1 @c Copyright (C) 1991-2014 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
9 @chapter 80386 Dependent Features
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
17 @cindex i80386 support
18 @cindex x86-64 support
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-Bugs:: AT&T Syntax bugs
47 @cindex options for i386
48 @cindex options for x86-64
50 @cindex x86-64 options
52 The i386 version of @code{@value{AS}} has a few machine
57 @cindex @samp{--32} option, i386
58 @cindex @samp{--32} option, x86-64
59 @cindex @samp{--x32} option, i386
60 @cindex @samp{--x32} option, x86-64
61 @cindex @samp{--64} option, i386
62 @cindex @samp{--64} option, x86-64
63 @item --32 | --x32 | --64
64 Select the word size, either 32 bits or 64 bits. @samp{--32}
65 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
66 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
69 These options are only available with the ELF object file format, and
70 require that the necessary BFD support has been included (on a 32-bit
71 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72 usage and use x86-64 as target platform).
75 By default, x86 GAS replaces multiple nop instructions used for
76 alignment within code sections with multi-byte nop instructions such
77 as leal 0(%esi,1),%esi. This switch disables the optimization.
79 @cindex @samp{--divide} option, i386
81 On SVR4-derived platforms, the character @samp{/} is treated as a comment
82 character, which means that it cannot be used in expressions. The
83 @samp{--divide} option turns @samp{/} into a normal character. This does
84 not disable @samp{/} at the beginning of a line starting a comment, or
85 affect using @samp{#} for starting a comment.
87 @cindex @samp{-march=} option, i386
88 @cindex @samp{-march=} option, x86-64
89 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90 This option specifies the target processor. The assembler will
91 issue an error message if an attempt is made to assemble an instruction
92 which will not execute on the target processor. The following
93 processor names are recognized:
128 In addition to the basic instruction set, the assembler can be told to
129 accept various extension mnemonics. For example,
130 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
131 @var{vmx}. The following extensions are currently supported:
191 Note that rather than extending a basic instruction set, the extension
192 mnemonics starting with @code{no} revoke the respective functionality.
194 When the @code{.arch} directive is used with @option{-march}, the
195 @code{.arch} directive will take precedent.
197 @cindex @samp{-mtune=} option, i386
198 @cindex @samp{-mtune=} option, x86-64
199 @item -mtune=@var{CPU}
200 This option specifies a processor to optimize for. When used in
201 conjunction with the @option{-march} option, only instructions
202 of the processor specified by the @option{-march} option will be
205 Valid @var{CPU} values are identical to the processor list of
206 @option{-march=@var{CPU}}.
208 @cindex @samp{-msse2avx} option, i386
209 @cindex @samp{-msse2avx} option, x86-64
211 This option specifies that the assembler should encode SSE instructions
214 @cindex @samp{-msse-check=} option, i386
215 @cindex @samp{-msse-check=} option, x86-64
216 @item -msse-check=@var{none}
217 @itemx -msse-check=@var{warning}
218 @itemx -msse-check=@var{error}
219 These options control if the assembler should check SSE instructions.
220 @option{-msse-check=@var{none}} will make the assembler not to check SSE
221 instructions, which is the default. @option{-msse-check=@var{warning}}
222 will make the assembler issue a warning for any SSE instruction.
223 @option{-msse-check=@var{error}} will make the assembler issue an error
224 for any SSE instruction.
226 @cindex @samp{-mavxscalar=} option, i386
227 @cindex @samp{-mavxscalar=} option, x86-64
228 @item -mavxscalar=@var{128}
229 @itemx -mavxscalar=@var{256}
230 These options control how the assembler should encode scalar AVX
231 instructions. @option{-mavxscalar=@var{128}} will encode scalar
232 AVX instructions with 128bit vector length, which is the default.
233 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
234 with 256bit vector length.
236 @cindex @samp{-mevexlig=} option, i386
237 @cindex @samp{-mevexlig=} option, x86-64
238 @item -mevexlig=@var{128}
239 @itemx -mevexlig=@var{256}
240 @itemx -mevexlig=@var{512}
241 These options control how the assembler should encode length-ignored
242 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
243 EVEX instructions with 128bit vector length, which is the default.
244 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
245 encode LIG EVEX instructions with 256bit and 512bit vector length,
248 @cindex @samp{-mevexwig=} option, i386
249 @cindex @samp{-mevexwig=} option, x86-64
250 @item -mevexwig=@var{0}
251 @itemx -mevexwig=@var{1}
252 These options control how the assembler should encode w-ignored (WIG)
253 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
254 EVEX instructions with evex.w = 0, which is the default.
255 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
258 @cindex @samp{-mmnemonic=} option, i386
259 @cindex @samp{-mmnemonic=} option, x86-64
260 @item -mmnemonic=@var{att}
261 @itemx -mmnemonic=@var{intel}
262 This option specifies instruction mnemonic for matching instructions.
263 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
266 @cindex @samp{-msyntax=} option, i386
267 @cindex @samp{-msyntax=} option, x86-64
268 @item -msyntax=@var{att}
269 @itemx -msyntax=@var{intel}
270 This option specifies instruction syntax when processing instructions.
271 The @code{.att_syntax} and @code{.intel_syntax} directives will
274 @cindex @samp{-mnaked-reg} option, i386
275 @cindex @samp{-mnaked-reg} option, x86-64
277 This opetion specifies that registers don't require a @samp{%} prefix.
278 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
280 @cindex @samp{-madd-bnd-prefix} option, i386
281 @cindex @samp{-madd-bnd-prefix} option, x86-64
282 @item -madd-bnd-prefix
283 This option forces the assembler to add BND prefix to all branches, even
284 if such prefix was not explicitly specified in the source code.
286 @cindex @samp{-mbig-obj} option, x86-64
288 On x86-64 PE/COFF target this option forces the use of big object file
289 format, which allows more than 32768 sections.
294 @node i386-Directives
295 @section x86 specific Directives
297 @cindex machine directives, x86
298 @cindex x86 machine directives
301 @cindex @code{lcomm} directive, COFF
302 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
303 Reserve @var{length} (an absolute expression) bytes for a local common
304 denoted by @var{symbol}. The section and value of @var{symbol} are
305 those of the new local common. The addresses are allocated in the bss
306 section, so that at run-time the bytes start off zeroed. Since
307 @var{symbol} is not declared global, it is normally not visible to
308 @code{@value{LD}}. The optional third parameter, @var{alignment},
309 specifies the desired alignment of the symbol in the bss section.
311 This directive is only available for COFF based x86 targets.
313 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
319 @section i386 Syntactical Considerations
321 * i386-Variations:: AT&T Syntax versus Intel Syntax
322 * i386-Chars:: Special Characters
325 @node i386-Variations
326 @subsection AT&T Syntax versus Intel Syntax
328 @cindex i386 intel_syntax pseudo op
329 @cindex intel_syntax pseudo op, i386
330 @cindex i386 att_syntax pseudo op
331 @cindex att_syntax pseudo op, i386
332 @cindex i386 syntax compatibility
333 @cindex syntax compatibility, i386
334 @cindex x86-64 intel_syntax pseudo op
335 @cindex intel_syntax pseudo op, x86-64
336 @cindex x86-64 att_syntax pseudo op
337 @cindex att_syntax pseudo op, x86-64
338 @cindex x86-64 syntax compatibility
339 @cindex syntax compatibility, x86-64
341 @code{@value{AS}} now supports assembly using Intel assembler syntax.
342 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
343 back to the usual AT&T mode for compatibility with the output of
344 @code{@value{GCC}}. Either of these directives may have an optional
345 argument, @code{prefix}, or @code{noprefix} specifying whether registers
346 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
347 different from Intel syntax. We mention these differences because
348 almost all 80386 documents use Intel syntax. Notable differences
349 between the two syntaxes are:
351 @cindex immediate operands, i386
352 @cindex i386 immediate operands
353 @cindex register operands, i386
354 @cindex i386 register operands
355 @cindex jump/call operands, i386
356 @cindex i386 jump/call operands
357 @cindex operand delimiters, i386
359 @cindex immediate operands, x86-64
360 @cindex x86-64 immediate operands
361 @cindex register operands, x86-64
362 @cindex x86-64 register operands
363 @cindex jump/call operands, x86-64
364 @cindex x86-64 jump/call operands
365 @cindex operand delimiters, x86-64
368 AT&T immediate operands are preceded by @samp{$}; Intel immediate
369 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
370 AT&T register operands are preceded by @samp{%}; Intel register operands
371 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
372 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
374 @cindex i386 source, destination operands
375 @cindex source, destination operands; i386
376 @cindex x86-64 source, destination operands
377 @cindex source, destination operands; x86-64
379 AT&T and Intel syntax use the opposite order for source and destination
380 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
381 @samp{source, dest} convention is maintained for compatibility with
382 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
383 instructions with 2 immediate operands, such as the @samp{enter}
384 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
386 @cindex mnemonic suffixes, i386
387 @cindex sizes operands, i386
388 @cindex i386 size suffixes
389 @cindex mnemonic suffixes, x86-64
390 @cindex sizes operands, x86-64
391 @cindex x86-64 size suffixes
393 In AT&T syntax the size of memory operands is determined from the last
394 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
395 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
396 (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
397 this by prefixing memory operands (@emph{not} the instruction mnemonics) with
398 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
399 Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
402 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
403 instruction with the 64-bit displacement or immediate operand.
405 @cindex return instructions, i386
406 @cindex i386 jump, call, return
407 @cindex return instructions, x86-64
408 @cindex x86-64 jump, call, return
410 Immediate form long jumps and calls are
411 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
413 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
415 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
416 @samp{ret far @var{stack-adjust}}.
418 @cindex sections, i386
419 @cindex i386 sections
420 @cindex sections, x86-64
421 @cindex x86-64 sections
423 The AT&T assembler does not provide support for multiple section
424 programs. Unix style systems expect all programs to be single sections.
428 @subsection Special Characters
430 @cindex line comment character, i386
431 @cindex i386 line comment character
432 The presence of a @samp{#} appearing anywhere on a line indicates the
433 start of a comment that extends to the end of that line.
435 If a @samp{#} appears as the first character of a line then the whole
436 line is treated as a comment, but in this case the line can also be a
437 logical line number directive (@pxref{Comments}) or a preprocessor
438 control command (@pxref{Preprocessing}).
440 If the @option{--divide} command line option has not been specified
441 then the @samp{/} character appearing anywhere on a line also
442 introduces a line comment.
444 @cindex line separator, i386
445 @cindex statement separator, i386
446 @cindex i386 line separator
447 The @samp{;} character can be used to separate statements on the same
451 @section Instruction Naming
453 @cindex i386 instruction naming
454 @cindex instruction naming, i386
455 @cindex x86-64 instruction naming
456 @cindex instruction naming, x86-64
458 Instruction mnemonics are suffixed with one character modifiers which
459 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
460 and @samp{q} specify byte, word, long and quadruple word operands. If
461 no suffix is specified by an instruction then @code{@value{AS}} tries to
462 fill in the missing suffix based on the destination register operand
463 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
464 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
465 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
466 assembler which assumes that a missing mnemonic suffix implies long
467 operand size. (This incompatibility does not affect compiler output
468 since compilers always explicitly specify the mnemonic suffix.)
470 Almost all instructions have the same names in AT&T and Intel format.
471 There are a few exceptions. The sign extend and zero extend
472 instructions need two sizes to specify them. They need a size to
473 sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
474 is accomplished by using two instruction mnemonic suffixes in AT&T
475 syntax. Base names for sign extend and zero extend are
476 @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
477 and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
478 are tacked on to this base name, the @emph{from} suffix before the
479 @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
480 ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
481 thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
482 @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
483 @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
486 @cindex encoding options, i386
487 @cindex encoding options, x86-64
489 Different encoding options can be specified via optional mnemonic
490 suffix. @samp{.s} suffix swaps 2 register operands in encoding when
491 moving from one register to another. @samp{.d8} or @samp{.d32} suffix
492 prefers 8bit or 32bit displacement in encoding.
494 @cindex conversion instructions, i386
495 @cindex i386 conversion instructions
496 @cindex conversion instructions, x86-64
497 @cindex x86-64 conversion instructions
498 The Intel-syntax conversion instructions
502 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
505 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
508 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
511 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
514 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
518 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
519 @samp{%rdx:%rax} (x86-64 only),
523 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
524 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
527 @cindex jump instructions, i386
528 @cindex call instructions, i386
529 @cindex jump instructions, x86-64
530 @cindex call instructions, x86-64
531 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
532 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
535 @section AT&T Mnemonic versus Intel Mnemonic
537 @cindex i386 mnemonic compatibility
538 @cindex mnemonic compatibility, i386
540 @code{@value{AS}} supports assembly using Intel mnemonic.
541 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
542 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
543 syntax for compatibility with the output of @code{@value{GCC}}.
544 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
545 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
546 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
547 assembler with different mnemonics from those in Intel IA32 specification.
548 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
551 @section Register Naming
553 @cindex i386 registers
554 @cindex registers, i386
555 @cindex x86-64 registers
556 @cindex registers, x86-64
557 Register operands are always prefixed with @samp{%}. The 80386 registers
562 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
563 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
564 frame pointer), and @samp{%esp} (the stack pointer).
567 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
568 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
571 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
572 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
573 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
574 @samp{%cx}, and @samp{%dx})
577 the 6 section registers @samp{%cs} (code section), @samp{%ds}
578 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
582 the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
586 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
587 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
590 the 2 test registers @samp{%tr6} and @samp{%tr7}.
593 the 8 floating point register stack @samp{%st} or equivalently
594 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
595 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
596 These registers are overloaded by 8 MMX registers @samp{%mm0},
597 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
598 @samp{%mm6} and @samp{%mm7}.
601 the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
602 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
605 The AMD x86-64 architecture extends the register set by:
609 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
610 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
611 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
615 the 8 extended registers @samp{%r8}--@samp{%r15}.
618 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
621 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
624 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
627 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
630 the 8 debug registers: @samp{%db8}--@samp{%db15}.
633 the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
637 @section Instruction Prefixes
639 @cindex i386 instruction prefixes
640 @cindex instruction prefixes, i386
641 @cindex prefixes, i386
642 Instruction prefixes are used to modify the following instruction. They
643 are used to repeat string instructions, to provide section overrides, to
644 perform bus lock operations, and to change operand and address sizes.
645 (Most instructions that normally operate on 32-bit operands will use
646 16-bit operands if the instruction has an ``operand size'' prefix.)
647 Instruction prefixes are best written on the same line as the instruction
648 they act upon. For example, the @samp{scas} (scan string) instruction is
652 repne scas %es:(%edi),%al
655 You may also place prefixes on the lines immediately preceding the
656 instruction, but this circumvents checks that @code{@value{AS}} does
657 with prefixes, and will not work with all prefixes.
659 Here is a list of instruction prefixes:
661 @cindex section override prefixes, i386
664 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
665 @samp{fs}, @samp{gs}. These are automatically added by specifying
666 using the @var{section}:@var{memory-operand} form for memory references.
668 @cindex size prefixes, i386
670 Operand/Address size prefixes @samp{data16} and @samp{addr16}
671 change 32-bit operands/addresses into 16-bit operands/addresses,
672 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
673 @code{.code16} section) into 32-bit operands/addresses. These prefixes
674 @emph{must} appear on the same line of code as the instruction they
675 modify. For example, in a 16-bit @code{.code16} section, you might
682 @cindex bus lock prefixes, i386
683 @cindex inhibiting interrupts, i386
685 The bus lock prefix @samp{lock} inhibits interrupts during execution of
686 the instruction it precedes. (This is only valid with certain
687 instructions; see a 80386 manual for details).
689 @cindex coprocessor wait, i386
691 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
692 complete the current instruction. This should never be needed for the
693 80386/80387 combination.
695 @cindex repeat prefixes, i386
697 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
698 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
699 times if the current address size is 16-bits).
700 @cindex REX prefixes, i386
702 The @samp{rex} family of prefixes is used by x86-64 to encode
703 extensions to i386 instruction set. The @samp{rex} prefix has four
704 bits --- an operand size overwrite (@code{64}) used to change operand size
705 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
708 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
709 instruction emits @samp{rex} prefix with all the bits set. By omitting
710 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
711 prefixes as well. Normally, there is no need to write the prefixes
712 explicitly, since gas will automatically generate them based on the
713 instruction operands.
717 @section Memory References
719 @cindex i386 memory references
720 @cindex memory references, i386
721 @cindex x86-64 memory references
722 @cindex memory references, x86-64
723 An Intel syntax indirect memory reference of the form
726 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
730 is translated into the AT&T syntax
733 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
737 where @var{base} and @var{index} are the optional 32-bit base and
738 index registers, @var{disp} is the optional displacement, and
739 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
740 to calculate the address of the operand. If no @var{scale} is
741 specified, @var{scale} is taken to be 1. @var{section} specifies the
742 optional section register for the memory operand, and may override the
743 default section register (see a 80386 manual for section register
744 defaults). Note that section overrides in AT&T syntax @emph{must}
745 be preceded by a @samp{%}. If you specify a section override which
746 coincides with the default section register, @code{@value{AS}} does @emph{not}
747 output any section register override prefixes to assemble the given
748 instruction. Thus, section overrides can be specified to emphasize which
749 section register is used for a given memory operand.
751 Here are some examples of Intel and AT&T style memory references:
754 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
755 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
756 missing, and the default section is used (@samp{%ss} for addressing with
757 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
759 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
760 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
761 @samp{foo}. All other fields are missing. The section register here
762 defaults to @samp{%ds}.
764 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
765 This uses the value pointed to by @samp{foo} as a memory operand.
766 Note that @var{base} and @var{index} are both missing, but there is only
767 @emph{one} @samp{,}. This is a syntactic exception.
769 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
770 This selects the contents of the variable @samp{foo} with section
771 register @var{section} being @samp{%gs}.
774 Absolute (as opposed to PC relative) call and jump operands must be
775 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
776 always chooses PC relative addressing for jump/call labels.
778 Any instruction that has a memory operand, but no register operand,
779 @emph{must} specify its size (byte, word, long, or quadruple) with an
780 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
783 The x86-64 architecture adds an RIP (instruction pointer relative)
784 addressing. This addressing mode is specified by using @samp{rip} as a
785 base register. Only constant offsets are valid. For example:
788 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
789 Points to the address 1234 bytes past the end of the current
792 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
793 Points to the @code{symbol} in RIP relative way, this is shorter than
794 the default absolute addressing.
797 Other addressing modes remain unchanged in x86-64 architecture, except
798 registers used are 64-bit instead of 32-bit.
801 @section Handling of Jump Instructions
803 @cindex jump optimization, i386
804 @cindex i386 jump optimization
805 @cindex jump optimization, x86-64
806 @cindex x86-64 jump optimization
807 Jump instructions are always optimized to use the smallest possible
808 displacements. This is accomplished by using byte (8-bit) displacement
809 jumps whenever the target is sufficiently close. If a byte displacement
810 is insufficient a long displacement is used. We do not support
811 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
812 instruction with the @samp{data16} instruction prefix), since the 80386
813 insists upon masking @samp{%eip} to 16 bits after the word displacement
814 is added. (See also @pxref{i386-Arch})
816 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
817 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
818 displacements, so that if you use these instructions (@code{@value{GCC}} does
819 not use them) you may get an error message (and incorrect code). The AT&T
820 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
831 @section Floating Point
833 @cindex i386 floating point
834 @cindex floating point, i386
835 @cindex x86-64 floating point
836 @cindex floating point, x86-64
837 All 80387 floating point types except packed BCD are supported.
838 (BCD support may be added without much difficulty). These data
839 types are 16-, 32-, and 64- bit integers, and single (32-bit),
840 double (64-bit), and extended (80-bit) precision floating point.
841 Each supported type has an instruction mnemonic suffix and a constructor
842 associated with it. Instruction mnemonic suffixes specify the operand's
843 data type. Constructors build these data types into memory.
845 @cindex @code{float} directive, i386
846 @cindex @code{single} directive, i386
847 @cindex @code{double} directive, i386
848 @cindex @code{tfloat} directive, i386
849 @cindex @code{float} directive, x86-64
850 @cindex @code{single} directive, x86-64
851 @cindex @code{double} directive, x86-64
852 @cindex @code{tfloat} directive, x86-64
855 Floating point constructors are @samp{.float} or @samp{.single},
856 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
857 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
858 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
859 only supports this format via the @samp{fldt} (load 80-bit real to stack
860 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
862 @cindex @code{word} directive, i386
863 @cindex @code{long} directive, i386
864 @cindex @code{int} directive, i386
865 @cindex @code{quad} directive, i386
866 @cindex @code{word} directive, x86-64
867 @cindex @code{long} directive, x86-64
868 @cindex @code{int} directive, x86-64
869 @cindex @code{quad} directive, x86-64
871 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
872 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
873 corresponding instruction mnemonic suffixes are @samp{s} (single),
874 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
875 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
876 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
880 Register to register operations should not use instruction mnemonic suffixes.
881 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
882 wrote @samp{fst %st, %st(1)}, since all register to register operations
883 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
884 which converts @samp{%st} from 80-bit to 64-bit floating point format,
885 then stores the result in the 4 byte location @samp{mem})
888 @section Intel's MMX and AMD's 3DNow! SIMD Operations
894 @cindex 3DNow!, x86-64
897 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
898 instructions for integer data), available on Intel's Pentium MMX
899 processors and Pentium II processors, AMD's K6 and K6-2 processors,
900 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
901 instruction set (SIMD instructions for 32-bit floating point data)
902 available on AMD's K6-2 processor and possibly others in the future.
904 Currently, @code{@value{AS}} does not support Intel's floating point
907 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
908 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
909 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
910 floating point values. The MMX registers cannot be used at the same time
911 as the floating point stack.
913 See Intel and AMD documentation, keeping in mind that the operand order in
914 instructions is reversed from the Intel syntax.
917 @section AMD's Lightweight Profiling Instructions
922 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
923 instruction set, available on AMD's Family 15h (Orochi) processors.
925 LWP enables applications to collect and manage performance data, and
926 react to performance events. The collection of performance data
927 requires no context switches. LWP runs in the context of a thread and
928 so several counters can be used independently across multiple threads.
929 LWP can be used in both 64-bit and legacy 32-bit modes.
931 For detailed information on the LWP instruction set, see the
932 @cite{AMD Lightweight Profiling Specification} available at
933 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
936 @section Bit Manipulation Instructions
941 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
943 BMI instructions provide several instructions implementing individual
944 bit manipulation operations such as isolation, masking, setting, or
947 @c Need to add a specification citation here when available.
950 @section AMD's Trailing Bit Manipulation Instructions
955 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
956 instruction set, available on AMD's BDVER2 processors (Trinity and
959 TBM instructions provide instructions implementing individual bit
960 manipulation operations such as isolating, masking, setting, resetting,
961 complementing, and operations on trailing zeros and ones.
963 @c Need to add a specification citation here when available.
966 @section Writing 16-bit Code
968 @cindex i386 16-bit code
969 @cindex 16-bit code, i386
970 @cindex real-mode code, i386
971 @cindex @code{code16gcc} directive, i386
972 @cindex @code{code16} directive, i386
973 @cindex @code{code32} directive, i386
974 @cindex @code{code64} directive, i386
975 @cindex @code{code64} directive, x86-64
976 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
977 or 64-bit x86-64 code depending on the default configuration,
978 it also supports writing code to run in real mode or in 16-bit protected
979 mode code segments. To do this, put a @samp{.code16} or
980 @samp{.code16gcc} directive before the assembly language instructions to
981 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
982 32-bit code with the @samp{.code32} directive or 64-bit code with the
983 @samp{.code64} directive.
985 @samp{.code16gcc} provides experimental support for generating 16-bit
986 code from gcc, and differs from @samp{.code16} in that @samp{call},
987 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
988 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
989 default to 32-bit size. This is so that the stack pointer is
990 manipulated in the same way over function calls, allowing access to
991 function parameters at the same stack offsets as in 32-bit mode.
992 @samp{.code16gcc} also automatically adds address size prefixes where
993 necessary to use the 32-bit addressing modes that gcc generates.
995 The code which @code{@value{AS}} generates in 16-bit mode will not
996 necessarily run on a 16-bit pre-80386 processor. To write code that
997 runs on such a processor, you must refrain from using @emph{any} 32-bit
998 constructs which require @code{@value{AS}} to output address or operand
1001 Note that writing 16-bit code instructions by explicitly specifying a
1002 prefix or an instruction mnemonic suffix within a 32-bit code section
1003 generates different machine instructions than those generated for a
1004 16-bit code segment. In a 32-bit code section, the following code
1005 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1006 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1012 The same code in a 16-bit code section would generate the machine
1013 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1014 is correct since the processor default operand size is assumed to be 16
1015 bits in a 16-bit code section.
1018 @section AT&T Syntax bugs
1020 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1021 assemblers, generate floating point instructions with reversed source
1022 and destination registers in certain cases. Unfortunately, gcc and
1023 possibly many other programs use this reversed syntax, so we're stuck
1032 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1033 than the expected @samp{%st(3) - %st}. This happens with all the
1034 non-commutative arithmetic floating point operations with two register
1035 operands where the source register is @samp{%st} and the destination
1036 register is @samp{%st(i)}.
1039 @section Specifying CPU Architecture
1041 @cindex arch directive, i386
1042 @cindex i386 arch directive
1043 @cindex arch directive, x86-64
1044 @cindex x86-64 arch directive
1046 @code{@value{AS}} may be told to assemble for a particular CPU
1047 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1048 directive enables a warning when gas detects an instruction that is not
1049 supported on the CPU specified. The choices for @var{cpu_type} are:
1051 @multitable @columnfractions .20 .20 .20 .20
1052 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1053 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1054 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1055 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1056 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om}
1057 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1058 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1059 @item @samp{bdver4} @tab @samp{btver1} @tab @samp{btver2}
1060 @item @samp{generic32} @tab @samp{generic64}
1061 @item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
1062 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1063 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1064 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1065 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1066 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1067 @item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
1068 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1069 @item @samp{.smap} @tab @samp{.mpx}
1070 @item @samp{.smap} @tab @samp{.sha}
1071 @item @samp{.smap} @tab @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves}
1072 @item @samp{.smap} @tab @samp{.prefetchwt1}
1073 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1074 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
1075 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1076 @item @samp{.padlock}
1077 @item @samp{.smap} @tab @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er}
1078 @item @samp{.avx512pf} @tab @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a}
1079 @item @samp{.sse5} @tab @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1080 @item @samp{.abm} @tab @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1081 @item @samp{.cx16} @tab @samp{.padlock}
1084 Apart from the warning, there are only two other effects on
1085 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1086 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1087 will automatically use a two byte opcode sequence. The larger three
1088 byte opcode sequence is used on the 486 (and when no architecture is
1089 specified) because it executes faster on the 486. Note that you can
1090 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1091 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1092 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1093 conditional jumps will be promoted when necessary to a two instruction
1094 sequence consisting of a conditional jump of the opposite sense around
1095 an unconditional jump to the target.
1097 Following the CPU architecture (but not a sub-architecture, which are those
1098 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1099 control automatic promotion of conditional jumps. @samp{jumps} is the
1100 default, and enables jump promotion; All external jumps will be of the long
1101 variety, and file-local jumps will be promoted as necessary.
1102 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1103 byte offset jumps, and warns about file-local conditional jumps that
1104 @code{@value{AS}} promotes.
1105 Unconditional jumps are treated as for @samp{jumps}.
1116 @cindex i386 @code{mul}, @code{imul} instructions
1117 @cindex @code{mul} instruction, i386
1118 @cindex @code{imul} instruction, i386
1119 @cindex @code{mul} instruction, x86-64
1120 @cindex @code{imul} instruction, x86-64
1121 There is some trickery concerning the @samp{mul} and @samp{imul}
1122 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1123 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1124 for @samp{imul}) can be output only in the one operand form. Thus,
1125 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1126 the expanding multiply would clobber the @samp{%edx} register, and this
1127 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1128 64-bit product in @samp{%edx:%eax}.
1130 We have added a two operand form of @samp{imul} when the first operand
1131 is an immediate mode expression and the second operand is a register.
1132 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1133 example, can be done with @samp{imul $69, %eax} rather than @samp{imul