* corelow.c (get_core_registers): Adjust.
[binutils-gdb.git] / gdb / buildsym.c
blob55ace15cc29ab340b8fb664052173f2c13136b5f
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 /* This module provides subroutines used for creating and adding to
22 the symbol table. These routines are called from various symbol-
23 file-reading routines.
25 Routines to support specific debugging information formats (stabs,
26 DWARF, etc) belong somewhere else. */
28 #include "defs.h"
29 #include "bfd.h"
30 #include "gdb_obstack.h"
31 #include "symtab.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "gdb_assert.h"
36 #include "complaints.h"
37 #include "gdb_string.h"
38 #include "expression.h" /* For "enum exp_opcode" used by... */
39 #include "bcache.h"
40 #include "filenames.h" /* For DOSish file names */
41 #include "macrotab.h"
42 #include "demangle.h" /* Needed by SYMBOL_INIT_DEMANGLED_NAME. */
43 #include "block.h"
44 #include "cp-support.h"
45 #include "dictionary.h"
46 #include "addrmap.h"
48 /* Ask buildsym.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "buildsym.h" /* Our own declarations */
52 #undef EXTERN
54 /* For cleanup_undefined_types and finish_global_stabs (somewhat
55 questionable--see comment where we call them). */
57 #include "stabsread.h"
59 /* List of subfiles. */
61 static struct subfile *subfiles;
63 /* List of free `struct pending' structures for reuse. */
65 static struct pending *free_pendings;
67 /* Non-zero if symtab has line number info. This prevents an
68 otherwise empty symtab from being tossed. */
70 static int have_line_numbers;
72 /* The mutable address map for the compilation unit whose symbols
73 we're currently reading. The symtabs' shared blockvector will
74 point to a fixed copy of this. */
75 static struct addrmap *pending_addrmap;
77 /* The obstack on which we allocate pending_addrmap.
78 If pending_addrmap is NULL, this is uninitialized; otherwise, it is
79 initialized (and holds pending_addrmap). */
80 static struct obstack pending_addrmap_obstack;
82 /* Non-zero if we recorded any ranges in the addrmap that are
83 different from those in the blockvector already. We set this to
84 zero when we start processing a symfile, and if it's still zero at
85 the end, then we just toss the addrmap. */
86 static int pending_addrmap_interesting;
89 static int compare_line_numbers (const void *ln1p, const void *ln2p);
92 /* Initial sizes of data structures. These are realloc'd larger if
93 needed, and realloc'd down to the size actually used, when
94 completed. */
96 #define INITIAL_CONTEXT_STACK_SIZE 10
97 #define INITIAL_LINE_VECTOR_LENGTH 1000
100 /* maintain the lists of symbols and blocks */
102 /* Add a pending list to free_pendings. */
103 void
104 add_free_pendings (struct pending *list)
106 struct pending *link = list;
108 if (list)
110 while (link->next) link = link->next;
111 link->next = free_pendings;
112 free_pendings = list;
116 /* Add a symbol to one of the lists of symbols. While we're at it, if
117 we're in the C++ case and don't have full namespace debugging info,
118 check to see if it references an anonymous namespace; if so, add an
119 appropriate using directive. */
121 void
122 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
124 struct pending *link;
126 /* If this is an alias for another symbol, don't add it. */
127 if (symbol->ginfo.name && symbol->ginfo.name[0] == '#')
128 return;
130 /* We keep PENDINGSIZE symbols in each link of the list. If we
131 don't have a link with room in it, add a new link. */
132 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
134 if (free_pendings)
136 link = free_pendings;
137 free_pendings = link->next;
139 else
141 link = (struct pending *) xmalloc (sizeof (struct pending));
144 link->next = *listhead;
145 *listhead = link;
146 link->nsyms = 0;
149 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
152 /* Find a symbol named NAME on a LIST. NAME need not be
153 '\0'-terminated; LENGTH is the length of the name. */
155 struct symbol *
156 find_symbol_in_list (struct pending *list, char *name, int length)
158 int j;
159 char *pp;
161 while (list != NULL)
163 for (j = list->nsyms; --j >= 0;)
165 pp = SYMBOL_LINKAGE_NAME (list->symbol[j]);
166 if (*pp == *name && strncmp (pp, name, length) == 0 &&
167 pp[length] == '\0')
169 return (list->symbol[j]);
172 list = list->next;
174 return (NULL);
177 /* At end of reading syms, or in case of quit, really free as many
178 `struct pending's as we can easily find. */
180 void
181 really_free_pendings (void *dummy)
183 struct pending *next, *next1;
185 for (next = free_pendings; next; next = next1)
187 next1 = next->next;
188 xfree ((void *) next);
190 free_pendings = NULL;
192 free_pending_blocks ();
194 for (next = file_symbols; next != NULL; next = next1)
196 next1 = next->next;
197 xfree ((void *) next);
199 file_symbols = NULL;
201 for (next = global_symbols; next != NULL; next = next1)
203 next1 = next->next;
204 xfree ((void *) next);
206 global_symbols = NULL;
208 if (pending_macros)
209 free_macro_table (pending_macros);
211 if (pending_addrmap)
213 obstack_free (&pending_addrmap_obstack, NULL);
214 pending_addrmap = NULL;
218 /* This function is called to discard any pending blocks. */
220 void
221 free_pending_blocks (void)
223 /* The links are made in the objfile_obstack, so we only need to
224 reset PENDING_BLOCKS. */
225 pending_blocks = NULL;
228 /* Take one of the lists of symbols and make a block from it. Keep
229 the order the symbols have in the list (reversed from the input
230 file). Put the block on the list of pending blocks. */
232 struct block *
233 finish_block (struct symbol *symbol, struct pending **listhead,
234 struct pending_block *old_blocks,
235 CORE_ADDR start, CORE_ADDR end,
236 struct objfile *objfile)
238 struct pending *next, *next1;
239 struct block *block;
240 struct pending_block *pblock;
241 struct pending_block *opblock;
243 block = allocate_block (&objfile->objfile_obstack);
245 if (symbol)
247 BLOCK_DICT (block) = dict_create_linear (&objfile->objfile_obstack,
248 *listhead);
250 else
252 BLOCK_DICT (block) = dict_create_hashed (&objfile->objfile_obstack,
253 *listhead);
256 BLOCK_START (block) = start;
257 BLOCK_END (block) = end;
258 /* Superblock filled in when containing block is made */
259 BLOCK_SUPERBLOCK (block) = NULL;
260 BLOCK_NAMESPACE (block) = NULL;
262 /* Put the block in as the value of the symbol that names it. */
264 if (symbol)
266 struct type *ftype = SYMBOL_TYPE (symbol);
267 struct dict_iterator iter;
268 SYMBOL_BLOCK_VALUE (symbol) = block;
269 BLOCK_FUNCTION (block) = symbol;
271 if (TYPE_NFIELDS (ftype) <= 0)
273 /* No parameter type information is recorded with the
274 function's type. Set that from the type of the
275 parameter symbols. */
276 int nparams = 0, iparams;
277 struct symbol *sym;
278 ALL_BLOCK_SYMBOLS (block, iter, sym)
280 if (SYMBOL_IS_ARGUMENT (sym))
281 nparams++;
283 if (nparams > 0)
285 TYPE_NFIELDS (ftype) = nparams;
286 TYPE_FIELDS (ftype) = (struct field *)
287 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
289 iparams = 0;
290 ALL_BLOCK_SYMBOLS (block, iter, sym)
292 if (iparams == nparams)
293 break;
295 if (SYMBOL_IS_ARGUMENT (sym))
297 TYPE_FIELD_TYPE (ftype, iparams) = SYMBOL_TYPE (sym);
298 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
299 iparams++;
305 else
307 BLOCK_FUNCTION (block) = NULL;
310 /* Now "free" the links of the list, and empty the list. */
312 for (next = *listhead; next; next = next1)
314 next1 = next->next;
315 next->next = free_pendings;
316 free_pendings = next;
318 *listhead = NULL;
320 /* Check to be sure that the blocks have an end address that is
321 greater than starting address */
323 if (BLOCK_END (block) < BLOCK_START (block))
325 if (symbol)
327 complaint (&symfile_complaints,
328 _("block end address less than block start address in %s (patched it)"),
329 SYMBOL_PRINT_NAME (symbol));
331 else
333 complaint (&symfile_complaints,
334 _("block end address 0x%s less than block start address 0x%s (patched it)"),
335 paddr_nz (BLOCK_END (block)), paddr_nz (BLOCK_START (block)));
337 /* Better than nothing */
338 BLOCK_END (block) = BLOCK_START (block);
341 /* Install this block as the superblock of all blocks made since the
342 start of this scope that don't have superblocks yet. */
344 opblock = NULL;
345 for (pblock = pending_blocks;
346 pblock && pblock != old_blocks;
347 pblock = pblock->next)
349 if (BLOCK_SUPERBLOCK (pblock->block) == NULL)
351 /* Check to be sure the blocks are nested as we receive
352 them. If the compiler/assembler/linker work, this just
353 burns a small amount of time.
355 Skip blocks which correspond to a function; they're not
356 physically nested inside this other blocks, only
357 lexically nested. */
358 if (BLOCK_FUNCTION (pblock->block) == NULL
359 && (BLOCK_START (pblock->block) < BLOCK_START (block)
360 || BLOCK_END (pblock->block) > BLOCK_END (block)))
362 if (symbol)
364 complaint (&symfile_complaints,
365 _("inner block not inside outer block in %s"),
366 SYMBOL_PRINT_NAME (symbol));
368 else
370 complaint (&symfile_complaints,
371 _("inner block (0x%s-0x%s) not inside outer block (0x%s-0x%s)"),
372 paddr_nz (BLOCK_START (pblock->block)),
373 paddr_nz (BLOCK_END (pblock->block)),
374 paddr_nz (BLOCK_START (block)),
375 paddr_nz (BLOCK_END (block)));
377 if (BLOCK_START (pblock->block) < BLOCK_START (block))
378 BLOCK_START (pblock->block) = BLOCK_START (block);
379 if (BLOCK_END (pblock->block) > BLOCK_END (block))
380 BLOCK_END (pblock->block) = BLOCK_END (block);
382 BLOCK_SUPERBLOCK (pblock->block) = block;
384 opblock = pblock;
387 record_pending_block (objfile, block, opblock);
389 return block;
393 /* Record BLOCK on the list of all blocks in the file. Put it after
394 OPBLOCK, or at the beginning if opblock is NULL. This puts the
395 block in the list after all its subblocks.
397 Allocate the pending block struct in the objfile_obstack to save
398 time. This wastes a little space. FIXME: Is it worth it? */
400 void
401 record_pending_block (struct objfile *objfile, struct block *block,
402 struct pending_block *opblock)
404 struct pending_block *pblock;
406 pblock = (struct pending_block *)
407 obstack_alloc (&objfile->objfile_obstack, sizeof (struct pending_block));
408 pblock->block = block;
409 if (opblock)
411 pblock->next = opblock->next;
412 opblock->next = pblock;
414 else
416 pblock->next = pending_blocks;
417 pending_blocks = pblock;
422 /* Record that the range of addresses from START to END_INCLUSIVE
423 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
424 addresses must be set already. You must apply this function to all
425 BLOCK's children before applying it to BLOCK.
427 If a call to this function complicates the picture beyond that
428 already provided by BLOCK_START and BLOCK_END, then we create an
429 address map for the block. */
430 void
431 record_block_range (struct block *block,
432 CORE_ADDR start, CORE_ADDR end_inclusive)
434 /* If this is any different from the range recorded in the block's
435 own BLOCK_START and BLOCK_END, then note that the address map has
436 become interesting. Note that even if this block doesn't have
437 any "interesting" ranges, some later block might, so we still
438 need to record this block in the addrmap. */
439 if (start != BLOCK_START (block)
440 || end_inclusive + 1 != BLOCK_END (block))
441 pending_addrmap_interesting = 1;
443 if (! pending_addrmap)
445 obstack_init (&pending_addrmap_obstack);
446 pending_addrmap = addrmap_create_mutable (&pending_addrmap_obstack);
449 addrmap_set_empty (pending_addrmap, start, end_inclusive, block);
453 static struct blockvector *
454 make_blockvector (struct objfile *objfile)
456 struct pending_block *next;
457 struct blockvector *blockvector;
458 int i;
460 /* Count the length of the list of blocks. */
462 for (next = pending_blocks, i = 0; next; next = next->next, i++)
466 blockvector = (struct blockvector *)
467 obstack_alloc (&objfile->objfile_obstack,
468 (sizeof (struct blockvector)
469 + (i - 1) * sizeof (struct block *)));
471 /* Copy the blocks into the blockvector. This is done in reverse
472 order, which happens to put the blocks into the proper order
473 (ascending starting address). finish_block has hair to insert
474 each block into the list after its subblocks in order to make
475 sure this is true. */
477 BLOCKVECTOR_NBLOCKS (blockvector) = i;
478 for (next = pending_blocks; next; next = next->next)
480 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
483 free_pending_blocks ();
485 /* If we needed an address map for this symtab, record it in the
486 blockvector. */
487 if (pending_addrmap && pending_addrmap_interesting)
488 BLOCKVECTOR_MAP (blockvector)
489 = addrmap_create_fixed (pending_addrmap, &objfile->objfile_obstack);
490 else
491 BLOCKVECTOR_MAP (blockvector) = 0;
493 /* Some compilers output blocks in the wrong order, but we depend on
494 their being in the right order so we can binary search. Check the
495 order and moan about it. */
496 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
498 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++)
500 if (BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i - 1))
501 > BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i)))
503 CORE_ADDR start
504 = BLOCK_START (BLOCKVECTOR_BLOCK (blockvector, i));
506 complaint (&symfile_complaints, _("block at %s out of order"),
507 hex_string ((LONGEST) start));
512 return (blockvector);
515 /* Start recording information about source code that came from an
516 included (or otherwise merged-in) source file with a different
517 name. NAME is the name of the file (cannot be NULL), DIRNAME is
518 the directory in which the file was compiled (or NULL if not known). */
520 void
521 start_subfile (char *name, char *dirname)
523 struct subfile *subfile;
525 /* See if this subfile is already known as a subfile of the current
526 main source file. */
528 for (subfile = subfiles; subfile; subfile = subfile->next)
530 char *subfile_name;
532 /* If NAME is an absolute path, and this subfile is not, then
533 attempt to create an absolute path to compare. */
534 if (IS_ABSOLUTE_PATH (name)
535 && !IS_ABSOLUTE_PATH (subfile->name)
536 && subfile->dirname != NULL)
537 subfile_name = concat (subfile->dirname, SLASH_STRING,
538 subfile->name, (char *) NULL);
539 else
540 subfile_name = subfile->name;
542 if (FILENAME_CMP (subfile_name, name) == 0)
544 current_subfile = subfile;
545 if (subfile_name != subfile->name)
546 xfree (subfile_name);
547 return;
549 if (subfile_name != subfile->name)
550 xfree (subfile_name);
553 /* This subfile is not known. Add an entry for it. Make an entry
554 for this subfile in the list of all subfiles of the current main
555 source file. */
557 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
558 memset ((char *) subfile, 0, sizeof (struct subfile));
559 subfile->next = subfiles;
560 subfiles = subfile;
561 current_subfile = subfile;
563 /* Save its name and compilation directory name */
564 subfile->name = (name == NULL) ? NULL : savestring (name, strlen (name));
565 subfile->dirname =
566 (dirname == NULL) ? NULL : savestring (dirname, strlen (dirname));
568 /* Initialize line-number recording for this subfile. */
569 subfile->line_vector = NULL;
571 /* Default the source language to whatever can be deduced from the
572 filename. If nothing can be deduced (such as for a C/C++ include
573 file with a ".h" extension), then inherit whatever language the
574 previous subfile had. This kludgery is necessary because there
575 is no standard way in some object formats to record the source
576 language. Also, when symtabs are allocated we try to deduce a
577 language then as well, but it is too late for us to use that
578 information while reading symbols, since symtabs aren't allocated
579 until after all the symbols have been processed for a given
580 source file. */
582 subfile->language = deduce_language_from_filename (subfile->name);
583 if (subfile->language == language_unknown &&
584 subfile->next != NULL)
586 subfile->language = subfile->next->language;
589 /* Initialize the debug format string to NULL. We may supply it
590 later via a call to record_debugformat. */
591 subfile->debugformat = NULL;
593 /* Similarly for the producer. */
594 subfile->producer = NULL;
596 /* If the filename of this subfile ends in .C, then change the
597 language of any pending subfiles from C to C++. We also accept
598 any other C++ suffixes accepted by deduce_language_from_filename. */
599 /* Likewise for f2c. */
601 if (subfile->name)
603 struct subfile *s;
604 enum language sublang = deduce_language_from_filename (subfile->name);
606 if (sublang == language_cplus || sublang == language_fortran)
607 for (s = subfiles; s != NULL; s = s->next)
608 if (s->language == language_c)
609 s->language = sublang;
612 /* And patch up this file if necessary. */
613 if (subfile->language == language_c
614 && subfile->next != NULL
615 && (subfile->next->language == language_cplus
616 || subfile->next->language == language_fortran))
618 subfile->language = subfile->next->language;
622 /* For stabs readers, the first N_SO symbol is assumed to be the
623 source file name, and the subfile struct is initialized using that
624 assumption. If another N_SO symbol is later seen, immediately
625 following the first one, then the first one is assumed to be the
626 directory name and the second one is really the source file name.
628 So we have to patch up the subfile struct by moving the old name
629 value to dirname and remembering the new name. Some sanity
630 checking is performed to ensure that the state of the subfile
631 struct is reasonable and that the old name we are assuming to be a
632 directory name actually is (by checking for a trailing '/'). */
634 void
635 patch_subfile_names (struct subfile *subfile, char *name)
637 if (subfile != NULL && subfile->dirname == NULL && subfile->name != NULL
638 && subfile->name[strlen (subfile->name) - 1] == '/')
640 subfile->dirname = subfile->name;
641 subfile->name = savestring (name, strlen (name));
642 last_source_file = name;
644 /* Default the source language to whatever can be deduced from
645 the filename. If nothing can be deduced (such as for a C/C++
646 include file with a ".h" extension), then inherit whatever
647 language the previous subfile had. This kludgery is
648 necessary because there is no standard way in some object
649 formats to record the source language. Also, when symtabs
650 are allocated we try to deduce a language then as well, but
651 it is too late for us to use that information while reading
652 symbols, since symtabs aren't allocated until after all the
653 symbols have been processed for a given source file. */
655 subfile->language = deduce_language_from_filename (subfile->name);
656 if (subfile->language == language_unknown &&
657 subfile->next != NULL)
659 subfile->language = subfile->next->language;
664 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
665 switching source files (different subfiles, as we call them) within
666 one object file, but using a stack rather than in an arbitrary
667 order. */
669 void
670 push_subfile (void)
672 struct subfile_stack *tem
673 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
675 tem->next = subfile_stack;
676 subfile_stack = tem;
677 if (current_subfile == NULL || current_subfile->name == NULL)
679 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
681 tem->name = current_subfile->name;
684 char *
685 pop_subfile (void)
687 char *name;
688 struct subfile_stack *link = subfile_stack;
690 if (link == NULL)
692 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
694 name = link->name;
695 subfile_stack = link->next;
696 xfree ((void *) link);
697 return (name);
700 /* Add a linetable entry for line number LINE and address PC to the
701 line vector for SUBFILE. */
703 void
704 record_line (struct subfile *subfile, int line, CORE_ADDR pc)
706 struct linetable_entry *e;
707 /* Ignore the dummy line number in libg.o */
709 if (line == 0xffff)
711 return;
714 /* Make sure line vector exists and is big enough. */
715 if (!subfile->line_vector)
717 subfile->line_vector_length = INITIAL_LINE_VECTOR_LENGTH;
718 subfile->line_vector = (struct linetable *)
719 xmalloc (sizeof (struct linetable)
720 + subfile->line_vector_length * sizeof (struct linetable_entry));
721 subfile->line_vector->nitems = 0;
722 have_line_numbers = 1;
725 if (subfile->line_vector->nitems + 1 >= subfile->line_vector_length)
727 subfile->line_vector_length *= 2;
728 subfile->line_vector = (struct linetable *)
729 xrealloc ((char *) subfile->line_vector,
730 (sizeof (struct linetable)
731 + (subfile->line_vector_length
732 * sizeof (struct linetable_entry))));
735 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
737 /* Normally, we treat lines as unsorted. But the end of sequence
738 marker is special. We sort line markers at the same PC by line
739 number, so end of sequence markers (which have line == 0) appear
740 first. This is right if the marker ends the previous function,
741 and there is no padding before the next function. But it is
742 wrong if the previous line was empty and we are now marking a
743 switch to a different subfile. We must leave the end of sequence
744 marker at the end of this group of lines, not sort the empty line
745 to after the marker. The easiest way to accomplish this is to
746 delete any empty lines from our table, if they are followed by
747 end of sequence markers. All we lose is the ability to set
748 breakpoints at some lines which contain no instructions
749 anyway. */
750 if (line == 0 && subfile->line_vector->nitems > 0)
752 e = subfile->line_vector->item + subfile->line_vector->nitems - 1;
753 while (subfile->line_vector->nitems > 0 && e->pc == pc)
755 e--;
756 subfile->line_vector->nitems--;
760 e = subfile->line_vector->item + subfile->line_vector->nitems++;
761 e->line = line;
762 e->pc = pc;
765 /* Needed in order to sort line tables from IBM xcoff files. Sigh! */
767 static int
768 compare_line_numbers (const void *ln1p, const void *ln2p)
770 struct linetable_entry *ln1 = (struct linetable_entry *) ln1p;
771 struct linetable_entry *ln2 = (struct linetable_entry *) ln2p;
773 /* Note: this code does not assume that CORE_ADDRs can fit in ints.
774 Please keep it that way. */
775 if (ln1->pc < ln2->pc)
776 return -1;
778 if (ln1->pc > ln2->pc)
779 return 1;
781 /* If pc equal, sort by line. I'm not sure whether this is optimum
782 behavior (see comment at struct linetable in symtab.h). */
783 return ln1->line - ln2->line;
786 /* Start a new symtab for a new source file. Called, for example,
787 when a stabs symbol of type N_SO is seen, or when a DWARF
788 TAG_compile_unit DIE is seen. It indicates the start of data for
789 one original source file.
791 NAME is the name of the file (cannot be NULL). DIRNAME is the directory in
792 which the file was compiled (or NULL if not known). START_ADDR is the
793 lowest address of objects in the file (or 0 if not known). */
795 void
796 start_symtab (char *name, char *dirname, CORE_ADDR start_addr)
798 last_source_file = name;
799 last_source_start_addr = start_addr;
800 file_symbols = NULL;
801 global_symbols = NULL;
802 within_function = 0;
803 have_line_numbers = 0;
805 /* Context stack is initially empty. Allocate first one with room
806 for 10 levels; reuse it forever afterward. */
807 if (context_stack == NULL)
809 context_stack_size = INITIAL_CONTEXT_STACK_SIZE;
810 context_stack = (struct context_stack *)
811 xmalloc (context_stack_size * sizeof (struct context_stack));
813 context_stack_depth = 0;
815 /* We shouldn't have any address map at this point. */
816 gdb_assert (! pending_addrmap);
818 /* Set up support for C++ namespace support, in case we need it. */
820 cp_initialize_namespace ();
822 /* Initialize the list of sub source files with one entry for this
823 file (the top-level source file). */
825 subfiles = NULL;
826 current_subfile = NULL;
827 start_subfile (name, dirname);
830 /* Subroutine of end_symtab to simplify it.
831 Look for a subfile that matches the main source file's basename.
832 If there is only one, and if the main source file doesn't have any
833 symbol or line number information, then copy this file's symtab and
834 line_vector to the main source file's subfile and discard the other subfile.
835 This can happen because of a compiler bug or from the user playing games
836 with #line or from things like a distributed build system that manipulates
837 the debug info. */
839 static void
840 watch_main_source_file_lossage (void)
842 struct subfile *mainsub, *subfile;
844 /* Find the main source file.
845 This loop could be eliminated if start_symtab saved it for us. */
846 mainsub = NULL;
847 for (subfile = subfiles; subfile; subfile = subfile->next)
849 /* The main subfile is guaranteed to be the last one. */
850 if (subfile->next == NULL)
851 mainsub = subfile;
854 /* If the main source file doesn't have any line number or symbol info,
855 look for an alias in another subfile.
856 We have to watch for mainsub == NULL here. It's a quirk of end_symtab,
857 it can return NULL so there may not be a main subfile. */
859 if (mainsub
860 && mainsub->line_vector == NULL
861 && mainsub->symtab == NULL)
863 const char *mainbase = lbasename (mainsub->name);
864 int nr_matches = 0;
865 struct subfile *prevsub;
866 struct subfile *mainsub_alias = NULL;
867 struct subfile *prev_mainsub_alias = NULL;
869 prevsub = NULL;
870 for (subfile = subfiles;
871 /* Stop before we get to the last one. */
872 subfile->next;
873 subfile = subfile->next)
875 if (strcmp (lbasename (subfile->name), mainbase) == 0)
877 ++nr_matches;
878 mainsub_alias = subfile;
879 prev_mainsub_alias = prevsub;
881 prevsub = subfile;
884 if (nr_matches == 1)
886 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
888 /* Found a match for the main source file.
889 Copy its line_vector and symtab to the main subfile
890 and then discard it. */
892 mainsub->line_vector = mainsub_alias->line_vector;
893 mainsub->line_vector_length = mainsub_alias->line_vector_length;
894 mainsub->symtab = mainsub_alias->symtab;
896 if (prev_mainsub_alias == NULL)
897 subfiles = mainsub_alias->next;
898 else
899 prev_mainsub_alias->next = mainsub_alias->next;
900 xfree (mainsub_alias);
905 /* Finish the symbol definitions for one main source file, close off
906 all the lexical contexts for that file (creating struct block's for
907 them), then make the struct symtab for that file and put it in the
908 list of all such.
910 END_ADDR is the address of the end of the file's text. SECTION is
911 the section number (in objfile->section_offsets) of the blockvector
912 and linetable.
914 Note that it is possible for end_symtab() to return NULL. In
915 particular, for the DWARF case at least, it will return NULL when
916 it finds a compilation unit that has exactly one DIE, a
917 TAG_compile_unit DIE. This can happen when we link in an object
918 file that was compiled from an empty source file. Returning NULL
919 is probably not the correct thing to do, because then gdb will
920 never know about this empty file (FIXME). */
922 struct symtab *
923 end_symtab (CORE_ADDR end_addr, struct objfile *objfile, int section)
925 struct symtab *symtab = NULL;
926 struct blockvector *blockvector;
927 struct subfile *subfile;
928 struct context_stack *cstk;
929 struct subfile *nextsub;
931 /* Finish the lexical context of the last function in the file; pop
932 the context stack. */
934 if (context_stack_depth > 0)
936 cstk = pop_context ();
937 /* Make a block for the local symbols within. */
938 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
939 cstk->start_addr, end_addr, objfile);
941 if (context_stack_depth > 0)
943 /* This is said to happen with SCO. The old coffread.c
944 code simply emptied the context stack, so we do the
945 same. FIXME: Find out why it is happening. This is not
946 believed to happen in most cases (even for coffread.c);
947 it used to be an abort(). */
948 complaint (&symfile_complaints,
949 _("Context stack not empty in end_symtab"));
950 context_stack_depth = 0;
954 /* Reordered executables may have out of order pending blocks; if
955 OBJF_REORDERED is true, then sort the pending blocks. */
956 if ((objfile->flags & OBJF_REORDERED) && pending_blocks)
958 /* FIXME! Remove this horrid bubble sort and use merge sort!!! */
959 int swapped;
962 struct pending_block *pb, *pbnext;
964 pb = pending_blocks;
965 pbnext = pb->next;
966 swapped = 0;
968 while (pbnext)
970 /* swap blocks if unordered! */
972 if (BLOCK_START (pb->block) < BLOCK_START (pbnext->block))
974 struct block *tmp = pb->block;
975 pb->block = pbnext->block;
976 pbnext->block = tmp;
977 swapped = 1;
979 pb = pbnext;
980 pbnext = pbnext->next;
983 while (swapped);
986 /* Cleanup any undefined types that have been left hanging around
987 (this needs to be done before the finish_blocks so that
988 file_symbols is still good).
990 Both cleanup_undefined_types and finish_global_stabs are stabs
991 specific, but harmless for other symbol readers, since on gdb
992 startup or when finished reading stabs, the state is set so these
993 are no-ops. FIXME: Is this handled right in case of QUIT? Can
994 we make this cleaner? */
996 cleanup_undefined_types ();
997 finish_global_stabs (objfile);
999 if (pending_blocks == NULL
1000 && file_symbols == NULL
1001 && global_symbols == NULL
1002 && have_line_numbers == 0
1003 && pending_macros == NULL)
1005 /* Ignore symtabs that have no functions with real debugging
1006 info. */
1007 blockvector = NULL;
1009 else
1011 /* Define the STATIC_BLOCK & GLOBAL_BLOCK, and build the
1012 blockvector. */
1013 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr,
1014 objfile);
1015 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr,
1016 objfile);
1017 blockvector = make_blockvector (objfile);
1018 cp_finalize_namespace (BLOCKVECTOR_BLOCK (blockvector, STATIC_BLOCK),
1019 &objfile->objfile_obstack);
1022 /* Read the line table if it has to be read separately. */
1023 if (objfile->sf->sym_read_linetable != NULL)
1024 objfile->sf->sym_read_linetable ();
1026 /* Handle the case where the debug info specifies a different path
1027 for the main source file. It can cause us to lose track of its
1028 line number information. */
1029 watch_main_source_file_lossage ();
1031 /* Now create the symtab objects proper, one for each subfile. */
1032 /* (The main file is the last one on the chain.) */
1034 for (subfile = subfiles; subfile; subfile = nextsub)
1036 int linetablesize = 0;
1037 symtab = NULL;
1039 /* If we have blocks of symbols, make a symtab. Otherwise, just
1040 ignore this file and any line number info in it. */
1041 if (blockvector)
1043 if (subfile->line_vector)
1045 linetablesize = sizeof (struct linetable) +
1046 subfile->line_vector->nitems * sizeof (struct linetable_entry);
1048 /* Like the pending blocks, the line table may be
1049 scrambled in reordered executables. Sort it if
1050 OBJF_REORDERED is true. */
1051 if (objfile->flags & OBJF_REORDERED)
1052 qsort (subfile->line_vector->item,
1053 subfile->line_vector->nitems,
1054 sizeof (struct linetable_entry), compare_line_numbers);
1057 /* Now, allocate a symbol table. */
1058 if (subfile->symtab == NULL)
1059 symtab = allocate_symtab (subfile->name, objfile);
1060 else
1061 symtab = subfile->symtab;
1063 /* Fill in its components. */
1064 symtab->blockvector = blockvector;
1065 symtab->macro_table = pending_macros;
1066 if (subfile->line_vector)
1068 /* Reallocate the line table on the symbol obstack */
1069 symtab->linetable = (struct linetable *)
1070 obstack_alloc (&objfile->objfile_obstack, linetablesize);
1071 memcpy (symtab->linetable, subfile->line_vector, linetablesize);
1073 else
1075 symtab->linetable = NULL;
1077 symtab->block_line_section = section;
1078 if (subfile->dirname)
1080 /* Reallocate the dirname on the symbol obstack */
1081 symtab->dirname = (char *)
1082 obstack_alloc (&objfile->objfile_obstack,
1083 strlen (subfile->dirname) + 1);
1084 strcpy (symtab->dirname, subfile->dirname);
1086 else
1088 symtab->dirname = NULL;
1090 symtab->free_code = free_linetable;
1091 symtab->free_func = NULL;
1093 /* Use whatever language we have been using for this
1094 subfile, not the one that was deduced in allocate_symtab
1095 from the filename. We already did our own deducing when
1096 we created the subfile, and we may have altered our
1097 opinion of what language it is from things we found in
1098 the symbols. */
1099 symtab->language = subfile->language;
1101 /* Save the debug format string (if any) in the symtab */
1102 if (subfile->debugformat != NULL)
1104 symtab->debugformat = obsavestring (subfile->debugformat,
1105 strlen (subfile->debugformat),
1106 &objfile->objfile_obstack);
1109 /* Similarly for the producer. */
1110 if (subfile->producer != NULL)
1111 symtab->producer = obsavestring (subfile->producer,
1112 strlen (subfile->producer),
1113 &objfile->objfile_obstack);
1115 /* All symtabs for the main file and the subfiles share a
1116 blockvector, so we need to clear primary for everything
1117 but the main file. */
1119 symtab->primary = 0;
1121 if (subfile->name != NULL)
1123 xfree ((void *) subfile->name);
1125 if (subfile->dirname != NULL)
1127 xfree ((void *) subfile->dirname);
1129 if (subfile->line_vector != NULL)
1131 xfree ((void *) subfile->line_vector);
1133 if (subfile->debugformat != NULL)
1135 xfree ((void *) subfile->debugformat);
1137 if (subfile->producer != NULL)
1138 xfree (subfile->producer);
1140 nextsub = subfile->next;
1141 xfree ((void *) subfile);
1144 /* Set this for the main source file. */
1145 if (symtab)
1147 symtab->primary = 1;
1150 /* Default any symbols without a specified symtab to the primary
1151 symtab. */
1152 if (blockvector)
1154 int block_i;
1156 for (block_i = 0; block_i < BLOCKVECTOR_NBLOCKS (blockvector); block_i++)
1158 struct block *block = BLOCKVECTOR_BLOCK (blockvector, block_i);
1159 struct symbol *sym;
1160 struct dict_iterator iter;
1162 for (sym = dict_iterator_first (BLOCK_DICT (block), &iter);
1163 sym != NULL;
1164 sym = dict_iterator_next (&iter))
1165 if (SYMBOL_SYMTAB (sym) == NULL)
1166 SYMBOL_SYMTAB (sym) = symtab;
1170 last_source_file = NULL;
1171 current_subfile = NULL;
1172 pending_macros = NULL;
1173 if (pending_addrmap)
1175 obstack_free (&pending_addrmap_obstack, NULL);
1176 pending_addrmap = NULL;
1179 return symtab;
1182 /* Push a context block. Args are an identifying nesting level
1183 (checkable when you pop it), and the starting PC address of this
1184 context. */
1186 struct context_stack *
1187 push_context (int desc, CORE_ADDR valu)
1189 struct context_stack *new;
1191 if (context_stack_depth == context_stack_size)
1193 context_stack_size *= 2;
1194 context_stack = (struct context_stack *)
1195 xrealloc ((char *) context_stack,
1196 (context_stack_size * sizeof (struct context_stack)));
1199 new = &context_stack[context_stack_depth++];
1200 new->depth = desc;
1201 new->locals = local_symbols;
1202 new->params = param_symbols;
1203 new->old_blocks = pending_blocks;
1204 new->start_addr = valu;
1205 new->name = NULL;
1207 local_symbols = NULL;
1208 param_symbols = NULL;
1210 return new;
1213 /* Pop a context block. Returns the address of the context block just
1214 popped. */
1216 struct context_stack *
1217 pop_context (void)
1219 gdb_assert (context_stack_depth > 0);
1220 return (&context_stack[--context_stack_depth]);
1225 /* Compute a small integer hash code for the given name. */
1228 hashname (char *name)
1230 return (hash(name,strlen(name)) % HASHSIZE);
1234 void
1235 record_debugformat (char *format)
1237 current_subfile->debugformat = savestring (format, strlen (format));
1240 void
1241 record_producer (const char *producer)
1243 /* The producer is not always provided in the debugging info.
1244 Do nothing if PRODUCER is NULL. */
1245 if (producer == NULL)
1246 return;
1248 current_subfile->producer = savestring (producer, strlen (producer));
1251 /* Merge the first symbol list SRCLIST into the second symbol list
1252 TARGETLIST by repeated calls to add_symbol_to_list(). This
1253 procedure "frees" each link of SRCLIST by adding it to the
1254 free_pendings list. Caller must set SRCLIST to a null list after
1255 calling this function.
1257 Void return. */
1259 void
1260 merge_symbol_lists (struct pending **srclist, struct pending **targetlist)
1262 int i;
1264 if (!srclist || !*srclist)
1265 return;
1267 /* Merge in elements from current link. */
1268 for (i = 0; i < (*srclist)->nsyms; i++)
1269 add_symbol_to_list ((*srclist)->symbol[i], targetlist);
1271 /* Recurse on next. */
1272 merge_symbol_lists (&(*srclist)->next, targetlist);
1274 /* "Free" the current link. */
1275 (*srclist)->next = free_pendings;
1276 free_pendings = (*srclist);
1279 /* Initialize anything that needs initializing when starting to read a
1280 fresh piece of a symbol file, e.g. reading in the stuff
1281 corresponding to a psymtab. */
1283 void
1284 buildsym_init (void)
1286 free_pendings = NULL;
1287 file_symbols = NULL;
1288 global_symbols = NULL;
1289 pending_blocks = NULL;
1290 pending_macros = NULL;
1292 /* We shouldn't have any address map at this point. */
1293 gdb_assert (! pending_addrmap);
1294 pending_addrmap_interesting = 0;
1297 /* Initialize anything that needs initializing when a completely new
1298 symbol file is specified (not just adding some symbols from another
1299 file, e.g. a shared library). */
1301 void
1302 buildsym_new_init (void)
1304 buildsym_init ();