 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1996 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1997 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1998 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1999 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
2000 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
2001 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
2002 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
2003 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
2005 /* These values are the second argument of system call "sys_fcntl"
2006 and "sys_fcntl64". They are obtained from Linux Kernel source. */
2007 arm_linux_record_tdep.fcntl_F_GETLK = 5;
2008 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
2009 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
2010 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
2012 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM;
2013 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 1;
2014 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 2;
2015 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
2016 arm_linux_record_tdep.arg5 = ARM_A1_REGNUM + 4;
2017 arm_linux_record_tdep.arg6 = ARM_A1_REGNUM + 5;
2018 arm_linux_record_tdep.arg7 = ARM_A1_REGNUM + 6;
2020 set_gdbarch_gcc_target_options (gdbarch, arm_linux_gcc_target_options);
2023 void _initialize_arm_linux_tdep ();
2024 void
2025 _initialize_arm_linux_tdep ()
2027 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
2028 arm_linux_init_abi);