Fix: Null pointer dereference in ldlex.l
[binutils-gdb.git] / gdb / target.c
blob8cb4fa1736d70e370eb733b78c202df7b34b84ff
1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2023 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "observable.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdbcore.h"
37 #include "target-descriptions.h"
38 #include "gdbthread.h"
39 #include "solib.h"
40 #include "exec.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "gdbsupport/fileio.h"
44 #include "gdbsupport/agent.h"
45 #include "auxv.h"
46 #include "target-debug.h"
47 #include "ui.h"
48 #include "event-top.h"
49 #include <algorithm>
50 #include "gdbsupport/byte-vector.h"
51 #include "gdbsupport/search.h"
52 #include "terminal.h"
53 #include <unordered_map>
54 #include "target-connection.h"
55 #include "valprint.h"
56 #include "cli/cli-decode.h"
58 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
60 static void default_terminal_info (struct target_ops *, const char *, int);
62 static int default_watchpoint_addr_within_range (struct target_ops *,
63 CORE_ADDR, CORE_ADDR, int);
65 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
66 CORE_ADDR, int);
68 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
70 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
71 long lwp, ULONGEST tid);
73 static void default_mourn_inferior (struct target_ops *self);
75 static int default_search_memory (struct target_ops *ops,
76 CORE_ADDR start_addr,
77 ULONGEST search_space_len,
78 const gdb_byte *pattern,
79 ULONGEST pattern_len,
80 CORE_ADDR *found_addrp);
82 static int default_verify_memory (struct target_ops *self,
83 const gdb_byte *data,
84 CORE_ADDR memaddr, ULONGEST size);
86 static void tcomplain (void) ATTRIBUTE_NORETURN;
88 static struct target_ops *find_default_run_target (const char *);
90 static int dummy_find_memory_regions (struct target_ops *self,
91 find_memory_region_ftype ignore1,
92 void *ignore2);
94 static gdb::unique_xmalloc_ptr<char> dummy_make_corefile_notes
95 (struct target_ops *self, bfd *ignore1, int *ignore2);
97 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
99 static enum exec_direction_kind default_execution_direction
100 (struct target_ops *self);
102 /* Mapping between target_info objects (which have address identity)
103 and corresponding open/factory function/callback. Each add_target
104 call adds one entry to this map, and registers a "target
105 TARGET_NAME" command that when invoked calls the factory registered
106 here. The target_info object is associated with the command via
107 the command's context. */
108 static std::unordered_map<const target_info *, target_open_ftype *>
109 target_factories;
111 /* The singleton debug target. */
113 static struct target_ops *the_debug_target;
115 /* Command list for target. */
117 static struct cmd_list_element *targetlist = NULL;
119 /* See target.h. */
121 bool trust_readonly = false;
123 /* Nonzero if we should show true memory content including
124 memory breakpoint inserted by gdb. */
126 static int show_memory_breakpoints = 0;
128 /* These globals control whether GDB attempts to perform these
129 operations; they are useful for targets that need to prevent
130 inadvertent disruption, such as in non-stop mode. */
132 bool may_write_registers = true;
134 bool may_write_memory = true;
136 bool may_insert_breakpoints = true;
138 bool may_insert_tracepoints = true;
140 bool may_insert_fast_tracepoints = true;
142 bool may_stop = true;
144 /* Non-zero if we want to see trace of target level stuff. */
146 static unsigned int targetdebug = 0;
148 static void
149 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
151 if (targetdebug)
152 current_inferior ()->push_target (the_debug_target);
153 else
154 current_inferior ()->unpush_target (the_debug_target);
157 static void
158 show_targetdebug (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
161 gdb_printf (file, _("Target debugging is %s.\n"), value);
165 target_has_memory ()
167 for (target_ops *t = current_inferior ()->top_target ();
168 t != NULL;
169 t = t->beneath ())
170 if (t->has_memory ())
171 return 1;
173 return 0;
177 target_has_stack ()
179 for (target_ops *t = current_inferior ()->top_target ();
180 t != NULL;
181 t = t->beneath ())
182 if (t->has_stack ())
183 return 1;
185 return 0;
189 target_has_registers ()
191 for (target_ops *t = current_inferior ()->top_target ();
192 t != NULL;
193 t = t->beneath ())
194 if (t->has_registers ())
195 return 1;
197 return 0;
200 bool
201 target_has_execution (inferior *inf)
203 if (inf == nullptr)
204 inf = current_inferior ();
206 for (target_ops *t = inf->top_target ();
207 t != nullptr;
208 t = inf->find_target_beneath (t))
209 if (t->has_execution (inf))
210 return true;
212 return false;
215 const char *
216 target_shortname ()
218 return current_inferior ()->top_target ()->shortname ();
221 /* See target.h. */
223 bool
224 target_attach_no_wait ()
226 return current_inferior ()->top_target ()->attach_no_wait ();
229 /* See target.h. */
231 void
232 target_post_attach (int pid)
234 return current_inferior ()->top_target ()->post_attach (pid);
237 /* See target.h. */
239 void
240 target_prepare_to_store (regcache *regcache)
242 return current_inferior ()->top_target ()->prepare_to_store (regcache);
245 /* See target.h. */
247 bool
248 target_supports_enable_disable_tracepoint ()
250 target_ops *target = current_inferior ()->top_target ();
252 return target->supports_enable_disable_tracepoint ();
255 bool
256 target_supports_string_tracing ()
258 return current_inferior ()->top_target ()->supports_string_tracing ();
261 /* See target.h. */
263 bool
264 target_supports_evaluation_of_breakpoint_conditions ()
266 target_ops *target = current_inferior ()->top_target ();
268 return target->supports_evaluation_of_breakpoint_conditions ();
271 /* See target.h. */
273 bool
274 target_supports_dumpcore ()
276 return current_inferior ()->top_target ()->supports_dumpcore ();
279 /* See target.h. */
281 void
282 target_dumpcore (const char *filename)
284 return current_inferior ()->top_target ()->dumpcore (filename);
287 /* See target.h. */
289 bool
290 target_can_run_breakpoint_commands ()
292 return current_inferior ()->top_target ()->can_run_breakpoint_commands ();
295 /* See target.h. */
297 void
298 target_files_info ()
300 return current_inferior ()->top_target ()->files_info ();
303 /* See target.h. */
306 target_insert_fork_catchpoint (int pid)
308 return current_inferior ()->top_target ()->insert_fork_catchpoint (pid);
311 /* See target.h. */
314 target_remove_fork_catchpoint (int pid)
316 return current_inferior ()->top_target ()->remove_fork_catchpoint (pid);
319 /* See target.h. */
322 target_insert_vfork_catchpoint (int pid)
324 return current_inferior ()->top_target ()->insert_vfork_catchpoint (pid);
327 /* See target.h. */
330 target_remove_vfork_catchpoint (int pid)
332 return current_inferior ()->top_target ()->remove_vfork_catchpoint (pid);
335 /* See target.h. */
338 target_insert_exec_catchpoint (int pid)
340 return current_inferior ()->top_target ()->insert_exec_catchpoint (pid);
343 /* See target.h. */
346 target_remove_exec_catchpoint (int pid)
348 return current_inferior ()->top_target ()->remove_exec_catchpoint (pid);
351 /* See target.h. */
354 target_set_syscall_catchpoint (int pid, bool needed, int any_count,
355 gdb::array_view<const int> syscall_counts)
357 target_ops *target = current_inferior ()->top_target ();
359 return target->set_syscall_catchpoint (pid, needed, any_count,
360 syscall_counts);
363 /* See target.h. */
365 void
366 target_rcmd (const char *command, struct ui_file *outbuf)
368 return current_inferior ()->top_target ()->rcmd (command, outbuf);
371 /* See target.h. */
373 bool
374 target_can_lock_scheduler ()
376 target_ops *target = current_inferior ()->top_target ();
378 return (target->get_thread_control_capabilities ()& tc_schedlock) != 0;
381 /* See target.h. */
383 bool
384 target_can_async_p ()
386 return target_can_async_p (current_inferior ()->top_target ());
389 /* See target.h. */
391 bool
392 target_can_async_p (struct target_ops *target)
394 if (!target_async_permitted)
395 return false;
396 return target->can_async_p ();
399 /* See target.h. */
401 bool
402 target_is_async_p ()
404 bool result = current_inferior ()->top_target ()->is_async_p ();
405 gdb_assert (target_async_permitted || !result);
406 return result;
409 exec_direction_kind
410 target_execution_direction ()
412 return current_inferior ()->top_target ()->execution_direction ();
415 /* See target.h. */
417 const char *
418 target_extra_thread_info (thread_info *tp)
420 return current_inferior ()->top_target ()->extra_thread_info (tp);
423 /* See target.h. */
425 const char *
426 target_pid_to_exec_file (int pid)
428 return current_inferior ()->top_target ()->pid_to_exec_file (pid);
431 /* See target.h. */
433 gdbarch *
434 target_thread_architecture (ptid_t ptid)
436 return current_inferior ()->top_target ()->thread_architecture (ptid);
439 /* See target.h. */
442 target_find_memory_regions (find_memory_region_ftype func, void *data)
444 return current_inferior ()->top_target ()->find_memory_regions (func, data);
447 /* See target.h. */
449 gdb::unique_xmalloc_ptr<char>
450 target_make_corefile_notes (bfd *bfd, int *size_p)
452 return current_inferior ()->top_target ()->make_corefile_notes (bfd, size_p);
455 gdb_byte *
456 target_get_bookmark (const char *args, int from_tty)
458 return current_inferior ()->top_target ()->get_bookmark (args, from_tty);
461 void
462 target_goto_bookmark (const gdb_byte *arg, int from_tty)
464 return current_inferior ()->top_target ()->goto_bookmark (arg, from_tty);
467 /* See target.h. */
469 bool
470 target_stopped_by_watchpoint ()
472 return current_inferior ()->top_target ()->stopped_by_watchpoint ();
475 /* See target.h. */
477 bool
478 target_stopped_by_sw_breakpoint ()
480 return current_inferior ()->top_target ()->stopped_by_sw_breakpoint ();
483 bool
484 target_supports_stopped_by_sw_breakpoint ()
486 target_ops *target = current_inferior ()->top_target ();
488 return target->supports_stopped_by_sw_breakpoint ();
491 bool
492 target_stopped_by_hw_breakpoint ()
494 return current_inferior ()->top_target ()->stopped_by_hw_breakpoint ();
497 bool
498 target_supports_stopped_by_hw_breakpoint ()
500 target_ops *target = current_inferior ()->top_target ();
502 return target->supports_stopped_by_hw_breakpoint ();
505 /* See target.h. */
507 bool
508 target_have_steppable_watchpoint ()
510 return current_inferior ()->top_target ()->have_steppable_watchpoint ();
513 /* See target.h. */
516 target_can_use_hardware_watchpoint (bptype type, int cnt, int othertype)
518 target_ops *target = current_inferior ()->top_target ();
520 return target->can_use_hw_breakpoint (type, cnt, othertype);
523 /* See target.h. */
526 target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
528 target_ops *target = current_inferior ()->top_target ();
530 return target->region_ok_for_hw_watchpoint (addr, len);
535 target_can_do_single_step ()
537 return current_inferior ()->top_target ()->can_do_single_step ();
540 /* See target.h. */
543 target_insert_watchpoint (CORE_ADDR addr, int len, target_hw_bp_type type,
544 expression *cond)
546 target_ops *target = current_inferior ()->top_target ();
548 return target->insert_watchpoint (addr, len, type, cond);
551 /* See target.h. */
554 target_remove_watchpoint (CORE_ADDR addr, int len, target_hw_bp_type type,
555 expression *cond)
557 target_ops *target = current_inferior ()->top_target ();
559 return target->remove_watchpoint (addr, len, type, cond);
562 /* See target.h. */
565 target_insert_hw_breakpoint (gdbarch *gdbarch, bp_target_info *bp_tgt)
567 target_ops *target = current_inferior ()->top_target ();
569 return target->insert_hw_breakpoint (gdbarch, bp_tgt);
572 /* See target.h. */
575 target_remove_hw_breakpoint (gdbarch *gdbarch, bp_target_info *bp_tgt)
577 target_ops *target = current_inferior ()->top_target ();
579 return target->remove_hw_breakpoint (gdbarch, bp_tgt);
582 /* See target.h. */
584 bool
585 target_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int type,
586 expression *cond)
588 target_ops *target = current_inferior ()->top_target ();
590 return target->can_accel_watchpoint_condition (addr, len, type, cond);
593 /* See target.h. */
595 bool
596 target_can_execute_reverse ()
598 return current_inferior ()->top_target ()->can_execute_reverse ();
601 ptid_t
602 target_get_ada_task_ptid (long lwp, ULONGEST tid)
604 return current_inferior ()->top_target ()->get_ada_task_ptid (lwp, tid);
607 bool
608 target_filesystem_is_local ()
610 return current_inferior ()->top_target ()->filesystem_is_local ();
613 void
614 target_trace_init ()
616 return current_inferior ()->top_target ()->trace_init ();
619 void
620 target_download_tracepoint (bp_location *location)
622 return current_inferior ()->top_target ()->download_tracepoint (location);
625 bool
626 target_can_download_tracepoint ()
628 return current_inferior ()->top_target ()->can_download_tracepoint ();
631 void
632 target_download_trace_state_variable (const trace_state_variable &tsv)
634 target_ops *target = current_inferior ()->top_target ();
636 return target->download_trace_state_variable (tsv);
639 void
640 target_enable_tracepoint (bp_location *loc)
642 return current_inferior ()->top_target ()->enable_tracepoint (loc);
645 void
646 target_disable_tracepoint (bp_location *loc)
648 return current_inferior ()->top_target ()->disable_tracepoint (loc);
651 void
652 target_trace_start ()
654 return current_inferior ()->top_target ()->trace_start ();
657 void
658 target_trace_set_readonly_regions ()
660 return current_inferior ()->top_target ()->trace_set_readonly_regions ();
664 target_get_trace_status (trace_status *ts)
666 return current_inferior ()->top_target ()->get_trace_status (ts);
669 void
670 target_get_tracepoint_status (tracepoint *tp, uploaded_tp *utp)
672 return current_inferior ()->top_target ()->get_tracepoint_status (tp, utp);
675 void
676 target_trace_stop ()
678 return current_inferior ()->top_target ()->trace_stop ();
682 target_trace_find (trace_find_type type, int num,
683 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
685 target_ops *target = current_inferior ()->top_target ();
687 return target->trace_find (type, num, addr1, addr2, tpp);
690 bool
691 target_get_trace_state_variable_value (int tsv, LONGEST *val)
693 target_ops *target = current_inferior ()->top_target ();
695 return target->get_trace_state_variable_value (tsv, val);
699 target_save_trace_data (const char *filename)
701 return current_inferior ()->top_target ()->save_trace_data (filename);
705 target_upload_tracepoints (uploaded_tp **utpp)
707 return current_inferior ()->top_target ()->upload_tracepoints (utpp);
711 target_upload_trace_state_variables (uploaded_tsv **utsvp)
713 target_ops *target = current_inferior ()->top_target ();
715 return target->upload_trace_state_variables (utsvp);
718 LONGEST
719 target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
721 target_ops *target = current_inferior ()->top_target ();
723 return target->get_raw_trace_data (buf, offset, len);
727 target_get_min_fast_tracepoint_insn_len ()
729 target_ops *target = current_inferior ()->top_target ();
731 return target->get_min_fast_tracepoint_insn_len ();
734 void
735 target_set_disconnected_tracing (int val)
737 return current_inferior ()->top_target ()->set_disconnected_tracing (val);
740 void
741 target_set_circular_trace_buffer (int val)
743 return current_inferior ()->top_target ()->set_circular_trace_buffer (val);
746 void
747 target_set_trace_buffer_size (LONGEST val)
749 return current_inferior ()->top_target ()->set_trace_buffer_size (val);
752 bool
753 target_set_trace_notes (const char *user, const char *notes,
754 const char *stopnotes)
756 target_ops *target = current_inferior ()->top_target ();
758 return target->set_trace_notes (user, notes, stopnotes);
761 bool
762 target_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
764 return current_inferior ()->top_target ()->get_tib_address (ptid, addr);
767 void
768 target_set_permissions ()
770 return current_inferior ()->top_target ()->set_permissions ();
773 bool
774 target_static_tracepoint_marker_at (CORE_ADDR addr,
775 static_tracepoint_marker *marker)
777 target_ops *target = current_inferior ()->top_target ();
779 return target->static_tracepoint_marker_at (addr, marker);
782 std::vector<static_tracepoint_marker>
783 target_static_tracepoint_markers_by_strid (const char *marker_id)
785 target_ops *target = current_inferior ()->top_target ();
787 return target->static_tracepoint_markers_by_strid (marker_id);
790 traceframe_info_up
791 target_traceframe_info ()
793 return current_inferior ()->top_target ()->traceframe_info ();
796 bool
797 target_use_agent (bool use)
799 return current_inferior ()->top_target ()->use_agent (use);
802 bool
803 target_can_use_agent ()
805 return current_inferior ()->top_target ()->can_use_agent ();
808 bool
809 target_augmented_libraries_svr4_read ()
811 return current_inferior ()->top_target ()->augmented_libraries_svr4_read ();
814 bool
815 target_supports_memory_tagging ()
817 return current_inferior ()->top_target ()->supports_memory_tagging ();
820 bool
821 target_fetch_memtags (CORE_ADDR address, size_t len, gdb::byte_vector &tags,
822 int type)
824 return current_inferior ()->top_target ()->fetch_memtags (address, len, tags, type);
827 bool
828 target_store_memtags (CORE_ADDR address, size_t len,
829 const gdb::byte_vector &tags, int type)
831 return current_inferior ()->top_target ()->store_memtags (address, len, tags, type);
834 x86_xsave_layout
835 target_fetch_x86_xsave_layout ()
837 return current_inferior ()->top_target ()->fetch_x86_xsave_layout ();
840 void
841 target_log_command (const char *p)
843 return current_inferior ()->top_target ()->log_command (p);
846 /* This is used to implement the various target commands. */
848 static void
849 open_target (const char *args, int from_tty, struct cmd_list_element *command)
851 auto *ti = static_cast<target_info *> (command->context ());
852 target_open_ftype *func = target_factories[ti];
854 if (targetdebug)
855 gdb_printf (gdb_stdlog, "-> %s->open (...)\n",
856 ti->shortname);
858 func (args, from_tty);
860 if (targetdebug)
861 gdb_printf (gdb_stdlog, "<- %s->open (%s, %d)\n",
862 ti->shortname, args, from_tty);
865 /* See target.h. */
867 void
868 add_target (const target_info &t, target_open_ftype *func,
869 completer_ftype *completer)
871 struct cmd_list_element *c;
873 auto &func_slot = target_factories[&t];
874 if (func_slot != nullptr)
875 internal_error (_("target already added (\"%s\")."), t.shortname);
876 func_slot = func;
878 if (targetlist == NULL)
879 add_basic_prefix_cmd ("target", class_run, _("\
880 Connect to a target machine or process.\n\
881 The first argument is the type or protocol of the target machine.\n\
882 Remaining arguments are interpreted by the target protocol. For more\n\
883 information on the arguments for a particular protocol, type\n\
884 `help target ' followed by the protocol name."),
885 &targetlist, 0, &cmdlist);
886 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
887 c->set_context ((void *) &t);
888 c->func = open_target;
889 if (completer != NULL)
890 set_cmd_completer (c, completer);
893 /* See target.h. */
895 void
896 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
898 struct cmd_list_element *c;
900 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
901 see PR cli/15104. */
902 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
903 c->func = open_target;
904 c->set_context ((void *) &tinfo);
905 gdb::unique_xmalloc_ptr<char> alt
906 = xstrprintf ("target %s", tinfo.shortname);
907 deprecate_cmd (c, alt.release ());
910 /* Stub functions */
912 void
913 target_kill (void)
916 /* If the commit_resume_state of the to-be-killed-inferior's process stratum
917 is true, and this inferior is the last live inferior with resumed threads
918 of that target, then we want to leave commit_resume_state to false, as the
919 target won't have any resumed threads anymore. We achieve this with
920 this scoped_disable_commit_resumed. On construction, it will set the flag
921 to false. On destruction, it will only set it to true if there are resumed
922 threads left. */
923 scoped_disable_commit_resumed disable ("killing");
924 current_inferior ()->top_target ()->kill ();
927 void
928 target_load (const char *arg, int from_tty)
930 target_dcache_invalidate ();
931 current_inferior ()->top_target ()->load (arg, from_tty);
934 /* Define it. */
936 target_terminal_state target_terminal::m_terminal_state
937 = target_terminal_state::is_ours;
939 /* See target/target.h. */
941 void
942 target_terminal::init (void)
944 current_inferior ()->top_target ()->terminal_init ();
946 m_terminal_state = target_terminal_state::is_ours;
949 /* See target/target.h. */
951 void
952 target_terminal::inferior (void)
954 struct ui *ui = current_ui;
956 /* A background resume (``run&'') should leave GDB in control of the
957 terminal. */
958 if (ui->prompt_state != PROMPT_BLOCKED)
959 return;
961 /* Since we always run the inferior in the main console (unless "set
962 inferior-tty" is in effect), when some UI other than the main one
963 calls target_terminal::inferior, then we leave the main UI's
964 terminal settings as is. */
965 if (ui != main_ui)
966 return;
968 /* If GDB is resuming the inferior in the foreground, install
969 inferior's terminal modes. */
971 struct inferior *inf = current_inferior ();
973 if (inf->terminal_state != target_terminal_state::is_inferior)
975 current_inferior ()->top_target ()->terminal_inferior ();
976 inf->terminal_state = target_terminal_state::is_inferior;
979 m_terminal_state = target_terminal_state::is_inferior;
981 /* If the user hit C-c before, pretend that it was hit right
982 here. */
983 if (check_quit_flag ())
984 target_pass_ctrlc ();
987 /* See target/target.h. */
989 void
990 target_terminal::restore_inferior (void)
992 struct ui *ui = current_ui;
994 /* See target_terminal::inferior(). */
995 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
996 return;
998 /* Restore the terminal settings of inferiors that were in the
999 foreground but are now ours_for_output due to a temporary
1000 target_target::ours_for_output() call. */
1003 scoped_restore_current_inferior restore_inferior;
1005 for (::inferior *inf : all_inferiors ())
1007 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
1009 set_current_inferior (inf);
1010 current_inferior ()->top_target ()->terminal_inferior ();
1011 inf->terminal_state = target_terminal_state::is_inferior;
1016 m_terminal_state = target_terminal_state::is_inferior;
1018 /* If the user hit C-c before, pretend that it was hit right
1019 here. */
1020 if (check_quit_flag ())
1021 target_pass_ctrlc ();
1024 /* Switch terminal state to DESIRED_STATE, either is_ours, or
1025 is_ours_for_output. */
1027 static void
1028 target_terminal_is_ours_kind (target_terminal_state desired_state)
1030 scoped_restore_current_inferior restore_inferior;
1032 /* Must do this in two passes. First, have all inferiors save the
1033 current terminal settings. Then, after all inferiors have add a
1034 chance to safely save the terminal settings, restore GDB's
1035 terminal settings. */
1037 for (inferior *inf : all_inferiors ())
1039 if (inf->terminal_state == target_terminal_state::is_inferior)
1041 set_current_inferior (inf);
1042 current_inferior ()->top_target ()->terminal_save_inferior ();
1046 for (inferior *inf : all_inferiors ())
1048 /* Note we don't check is_inferior here like above because we
1049 need to handle 'is_ours_for_output -> is_ours' too. Careful
1050 to never transition from 'is_ours' to 'is_ours_for_output',
1051 though. */
1052 if (inf->terminal_state != target_terminal_state::is_ours
1053 && inf->terminal_state != desired_state)
1055 set_current_inferior (inf);
1056 if (desired_state == target_terminal_state::is_ours)
1057 current_inferior ()->top_target ()->terminal_ours ();
1058 else if (desired_state == target_terminal_state::is_ours_for_output)
1059 current_inferior ()->top_target ()->terminal_ours_for_output ();
1060 else
1061 gdb_assert_not_reached ("unhandled desired state");
1062 inf->terminal_state = desired_state;
1067 /* See target/target.h. */
1069 void
1070 target_terminal::ours ()
1072 struct ui *ui = current_ui;
1074 /* See target_terminal::inferior. */
1075 if (ui != main_ui)
1076 return;
1078 if (m_terminal_state == target_terminal_state::is_ours)
1079 return;
1081 target_terminal_is_ours_kind (target_terminal_state::is_ours);
1082 m_terminal_state = target_terminal_state::is_ours;
1085 /* See target/target.h. */
1087 void
1088 target_terminal::ours_for_output ()
1090 struct ui *ui = current_ui;
1092 /* See target_terminal::inferior. */
1093 if (ui != main_ui)
1094 return;
1096 if (!target_terminal::is_inferior ())
1097 return;
1099 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
1100 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
1103 /* See target/target.h. */
1105 void
1106 target_terminal::info (const char *arg, int from_tty)
1108 current_inferior ()->top_target ()->terminal_info (arg, from_tty);
1111 /* See target.h. */
1113 bool
1114 target_supports_terminal_ours (void)
1116 /* The current top target is the target at the top of the target
1117 stack of the current inferior. While normally there's always an
1118 inferior, we must check for nullptr here because we can get here
1119 very early during startup, before the initial inferior is first
1120 created. */
1121 inferior *inf = current_inferior ();
1123 if (inf == nullptr)
1124 return false;
1125 return inf->top_target ()->supports_terminal_ours ();
1128 static void
1129 tcomplain (void)
1131 error (_("You can't do that when your target is `%s'"),
1132 current_inferior ()->top_target ()->shortname ());
1135 void
1136 noprocess (void)
1138 error (_("You can't do that without a process to debug."));
1141 static void
1142 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
1144 gdb_printf (_("No saved terminal information.\n"));
1147 /* A default implementation for the to_get_ada_task_ptid target method.
1149 This function builds the PTID by using both LWP and TID as part of
1150 the PTID lwp and tid elements. The pid used is the pid of the
1151 inferior_ptid. */
1153 static ptid_t
1154 default_get_ada_task_ptid (struct target_ops *self, long lwp, ULONGEST tid)
1156 return ptid_t (inferior_ptid.pid (), lwp, tid);
1159 static enum exec_direction_kind
1160 default_execution_direction (struct target_ops *self)
1162 if (!target_can_execute_reverse ())
1163 return EXEC_FORWARD;
1164 else if (!target_can_async_p ())
1165 return EXEC_FORWARD;
1166 else
1167 gdb_assert_not_reached ("\
1168 to_execution_direction must be implemented for reverse async");
1171 /* See target.h. */
1173 void
1174 target_ops_ref_policy::decref (target_ops *t)
1176 t->decref ();
1177 if (t->refcount () == 0)
1179 if (t->stratum () == process_stratum)
1180 connection_list_remove (as_process_stratum_target (t));
1182 for (inferior *inf : all_inferiors ())
1183 gdb_assert (!inf->target_is_pushed (t));
1185 fileio_handles_invalidate_target (t);
1187 t->close ();
1189 if (targetdebug)
1190 gdb_printf (gdb_stdlog, "closing target\n");
1194 /* See target.h. */
1196 void
1197 target_stack::push (target_ops *t)
1199 /* We must create a new reference first. It is possible that T is
1200 already pushed on this target stack, in which case we will first
1201 unpush it below, before re-pushing it. If we don't increment the
1202 reference count now, then when we unpush it, we might end up deleting
1203 T, which is not good. */
1204 auto ref = target_ops_ref::new_reference (t);
1206 strata stratum = t->stratum ();
1208 /* If there's already a target at this stratum, remove it. */
1210 if (m_stack[stratum].get () != nullptr)
1211 unpush (m_stack[stratum].get ());
1213 /* Now add the new one. */
1214 m_stack[stratum] = std::move (ref);
1216 if (m_top < stratum)
1217 m_top = stratum;
1219 if (stratum == process_stratum)
1220 connection_list_add (as_process_stratum_target (t));
1223 /* See target.h. */
1225 bool
1226 target_stack::unpush (target_ops *t)
1228 gdb_assert (t != NULL);
1230 strata stratum = t->stratum ();
1232 if (stratum == dummy_stratum)
1233 internal_error (_("Attempt to unpush the dummy target"));
1235 /* Look for the specified target. Note that a target can only occur
1236 once in the target stack. */
1238 if (m_stack[stratum] != t)
1240 /* If T wasn't pushed, quit. Only open targets should be
1241 closed. */
1242 return false;
1245 if (m_top == stratum)
1246 m_top = this->find_beneath (t)->stratum ();
1248 /* Move the target reference off the target stack, this sets the pointer
1249 held in m_stack to nullptr, and places the reference in ref. When
1250 ref goes out of scope its reference count will be decremented, which
1251 might cause the target to close.
1253 We have to do it this way, and not just set the value in m_stack to
1254 nullptr directly, because doing so would decrement the reference
1255 count first, which might close the target, and closing the target
1256 does a check that the target is not on any inferiors target_stack. */
1257 auto ref = std::move (m_stack[stratum]);
1259 return true;
1262 void
1263 target_unpusher::operator() (struct target_ops *ops) const
1265 current_inferior ()->unpush_target (ops);
1268 /* Default implementation of to_get_thread_local_address. */
1270 static void
1271 generic_tls_error (void)
1273 throw_error (TLS_GENERIC_ERROR,
1274 _("Cannot find thread-local variables on this target"));
1277 /* Using the objfile specified in OBJFILE, find the address for the
1278 current thread's thread-local storage with offset OFFSET. */
1279 CORE_ADDR
1280 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1282 volatile CORE_ADDR addr = 0;
1283 struct target_ops *target = current_inferior ()->top_target ();
1284 struct gdbarch *gdbarch = target_gdbarch ();
1286 /* If OBJFILE is a separate debug object file, look for the
1287 original object file. */
1288 if (objfile->separate_debug_objfile_backlink != NULL)
1289 objfile = objfile->separate_debug_objfile_backlink;
1291 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
1293 ptid_t ptid = inferior_ptid;
1297 CORE_ADDR lm_addr;
1299 /* Fetch the load module address for this objfile. */
1300 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
1301 objfile);
1303 if (gdbarch_get_thread_local_address_p (gdbarch))
1304 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
1305 offset);
1306 else
1307 addr = target->get_thread_local_address (ptid, lm_addr, offset);
1309 /* If an error occurred, print TLS related messages here. Otherwise,
1310 throw the error to some higher catcher. */
1311 catch (const gdb_exception &ex)
1313 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1315 switch (ex.error)
1317 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1318 error (_("Cannot find thread-local variables "
1319 "in this thread library."));
1320 break;
1321 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1322 if (objfile_is_library)
1323 error (_("Cannot find shared library `%s' in dynamic"
1324 " linker's load module list"), objfile_name (objfile));
1325 else
1326 error (_("Cannot find executable file `%s' in dynamic"
1327 " linker's load module list"), objfile_name (objfile));
1328 break;
1329 case TLS_NOT_ALLOCATED_YET_ERROR:
1330 if (objfile_is_library)
1331 error (_("The inferior has not yet allocated storage for"
1332 " thread-local variables in\n"
1333 "the shared library `%s'\n"
1334 "for %s"),
1335 objfile_name (objfile),
1336 target_pid_to_str (ptid).c_str ());
1337 else
1338 error (_("The inferior has not yet allocated storage for"
1339 " thread-local variables in\n"
1340 "the executable `%s'\n"
1341 "for %s"),
1342 objfile_name (objfile),
1343 target_pid_to_str (ptid).c_str ());
1344 break;
1345 case TLS_GENERIC_ERROR:
1346 if (objfile_is_library)
1347 error (_("Cannot find thread-local storage for %s, "
1348 "shared library %s:\n%s"),
1349 target_pid_to_str (ptid).c_str (),
1350 objfile_name (objfile), ex.what ());
1351 else
1352 error (_("Cannot find thread-local storage for %s, "
1353 "executable file %s:\n%s"),
1354 target_pid_to_str (ptid).c_str (),
1355 objfile_name (objfile), ex.what ());
1356 break;
1357 default:
1358 throw;
1359 break;
1363 else
1364 error (_("Cannot find thread-local variables on this target"));
1366 return addr;
1369 const char *
1370 target_xfer_status_to_string (enum target_xfer_status status)
1372 #define CASE(X) case X: return #X
1373 switch (status)
1375 CASE(TARGET_XFER_E_IO);
1376 CASE(TARGET_XFER_UNAVAILABLE);
1377 default:
1378 return "<unknown>";
1380 #undef CASE
1384 const target_section_table *
1385 target_get_section_table (struct target_ops *target)
1387 return target->get_section_table ();
1390 /* Find a section containing ADDR. */
1392 const struct target_section *
1393 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1395 const target_section_table *table = target_get_section_table (target);
1397 if (table == NULL)
1398 return NULL;
1400 for (const target_section &secp : *table)
1402 if (addr >= secp.addr && addr < secp.endaddr)
1403 return &secp;
1405 return NULL;
1408 /* See target.h. */
1410 const target_section_table *
1411 default_get_section_table ()
1413 return &current_program_space->target_sections ();
1416 /* Helper for the memory xfer routines. Checks the attributes of the
1417 memory region of MEMADDR against the read or write being attempted.
1418 If the access is permitted returns true, otherwise returns false.
1419 REGION_P is an optional output parameter. If not-NULL, it is
1420 filled with a pointer to the memory region of MEMADDR. REG_LEN
1421 returns LEN trimmed to the end of the region. This is how much the
1422 caller can continue requesting, if the access is permitted. A
1423 single xfer request must not straddle memory region boundaries. */
1425 static int
1426 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1427 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1428 struct mem_region **region_p)
1430 struct mem_region *region;
1432 region = lookup_mem_region (memaddr);
1434 if (region_p != NULL)
1435 *region_p = region;
1437 switch (region->attrib.mode)
1439 case MEM_RO:
1440 if (writebuf != NULL)
1441 return 0;
1442 break;
1444 case MEM_WO:
1445 if (readbuf != NULL)
1446 return 0;
1447 break;
1449 case MEM_FLASH:
1450 /* We only support writing to flash during "load" for now. */
1451 if (writebuf != NULL)
1452 error (_("Writing to flash memory forbidden in this context"));
1453 break;
1455 case MEM_NONE:
1456 return 0;
1459 /* region->hi == 0 means there's no upper bound. */
1460 if (memaddr + len < region->hi || region->hi == 0)
1461 *reg_len = len;
1462 else
1463 *reg_len = region->hi - memaddr;
1465 return 1;
1468 /* Read memory from more than one valid target. A core file, for
1469 instance, could have some of memory but delegate other bits to
1470 the target below it. So, we must manually try all targets. */
1472 enum target_xfer_status
1473 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1474 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1475 ULONGEST *xfered_len)
1477 enum target_xfer_status res;
1481 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1482 readbuf, writebuf, memaddr, len,
1483 xfered_len);
1484 if (res == TARGET_XFER_OK)
1485 break;
1487 /* Stop if the target reports that the memory is not available. */
1488 if (res == TARGET_XFER_UNAVAILABLE)
1489 break;
1491 /* Don't continue past targets which have all the memory.
1492 At one time, this code was necessary to read data from
1493 executables / shared libraries when data for the requested
1494 addresses weren't available in the core file. But now the
1495 core target handles this case itself. */
1496 if (ops->has_all_memory ())
1497 break;
1499 ops = ops->beneath ();
1501 while (ops != NULL);
1503 /* The cache works at the raw memory level. Make sure the cache
1504 gets updated with raw contents no matter what kind of memory
1505 object was originally being written. Note we do write-through
1506 first, so that if it fails, we don't write to the cache contents
1507 that never made it to the target. */
1508 if (writebuf != NULL
1509 && inferior_ptid != null_ptid
1510 && target_dcache_init_p ()
1511 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1513 DCACHE *dcache = target_dcache_get ();
1515 /* Note that writing to an area of memory which wasn't present
1516 in the cache doesn't cause it to be loaded in. */
1517 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1520 return res;
1523 /* Perform a partial memory transfer.
1524 For docs see target.h, to_xfer_partial. */
1526 static enum target_xfer_status
1527 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1528 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1529 ULONGEST len, ULONGEST *xfered_len)
1531 enum target_xfer_status res;
1532 ULONGEST reg_len;
1533 struct mem_region *region;
1534 struct inferior *inf;
1536 /* For accesses to unmapped overlay sections, read directly from
1537 files. Must do this first, as MEMADDR may need adjustment. */
1538 if (readbuf != NULL && overlay_debugging)
1540 struct obj_section *section = find_pc_overlay (memaddr);
1542 if (pc_in_unmapped_range (memaddr, section))
1544 const target_section_table *table = target_get_section_table (ops);
1545 const char *section_name = section->the_bfd_section->name;
1547 memaddr = overlay_mapped_address (memaddr, section);
1549 auto match_cb = [=] (const struct target_section *s)
1551 return (strcmp (section_name, s->the_bfd_section->name) == 0);
1554 return section_table_xfer_memory_partial (readbuf, writebuf,
1555 memaddr, len, xfered_len,
1556 *table, match_cb);
1560 /* Try the executable files, if "trust-readonly-sections" is set. */
1561 if (readbuf != NULL && trust_readonly)
1563 const struct target_section *secp
1564 = target_section_by_addr (ops, memaddr);
1565 if (secp != NULL
1566 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1568 const target_section_table *table = target_get_section_table (ops);
1569 return section_table_xfer_memory_partial (readbuf, writebuf,
1570 memaddr, len, xfered_len,
1571 *table);
1575 /* Try GDB's internal data cache. */
1577 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1578 &region))
1579 return TARGET_XFER_E_IO;
1581 if (inferior_ptid != null_ptid)
1582 inf = current_inferior ();
1583 else
1584 inf = NULL;
1586 if (inf != NULL
1587 && readbuf != NULL
1588 /* The dcache reads whole cache lines; that doesn't play well
1589 with reading from a trace buffer, because reading outside of
1590 the collected memory range fails. */
1591 && get_traceframe_number () == -1
1592 && (region->attrib.cache
1593 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1594 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1596 DCACHE *dcache = target_dcache_get_or_init ();
1598 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1599 reg_len, xfered_len);
1602 /* If none of those methods found the memory we wanted, fall back
1603 to a target partial transfer. Normally a single call to
1604 to_xfer_partial is enough; if it doesn't recognize an object
1605 it will call the to_xfer_partial of the next target down.
1606 But for memory this won't do. Memory is the only target
1607 object which can be read from more than one valid target.
1608 A core file, for instance, could have some of memory but
1609 delegate other bits to the target below it. So, we must
1610 manually try all targets. */
1612 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1613 xfered_len);
1615 /* If we still haven't got anything, return the last error. We
1616 give up. */
1617 return res;
1620 /* Perform a partial memory transfer. For docs see target.h,
1621 to_xfer_partial. */
1623 static enum target_xfer_status
1624 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1625 gdb_byte *readbuf, const gdb_byte *writebuf,
1626 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1628 enum target_xfer_status res;
1630 /* Zero length requests are ok and require no work. */
1631 if (len == 0)
1632 return TARGET_XFER_EOF;
1634 memaddr = gdbarch_remove_non_address_bits (target_gdbarch (), memaddr);
1636 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1637 breakpoint insns, thus hiding out from higher layers whether
1638 there are software breakpoints inserted in the code stream. */
1639 if (readbuf != NULL)
1641 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1642 xfered_len);
1644 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1645 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1647 else
1649 /* A large write request is likely to be partially satisfied
1650 by memory_xfer_partial_1. We will continually malloc
1651 and free a copy of the entire write request for breakpoint
1652 shadow handling even though we only end up writing a small
1653 subset of it. Cap writes to a limit specified by the target
1654 to mitigate this. */
1655 len = std::min (ops->get_memory_xfer_limit (), len);
1657 gdb::byte_vector buf (writebuf, writebuf + len);
1658 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1659 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1660 xfered_len);
1663 return res;
1666 scoped_restore_tmpl<int>
1667 make_scoped_restore_show_memory_breakpoints (int show)
1669 return make_scoped_restore (&show_memory_breakpoints, show);
1672 /* For docs see target.h, to_xfer_partial. */
1674 enum target_xfer_status
1675 target_xfer_partial (struct target_ops *ops,
1676 enum target_object object, const char *annex,
1677 gdb_byte *readbuf, const gdb_byte *writebuf,
1678 ULONGEST offset, ULONGEST len,
1679 ULONGEST *xfered_len)
1681 enum target_xfer_status retval;
1683 /* Transfer is done when LEN is zero. */
1684 if (len == 0)
1685 return TARGET_XFER_EOF;
1687 if (writebuf && !may_write_memory)
1688 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1689 core_addr_to_string_nz (offset), plongest (len));
1691 *xfered_len = 0;
1693 /* If this is a memory transfer, let the memory-specific code
1694 have a look at it instead. Memory transfers are more
1695 complicated. */
1696 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1697 || object == TARGET_OBJECT_CODE_MEMORY)
1698 retval = memory_xfer_partial (ops, object, readbuf,
1699 writebuf, offset, len, xfered_len);
1700 else if (object == TARGET_OBJECT_RAW_MEMORY)
1702 /* Skip/avoid accessing the target if the memory region
1703 attributes block the access. Check this here instead of in
1704 raw_memory_xfer_partial as otherwise we'd end up checking
1705 this twice in the case of the memory_xfer_partial path is
1706 taken; once before checking the dcache, and another in the
1707 tail call to raw_memory_xfer_partial. */
1708 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1709 NULL))
1710 return TARGET_XFER_E_IO;
1712 /* Request the normal memory object from other layers. */
1713 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1714 xfered_len);
1716 else
1717 retval = ops->xfer_partial (object, annex, readbuf,
1718 writebuf, offset, len, xfered_len);
1720 if (targetdebug)
1722 const unsigned char *myaddr = NULL;
1724 gdb_printf (gdb_stdlog,
1725 "%s:target_xfer_partial "
1726 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1727 ops->shortname (),
1728 (int) object,
1729 (annex ? annex : "(null)"),
1730 host_address_to_string (readbuf),
1731 host_address_to_string (writebuf),
1732 core_addr_to_string_nz (offset),
1733 pulongest (len), retval,
1734 pulongest (*xfered_len));
1736 if (readbuf)
1737 myaddr = readbuf;
1738 if (writebuf)
1739 myaddr = writebuf;
1740 if (retval == TARGET_XFER_OK && myaddr != NULL)
1742 int i;
1744 gdb_puts (", bytes =", gdb_stdlog);
1745 for (i = 0; i < *xfered_len; i++)
1747 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1749 if (targetdebug < 2 && i > 0)
1751 gdb_printf (gdb_stdlog, " ...");
1752 break;
1754 gdb_printf (gdb_stdlog, "\n");
1757 gdb_printf (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1761 gdb_putc ('\n', gdb_stdlog);
1764 /* Check implementations of to_xfer_partial update *XFERED_LEN
1765 properly. Do assertion after printing debug messages, so that we
1766 can find more clues on assertion failure from debugging messages. */
1767 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1768 gdb_assert (*xfered_len > 0);
1770 return retval;
1773 /* Read LEN bytes of target memory at address MEMADDR, placing the
1774 results in GDB's memory at MYADDR. Returns either 0 for success or
1775 -1 if any error occurs.
1777 If an error occurs, no guarantee is made about the contents of the data at
1778 MYADDR. In particular, the caller should not depend upon partial reads
1779 filling the buffer with good data. There is no way for the caller to know
1780 how much good data might have been transfered anyway. Callers that can
1781 deal with partial reads should call target_read (which will retry until
1782 it makes no progress, and then return how much was transferred). */
1785 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1787 if (target_read (current_inferior ()->top_target (),
1788 TARGET_OBJECT_MEMORY, NULL,
1789 myaddr, memaddr, len) == len)
1790 return 0;
1791 else
1792 return -1;
1795 /* See target/target.h. */
1798 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1800 gdb_byte buf[4];
1801 int r;
1803 r = target_read_memory (memaddr, buf, sizeof buf);
1804 if (r != 0)
1805 return r;
1806 *result = extract_unsigned_integer (buf, sizeof buf,
1807 gdbarch_byte_order (target_gdbarch ()));
1808 return 0;
1811 /* Like target_read_memory, but specify explicitly that this is a read
1812 from the target's raw memory. That is, this read bypasses the
1813 dcache, breakpoint shadowing, etc. */
1816 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1818 if (target_read (current_inferior ()->top_target (),
1819 TARGET_OBJECT_RAW_MEMORY, NULL,
1820 myaddr, memaddr, len) == len)
1821 return 0;
1822 else
1823 return -1;
1826 /* Like target_read_memory, but specify explicitly that this is a read from
1827 the target's stack. This may trigger different cache behavior. */
1830 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1832 if (target_read (current_inferior ()->top_target (),
1833 TARGET_OBJECT_STACK_MEMORY, NULL,
1834 myaddr, memaddr, len) == len)
1835 return 0;
1836 else
1837 return -1;
1840 /* Like target_read_memory, but specify explicitly that this is a read from
1841 the target's code. This may trigger different cache behavior. */
1844 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1846 if (target_read (current_inferior ()->top_target (),
1847 TARGET_OBJECT_CODE_MEMORY, NULL,
1848 myaddr, memaddr, len) == len)
1849 return 0;
1850 else
1851 return -1;
1854 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1855 Returns either 0 for success or -1 if any error occurs. If an
1856 error occurs, no guarantee is made about how much data got written.
1857 Callers that can deal with partial writes should call
1858 target_write. */
1861 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1863 if (target_write (current_inferior ()->top_target (),
1864 TARGET_OBJECT_MEMORY, NULL,
1865 myaddr, memaddr, len) == len)
1866 return 0;
1867 else
1868 return -1;
1871 /* Write LEN bytes from MYADDR to target raw memory at address
1872 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1873 If an error occurs, no guarantee is made about how much data got
1874 written. Callers that can deal with partial writes should call
1875 target_write. */
1878 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1880 if (target_write (current_inferior ()->top_target (),
1881 TARGET_OBJECT_RAW_MEMORY, NULL,
1882 myaddr, memaddr, len) == len)
1883 return 0;
1884 else
1885 return -1;
1888 /* Fetch the target's memory map. */
1890 std::vector<mem_region>
1891 target_memory_map (void)
1893 target_ops *target = current_inferior ()->top_target ();
1894 std::vector<mem_region> result = target->memory_map ();
1895 if (result.empty ())
1896 return result;
1898 std::sort (result.begin (), result.end ());
1900 /* Check that regions do not overlap. Simultaneously assign
1901 a numbering for the "mem" commands to use to refer to
1902 each region. */
1903 mem_region *last_one = NULL;
1904 for (size_t ix = 0; ix < result.size (); ix++)
1906 mem_region *this_one = &result[ix];
1907 this_one->number = ix;
1909 if (last_one != NULL && last_one->hi > this_one->lo)
1911 warning (_("Overlapping regions in memory map: ignoring"));
1912 return std::vector<mem_region> ();
1915 last_one = this_one;
1918 return result;
1921 void
1922 target_flash_erase (ULONGEST address, LONGEST length)
1924 current_inferior ()->top_target ()->flash_erase (address, length);
1927 void
1928 target_flash_done (void)
1930 current_inferior ()->top_target ()->flash_done ();
1933 static void
1934 show_trust_readonly (struct ui_file *file, int from_tty,
1935 struct cmd_list_element *c, const char *value)
1937 gdb_printf (file,
1938 _("Mode for reading from readonly sections is %s.\n"),
1939 value);
1942 /* Target vector read/write partial wrapper functions. */
1944 static enum target_xfer_status
1945 target_read_partial (struct target_ops *ops,
1946 enum target_object object,
1947 const char *annex, gdb_byte *buf,
1948 ULONGEST offset, ULONGEST len,
1949 ULONGEST *xfered_len)
1951 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1952 xfered_len);
1955 static enum target_xfer_status
1956 target_write_partial (struct target_ops *ops,
1957 enum target_object object,
1958 const char *annex, const gdb_byte *buf,
1959 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1961 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1962 xfered_len);
1965 /* Wrappers to perform the full transfer. */
1967 /* For docs on target_read see target.h. */
1969 LONGEST
1970 target_read (struct target_ops *ops,
1971 enum target_object object,
1972 const char *annex, gdb_byte *buf,
1973 ULONGEST offset, LONGEST len)
1975 LONGEST xfered_total = 0;
1976 int unit_size = 1;
1978 /* If we are reading from a memory object, find the length of an addressable
1979 unit for that architecture. */
1980 if (object == TARGET_OBJECT_MEMORY
1981 || object == TARGET_OBJECT_STACK_MEMORY
1982 || object == TARGET_OBJECT_CODE_MEMORY
1983 || object == TARGET_OBJECT_RAW_MEMORY)
1984 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1986 while (xfered_total < len)
1988 ULONGEST xfered_partial;
1989 enum target_xfer_status status;
1991 status = target_read_partial (ops, object, annex,
1992 buf + xfered_total * unit_size,
1993 offset + xfered_total, len - xfered_total,
1994 &xfered_partial);
1996 /* Call an observer, notifying them of the xfer progress? */
1997 if (status == TARGET_XFER_EOF)
1998 return xfered_total;
1999 else if (status == TARGET_XFER_OK)
2001 xfered_total += xfered_partial;
2002 QUIT;
2004 else
2005 return TARGET_XFER_E_IO;
2008 return len;
2011 /* Assuming that the entire [begin, end) range of memory cannot be
2012 read, try to read whatever subrange is possible to read.
2014 The function returns, in RESULT, either zero or one memory block.
2015 If there's a readable subrange at the beginning, it is completely
2016 read and returned. Any further readable subrange will not be read.
2017 Otherwise, if there's a readable subrange at the end, it will be
2018 completely read and returned. Any readable subranges before it
2019 (obviously, not starting at the beginning), will be ignored. In
2020 other cases -- either no readable subrange, or readable subrange(s)
2021 that is neither at the beginning, or end, nothing is returned.
2023 The purpose of this function is to handle a read across a boundary
2024 of accessible memory in a case when memory map is not available.
2025 The above restrictions are fine for this case, but will give
2026 incorrect results if the memory is 'patchy'. However, supporting
2027 'patchy' memory would require trying to read every single byte,
2028 and it seems unacceptable solution. Explicit memory map is
2029 recommended for this case -- and target_read_memory_robust will
2030 take care of reading multiple ranges then. */
2032 static void
2033 read_whatever_is_readable (struct target_ops *ops,
2034 const ULONGEST begin, const ULONGEST end,
2035 int unit_size,
2036 std::vector<memory_read_result> *result)
2038 ULONGEST current_begin = begin;
2039 ULONGEST current_end = end;
2040 int forward;
2041 ULONGEST xfered_len;
2043 /* If we previously failed to read 1 byte, nothing can be done here. */
2044 if (end - begin <= 1)
2045 return;
2047 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
2049 /* Check that either first or the last byte is readable, and give up
2050 if not. This heuristic is meant to permit reading accessible memory
2051 at the boundary of accessible region. */
2052 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2053 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
2055 forward = 1;
2056 ++current_begin;
2058 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2059 buf.get () + (end - begin) - 1, end - 1, 1,
2060 &xfered_len) == TARGET_XFER_OK)
2062 forward = 0;
2063 --current_end;
2065 else
2066 return;
2068 /* Loop invariant is that the [current_begin, current_end) was previously
2069 found to be not readable as a whole.
2071 Note loop condition -- if the range has 1 byte, we can't divide the range
2072 so there's no point trying further. */
2073 while (current_end - current_begin > 1)
2075 ULONGEST first_half_begin, first_half_end;
2076 ULONGEST second_half_begin, second_half_end;
2077 LONGEST xfer;
2078 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
2080 if (forward)
2082 first_half_begin = current_begin;
2083 first_half_end = middle;
2084 second_half_begin = middle;
2085 second_half_end = current_end;
2087 else
2089 first_half_begin = middle;
2090 first_half_end = current_end;
2091 second_half_begin = current_begin;
2092 second_half_end = middle;
2095 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2096 buf.get () + (first_half_begin - begin) * unit_size,
2097 first_half_begin,
2098 first_half_end - first_half_begin);
2100 if (xfer == first_half_end - first_half_begin)
2102 /* This half reads up fine. So, the error must be in the
2103 other half. */
2104 current_begin = second_half_begin;
2105 current_end = second_half_end;
2107 else
2109 /* This half is not readable. Because we've tried one byte, we
2110 know some part of this half if actually readable. Go to the next
2111 iteration to divide again and try to read.
2113 We don't handle the other half, because this function only tries
2114 to read a single readable subrange. */
2115 current_begin = first_half_begin;
2116 current_end = first_half_end;
2120 if (forward)
2122 /* The [begin, current_begin) range has been read. */
2123 result->emplace_back (begin, current_end, std::move (buf));
2125 else
2127 /* The [current_end, end) range has been read. */
2128 LONGEST region_len = end - current_end;
2130 gdb::unique_xmalloc_ptr<gdb_byte> data
2131 ((gdb_byte *) xmalloc (region_len * unit_size));
2132 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
2133 region_len * unit_size);
2134 result->emplace_back (current_end, end, std::move (data));
2138 std::vector<memory_read_result>
2139 read_memory_robust (struct target_ops *ops,
2140 const ULONGEST offset, const LONGEST len)
2142 std::vector<memory_read_result> result;
2143 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
2145 LONGEST xfered_total = 0;
2146 while (xfered_total < len)
2148 struct mem_region *region = lookup_mem_region (offset + xfered_total);
2149 LONGEST region_len;
2151 /* If there is no explicit region, a fake one should be created. */
2152 gdb_assert (region);
2154 if (region->hi == 0)
2155 region_len = len - xfered_total;
2156 else
2157 region_len = region->hi - offset;
2159 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2161 /* Cannot read this region. Note that we can end up here only
2162 if the region is explicitly marked inaccessible, or
2163 'inaccessible-by-default' is in effect. */
2164 xfered_total += region_len;
2166 else
2168 LONGEST to_read = std::min (len - xfered_total, region_len);
2169 gdb::unique_xmalloc_ptr<gdb_byte> buffer
2170 ((gdb_byte *) xmalloc (to_read * unit_size));
2172 LONGEST xfered_partial =
2173 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
2174 offset + xfered_total, to_read);
2175 /* Call an observer, notifying them of the xfer progress? */
2176 if (xfered_partial <= 0)
2178 /* Got an error reading full chunk. See if maybe we can read
2179 some subrange. */
2180 read_whatever_is_readable (ops, offset + xfered_total,
2181 offset + xfered_total + to_read,
2182 unit_size, &result);
2183 xfered_total += to_read;
2185 else
2187 result.emplace_back (offset + xfered_total,
2188 offset + xfered_total + xfered_partial,
2189 std::move (buffer));
2190 xfered_total += xfered_partial;
2192 QUIT;
2196 return result;
2200 /* An alternative to target_write with progress callbacks. */
2202 LONGEST
2203 target_write_with_progress (struct target_ops *ops,
2204 enum target_object object,
2205 const char *annex, const gdb_byte *buf,
2206 ULONGEST offset, LONGEST len,
2207 void (*progress) (ULONGEST, void *), void *baton)
2209 LONGEST xfered_total = 0;
2210 int unit_size = 1;
2212 /* If we are writing to a memory object, find the length of an addressable
2213 unit for that architecture. */
2214 if (object == TARGET_OBJECT_MEMORY
2215 || object == TARGET_OBJECT_STACK_MEMORY
2216 || object == TARGET_OBJECT_CODE_MEMORY
2217 || object == TARGET_OBJECT_RAW_MEMORY)
2218 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
2220 /* Give the progress callback a chance to set up. */
2221 if (progress)
2222 (*progress) (0, baton);
2224 while (xfered_total < len)
2226 ULONGEST xfered_partial;
2227 enum target_xfer_status status;
2229 status = target_write_partial (ops, object, annex,
2230 buf + xfered_total * unit_size,
2231 offset + xfered_total, len - xfered_total,
2232 &xfered_partial);
2234 if (status != TARGET_XFER_OK)
2235 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
2237 if (progress)
2238 (*progress) (xfered_partial, baton);
2240 xfered_total += xfered_partial;
2241 QUIT;
2243 return len;
2246 /* For docs on target_write see target.h. */
2248 LONGEST
2249 target_write (struct target_ops *ops,
2250 enum target_object object,
2251 const char *annex, const gdb_byte *buf,
2252 ULONGEST offset, LONGEST len)
2254 return target_write_with_progress (ops, object, annex, buf, offset, len,
2255 NULL, NULL);
2258 /* Help for target_read_alloc and target_read_stralloc. See their comments
2259 for details. */
2261 template <typename T>
2262 gdb::optional<gdb::def_vector<T>>
2263 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2264 const char *annex)
2266 gdb::def_vector<T> buf;
2267 size_t buf_pos = 0;
2268 const int chunk = 4096;
2270 /* This function does not have a length parameter; it reads the
2271 entire OBJECT). Also, it doesn't support objects fetched partly
2272 from one target and partly from another (in a different stratum,
2273 e.g. a core file and an executable). Both reasons make it
2274 unsuitable for reading memory. */
2275 gdb_assert (object != TARGET_OBJECT_MEMORY);
2277 /* Start by reading up to 4K at a time. The target will throttle
2278 this number down if necessary. */
2279 while (1)
2281 ULONGEST xfered_len;
2282 enum target_xfer_status status;
2284 buf.resize (buf_pos + chunk);
2286 status = target_read_partial (ops, object, annex,
2287 (gdb_byte *) &buf[buf_pos],
2288 buf_pos, chunk,
2289 &xfered_len);
2291 if (status == TARGET_XFER_EOF)
2293 /* Read all there was. */
2294 buf.resize (buf_pos);
2295 return buf;
2297 else if (status != TARGET_XFER_OK)
2299 /* An error occurred. */
2300 return {};
2303 buf_pos += xfered_len;
2305 QUIT;
2309 /* See target.h */
2311 gdb::optional<gdb::byte_vector>
2312 target_read_alloc (struct target_ops *ops, enum target_object object,
2313 const char *annex)
2315 return target_read_alloc_1<gdb_byte> (ops, object, annex);
2318 /* See target.h. */
2320 gdb::optional<gdb::char_vector>
2321 target_read_stralloc (struct target_ops *ops, enum target_object object,
2322 const char *annex)
2324 gdb::optional<gdb::char_vector> buf
2325 = target_read_alloc_1<char> (ops, object, annex);
2327 if (!buf)
2328 return {};
2330 if (buf->empty () || buf->back () != '\0')
2331 buf->push_back ('\0');
2333 /* Check for embedded NUL bytes; but allow trailing NULs. */
2334 for (auto it = std::find (buf->begin (), buf->end (), '\0');
2335 it != buf->end (); it++)
2336 if (*it != '\0')
2338 warning (_("target object %d, annex %s, "
2339 "contained unexpected null characters"),
2340 (int) object, annex ? annex : "(none)");
2341 break;
2344 return buf;
2347 /* Memory transfer methods. */
2349 void
2350 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2351 LONGEST len)
2353 /* This method is used to read from an alternate, non-current
2354 target. This read must bypass the overlay support (as symbols
2355 don't match this target), and GDB's internal cache (wrong cache
2356 for this target). */
2357 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2358 != len)
2359 memory_error (TARGET_XFER_E_IO, addr);
2362 ULONGEST
2363 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2364 int len, enum bfd_endian byte_order)
2366 gdb_byte buf[sizeof (ULONGEST)];
2368 gdb_assert (len <= sizeof (buf));
2369 get_target_memory (ops, addr, buf, len);
2370 return extract_unsigned_integer (buf, len, byte_order);
2373 /* See target.h. */
2376 target_insert_breakpoint (struct gdbarch *gdbarch,
2377 struct bp_target_info *bp_tgt)
2379 if (!may_insert_breakpoints)
2381 warning (_("May not insert breakpoints"));
2382 return 1;
2385 target_ops *target = current_inferior ()->top_target ();
2387 return target->insert_breakpoint (gdbarch, bp_tgt);
2390 /* See target.h. */
2393 target_remove_breakpoint (struct gdbarch *gdbarch,
2394 struct bp_target_info *bp_tgt,
2395 enum remove_bp_reason reason)
2397 /* This is kind of a weird case to handle, but the permission might
2398 have been changed after breakpoints were inserted - in which case
2399 we should just take the user literally and assume that any
2400 breakpoints should be left in place. */
2401 if (!may_insert_breakpoints)
2403 warning (_("May not remove breakpoints"));
2404 return 1;
2407 target_ops *target = current_inferior ()->top_target ();
2409 return target->remove_breakpoint (gdbarch, bp_tgt, reason);
2412 static void
2413 info_target_command (const char *args, int from_tty)
2415 int has_all_mem = 0;
2417 if (current_program_space->symfile_object_file != NULL)
2419 objfile *objf = current_program_space->symfile_object_file;
2420 gdb_printf (_("Symbols from \"%s\".\n"),
2421 objfile_name (objf));
2424 for (target_ops *t = current_inferior ()->top_target ();
2425 t != NULL;
2426 t = t->beneath ())
2428 if (!t->has_memory ())
2429 continue;
2431 if ((int) (t->stratum ()) <= (int) dummy_stratum)
2432 continue;
2433 if (has_all_mem)
2434 gdb_printf (_("\tWhile running this, "
2435 "GDB does not access memory from...\n"));
2436 gdb_printf ("%s:\n", t->longname ());
2437 t->files_info ();
2438 has_all_mem = t->has_all_memory ();
2442 /* This function is called before any new inferior is created, e.g.
2443 by running a program, attaching, or connecting to a target.
2444 It cleans up any state from previous invocations which might
2445 change between runs. This is a subset of what target_preopen
2446 resets (things which might change between targets). */
2448 void
2449 target_pre_inferior (int from_tty)
2451 /* Clear out solib state. Otherwise the solib state of the previous
2452 inferior might have survived and is entirely wrong for the new
2453 target. This has been observed on GNU/Linux using glibc 2.3. How
2454 to reproduce:
2456 bash$ ./foo&
2457 [1] 4711
2458 bash$ ./foo&
2459 [1] 4712
2460 bash$ gdb ./foo
2461 [...]
2462 (gdb) attach 4711
2463 (gdb) detach
2464 (gdb) attach 4712
2465 Cannot access memory at address 0xdeadbeef
2468 /* In some OSs, the shared library list is the same/global/shared
2469 across inferiors. If code is shared between processes, so are
2470 memory regions and features. */
2471 if (!gdbarch_has_global_solist (target_gdbarch ()))
2473 no_shared_libraries (NULL, from_tty);
2475 invalidate_target_mem_regions ();
2477 target_clear_description ();
2480 /* attach_flag may be set if the previous process associated with
2481 the inferior was attached to. */
2482 current_inferior ()->attach_flag = false;
2484 current_inferior ()->highest_thread_num = 0;
2486 update_previous_thread ();
2488 agent_capability_invalidate ();
2491 /* This is to be called by the open routine before it does
2492 anything. */
2494 void
2495 target_preopen (int from_tty)
2497 dont_repeat ();
2499 if (current_inferior ()->pid != 0)
2501 if (!from_tty
2502 || !target_has_execution ()
2503 || query (_("A program is being debugged already. Kill it? ")))
2505 /* Core inferiors actually should be detached, not
2506 killed. */
2507 if (target_has_execution ())
2508 target_kill ();
2509 else
2510 target_detach (current_inferior (), 0);
2512 else
2513 error (_("Program not killed."));
2516 /* Release reference to old previous thread. */
2517 update_previous_thread ();
2519 /* Calling target_kill may remove the target from the stack. But if
2520 it doesn't (which seems like a win for UDI), remove it now. */
2521 /* Leave the exec target, though. The user may be switching from a
2522 live process to a core of the same program. */
2523 current_inferior ()->pop_all_targets_above (file_stratum);
2525 target_pre_inferior (from_tty);
2528 /* See target.h. */
2530 void
2531 target_detach (inferior *inf, int from_tty)
2533 /* Thread's don't need to be resumed until the end of this function. */
2534 scoped_disable_commit_resumed disable_commit_resumed ("detaching");
2536 /* After we have detached, we will clear the register cache for this inferior
2537 by calling registers_changed_ptid. We must save the pid_ptid before
2538 detaching, as the target detach method will clear inf->pid. */
2539 ptid_t save_pid_ptid = ptid_t (inf->pid);
2541 /* As long as some to_detach implementations rely on the current_inferior
2542 (either directly, or indirectly, like through target_gdbarch or by
2543 reading memory), INF needs to be the current inferior. When that
2544 requirement will become no longer true, then we can remove this
2545 assertion. */
2546 gdb_assert (inf == current_inferior ());
2548 prepare_for_detach ();
2550 gdb::observers::inferior_pre_detach.notify (inf);
2552 /* Hold a strong reference because detaching may unpush the
2553 target. */
2554 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
2556 current_inferior ()->top_target ()->detach (inf, from_tty);
2558 process_stratum_target *proc_target
2559 = as_process_stratum_target (proc_target_ref.get ());
2561 registers_changed_ptid (proc_target, save_pid_ptid);
2563 /* We have to ensure we have no frame cache left. Normally,
2564 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2565 inferior_ptid matches save_pid_ptid, but in our case, it does not
2566 call it, as inferior_ptid has been reset. */
2567 reinit_frame_cache ();
2569 disable_commit_resumed.reset_and_commit ();
2572 void
2573 target_disconnect (const char *args, int from_tty)
2575 /* If we're in breakpoints-always-inserted mode or if breakpoints
2576 are global across processes, we have to remove them before
2577 disconnecting. */
2578 remove_breakpoints ();
2580 current_inferior ()->top_target ()->disconnect (args, from_tty);
2583 /* See target/target.h. */
2585 ptid_t
2586 target_wait (ptid_t ptid, struct target_waitstatus *status,
2587 target_wait_flags options)
2589 target_ops *target = current_inferior ()->top_target ();
2590 process_stratum_target *proc_target = current_inferior ()->process_target ();
2592 gdb_assert (!proc_target->commit_resumed_state);
2594 if (!target_can_async_p (target))
2595 gdb_assert ((options & TARGET_WNOHANG) == 0);
2599 gdb::observers::target_pre_wait.notify (ptid);
2600 ptid_t event_ptid = target->wait (ptid, status, options);
2601 gdb::observers::target_post_wait.notify (event_ptid);
2602 return event_ptid;
2604 catch (...)
2606 gdb::observers::target_post_wait.notify (null_ptid);
2607 throw;
2611 /* See target.h. */
2613 ptid_t
2614 default_target_wait (struct target_ops *ops,
2615 ptid_t ptid, struct target_waitstatus *status,
2616 target_wait_flags options)
2618 status->set_ignore ();
2619 return minus_one_ptid;
2622 std::string
2623 target_pid_to_str (ptid_t ptid)
2625 return current_inferior ()->top_target ()->pid_to_str (ptid);
2628 const char *
2629 target_thread_name (struct thread_info *info)
2631 gdb_assert (info->inf == current_inferior ());
2633 return current_inferior ()->top_target ()->thread_name (info);
2636 struct thread_info *
2637 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2638 int handle_len,
2639 struct inferior *inf)
2641 target_ops *target = current_inferior ()->top_target ();
2643 return target->thread_handle_to_thread_info (thread_handle, handle_len, inf);
2646 /* See target.h. */
2648 gdb::array_view<const gdb_byte>
2649 target_thread_info_to_thread_handle (struct thread_info *tip)
2651 target_ops *target = current_inferior ()->top_target ();
2653 return target->thread_info_to_thread_handle (tip);
2656 void
2657 target_resume (ptid_t scope_ptid, int step, enum gdb_signal signal)
2659 process_stratum_target *curr_target = current_inferior ()->process_target ();
2660 gdb_assert (!curr_target->commit_resumed_state);
2662 gdb_assert (inferior_ptid != null_ptid);
2663 gdb_assert (inferior_ptid.matches (scope_ptid));
2665 target_dcache_invalidate ();
2667 current_inferior ()->top_target ()->resume (scope_ptid, step, signal);
2669 registers_changed_ptid (curr_target, scope_ptid);
2670 /* We only set the internal executing state here. The user/frontend
2671 running state is set at a higher level. This also clears the
2672 thread's stop_pc as side effect. */
2673 set_executing (curr_target, scope_ptid, true);
2674 clear_inline_frame_state (curr_target, scope_ptid);
2676 if (target_can_async_p ())
2677 target_async (true);
2680 /* See target.h. */
2682 void
2683 target_commit_resumed ()
2685 gdb_assert (current_inferior ()->process_target ()->commit_resumed_state);
2686 current_inferior ()->top_target ()->commit_resumed ();
2689 /* See target.h. */
2691 bool
2692 target_has_pending_events ()
2694 return current_inferior ()->top_target ()->has_pending_events ();
2697 void
2698 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2700 current_inferior ()->top_target ()->pass_signals (pass_signals);
2703 void
2704 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2706 current_inferior ()->top_target ()->program_signals (program_signals);
2709 static void
2710 default_follow_fork (struct target_ops *self, inferior *child_inf,
2711 ptid_t child_ptid, target_waitkind fork_kind,
2712 bool follow_child, bool detach_fork)
2714 /* Some target returned a fork event, but did not know how to follow it. */
2715 internal_error (_("could not find a target to follow fork"));
2718 /* See target.h. */
2720 void
2721 target_follow_fork (inferior *child_inf, ptid_t child_ptid,
2722 target_waitkind fork_kind, bool follow_child,
2723 bool detach_fork)
2725 target_ops *target = current_inferior ()->top_target ();
2727 /* Check consistency between CHILD_INF, CHILD_PTID, FOLLOW_CHILD and
2728 DETACH_FORK. */
2729 if (child_inf != nullptr)
2731 gdb_assert (follow_child || !detach_fork);
2732 gdb_assert (child_inf->pid == child_ptid.pid ());
2734 else
2735 gdb_assert (!follow_child && detach_fork);
2737 return target->follow_fork (child_inf, child_ptid, fork_kind, follow_child,
2738 detach_fork);
2741 /* See target.h. */
2743 void
2744 target_follow_exec (inferior *follow_inf, ptid_t ptid,
2745 const char *execd_pathname)
2747 current_inferior ()->top_target ()->follow_exec (follow_inf, ptid,
2748 execd_pathname);
2751 static void
2752 default_mourn_inferior (struct target_ops *self)
2754 internal_error (_("could not find a target to follow mourn inferior"));
2757 void
2758 target_mourn_inferior (ptid_t ptid)
2760 gdb_assert (ptid.pid () == inferior_ptid.pid ());
2761 current_inferior ()->top_target ()->mourn_inferior ();
2763 /* We no longer need to keep handles on any of the object files.
2764 Make sure to release them to avoid unnecessarily locking any
2765 of them while we're not actually debugging. */
2766 bfd_cache_close_all ();
2769 /* Look for a target which can describe architectural features, starting
2770 from TARGET. If we find one, return its description. */
2772 const struct target_desc *
2773 target_read_description (struct target_ops *target)
2775 return target->read_description ();
2779 /* Default implementation of memory-searching. */
2781 static int
2782 default_search_memory (struct target_ops *self,
2783 CORE_ADDR start_addr, ULONGEST search_space_len,
2784 const gdb_byte *pattern, ULONGEST pattern_len,
2785 CORE_ADDR *found_addrp)
2787 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
2789 return target_read (current_inferior ()->top_target (),
2790 TARGET_OBJECT_MEMORY, NULL,
2791 result, addr, len) == len;
2794 /* Start over from the top of the target stack. */
2795 return simple_search_memory (read_memory, start_addr, search_space_len,
2796 pattern, pattern_len, found_addrp);
2799 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2800 sequence of bytes in PATTERN with length PATTERN_LEN.
2802 The result is 1 if found, 0 if not found, and -1 if there was an error
2803 requiring halting of the search (e.g. memory read error).
2804 If the pattern is found the address is recorded in FOUND_ADDRP. */
2807 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2808 const gdb_byte *pattern, ULONGEST pattern_len,
2809 CORE_ADDR *found_addrp)
2811 target_ops *target = current_inferior ()->top_target ();
2813 return target->search_memory (start_addr, search_space_len, pattern,
2814 pattern_len, found_addrp);
2817 /* Look through the currently pushed targets. If none of them will
2818 be able to restart the currently running process, issue an error
2819 message. */
2821 void
2822 target_require_runnable (void)
2824 for (target_ops *t = current_inferior ()->top_target ();
2825 t != NULL;
2826 t = t->beneath ())
2828 /* If this target knows how to create a new program, then
2829 assume we will still be able to after killing the current
2830 one. Either killing and mourning will not pop T, or else
2831 find_default_run_target will find it again. */
2832 if (t->can_create_inferior ())
2833 return;
2835 /* Do not worry about targets at certain strata that can not
2836 create inferiors. Assume they will be pushed again if
2837 necessary, and continue to the process_stratum. */
2838 if (t->stratum () > process_stratum)
2839 continue;
2841 error (_("The \"%s\" target does not support \"run\". "
2842 "Try \"help target\" or \"continue\"."),
2843 t->shortname ());
2846 /* This function is only called if the target is running. In that
2847 case there should have been a process_stratum target and it
2848 should either know how to create inferiors, or not... */
2849 internal_error (_("No targets found"));
2852 /* Whether GDB is allowed to fall back to the default run target for
2853 "run", "attach", etc. when no target is connected yet. */
2854 static bool auto_connect_native_target = true;
2856 static void
2857 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2858 struct cmd_list_element *c, const char *value)
2860 gdb_printf (file,
2861 _("Whether GDB may automatically connect to the "
2862 "native target is %s.\n"),
2863 value);
2866 /* A pointer to the target that can respond to "run" or "attach".
2867 Native targets are always singletons and instantiated early at GDB
2868 startup. */
2869 static target_ops *the_native_target;
2871 /* See target.h. */
2873 void
2874 set_native_target (target_ops *target)
2876 if (the_native_target != NULL)
2877 internal_error (_("native target already set (\"%s\")."),
2878 the_native_target->longname ());
2880 the_native_target = target;
2883 /* See target.h. */
2885 target_ops *
2886 get_native_target ()
2888 return the_native_target;
2891 /* Look through the list of possible targets for a target that can
2892 execute a run or attach command without any other data. This is
2893 used to locate the default process stratum.
2895 If DO_MESG is not NULL, the result is always valid (error() is
2896 called for errors); else, return NULL on error. */
2898 static struct target_ops *
2899 find_default_run_target (const char *do_mesg)
2901 if (auto_connect_native_target && the_native_target != NULL)
2902 return the_native_target;
2904 if (do_mesg != NULL)
2905 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2906 return NULL;
2909 /* See target.h. */
2911 struct target_ops *
2912 find_attach_target (void)
2914 /* If a target on the current stack can attach, use it. */
2915 for (target_ops *t = current_inferior ()->top_target ();
2916 t != NULL;
2917 t = t->beneath ())
2919 if (t->can_attach ())
2920 return t;
2923 /* Otherwise, use the default run target for attaching. */
2924 return find_default_run_target ("attach");
2927 /* See target.h. */
2929 struct target_ops *
2930 find_run_target (void)
2932 /* If a target on the current stack can run, use it. */
2933 for (target_ops *t = current_inferior ()->top_target ();
2934 t != NULL;
2935 t = t->beneath ())
2937 if (t->can_create_inferior ())
2938 return t;
2941 /* Otherwise, use the default run target. */
2942 return find_default_run_target ("run");
2945 bool
2946 target_ops::info_proc (const char *args, enum info_proc_what what)
2948 return false;
2951 /* Implement the "info proc" command. */
2954 target_info_proc (const char *args, enum info_proc_what what)
2956 struct target_ops *t;
2958 /* If we're already connected to something that can get us OS
2959 related data, use it. Otherwise, try using the native
2960 target. */
2961 t = find_target_at (process_stratum);
2962 if (t == NULL)
2963 t = find_default_run_target (NULL);
2965 for (; t != NULL; t = t->beneath ())
2967 if (t->info_proc (args, what))
2969 if (targetdebug)
2970 gdb_printf (gdb_stdlog,
2971 "target_info_proc (\"%s\", %d)\n", args, what);
2973 return 1;
2977 return 0;
2980 static int
2981 find_default_supports_disable_randomization (struct target_ops *self)
2983 struct target_ops *t;
2985 t = find_default_run_target (NULL);
2986 if (t != NULL)
2987 return t->supports_disable_randomization ();
2988 return 0;
2992 target_supports_disable_randomization (void)
2994 return current_inferior ()->top_target ()->supports_disable_randomization ();
2997 /* See target/target.h. */
3000 target_supports_multi_process (void)
3002 return current_inferior ()->top_target ()->supports_multi_process ();
3005 /* See target.h. */
3007 gdb::optional<gdb::char_vector>
3008 target_get_osdata (const char *type)
3010 struct target_ops *t;
3012 /* If we're already connected to something that can get us OS
3013 related data, use it. Otherwise, try using the native
3014 target. */
3015 t = find_target_at (process_stratum);
3016 if (t == NULL)
3017 t = find_default_run_target ("get OS data");
3019 if (!t)
3020 return {};
3022 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3025 /* Determine the current address space of thread PTID. */
3027 struct address_space *
3028 target_thread_address_space (ptid_t ptid)
3030 struct address_space *aspace;
3032 aspace = current_inferior ()->top_target ()->thread_address_space (ptid);
3033 gdb_assert (aspace != NULL);
3035 return aspace;
3038 /* See target.h. */
3040 target_ops *
3041 target_ops::beneath () const
3043 return current_inferior ()->find_target_beneath (this);
3046 void
3047 target_ops::close ()
3051 bool
3052 target_ops::can_attach ()
3054 return 0;
3057 void
3058 target_ops::attach (const char *, int)
3060 gdb_assert_not_reached ("target_ops::attach called");
3063 bool
3064 target_ops::can_create_inferior ()
3066 return 0;
3069 void
3070 target_ops::create_inferior (const char *, const std::string &,
3071 char **, int)
3073 gdb_assert_not_reached ("target_ops::create_inferior called");
3076 bool
3077 target_ops::can_run ()
3079 return false;
3083 target_can_run ()
3085 for (target_ops *t = current_inferior ()->top_target ();
3086 t != NULL;
3087 t = t->beneath ())
3089 if (t->can_run ())
3090 return 1;
3093 return 0;
3096 /* Target file operations. */
3098 static struct target_ops *
3099 default_fileio_target (void)
3101 struct target_ops *t;
3103 /* If we're already connected to something that can perform
3104 file I/O, use it. Otherwise, try using the native target. */
3105 t = find_target_at (process_stratum);
3106 if (t != NULL)
3107 return t;
3108 return find_default_run_target ("file I/O");
3111 /* File handle for target file operations. */
3113 struct fileio_fh_t
3115 /* The target on which this file is open. NULL if the target is
3116 meanwhile closed while the handle is open. */
3117 target_ops *target;
3119 /* The file descriptor on the target. */
3120 int target_fd;
3122 /* Check whether this fileio_fh_t represents a closed file. */
3123 bool is_closed ()
3125 return target_fd < 0;
3129 /* Vector of currently open file handles. The value returned by
3130 target_fileio_open and passed as the FD argument to other
3131 target_fileio_* functions is an index into this vector. This
3132 vector's entries are never freed; instead, files are marked as
3133 closed, and the handle becomes available for reuse. */
3134 static std::vector<fileio_fh_t> fileio_fhandles;
3136 /* Index into fileio_fhandles of the lowest handle that might be
3137 closed. This permits handle reuse without searching the whole
3138 list each time a new file is opened. */
3139 static int lowest_closed_fd;
3141 /* See target.h. */
3143 void
3144 fileio_handles_invalidate_target (target_ops *targ)
3146 for (fileio_fh_t &fh : fileio_fhandles)
3147 if (fh.target == targ)
3148 fh.target = NULL;
3151 /* Acquire a target fileio file descriptor. */
3153 static int
3154 acquire_fileio_fd (target_ops *target, int target_fd)
3156 /* Search for closed handles to reuse. */
3157 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
3159 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
3161 if (fh.is_closed ())
3162 break;
3165 /* Push a new handle if no closed handles were found. */
3166 if (lowest_closed_fd == fileio_fhandles.size ())
3167 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
3168 else
3169 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
3171 /* Should no longer be marked closed. */
3172 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
3174 /* Return its index, and start the next lookup at
3175 the next index. */
3176 return lowest_closed_fd++;
3179 /* Release a target fileio file descriptor. */
3181 static void
3182 release_fileio_fd (int fd, fileio_fh_t *fh)
3184 fh->target_fd = -1;
3185 lowest_closed_fd = std::min (lowest_closed_fd, fd);
3188 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
3190 static fileio_fh_t *
3191 fileio_fd_to_fh (int fd)
3193 return &fileio_fhandles[fd];
3197 /* Default implementations of file i/o methods. We don't want these
3198 to delegate automatically, because we need to know which target
3199 supported the method, in order to call it directly from within
3200 pread/pwrite, etc. */
3203 target_ops::fileio_open (struct inferior *inf, const char *filename,
3204 int flags, int mode, int warn_if_slow,
3205 fileio_error *target_errno)
3207 *target_errno = FILEIO_ENOSYS;
3208 return -1;
3212 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3213 ULONGEST offset, fileio_error *target_errno)
3215 *target_errno = FILEIO_ENOSYS;
3216 return -1;
3220 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
3221 ULONGEST offset, fileio_error *target_errno)
3223 *target_errno = FILEIO_ENOSYS;
3224 return -1;
3228 target_ops::fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno)
3230 *target_errno = FILEIO_ENOSYS;
3231 return -1;
3235 target_ops::fileio_close (int fd, fileio_error *target_errno)
3237 *target_errno = FILEIO_ENOSYS;
3238 return -1;
3242 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
3243 fileio_error *target_errno)
3245 *target_errno = FILEIO_ENOSYS;
3246 return -1;
3249 gdb::optional<std::string>
3250 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
3251 fileio_error *target_errno)
3253 *target_errno = FILEIO_ENOSYS;
3254 return {};
3257 /* See target.h. */
3260 target_fileio_open (struct inferior *inf, const char *filename,
3261 int flags, int mode, bool warn_if_slow, fileio_error *target_errno)
3263 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3265 int fd = t->fileio_open (inf, filename, flags, mode,
3266 warn_if_slow, target_errno);
3268 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
3269 continue;
3271 if (fd < 0)
3272 fd = -1;
3273 else
3274 fd = acquire_fileio_fd (t, fd);
3276 if (targetdebug)
3277 gdb_printf (gdb_stdlog,
3278 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
3279 " = %d (%d)\n",
3280 inf == NULL ? 0 : inf->num,
3281 filename, flags, mode,
3282 warn_if_slow, fd,
3283 fd != -1 ? 0 : *target_errno);
3284 return fd;
3287 *target_errno = FILEIO_ENOSYS;
3288 return -1;
3291 /* See target.h. */
3294 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3295 ULONGEST offset, fileio_error *target_errno)
3297 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3298 int ret = -1;
3300 if (fh->is_closed ())
3301 *target_errno = FILEIO_EBADF;
3302 else if (fh->target == NULL)
3303 *target_errno = FILEIO_EIO;
3304 else
3305 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
3306 len, offset, target_errno);
3308 if (targetdebug)
3309 gdb_printf (gdb_stdlog,
3310 "target_fileio_pwrite (%d,...,%d,%s) "
3311 "= %d (%d)\n",
3312 fd, len, pulongest (offset),
3313 ret, ret != -1 ? 0 : *target_errno);
3314 return ret;
3317 /* See target.h. */
3320 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3321 ULONGEST offset, fileio_error *target_errno)
3323 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3324 int ret = -1;
3326 if (fh->is_closed ())
3327 *target_errno = FILEIO_EBADF;
3328 else if (fh->target == NULL)
3329 *target_errno = FILEIO_EIO;
3330 else
3331 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
3332 len, offset, target_errno);
3334 if (targetdebug)
3335 gdb_printf (gdb_stdlog,
3336 "target_fileio_pread (%d,...,%d,%s) "
3337 "= %d (%d)\n",
3338 fd, len, pulongest (offset),
3339 ret, ret != -1 ? 0 : *target_errno);
3340 return ret;
3343 /* See target.h. */
3346 target_fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno)
3348 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3349 int ret = -1;
3351 if (fh->is_closed ())
3352 *target_errno = FILEIO_EBADF;
3353 else if (fh->target == NULL)
3354 *target_errno = FILEIO_EIO;
3355 else
3356 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
3358 if (targetdebug)
3359 gdb_printf (gdb_stdlog,
3360 "target_fileio_fstat (%d) = %d (%d)\n",
3361 fd, ret, ret != -1 ? 0 : *target_errno);
3362 return ret;
3365 /* See target.h. */
3368 target_fileio_close (int fd, fileio_error *target_errno)
3370 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3371 int ret = -1;
3373 if (fh->is_closed ())
3374 *target_errno = FILEIO_EBADF;
3375 else
3377 if (fh->target != NULL)
3378 ret = fh->target->fileio_close (fh->target_fd,
3379 target_errno);
3380 else
3381 ret = 0;
3382 release_fileio_fd (fd, fh);
3385 if (targetdebug)
3386 gdb_printf (gdb_stdlog,
3387 "target_fileio_close (%d) = %d (%d)\n",
3388 fd, ret, ret != -1 ? 0 : *target_errno);
3389 return ret;
3392 /* See target.h. */
3395 target_fileio_unlink (struct inferior *inf, const char *filename,
3396 fileio_error *target_errno)
3398 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3400 int ret = t->fileio_unlink (inf, filename, target_errno);
3402 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3403 continue;
3405 if (targetdebug)
3406 gdb_printf (gdb_stdlog,
3407 "target_fileio_unlink (%d,%s)"
3408 " = %d (%d)\n",
3409 inf == NULL ? 0 : inf->num, filename,
3410 ret, ret != -1 ? 0 : *target_errno);
3411 return ret;
3414 *target_errno = FILEIO_ENOSYS;
3415 return -1;
3418 /* See target.h. */
3420 gdb::optional<std::string>
3421 target_fileio_readlink (struct inferior *inf, const char *filename,
3422 fileio_error *target_errno)
3424 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3426 gdb::optional<std::string> ret
3427 = t->fileio_readlink (inf, filename, target_errno);
3429 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3430 continue;
3432 if (targetdebug)
3433 gdb_printf (gdb_stdlog,
3434 "target_fileio_readlink (%d,%s)"
3435 " = %s (%d)\n",
3436 inf == NULL ? 0 : inf->num,
3437 filename, ret ? ret->c_str () : "(nil)",
3438 ret ? 0 : *target_errno);
3439 return ret;
3442 *target_errno = FILEIO_ENOSYS;
3443 return {};
3446 /* Like scoped_fd, but specific to target fileio. */
3448 class scoped_target_fd
3450 public:
3451 explicit scoped_target_fd (int fd) noexcept
3452 : m_fd (fd)
3456 ~scoped_target_fd ()
3458 if (m_fd >= 0)
3460 fileio_error target_errno;
3462 target_fileio_close (m_fd, &target_errno);
3466 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3468 int get () const noexcept
3470 return m_fd;
3473 private:
3474 int m_fd;
3477 /* Read target file FILENAME, in the filesystem as seen by INF. If
3478 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3479 remote targets, the remote stub). Store the result in *BUF_P and
3480 return the size of the transferred data. PADDING additional bytes
3481 are available in *BUF_P. This is a helper function for
3482 target_fileio_read_alloc; see the declaration of that function for
3483 more information. */
3485 static LONGEST
3486 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3487 gdb_byte **buf_p, int padding)
3489 size_t buf_alloc, buf_pos;
3490 gdb_byte *buf;
3491 LONGEST n;
3492 fileio_error target_errno;
3494 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3495 0700, false, &target_errno));
3496 if (fd.get () == -1)
3497 return -1;
3499 /* Start by reading up to 4K at a time. The target will throttle
3500 this number down if necessary. */
3501 buf_alloc = 4096;
3502 buf = (gdb_byte *) xmalloc (buf_alloc);
3503 buf_pos = 0;
3504 while (1)
3506 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3507 buf_alloc - buf_pos - padding, buf_pos,
3508 &target_errno);
3509 if (n < 0)
3511 /* An error occurred. */
3512 xfree (buf);
3513 return -1;
3515 else if (n == 0)
3517 /* Read all there was. */
3518 if (buf_pos == 0)
3519 xfree (buf);
3520 else
3521 *buf_p = buf;
3522 return buf_pos;
3525 buf_pos += n;
3527 /* If the buffer is filling up, expand it. */
3528 if (buf_alloc < buf_pos * 2)
3530 buf_alloc *= 2;
3531 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3534 QUIT;
3538 /* See target.h. */
3540 LONGEST
3541 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3542 gdb_byte **buf_p)
3544 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3547 /* See target.h. */
3549 gdb::unique_xmalloc_ptr<char>
3550 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3552 gdb_byte *buffer;
3553 char *bufstr;
3554 LONGEST i, transferred;
3556 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3557 bufstr = (char *) buffer;
3559 if (transferred < 0)
3560 return gdb::unique_xmalloc_ptr<char> (nullptr);
3562 if (transferred == 0)
3563 return make_unique_xstrdup ("");
3565 bufstr[transferred] = 0;
3567 /* Check for embedded NUL bytes; but allow trailing NULs. */
3568 for (i = strlen (bufstr); i < transferred; i++)
3569 if (bufstr[i] != 0)
3571 warning (_("target file %s "
3572 "contained unexpected null characters"),
3573 filename);
3574 break;
3577 return gdb::unique_xmalloc_ptr<char> (bufstr);
3581 static int
3582 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3583 CORE_ADDR addr, int len)
3585 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3588 static int
3589 default_watchpoint_addr_within_range (struct target_ops *target,
3590 CORE_ADDR addr,
3591 CORE_ADDR start, int length)
3593 return addr >= start && addr < start + length;
3596 /* See target.h. */
3598 target_ops *
3599 target_stack::find_beneath (const target_ops *t) const
3601 /* Look for a non-empty slot at stratum levels beneath T's. */
3602 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3603 if (m_stack[stratum].get () != NULL)
3604 return m_stack[stratum].get ();
3606 return NULL;
3609 /* See target.h. */
3611 struct target_ops *
3612 find_target_at (enum strata stratum)
3614 return current_inferior ()->target_at (stratum);
3619 /* See target.h */
3621 void
3622 target_announce_detach (int from_tty)
3624 pid_t pid;
3625 const char *exec_file;
3627 if (!from_tty)
3628 return;
3630 pid = inferior_ptid.pid ();
3631 exec_file = get_exec_file (0);
3632 if (exec_file == nullptr)
3633 gdb_printf ("Detaching from pid %s\n",
3634 target_pid_to_str (ptid_t (pid)).c_str ());
3635 else
3636 gdb_printf (_("Detaching from program: %s, %s\n"), exec_file,
3637 target_pid_to_str (ptid_t (pid)).c_str ());
3640 /* See target.h */
3642 void
3643 target_announce_attach (int from_tty, int pid)
3645 if (!from_tty)
3646 return;
3648 const char *exec_file = get_exec_file (0);
3650 if (exec_file != nullptr)
3651 gdb_printf ("Attaching to program: %s, %s\n", exec_file,
3652 target_pid_to_str (ptid_t (pid)).c_str ());
3653 else
3654 gdb_printf ("Attaching to %s\n",
3655 target_pid_to_str (ptid_t (pid)).c_str ());
3658 /* The inferior process has died. Long live the inferior! */
3660 void
3661 generic_mourn_inferior (void)
3663 inferior *inf = current_inferior ();
3665 switch_to_no_thread ();
3667 /* Mark breakpoints uninserted in case something tries to delete a
3668 breakpoint while we delete the inferior's threads (which would
3669 fail, since the inferior is long gone). */
3670 mark_breakpoints_out ();
3672 if (inf->pid != 0)
3673 exit_inferior (inf);
3675 /* Note this wipes step-resume breakpoints, so needs to be done
3676 after exit_inferior, which ends up referencing the step-resume
3677 breakpoints through clear_thread_inferior_resources. */
3678 breakpoint_init_inferior (inf_exited);
3680 registers_changed ();
3682 reopen_exec_file ();
3683 reinit_frame_cache ();
3685 if (deprecated_detach_hook)
3686 deprecated_detach_hook ();
3689 /* Convert a normal process ID to a string. Returns the string in a
3690 static buffer. */
3692 std::string
3693 normal_pid_to_str (ptid_t ptid)
3695 return string_printf ("process %d", ptid.pid ());
3698 static std::string
3699 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3701 return normal_pid_to_str (ptid);
3704 /* Error-catcher for target_find_memory_regions. */
3705 static int
3706 dummy_find_memory_regions (struct target_ops *self,
3707 find_memory_region_ftype ignore1, void *ignore2)
3709 error (_("Command not implemented for this target."));
3710 return 0;
3713 /* Error-catcher for target_make_corefile_notes. */
3714 static gdb::unique_xmalloc_ptr<char>
3715 dummy_make_corefile_notes (struct target_ops *self,
3716 bfd *ignore1, int *ignore2)
3718 error (_("Command not implemented for this target."));
3719 return NULL;
3722 #include "target-delegates.c"
3724 /* The initial current target, so that there is always a semi-valid
3725 current target. */
3727 static dummy_target the_dummy_target;
3729 /* See target.h. */
3731 target_ops *
3732 get_dummy_target ()
3734 return &the_dummy_target;
3737 static const target_info dummy_target_info = {
3738 "None",
3739 N_("None"),
3743 strata
3744 dummy_target::stratum () const
3746 return dummy_stratum;
3749 strata
3750 debug_target::stratum () const
3752 return debug_stratum;
3755 const target_info &
3756 dummy_target::info () const
3758 return dummy_target_info;
3761 const target_info &
3762 debug_target::info () const
3764 return beneath ()->info ();
3770 target_thread_alive (ptid_t ptid)
3772 return current_inferior ()->top_target ()->thread_alive (ptid);
3775 void
3776 target_update_thread_list (void)
3778 current_inferior ()->top_target ()->update_thread_list ();
3781 void
3782 target_stop (ptid_t ptid)
3784 process_stratum_target *proc_target = current_inferior ()->process_target ();
3786 gdb_assert (!proc_target->commit_resumed_state);
3788 if (!may_stop)
3790 warning (_("May not interrupt or stop the target, ignoring attempt"));
3791 return;
3794 current_inferior ()->top_target ()->stop (ptid);
3797 void
3798 target_interrupt ()
3800 if (!may_stop)
3802 warning (_("May not interrupt or stop the target, ignoring attempt"));
3803 return;
3806 current_inferior ()->top_target ()->interrupt ();
3809 /* See target.h. */
3811 void
3812 target_pass_ctrlc (void)
3814 /* Pass the Ctrl-C to the first target that has a thread
3815 running. */
3816 for (inferior *inf : all_inferiors ())
3818 target_ops *proc_target = inf->process_target ();
3819 if (proc_target == NULL)
3820 continue;
3822 for (thread_info *thr : inf->non_exited_threads ())
3824 /* A thread can be THREAD_STOPPED and executing, while
3825 running an infcall. */
3826 if (thr->state == THREAD_RUNNING || thr->executing ())
3828 /* We can get here quite deep in target layers. Avoid
3829 switching thread context or anything that would
3830 communicate with the target (e.g., to fetch
3831 registers), or flushing e.g., the frame cache. We
3832 just switch inferior in order to be able to call
3833 through the target_stack. */
3834 scoped_restore_current_inferior restore_inferior;
3835 set_current_inferior (inf);
3836 current_inferior ()->top_target ()->pass_ctrlc ();
3837 return;
3843 /* See target.h. */
3845 void
3846 default_target_pass_ctrlc (struct target_ops *ops)
3848 target_interrupt ();
3851 /* See target/target.h. */
3853 void
3854 target_stop_and_wait (ptid_t ptid)
3856 struct target_waitstatus status;
3857 bool was_non_stop = non_stop;
3859 non_stop = true;
3860 target_stop (ptid);
3862 target_wait (ptid, &status, 0);
3864 non_stop = was_non_stop;
3867 /* See target/target.h. */
3869 void
3870 target_continue_no_signal (ptid_t ptid)
3872 target_resume (ptid, 0, GDB_SIGNAL_0);
3875 /* See target/target.h. */
3877 void
3878 target_continue (ptid_t ptid, enum gdb_signal signal)
3880 target_resume (ptid, 0, signal);
3883 /* Concatenate ELEM to LIST, a comma-separated list. */
3885 static void
3886 str_comma_list_concat_elem (std::string *list, const char *elem)
3888 if (!list->empty ())
3889 list->append (", ");
3891 list->append (elem);
3894 /* Helper for target_options_to_string. If OPT is present in
3895 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3896 OPT is removed from TARGET_OPTIONS. */
3898 static void
3899 do_option (target_wait_flags *target_options, std::string *ret,
3900 target_wait_flag opt, const char *opt_str)
3902 if ((*target_options & opt) != 0)
3904 str_comma_list_concat_elem (ret, opt_str);
3905 *target_options &= ~opt;
3909 /* See target.h. */
3911 std::string
3912 target_options_to_string (target_wait_flags target_options)
3914 std::string ret;
3916 #define DO_TARG_OPTION(OPT) \
3917 do_option (&target_options, &ret, OPT, #OPT)
3919 DO_TARG_OPTION (TARGET_WNOHANG);
3921 if (target_options != 0)
3922 str_comma_list_concat_elem (&ret, "unknown???");
3924 return ret;
3927 void
3928 target_fetch_registers (struct regcache *regcache, int regno)
3930 current_inferior ()->top_target ()->fetch_registers (regcache, regno);
3931 if (targetdebug)
3932 regcache->debug_print_register ("target_fetch_registers", regno);
3935 void
3936 target_store_registers (struct regcache *regcache, int regno)
3938 if (!may_write_registers)
3939 error (_("Writing to registers is not allowed (regno %d)"), regno);
3941 current_inferior ()->top_target ()->store_registers (regcache, regno);
3942 if (targetdebug)
3944 regcache->debug_print_register ("target_store_registers", regno);
3949 target_core_of_thread (ptid_t ptid)
3951 return current_inferior ()->top_target ()->core_of_thread (ptid);
3955 simple_verify_memory (struct target_ops *ops,
3956 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3958 LONGEST total_xfered = 0;
3960 while (total_xfered < size)
3962 ULONGEST xfered_len;
3963 enum target_xfer_status status;
3964 gdb_byte buf[1024];
3965 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3967 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3968 buf, NULL, lma + total_xfered, howmuch,
3969 &xfered_len);
3970 if (status == TARGET_XFER_OK
3971 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3973 total_xfered += xfered_len;
3974 QUIT;
3976 else
3977 return 0;
3979 return 1;
3982 /* Default implementation of memory verification. */
3984 static int
3985 default_verify_memory (struct target_ops *self,
3986 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3988 /* Start over from the top of the target stack. */
3989 return simple_verify_memory (current_inferior ()->top_target (),
3990 data, memaddr, size);
3994 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3996 target_ops *target = current_inferior ()->top_target ();
3998 return target->verify_memory (data, memaddr, size);
4001 /* The documentation for this function is in its prototype declaration in
4002 target.h. */
4005 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
4006 enum target_hw_bp_type rw)
4008 target_ops *target = current_inferior ()->top_target ();
4010 return target->insert_mask_watchpoint (addr, mask, rw);
4013 /* The documentation for this function is in its prototype declaration in
4014 target.h. */
4017 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
4018 enum target_hw_bp_type rw)
4020 target_ops *target = current_inferior ()->top_target ();
4022 return target->remove_mask_watchpoint (addr, mask, rw);
4025 /* The documentation for this function is in its prototype declaration
4026 in target.h. */
4029 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4031 target_ops *target = current_inferior ()->top_target ();
4033 return target->masked_watch_num_registers (addr, mask);
4036 /* The documentation for this function is in its prototype declaration
4037 in target.h. */
4040 target_ranged_break_num_registers (void)
4042 return current_inferior ()->top_target ()->ranged_break_num_registers ();
4045 /* See target.h. */
4047 struct btrace_target_info *
4048 target_enable_btrace (thread_info *tp, const struct btrace_config *conf)
4050 return current_inferior ()->top_target ()->enable_btrace (tp, conf);
4053 /* See target.h. */
4055 void
4056 target_disable_btrace (struct btrace_target_info *btinfo)
4058 current_inferior ()->top_target ()->disable_btrace (btinfo);
4061 /* See target.h. */
4063 void
4064 target_teardown_btrace (struct btrace_target_info *btinfo)
4066 current_inferior ()->top_target ()->teardown_btrace (btinfo);
4069 /* See target.h. */
4071 enum btrace_error
4072 target_read_btrace (struct btrace_data *btrace,
4073 struct btrace_target_info *btinfo,
4074 enum btrace_read_type type)
4076 target_ops *target = current_inferior ()->top_target ();
4078 return target->read_btrace (btrace, btinfo, type);
4081 /* See target.h. */
4083 const struct btrace_config *
4084 target_btrace_conf (const struct btrace_target_info *btinfo)
4086 return current_inferior ()->top_target ()->btrace_conf (btinfo);
4089 /* See target.h. */
4091 void
4092 target_stop_recording (void)
4094 current_inferior ()->top_target ()->stop_recording ();
4097 /* See target.h. */
4099 void
4100 target_save_record (const char *filename)
4102 current_inferior ()->top_target ()->save_record (filename);
4105 /* See target.h. */
4108 target_supports_delete_record ()
4110 return current_inferior ()->top_target ()->supports_delete_record ();
4113 /* See target.h. */
4115 void
4116 target_delete_record (void)
4118 current_inferior ()->top_target ()->delete_record ();
4121 /* See target.h. */
4123 enum record_method
4124 target_record_method (ptid_t ptid)
4126 return current_inferior ()->top_target ()->record_method (ptid);
4129 /* See target.h. */
4132 target_record_is_replaying (ptid_t ptid)
4134 return current_inferior ()->top_target ()->record_is_replaying (ptid);
4137 /* See target.h. */
4140 target_record_will_replay (ptid_t ptid, int dir)
4142 return current_inferior ()->top_target ()->record_will_replay (ptid, dir);
4145 /* See target.h. */
4147 void
4148 target_record_stop_replaying (void)
4150 current_inferior ()->top_target ()->record_stop_replaying ();
4153 /* See target.h. */
4155 void
4156 target_goto_record_begin (void)
4158 current_inferior ()->top_target ()->goto_record_begin ();
4161 /* See target.h. */
4163 void
4164 target_goto_record_end (void)
4166 current_inferior ()->top_target ()->goto_record_end ();
4169 /* See target.h. */
4171 void
4172 target_goto_record (ULONGEST insn)
4174 current_inferior ()->top_target ()->goto_record (insn);
4177 /* See target.h. */
4179 void
4180 target_insn_history (int size, gdb_disassembly_flags flags)
4182 current_inferior ()->top_target ()->insn_history (size, flags);
4185 /* See target.h. */
4187 void
4188 target_insn_history_from (ULONGEST from, int size,
4189 gdb_disassembly_flags flags)
4191 current_inferior ()->top_target ()->insn_history_from (from, size, flags);
4194 /* See target.h. */
4196 void
4197 target_insn_history_range (ULONGEST begin, ULONGEST end,
4198 gdb_disassembly_flags flags)
4200 current_inferior ()->top_target ()->insn_history_range (begin, end, flags);
4203 /* See target.h. */
4205 void
4206 target_call_history (int size, record_print_flags flags)
4208 current_inferior ()->top_target ()->call_history (size, flags);
4211 /* See target.h. */
4213 void
4214 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
4216 current_inferior ()->top_target ()->call_history_from (begin, size, flags);
4219 /* See target.h. */
4221 void
4222 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
4224 current_inferior ()->top_target ()->call_history_range (begin, end, flags);
4227 /* See target.h. */
4229 const struct frame_unwind *
4230 target_get_unwinder (void)
4232 return current_inferior ()->top_target ()->get_unwinder ();
4235 /* See target.h. */
4237 const struct frame_unwind *
4238 target_get_tailcall_unwinder (void)
4240 return current_inferior ()->top_target ()->get_tailcall_unwinder ();
4243 /* See target.h. */
4245 void
4246 target_prepare_to_generate_core (void)
4248 current_inferior ()->top_target ()->prepare_to_generate_core ();
4251 /* See target.h. */
4253 void
4254 target_done_generating_core (void)
4256 current_inferior ()->top_target ()->done_generating_core ();
4261 static char targ_desc[] =
4262 "Names of targets and files being debugged.\nShows the entire \
4263 stack of targets currently in use (including the exec-file,\n\
4264 core-file, and process, if any), as well as the symbol file name.";
4266 static void
4267 default_rcmd (struct target_ops *self, const char *command,
4268 struct ui_file *output)
4270 error (_("\"monitor\" command not supported by this target."));
4273 static void
4274 do_monitor_command (const char *cmd, int from_tty)
4276 target_rcmd (cmd, gdb_stdtarg);
4279 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
4280 ignored. */
4282 void
4283 flash_erase_command (const char *cmd, int from_tty)
4285 /* Used to communicate termination of flash operations to the target. */
4286 bool found_flash_region = false;
4287 struct gdbarch *gdbarch = target_gdbarch ();
4289 std::vector<mem_region> mem_regions = target_memory_map ();
4291 /* Iterate over all memory regions. */
4292 for (const mem_region &m : mem_regions)
4294 /* Is this a flash memory region? */
4295 if (m.attrib.mode == MEM_FLASH)
4297 found_flash_region = true;
4298 target_flash_erase (m.lo, m.hi - m.lo);
4300 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
4302 current_uiout->message (_("Erasing flash memory region at address "));
4303 current_uiout->field_core_addr ("address", gdbarch, m.lo);
4304 current_uiout->message (", size = ");
4305 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
4306 current_uiout->message ("\n");
4310 /* Did we do any flash operations? If so, we need to finalize them. */
4311 if (found_flash_region)
4312 target_flash_done ();
4313 else
4314 current_uiout->message (_("No flash memory regions found.\n"));
4317 /* Print the name of each layers of our target stack. */
4319 static void
4320 maintenance_print_target_stack (const char *cmd, int from_tty)
4322 gdb_printf (_("The current target stack is:\n"));
4324 for (target_ops *t = current_inferior ()->top_target ();
4325 t != NULL;
4326 t = t->beneath ())
4328 if (t->stratum () == debug_stratum)
4329 continue;
4330 gdb_printf (" - %s (%s)\n", t->shortname (), t->longname ());
4334 /* See target.h. */
4336 void
4337 target_async (bool enable)
4339 /* If we are trying to enable async mode then it must be the case that
4340 async mode is possible for this target. */
4341 gdb_assert (!enable || target_can_async_p ());
4342 infrun_async (enable);
4343 current_inferior ()->top_target ()->async (enable);
4346 /* See target.h. */
4348 void
4349 target_thread_events (int enable)
4351 current_inferior ()->top_target ()->thread_events (enable);
4354 /* Controls if targets can report that they can/are async. This is
4355 just for maintainers to use when debugging gdb. */
4356 bool target_async_permitted = true;
4358 static void
4359 set_maint_target_async (bool permitted)
4361 if (have_live_inferiors ())
4362 error (_("Cannot change this setting while the inferior is running."));
4364 target_async_permitted = permitted;
4367 static bool
4368 get_maint_target_async ()
4370 return target_async_permitted;
4373 static void
4374 show_maint_target_async (ui_file *file, int from_tty,
4375 cmd_list_element *c, const char *value)
4377 gdb_printf (file,
4378 _("Controlling the inferior in "
4379 "asynchronous mode is %s.\n"), value);
4382 /* Return true if the target operates in non-stop mode even with "set
4383 non-stop off". */
4385 static int
4386 target_always_non_stop_p (void)
4388 return current_inferior ()->top_target ()->always_non_stop_p ();
4391 /* See target.h. */
4393 bool
4394 target_is_non_stop_p ()
4396 return ((non_stop
4397 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4398 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4399 && target_always_non_stop_p ()))
4400 && target_can_async_p ());
4403 /* See target.h. */
4405 bool
4406 exists_non_stop_target ()
4408 if (target_is_non_stop_p ())
4409 return true;
4411 scoped_restore_current_thread restore_thread;
4413 for (inferior *inf : all_inferiors ())
4415 switch_to_inferior_no_thread (inf);
4416 if (target_is_non_stop_p ())
4417 return true;
4420 return false;
4423 /* Controls if targets can report that they always run in non-stop
4424 mode. This is just for maintainers to use when debugging gdb. */
4425 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4427 /* Set callback for maint target-non-stop setting. */
4429 static void
4430 set_maint_target_non_stop (auto_boolean enabled)
4432 if (have_live_inferiors ())
4433 error (_("Cannot change this setting while the inferior is running."));
4435 target_non_stop_enabled = enabled;
4438 /* Get callback for maint target-non-stop setting. */
4440 static auto_boolean
4441 get_maint_target_non_stop ()
4443 return target_non_stop_enabled;
4446 static void
4447 show_maint_target_non_stop (ui_file *file, int from_tty,
4448 cmd_list_element *c, const char *value)
4450 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4451 gdb_printf (file,
4452 _("Whether the target is always in non-stop mode "
4453 "is %s (currently %s).\n"), value,
4454 target_always_non_stop_p () ? "on" : "off");
4455 else
4456 gdb_printf (file,
4457 _("Whether the target is always in non-stop mode "
4458 "is %s.\n"), value);
4461 /* Temporary copies of permission settings. */
4463 static bool may_write_registers_1 = true;
4464 static bool may_write_memory_1 = true;
4465 static bool may_insert_breakpoints_1 = true;
4466 static bool may_insert_tracepoints_1 = true;
4467 static bool may_insert_fast_tracepoints_1 = true;
4468 static bool may_stop_1 = true;
4470 /* Make the user-set values match the real values again. */
4472 void
4473 update_target_permissions (void)
4475 may_write_registers_1 = may_write_registers;
4476 may_write_memory_1 = may_write_memory;
4477 may_insert_breakpoints_1 = may_insert_breakpoints;
4478 may_insert_tracepoints_1 = may_insert_tracepoints;
4479 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4480 may_stop_1 = may_stop;
4483 /* The one function handles (most of) the permission flags in the same
4484 way. */
4486 static void
4487 set_target_permissions (const char *args, int from_tty,
4488 struct cmd_list_element *c)
4490 if (target_has_execution ())
4492 update_target_permissions ();
4493 error (_("Cannot change this setting while the inferior is running."));
4496 /* Make the real values match the user-changed values. */
4497 may_insert_breakpoints = may_insert_breakpoints_1;
4498 may_insert_tracepoints = may_insert_tracepoints_1;
4499 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4500 may_stop = may_stop_1;
4501 update_observer_mode ();
4504 /* Set some permissions independently of observer mode. */
4506 static void
4507 set_write_memory_registers_permission (const char *args, int from_tty,
4508 struct cmd_list_element *c)
4510 /* Make the real values match the user-changed values. */
4511 may_write_memory = may_write_memory_1;
4512 may_write_registers = may_write_registers_1;
4513 update_observer_mode ();
4516 void _initialize_target ();
4518 void
4519 _initialize_target ()
4521 the_debug_target = new debug_target ();
4523 add_info ("target", info_target_command, targ_desc);
4524 add_info ("files", info_target_command, targ_desc);
4526 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4527 Set target debugging."), _("\
4528 Show target debugging."), _("\
4529 When non-zero, target debugging is enabled. Higher numbers are more\n\
4530 verbose."),
4531 set_targetdebug,
4532 show_targetdebug,
4533 &setdebuglist, &showdebuglist);
4535 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4536 &trust_readonly, _("\
4537 Set mode for reading from readonly sections."), _("\
4538 Show mode for reading from readonly sections."), _("\
4539 When this mode is on, memory reads from readonly sections (such as .text)\n\
4540 will be read from the object file instead of from the target. This will\n\
4541 result in significant performance improvement for remote targets."),
4542 NULL,
4543 show_trust_readonly,
4544 &setlist, &showlist);
4546 add_com ("monitor", class_obscure, do_monitor_command,
4547 _("Send a command to the remote monitor (remote targets only)."));
4549 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4550 _("Print the name of each layer of the internal target stack."),
4551 &maintenanceprintlist);
4553 add_setshow_boolean_cmd ("target-async", no_class,
4554 _("\
4555 Set whether gdb controls the inferior in asynchronous mode."), _("\
4556 Show whether gdb controls the inferior in asynchronous mode."), _("\
4557 Tells gdb whether to control the inferior in asynchronous mode."),
4558 set_maint_target_async,
4559 get_maint_target_async,
4560 show_maint_target_async,
4561 &maintenance_set_cmdlist,
4562 &maintenance_show_cmdlist);
4564 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4565 _("\
4566 Set whether gdb always controls the inferior in non-stop mode."), _("\
4567 Show whether gdb always controls the inferior in non-stop mode."), _("\
4568 Tells gdb whether to control the inferior in non-stop mode."),
4569 set_maint_target_non_stop,
4570 get_maint_target_non_stop,
4571 show_maint_target_non_stop,
4572 &maintenance_set_cmdlist,
4573 &maintenance_show_cmdlist);
4575 add_setshow_boolean_cmd ("may-write-registers", class_support,
4576 &may_write_registers_1, _("\
4577 Set permission to write into registers."), _("\
4578 Show permission to write into registers."), _("\
4579 When this permission is on, GDB may write into the target's registers.\n\
4580 Otherwise, any sort of write attempt will result in an error."),
4581 set_write_memory_registers_permission, NULL,
4582 &setlist, &showlist);
4584 add_setshow_boolean_cmd ("may-write-memory", class_support,
4585 &may_write_memory_1, _("\
4586 Set permission to write into target memory."), _("\
4587 Show permission to write into target memory."), _("\
4588 When this permission is on, GDB may write into the target's memory.\n\
4589 Otherwise, any sort of write attempt will result in an error."),
4590 set_write_memory_registers_permission, NULL,
4591 &setlist, &showlist);
4593 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4594 &may_insert_breakpoints_1, _("\
4595 Set permission to insert breakpoints in the target."), _("\
4596 Show permission to insert breakpoints in the target."), _("\
4597 When this permission is on, GDB may insert breakpoints in the program.\n\
4598 Otherwise, any sort of insertion attempt will result in an error."),
4599 set_target_permissions, NULL,
4600 &setlist, &showlist);
4602 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4603 &may_insert_tracepoints_1, _("\
4604 Set permission to insert tracepoints in the target."), _("\
4605 Show permission to insert tracepoints in the target."), _("\
4606 When this permission is on, GDB may insert tracepoints in the program.\n\
4607 Otherwise, any sort of insertion attempt will result in an error."),
4608 set_target_permissions, NULL,
4609 &setlist, &showlist);
4611 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4612 &may_insert_fast_tracepoints_1, _("\
4613 Set permission to insert fast tracepoints in the target."), _("\
4614 Show permission to insert fast tracepoints in the target."), _("\
4615 When this permission is on, GDB may insert fast tracepoints.\n\
4616 Otherwise, any sort of insertion attempt will result in an error."),
4617 set_target_permissions, NULL,
4618 &setlist, &showlist);
4620 add_setshow_boolean_cmd ("may-interrupt", class_support,
4621 &may_stop_1, _("\
4622 Set permission to interrupt or signal the target."), _("\
4623 Show permission to interrupt or signal the target."), _("\
4624 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4625 Otherwise, any attempt to interrupt or stop will be ignored."),
4626 set_target_permissions, NULL,
4627 &setlist, &showlist);
4629 add_com ("flash-erase", no_class, flash_erase_command,
4630 _("Erase all flash memory regions."));
4632 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4633 &auto_connect_native_target, _("\
4634 Set whether GDB may automatically connect to the native target."), _("\
4635 Show whether GDB may automatically connect to the native target."), _("\
4636 When on, and GDB is not connected to a target yet, GDB\n\
4637 attempts \"run\" and other commands with the native target."),
4638 NULL, show_auto_connect_native_target,
4639 &setlist, &showlist);