Regenerate AArch64 opcodes files
[binutils-gdb.git] / gdb / macroexp.c
blobb8a9b29db24592ff3c598fe94fa62d9aa002d09b
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002-2024 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "gdbsupport/gdb_obstack.h"
22 #include "macrotab.h"
23 #include "macroexp.h"
24 #include "macroscope.h"
25 #include "c-lang.h"
30 /* A string type that we can use to refer to substrings of other
31 strings. */
33 struct shared_macro_buffer
35 /* An array of characters. This buffer is a pointer into some
36 larger string and thus we can't assume in that the text is
37 null-terminated. */
38 const char *text;
40 /* The number of characters in the string. */
41 int len;
43 /* For detecting token splicing.
45 This is the index in TEXT of the first character of the token
46 that abuts the end of TEXT. If TEXT contains no tokens, then we
47 set this equal to LEN. If TEXT ends in whitespace, then there is
48 no token abutting the end of TEXT (it's just whitespace), and
49 again, we set this equal to LEN. We set this to -1 if we don't
50 know the nature of TEXT. */
51 int last_token = -1;
53 /* If this buffer is holding the result from get_token, then this
54 is non-zero if it is an identifier token, zero otherwise. */
55 int is_identifier = 0;
57 shared_macro_buffer ()
58 : text (NULL),
59 len (0)
63 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
64 shared substring. */
65 shared_macro_buffer (const char *addr, int len)
67 set_shared (addr, len);
70 /* Set the macro buffer to refer to the LEN bytes at ADDR, as a
71 shared substring. */
72 void set_shared (const char *addr, int len_)
74 text = addr;
75 len = len_;
79 /* A string type that we can resize and quickly append to. */
81 struct growable_macro_buffer
83 /* An array of characters. The first LEN bytes are the real text,
84 but there are SIZE bytes allocated to the array. */
85 char *text;
87 /* The number of characters in the string. */
88 int len;
90 /* The number of characters allocated to the string. */
91 int size;
93 /* For detecting token splicing.
95 This is the index in TEXT of the first character of the token
96 that abuts the end of TEXT. If TEXT contains no tokens, then we
97 set this equal to LEN. If TEXT ends in whitespace, then there is
98 no token abutting the end of TEXT (it's just whitespace), and
99 again, we set this equal to LEN. We set this to -1 if we don't
100 know the nature of TEXT. */
101 int last_token = -1;
103 /* Set the macro buffer to the empty string, guessing that its
104 final contents will fit in N bytes. (It'll get resized if it
105 doesn't, so the guess doesn't have to be right.) Allocate the
106 initial storage with xmalloc. */
107 explicit growable_macro_buffer (int n)
108 : len (0),
109 size (n)
111 if (n > 0)
112 text = (char *) xmalloc (n);
113 else
114 text = NULL;
117 DISABLE_COPY_AND_ASSIGN (growable_macro_buffer);
119 ~growable_macro_buffer ()
121 xfree (text);
124 /* Release the text of the buffer to the caller. */
125 gdb::unique_xmalloc_ptr<char> release ()
127 gdb_assert (size);
128 char *result = text;
129 text = NULL;
130 return gdb::unique_xmalloc_ptr<char> (result);
133 /* Resize the buffer to be at least N bytes long. */
134 void resize_buffer (int n)
136 if (size == 0)
137 size = n;
138 else
139 while (size <= n)
140 size *= 2;
142 text = (char *) xrealloc (text, size);
145 /* Append the character C to the buffer. */
146 void appendc (int c)
148 int new_len = len + 1;
150 if (new_len > size)
151 resize_buffer (new_len);
153 text[len] = c;
154 len = new_len;
157 /* Append the COUNT bytes at ADDR to the buffer. */
158 void appendmem (const char *addr, int count)
160 int new_len = len + count;
162 if (new_len > size)
163 resize_buffer (new_len);
165 memcpy (text + len, addr, count);
166 len = new_len;
172 /* Recognizing preprocessor tokens. */
176 macro_is_whitespace (int c)
178 return (c == ' '
179 || c == '\t'
180 || c == '\n'
181 || c == '\v'
182 || c == '\f');
187 macro_is_digit (int c)
189 return ('0' <= c && c <= '9');
194 macro_is_identifier_nondigit (int c)
196 return (c == '_'
197 || ('a' <= c && c <= 'z')
198 || ('A' <= c && c <= 'Z'));
202 static void
203 set_token (shared_macro_buffer *tok, const char *start, const char *end)
205 tok->set_shared (start, end - start);
206 tok->last_token = 0;
208 /* Presumed; get_identifier may overwrite this. */
209 tok->is_identifier = 0;
213 static int
214 get_comment (shared_macro_buffer *tok, const char *p, const char *end)
216 if (p + 2 > end)
217 return 0;
218 else if (p[0] == '/'
219 && p[1] == '*')
221 const char *tok_start = p;
223 p += 2;
225 for (; p < end; p++)
226 if (p + 2 <= end
227 && p[0] == '*'
228 && p[1] == '/')
230 p += 2;
231 set_token (tok, tok_start, p);
232 return 1;
235 error (_("Unterminated comment in macro expansion."));
237 else if (p[0] == '/'
238 && p[1] == '/')
240 const char *tok_start = p;
242 p += 2;
243 for (; p < end; p++)
244 if (*p == '\n')
245 break;
247 set_token (tok, tok_start, p);
248 return 1;
250 else
251 return 0;
255 static int
256 get_identifier (shared_macro_buffer *tok, const char *p, const char *end)
258 if (p < end
259 && macro_is_identifier_nondigit (*p))
261 const char *tok_start = p;
263 while (p < end
264 && (macro_is_identifier_nondigit (*p)
265 || macro_is_digit (*p)))
266 p++;
268 set_token (tok, tok_start, p);
269 tok->is_identifier = 1;
270 return 1;
272 else
273 return 0;
277 static int
278 get_pp_number (shared_macro_buffer *tok, const char *p, const char *end)
280 if (p < end
281 && (macro_is_digit (*p)
282 || (*p == '.'
283 && p + 2 <= end
284 && macro_is_digit (p[1]))))
286 const char *tok_start = p;
288 while (p < end)
290 if (p + 2 <= end
291 && strchr ("eEpP", *p)
292 && (p[1] == '+' || p[1] == '-'))
293 p += 2;
294 else if (macro_is_digit (*p)
295 || macro_is_identifier_nondigit (*p)
296 || *p == '.')
297 p++;
298 else
299 break;
302 set_token (tok, tok_start, p);
303 return 1;
305 else
306 return 0;
311 /* If the text starting at P going up to (but not including) END
312 starts with a character constant, set *TOK to point to that
313 character constant, and return 1. Otherwise, return zero.
314 Signal an error if it contains a malformed or incomplete character
315 constant. */
316 static int
317 get_character_constant (shared_macro_buffer *tok,
318 const char *p, const char *end)
320 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
321 But of course, what really matters is that we handle it the same
322 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
323 to handle escape sequences. */
324 if ((p + 1 <= end && *p == '\'')
325 || (p + 2 <= end
326 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
327 && p[1] == '\''))
329 const char *tok_start = p;
330 int char_count = 0;
332 if (*p == '\'')
333 p++;
334 else if (*p == 'L' || *p == 'u' || *p == 'U')
335 p += 2;
336 else
337 gdb_assert_not_reached ("unexpected character constant");
339 for (;;)
341 if (p >= end)
342 error (_("Unmatched single quote."));
343 else if (*p == '\'')
345 if (!char_count)
346 error (_("A character constant must contain at least one "
347 "character."));
348 p++;
349 break;
351 else if (*p == '\\')
353 const char *s, *o;
355 s = o = ++p;
356 char_count += c_parse_escape (&s, NULL);
357 p += s - o;
359 else
361 p++;
362 char_count++;
366 set_token (tok, tok_start, p);
367 return 1;
369 else
370 return 0;
374 /* If the text starting at P going up to (but not including) END
375 starts with a string literal, set *TOK to point to that string
376 literal, and return 1. Otherwise, return zero. Signal an error if
377 it contains a malformed or incomplete string literal. */
378 static int
379 get_string_literal (shared_macro_buffer *tok, const char *p, const char *end)
381 if ((p + 1 <= end
382 && *p == '"')
383 || (p + 2 <= end
384 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
385 && p[1] == '"'))
387 const char *tok_start = p;
389 if (*p == '"')
390 p++;
391 else if (*p == 'L' || *p == 'u' || *p == 'U')
392 p += 2;
393 else
394 gdb_assert_not_reached ("unexpected string literal");
396 for (;;)
398 if (p >= end)
399 error (_("Unterminated string in expression."));
400 else if (*p == '"')
402 p++;
403 break;
405 else if (*p == '\n')
406 error (_("Newline characters may not appear in string "
407 "constants."));
408 else if (*p == '\\')
410 const char *s, *o;
412 s = o = ++p;
413 c_parse_escape (&s, NULL);
414 p += s - o;
416 else
417 p++;
420 set_token (tok, tok_start, p);
421 return 1;
423 else
424 return 0;
428 static int
429 get_punctuator (shared_macro_buffer *tok, const char *p, const char *end)
431 /* Here, speed is much less important than correctness and clarity. */
433 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
434 Note that this table is ordered in a special way. A punctuator
435 which is a prefix of another punctuator must appear after its
436 "extension". Otherwise, the wrong token will be returned. */
437 static const char * const punctuators[] = {
438 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
439 "...", ".",
440 "->", "--", "-=", "-",
441 "++", "+=", "+",
442 "*=", "*",
443 "!=", "!",
444 "&&", "&=", "&",
445 "/=", "/",
446 "%>", "%:%:", "%:", "%=", "%",
447 "^=", "^",
448 "##", "#",
449 ":>", ":",
450 "||", "|=", "|",
451 "<<=", "<<", "<=", "<:", "<%", "<",
452 ">>=", ">>", ">=", ">",
453 "==", "=",
457 int i;
459 if (p + 1 <= end)
461 for (i = 0; punctuators[i]; i++)
463 const char *punctuator = punctuators[i];
465 if (p[0] == punctuator[0])
467 int len = strlen (punctuator);
469 if (p + len <= end
470 && ! memcmp (p, punctuator, len))
472 set_token (tok, p, p + len);
473 return 1;
479 return 0;
483 /* Peel the next preprocessor token off of SRC, and put it in TOK.
484 Mutate TOK to refer to the first token in SRC, and mutate SRC to
485 refer to the text after that token. The resulting TOK will point
486 into the same string SRC does. Initialize TOK's last_token field.
487 Return non-zero if we succeed, or 0 if we didn't find any more
488 tokens in SRC. */
490 static int
491 get_token (shared_macro_buffer *tok, shared_macro_buffer *src)
493 const char *p = src->text;
494 const char *end = p + src->len;
496 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
498 preprocessing-token:
499 header-name
500 identifier
501 pp-number
502 character-constant
503 string-literal
504 punctuator
505 each non-white-space character that cannot be one of the above
507 We don't have to deal with header-name tokens, since those can
508 only occur after a #include, which we will never see. */
510 while (p < end)
511 if (macro_is_whitespace (*p))
512 p++;
513 else if (get_comment (tok, p, end))
514 p += tok->len;
515 else if (get_pp_number (tok, p, end)
516 || get_character_constant (tok, p, end)
517 || get_string_literal (tok, p, end)
518 /* Note: the grammar in the standard seems to be
519 ambiguous: L'x' can be either a wide character
520 constant, or an identifier followed by a normal
521 character constant. By trying `get_identifier' after
522 we try get_character_constant and get_string_literal,
523 we give the wide character syntax precedence. Now,
524 since GDB doesn't handle wide character constants
525 anyway, is this the right thing to do? */
526 || get_identifier (tok, p, end)
527 || get_punctuator (tok, p, end))
529 /* How many characters did we consume, including whitespace? */
530 int consumed = p - src->text + tok->len;
532 src->text += consumed;
533 src->len -= consumed;
534 return 1;
536 else
538 /* We have found a "non-whitespace character that cannot be
539 one of the above." Make a token out of it. */
540 int consumed;
542 set_token (tok, p, p + 1);
543 consumed = p - src->text + tok->len;
544 src->text += consumed;
545 src->len -= consumed;
546 return 1;
549 return 0;
554 /* Appending token strings, with and without splicing */
557 /* Append the macro buffer SRC to the end of DEST, and ensure that
558 doing so doesn't splice the token at the end of SRC with the token
559 at the beginning of DEST. SRC and DEST must have their last_token
560 fields set. Upon return, DEST's last_token field is set correctly.
562 For example:
564 If DEST is "(" and SRC is "y", then we can return with
565 DEST set to "(y" --- we've simply appended the two buffers.
567 However, if DEST is "x" and SRC is "y", then we must not return
568 with DEST set to "xy" --- that would splice the two tokens "x" and
569 "y" together to make a single token "xy". However, it would be
570 fine to return with DEST set to "x y". Similarly, "<" and "<" must
571 yield "< <", not "<<", etc. */
572 static void
573 append_tokens_without_splicing (growable_macro_buffer *dest,
574 shared_macro_buffer *src)
576 int original_dest_len = dest->len;
577 shared_macro_buffer dest_tail, new_token;
579 gdb_assert (src->last_token != -1);
580 gdb_assert (dest->last_token != -1);
582 /* First, just try appending the two, and call get_token to see if
583 we got a splice. */
584 dest->appendmem (src->text, src->len);
586 /* If DEST originally had no token abutting its end, then we can't
587 have spliced anything, so we're done. */
588 if (dest->last_token == original_dest_len)
590 dest->last_token = original_dest_len + src->last_token;
591 return;
594 /* Set DEST_TAIL to point to the last token in DEST, followed by
595 all the stuff we just appended. */
596 dest_tail.set_shared (dest->text + dest->last_token,
597 dest->len - dest->last_token);
599 /* Re-parse DEST's last token. We know that DEST used to contain
600 at least one token, so if it doesn't contain any after the
601 append, then we must have spliced "/" and "*" or "/" and "/" to
602 make a comment start. (Just for the record, I got this right
603 the first time. This is not a bug fix.) */
604 if (get_token (&new_token, &dest_tail)
605 && (new_token.text + new_token.len
606 == dest->text + original_dest_len))
608 /* No splice, so we're done. */
609 dest->last_token = original_dest_len + src->last_token;
610 return;
613 /* Okay, a simple append caused a splice. Let's chop dest back to
614 its original length and try again, but separate the texts with a
615 space. */
616 dest->len = original_dest_len;
617 dest->appendc (' ');
618 dest->appendmem (src->text, src->len);
620 dest_tail.set_shared (dest->text + dest->last_token,
621 dest->len - dest->last_token);
623 /* Try to re-parse DEST's last token, as above. */
624 if (get_token (&new_token, &dest_tail)
625 && (new_token.text + new_token.len
626 == dest->text + original_dest_len))
628 /* No splice, so we're done. */
629 dest->last_token = original_dest_len + 1 + src->last_token;
630 return;
633 /* As far as I know, there's no case where inserting a space isn't
634 enough to prevent a splice. */
635 internal_error (_("unable to avoid splicing tokens during macro expansion"));
638 /* Stringify an argument, and insert it into DEST. ARG is the text to
639 stringify; it is LEN bytes long. */
641 static void
642 stringify (growable_macro_buffer *dest, const char *arg, int len)
644 /* Trim initial whitespace from ARG. */
645 while (len > 0 && macro_is_whitespace (*arg))
647 ++arg;
648 --len;
651 /* Trim trailing whitespace from ARG. */
652 while (len > 0 && macro_is_whitespace (arg[len - 1]))
653 --len;
655 /* Insert the string. */
656 dest->appendc ('"');
657 while (len > 0)
659 /* We could try to handle strange cases here, like control
660 characters, but there doesn't seem to be much point. */
661 if (macro_is_whitespace (*arg))
663 /* Replace a sequence of whitespace with a single space. */
664 dest->appendc (' ');
665 while (len > 1 && macro_is_whitespace (arg[1]))
667 ++arg;
668 --len;
671 else if (*arg == '\\' || *arg == '"')
673 dest->appendc ('\\');
674 dest->appendc (*arg);
676 else
677 dest->appendc (*arg);
678 ++arg;
679 --len;
681 dest->appendc ('"');
682 dest->last_token = dest->len;
685 /* See macroexp.h. */
687 gdb::unique_xmalloc_ptr<char>
688 macro_stringify (const char *str)
690 int len = strlen (str);
691 growable_macro_buffer buffer (len);
693 stringify (&buffer, str, len);
694 buffer.appendc ('\0');
696 return buffer.release ();
700 /* Expanding macros! */
703 /* A singly-linked list of the names of the macros we are currently
704 expanding --- for detecting expansion loops. */
705 struct macro_name_list {
706 const char *name;
707 struct macro_name_list *next;
711 /* Return non-zero if we are currently expanding the macro named NAME,
712 according to LIST; otherwise, return zero.
714 You know, it would be possible to get rid of all the NO_LOOP
715 arguments to these functions by simply generating a new lookup
716 function and baton which refuses to find the definition for a
717 particular macro, and otherwise delegates the decision to another
718 function/baton pair. But that makes the linked list of excluded
719 macros chained through untyped baton pointers, which will make it
720 harder to debug. :( */
721 static int
722 currently_rescanning (struct macro_name_list *list, const char *name)
724 for (; list; list = list->next)
725 if (strcmp (name, list->name) == 0)
726 return 1;
728 return 0;
732 /* Gather the arguments to a macro expansion.
734 NAME is the name of the macro being invoked. (It's only used for
735 printing error messages.)
737 Assume that SRC is the text of the macro invocation immediately
738 following the macro name. For example, if we're processing the
739 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
740 baz).
742 If SRC doesn't start with an open paren ( token at all, return
743 false, leave SRC unchanged, and don't set *ARGS_PTR to anything.
745 If SRC doesn't contain a properly terminated argument list, then
746 raise an error.
748 For a variadic macro, NARGS holds the number of formal arguments to
749 the macro. For a GNU-style variadic macro, this should be the
750 number of named arguments. For a non-variadic macro, NARGS should
751 be -1.
753 Otherwise, return true and set *ARGS_PTR to a vector of macro
754 buffers referring to the argument texts. The macro buffers share
755 their text with SRC, and their last_token fields are initialized.
757 NOTE WELL: if SRC starts with a open paren ( token followed
758 immediately by a close paren ) token (e.g., the invocation looks
759 like "foo()"), we treat that as one argument, which happens to be
760 the empty list of tokens. The caller should keep in mind that such
761 a sequence of tokens is a valid way to invoke one-parameter
762 function-like macros, but also a valid way to invoke zero-parameter
763 function-like macros. Eeew.
765 Consume the tokens from SRC; after this call, SRC contains the text
766 following the invocation. */
768 static bool
769 gather_arguments (const char *name, shared_macro_buffer *src, int nargs,
770 std::vector<shared_macro_buffer> *args_ptr)
772 shared_macro_buffer tok;
773 std::vector<shared_macro_buffer> args;
775 /* Does SRC start with an opening paren token? Read from a copy of
776 SRC, so SRC itself is unaffected if we don't find an opening
777 paren. */
779 shared_macro_buffer temp (src->text, src->len);
781 if (! get_token (&tok, &temp)
782 || tok.len != 1
783 || tok.text[0] != '(')
784 return false;
787 /* Consume SRC's opening paren. */
788 get_token (&tok, src);
790 for (;;)
792 int depth;
794 /* Initialize the next argument. */
795 shared_macro_buffer *arg = &args.emplace_back ();
796 set_token (arg, src->text, src->text);
798 /* Gather the argument's tokens. */
799 depth = 0;
800 for (;;)
802 if (! get_token (&tok, src))
803 error (_("Malformed argument list for macro `%s'."), name);
805 /* Is tok an opening paren? */
806 if (tok.len == 1 && tok.text[0] == '(')
807 depth++;
809 /* Is tok is a closing paren? */
810 else if (tok.len == 1 && tok.text[0] == ')')
812 /* If it's a closing paren at the top level, then that's
813 the end of the argument list. */
814 if (depth == 0)
816 /* In the varargs case, the last argument may be
817 missing. Add an empty argument in this case. */
818 if (nargs != -1 && args.size () == nargs - 1)
820 arg = &args.emplace_back ();
821 set_token (arg, src->text, src->text);
824 *args_ptr = std::move (args);
825 return true;
828 depth--;
831 /* If tok is a comma at top level, then that's the end of
832 the current argument. However, if we are handling a
833 variadic macro and we are computing the last argument, we
834 want to include the comma and remaining tokens. */
835 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
836 && (nargs == -1 || args.size () < nargs))
837 break;
839 /* Extend the current argument to enclose this token. If
840 this is the current argument's first token, leave out any
841 leading whitespace, just for aesthetics. */
842 if (arg->len == 0)
844 arg->text = tok.text;
845 arg->len = tok.len;
846 arg->last_token = 0;
848 else
850 arg->len = (tok.text + tok.len) - arg->text;
851 arg->last_token = tok.text - arg->text;
858 /* The `expand' and `substitute_args' functions both invoke `scan'
859 recursively, so we need a forward declaration somewhere. */
860 static void scan (growable_macro_buffer *dest,
861 shared_macro_buffer *src,
862 struct macro_name_list *no_loop,
863 const macro_scope &scope);
865 /* A helper function for substitute_args.
867 ARGV is a vector of all the arguments; ARGC is the number of
868 arguments. IS_VARARGS is true if the macro being substituted is a
869 varargs macro; in this case VA_ARG_NAME is the name of the
870 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
871 false.
873 If the token TOK is the name of a parameter, return the parameter's
874 index. If TOK is not an argument, return -1. */
876 static int
877 find_parameter (const shared_macro_buffer *tok,
878 int is_varargs, const shared_macro_buffer *va_arg_name,
879 int argc, const char * const *argv)
881 int i;
883 if (! tok->is_identifier)
884 return -1;
886 for (i = 0; i < argc; ++i)
887 if (tok->len == strlen (argv[i])
888 && !memcmp (tok->text, argv[i], tok->len))
889 return i;
891 if (is_varargs && tok->len == va_arg_name->len
892 && ! memcmp (tok->text, va_arg_name->text, tok->len))
893 return argc - 1;
895 return -1;
898 /* Helper function for substitute_args that gets the next token and
899 updates the passed-in state variables. */
901 static void
902 get_next_token_for_substitution (shared_macro_buffer *replacement_list,
903 shared_macro_buffer *token,
904 const char **start,
905 shared_macro_buffer *lookahead,
906 const char **lookahead_start,
907 int *lookahead_valid,
908 bool *keep_going)
910 if (!*lookahead_valid)
911 *keep_going = false;
912 else
914 *keep_going = true;
915 *token = *lookahead;
916 *start = *lookahead_start;
917 *lookahead_start = replacement_list->text;
918 *lookahead_valid = get_token (lookahead, replacement_list);
922 /* Given the macro definition DEF, being invoked with the actual
923 arguments given by ARGV, substitute the arguments into the
924 replacement list, and store the result in DEST.
926 IS_VARARGS should be true if DEF is a varargs macro. In this case,
927 VA_ARG_NAME should be the name of the "variable" argument -- either
928 __VA_ARGS__ for c99-style varargs, or the final argument name, for
929 GNU-style varargs. If IS_VARARGS is false, this parameter is
930 ignored.
932 If it is necessary to expand macro invocations in one of the
933 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
934 definitions, and don't expand invocations of the macros listed in
935 NO_LOOP. */
937 static void
938 substitute_args (growable_macro_buffer *dest,
939 struct macro_definition *def,
940 int is_varargs, const shared_macro_buffer *va_arg_name,
941 const std::vector<shared_macro_buffer> &argv,
942 struct macro_name_list *no_loop,
943 const macro_scope &scope)
945 /* The token we are currently considering. */
946 shared_macro_buffer tok;
947 /* The replacement list's pointer from just before TOK was lexed. */
948 const char *original_rl_start;
949 /* We have a single lookahead token to handle token splicing. */
950 shared_macro_buffer lookahead;
951 /* The lookahead token might not be valid. */
952 int lookahead_valid;
953 /* The replacement list's pointer from just before LOOKAHEAD was
954 lexed. */
955 const char *lookahead_rl_start;
957 /* A macro buffer for the macro's replacement list. */
958 shared_macro_buffer replacement_list (def->replacement,
959 strlen (def->replacement));
961 gdb_assert (dest->len == 0);
962 dest->last_token = 0;
964 original_rl_start = replacement_list.text;
965 if (! get_token (&tok, &replacement_list))
966 return;
967 lookahead_rl_start = replacement_list.text;
968 lookahead_valid = get_token (&lookahead, &replacement_list);
970 /* __VA_OPT__ state variable. The states are:
971 0 - nothing happening
972 1 - saw __VA_OPT__
973 >= 2 in __VA_OPT__, the value encodes the parenthesis depth. */
974 unsigned vaopt_state = 0;
976 for (bool keep_going = true;
977 keep_going;
978 get_next_token_for_substitution (&replacement_list,
979 &tok,
980 &original_rl_start,
981 &lookahead,
982 &lookahead_rl_start,
983 &lookahead_valid,
984 &keep_going))
986 bool token_is_vaopt = (tok.len == 10
987 && startswith (tok.text, "__VA_OPT__"));
989 if (vaopt_state > 0)
991 if (token_is_vaopt)
992 error (_("__VA_OPT__ cannot appear inside __VA_OPT__"));
993 else if (tok.len == 1 && tok.text[0] == '(')
995 ++vaopt_state;
996 /* We just entered __VA_OPT__, so don't emit this
997 token. */
998 continue;
1000 else if (vaopt_state == 1)
1001 error (_("__VA_OPT__ must be followed by an open parenthesis"));
1002 else if (tok.len == 1 && tok.text[0] == ')')
1004 --vaopt_state;
1005 if (vaopt_state == 1)
1007 /* Done with __VA_OPT__. */
1008 vaopt_state = 0;
1009 /* Don't emit. */
1010 continue;
1014 /* If __VA_ARGS__ is empty, then drop the contents of
1015 __VA_OPT__. */
1016 if (argv.back ().len == 0)
1017 continue;
1019 else if (token_is_vaopt)
1021 if (!is_varargs)
1022 error (_("__VA_OPT__ is only valid in a variadic macro"));
1023 vaopt_state = 1;
1024 /* Don't emit this token. */
1025 continue;
1028 /* Just for aesthetics. If we skipped some whitespace, copy
1029 that to DEST. */
1030 if (tok.text > original_rl_start)
1032 dest->appendmem (original_rl_start, tok.text - original_rl_start);
1033 dest->last_token = dest->len;
1036 /* Is this token the stringification operator? */
1037 if (tok.len == 1
1038 && tok.text[0] == '#')
1040 int arg;
1042 if (!lookahead_valid)
1043 error (_("Stringification operator requires an argument."));
1045 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
1046 def->argc, def->argv);
1047 if (arg == -1)
1048 error (_("Argument to stringification operator must name "
1049 "a macro parameter."));
1051 stringify (dest, argv[arg].text, argv[arg].len);
1053 /* Read one token and let the loop iteration code handle the
1054 rest. */
1055 lookahead_rl_start = replacement_list.text;
1056 lookahead_valid = get_token (&lookahead, &replacement_list);
1058 /* Is this token the splicing operator? */
1059 else if (tok.len == 2
1060 && tok.text[0] == '#'
1061 && tok.text[1] == '#')
1062 error (_("Stray splicing operator"));
1063 /* Is the next token the splicing operator? */
1064 else if (lookahead_valid
1065 && lookahead.len == 2
1066 && lookahead.text[0] == '#'
1067 && lookahead.text[1] == '#')
1069 int finished = 0;
1070 int prev_was_comma = 0;
1072 /* Note that GCC warns if the result of splicing is not a
1073 token. In the debugger there doesn't seem to be much
1074 benefit from doing this. */
1076 /* Insert the first token. */
1077 if (tok.len == 1 && tok.text[0] == ',')
1078 prev_was_comma = 1;
1079 else
1081 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1082 def->argc, def->argv);
1084 if (arg != -1)
1085 dest->appendmem (argv[arg].text, argv[arg].len);
1086 else
1087 dest->appendmem (tok.text, tok.len);
1090 /* Apply a possible sequence of ## operators. */
1091 for (;;)
1093 if (! get_token (&tok, &replacement_list))
1094 error (_("Splicing operator at end of macro"));
1096 /* Handle a comma before a ##. If we are handling
1097 varargs, and the token on the right hand side is the
1098 varargs marker, and the final argument is empty or
1099 missing, then drop the comma. This is a GNU
1100 extension. There is one ambiguous case here,
1101 involving pedantic behavior with an empty argument,
1102 but we settle that in favor of GNU-style (GCC uses an
1103 option). If we aren't dealing with varargs, we
1104 simply insert the comma. */
1105 if (prev_was_comma)
1107 if (! (is_varargs
1108 && tok.len == va_arg_name->len
1109 && !memcmp (tok.text, va_arg_name->text, tok.len)
1110 && argv.back ().len == 0))
1111 dest->appendmem (",", 1);
1112 prev_was_comma = 0;
1115 /* Insert the token. If it is a parameter, insert the
1116 argument. If it is a comma, treat it specially. */
1117 if (tok.len == 1 && tok.text[0] == ',')
1118 prev_was_comma = 1;
1119 else
1121 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1122 def->argc, def->argv);
1124 if (arg != -1)
1125 dest->appendmem (argv[arg].text, argv[arg].len);
1126 else
1127 dest->appendmem (tok.text, tok.len);
1130 /* Now read another token. If it is another splice, we
1131 loop. */
1132 original_rl_start = replacement_list.text;
1133 if (! get_token (&tok, &replacement_list))
1135 finished = 1;
1136 break;
1139 if (! (tok.len == 2
1140 && tok.text[0] == '#'
1141 && tok.text[1] == '#'))
1142 break;
1145 if (prev_was_comma)
1147 /* We saw a comma. Insert it now. */
1148 dest->appendmem (",", 1);
1151 dest->last_token = dest->len;
1152 if (finished)
1153 lookahead_valid = 0;
1154 else
1156 /* Set up for the loop iterator. */
1157 lookahead = tok;
1158 lookahead_rl_start = original_rl_start;
1159 lookahead_valid = 1;
1162 else
1164 /* Is this token an identifier? */
1165 int substituted = 0;
1166 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1167 def->argc, def->argv);
1169 if (arg != -1)
1171 /* Expand any macro invocations in the argument text,
1172 and append the result to dest. Remember that scan
1173 mutates its source, so we need to scan a new buffer
1174 referring to the argument's text, not the argument
1175 itself. */
1176 shared_macro_buffer arg_src (argv[arg].text, argv[arg].len);
1177 scan (dest, &arg_src, no_loop, scope);
1178 substituted = 1;
1181 /* If it wasn't a parameter, then just copy it across. */
1182 if (! substituted)
1183 append_tokens_without_splicing (dest, &tok);
1187 if (vaopt_state > 0)
1188 error (_("Unterminated __VA_OPT__"));
1192 /* Expand a call to a macro named ID, whose definition is DEF. Append
1193 its expansion to DEST. SRC is the input text following the ID
1194 token. We are currently rescanning the expansions of the macros
1195 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1196 LOOKUP_BATON to find definitions for any nested macro references.
1198 Return 1 if we decided to expand it, zero otherwise. (If it's a
1199 function-like macro name that isn't followed by an argument list,
1200 we don't expand it.) If we return zero, leave SRC unchanged. */
1201 static int
1202 expand (const char *id,
1203 struct macro_definition *def,
1204 growable_macro_buffer *dest,
1205 shared_macro_buffer *src,
1206 struct macro_name_list *no_loop,
1207 const macro_scope &scope)
1209 struct macro_name_list new_no_loop;
1211 /* Create a new node to be added to the front of the no-expand list.
1212 This list is appropriate for re-scanning replacement lists, but
1213 it is *not* appropriate for scanning macro arguments; invocations
1214 of the macro whose arguments we are gathering *do* get expanded
1215 there. */
1216 new_no_loop.name = id;
1217 new_no_loop.next = no_loop;
1219 /* What kind of macro are we expanding? */
1220 if (def->kind == macro_object_like)
1222 shared_macro_buffer replacement_list (def->replacement,
1223 strlen (def->replacement));
1225 scan (dest, &replacement_list, &new_no_loop, scope);
1226 return 1;
1228 else if (def->kind == macro_function_like)
1230 shared_macro_buffer va_arg_name;
1231 int is_varargs = 0;
1233 if (def->argc >= 1)
1235 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1237 /* In C99-style varargs, substitution is done using
1238 __VA_ARGS__. */
1239 va_arg_name.set_shared ("__VA_ARGS__", strlen ("__VA_ARGS__"));
1240 is_varargs = 1;
1242 else
1244 int len = strlen (def->argv[def->argc - 1]);
1246 if (len > 3
1247 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1249 /* In GNU-style varargs, the name of the
1250 substitution parameter is the name of the formal
1251 argument without the "...". */
1252 va_arg_name.set_shared (def->argv[def->argc - 1], len - 3);
1253 is_varargs = 1;
1258 std::vector<shared_macro_buffer> argv;
1259 /* If we couldn't find any argument list, then we don't expand
1260 this macro. */
1261 if (!gather_arguments (id, src, is_varargs ? def->argc : -1,
1262 &argv))
1263 return 0;
1265 /* Check that we're passing an acceptable number of arguments for
1266 this macro. */
1267 if (argv.size () != def->argc)
1269 if (is_varargs && argv.size () >= def->argc - 1)
1271 /* Ok. */
1273 /* Remember that a sequence of tokens like "foo()" is a
1274 valid invocation of a macro expecting either zero or one
1275 arguments. */
1276 else if (! (argv.size () == 1
1277 && argv[0].len == 0
1278 && def->argc == 0))
1279 error (_("Wrong number of arguments to macro `%s' "
1280 "(expected %d, got %d)."),
1281 id, def->argc, int (argv.size ()));
1284 /* Note that we don't expand macro invocations in the arguments
1285 yet --- we let subst_args take care of that. Parameters that
1286 appear as operands of the stringifying operator "#" or the
1287 splicing operator "##" don't get macro references expanded,
1288 so we can't really tell whether it's appropriate to macro-
1289 expand an argument until we see how it's being used. */
1290 growable_macro_buffer substituted (0);
1291 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1292 argv, no_loop, scope);
1294 /* Now `substituted' is the macro's replacement list, with all
1295 argument values substituted into it properly. Re-scan it for
1296 macro references, but don't expand invocations of this macro.
1298 We create a new buffer, `substituted_src', which points into
1299 `substituted', and scan that. We can't scan `substituted'
1300 itself, since the tokenization process moves the buffer's
1301 text pointer around, and we still need to be able to find
1302 `substituted's original text buffer after scanning it so we
1303 can free it. */
1304 shared_macro_buffer substituted_src (substituted.text, substituted.len);
1305 scan (dest, &substituted_src, &new_no_loop, scope);
1307 return 1;
1309 else
1310 internal_error (_("bad macro definition kind"));
1314 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1315 constitute a macro invocation not forbidden in NO_LOOP, append its
1316 expansion to DEST and return non-zero. Otherwise, return zero, and
1317 leave DEST unchanged.
1319 SRC_FIRST must be a string built by get_token. */
1320 static int
1321 maybe_expand (growable_macro_buffer *dest,
1322 shared_macro_buffer *src_first,
1323 shared_macro_buffer *src_rest,
1324 struct macro_name_list *no_loop,
1325 const macro_scope &scope)
1327 /* Is this token an identifier? */
1328 if (src_first->is_identifier)
1330 /* Make a null-terminated copy of it, since that's what our
1331 lookup function expects. */
1332 std::string id (src_first->text, src_first->len);
1334 /* If we're currently re-scanning the result of expanding
1335 this macro, don't expand it again. */
1336 if (! currently_rescanning (no_loop, id.c_str ()))
1338 /* Does this identifier have a macro definition in scope? */
1339 macro_definition *def = standard_macro_lookup (id.c_str (), scope);
1341 if (def && expand (id.c_str (), def, dest, src_rest, no_loop, scope))
1342 return 1;
1346 return 0;
1350 /* Expand macro references in SRC, appending the results to DEST.
1351 Assume we are re-scanning the result of expanding the macros named
1352 in NO_LOOP, and don't try to re-expand references to them. */
1354 static void
1355 scan (growable_macro_buffer *dest,
1356 shared_macro_buffer *src,
1357 struct macro_name_list *no_loop,
1358 const macro_scope &scope)
1361 for (;;)
1363 shared_macro_buffer tok;
1364 const char *original_src_start = src->text;
1366 /* Find the next token in SRC. */
1367 if (! get_token (&tok, src))
1368 break;
1370 /* Just for aesthetics. If we skipped some whitespace, copy
1371 that to DEST. */
1372 if (tok.text > original_src_start)
1374 dest->appendmem (original_src_start, tok.text - original_src_start);
1375 dest->last_token = dest->len;
1378 if (! maybe_expand (dest, &tok, src, no_loop, scope))
1379 /* We didn't end up expanding tok as a macro reference, so
1380 simply append it to dest. */
1381 append_tokens_without_splicing (dest, &tok);
1384 /* Just for aesthetics. If there was any trailing whitespace in
1385 src, copy it to dest. */
1386 if (src->len)
1388 dest->appendmem (src->text, src->len);
1389 dest->last_token = dest->len;
1394 gdb::unique_xmalloc_ptr<char>
1395 macro_expand (const char *source, const macro_scope &scope)
1397 shared_macro_buffer src (source, strlen (source));
1399 growable_macro_buffer dest (0);
1400 dest.last_token = 0;
1402 scan (&dest, &src, 0, scope);
1404 dest.appendc ('\0');
1406 return dest.release ();
1410 gdb::unique_xmalloc_ptr<char>
1411 macro_expand_once (const char *source, const macro_scope &scope)
1413 error (_("Expand-once not implemented yet."));
1416 gdb::unique_xmalloc_ptr<char>
1417 macro_expand_next (const char **lexptr, const macro_scope &scope)
1419 shared_macro_buffer tok;
1421 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1422 shared_macro_buffer src (*lexptr, strlen (*lexptr));
1424 /* Set up DEST to receive the expansion, if there is one. */
1425 growable_macro_buffer dest (0);
1426 dest.last_token = 0;
1428 /* Get the text's first preprocessing token. */
1429 if (! get_token (&tok, &src))
1430 return nullptr;
1432 /* If it's a macro invocation, expand it. */
1433 if (maybe_expand (&dest, &tok, &src, 0, scope))
1435 /* It was a macro invocation! Package up the expansion as a
1436 null-terminated string and return it. Set *lexptr to the
1437 start of the next token in the input. */
1438 dest.appendc ('\0');
1439 *lexptr = src.text;
1440 return dest.release ();
1442 else
1444 /* It wasn't a macro invocation. */
1445 return nullptr;