MIPS: Use 64-bit a ABI by default for `mipsisa64*-*-linux*' targets
[binutils-gdb.git] / gdb / ppc-linux-nat.c
blobd14aba694e539d182438207f1141ea799d8dc9b4
1 /* PPC GNU/Linux native support.
3 Copyright (C) 1988-2023 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "gdbthread.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "regset.h"
27 #include "target.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
30 #include <signal.h>
31 #include <sys/user.h>
32 #include <sys/ioctl.h>
33 #include <sys/uio.h>
34 #include "gdbsupport/gdb_wait.h"
35 #include <fcntl.h>
36 #include <sys/procfs.h>
37 #include "nat/gdb_ptrace.h"
38 #include "nat/linux-ptrace.h"
39 #include "inf-ptrace.h"
40 #include <algorithm>
41 #include <unordered_map>
42 #include <list>
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46 #include "ppc-tdep.h"
47 #include "ppc-linux-tdep.h"
49 /* Required when using the AUXV. */
50 #include "elf/common.h"
51 #include "auxv.h"
53 #include "arch/ppc-linux-common.h"
54 #include "arch/ppc-linux-tdesc.h"
55 #include "nat/ppc-linux.h"
56 #include "linux-tdep.h"
57 #include "expop.h"
59 /* Similarly for the hardware watchpoint support. These requests are used
60 when the PowerPC HWDEBUG ptrace interface is not available. */
61 #ifndef PTRACE_GET_DEBUGREG
62 #define PTRACE_GET_DEBUGREG 25
63 #endif
64 #ifndef PTRACE_SET_DEBUGREG
65 #define PTRACE_SET_DEBUGREG 26
66 #endif
67 #ifndef PTRACE_GETSIGINFO
68 #define PTRACE_GETSIGINFO 0x4202
69 #endif
71 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
72 available. It exposes the debug facilities of PowerPC processors, as well
73 as additional features of BookE processors, such as ranged breakpoints and
74 watchpoints and hardware-accelerated condition evaluation. */
75 #ifndef PPC_PTRACE_GETHWDBGINFO
77 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
78 ptrace interface is not present in ptrace.h, so we'll have to pretty much
79 include it all here so that the code at least compiles on older systems. */
80 #define PPC_PTRACE_GETHWDBGINFO 0x89
81 #define PPC_PTRACE_SETHWDEBUG 0x88
82 #define PPC_PTRACE_DELHWDEBUG 0x87
84 struct ppc_debug_info
86 uint32_t version; /* Only version 1 exists to date. */
87 uint32_t num_instruction_bps;
88 uint32_t num_data_bps;
89 uint32_t num_condition_regs;
90 uint32_t data_bp_alignment;
91 uint32_t sizeof_condition; /* size of the DVC register. */
92 uint64_t features;
95 /* Features will have bits indicating whether there is support for: */
96 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
97 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
98 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
99 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
101 struct ppc_hw_breakpoint
103 uint32_t version; /* currently, version must be 1 */
104 uint32_t trigger_type; /* only some combinations allowed */
105 uint32_t addr_mode; /* address match mode */
106 uint32_t condition_mode; /* break/watchpoint condition flags */
107 uint64_t addr; /* break/watchpoint address */
108 uint64_t addr2; /* range end or mask */
109 uint64_t condition_value; /* contents of the DVC register */
112 /* Trigger type. */
113 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
114 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
115 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
116 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
118 /* Address mode. */
119 #define PPC_BREAKPOINT_MODE_EXACT 0x0
120 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
121 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
122 #define PPC_BREAKPOINT_MODE_MASK 0x3
124 /* Condition mode. */
125 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
126 #define PPC_BREAKPOINT_CONDITION_AND 0x1
127 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
128 #define PPC_BREAKPOINT_CONDITION_OR 0x2
129 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
130 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
131 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
132 #define PPC_BREAKPOINT_CONDITION_BE(n) \
133 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
134 #endif /* PPC_PTRACE_GETHWDBGINFO */
136 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
137 watchpoint (up to 512 bytes). */
138 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
139 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
140 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
142 /* Feature defined on Linux kernel v5.1: Second watchpoint support. */
143 #ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31
144 #define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20
145 #endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */
147 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
148 available. */
149 #define PPC_DEBUG_CURRENT_VERSION 1
151 /* Similarly for the general-purpose (gp0 -- gp31)
152 and floating-point registers (fp0 -- fp31). */
153 #ifndef PTRACE_GETREGS
154 #define PTRACE_GETREGS 12
155 #endif
156 #ifndef PTRACE_SETREGS
157 #define PTRACE_SETREGS 13
158 #endif
159 #ifndef PTRACE_GETFPREGS
160 #define PTRACE_GETFPREGS 14
161 #endif
162 #ifndef PTRACE_SETFPREGS
163 #define PTRACE_SETFPREGS 15
164 #endif
166 /* This oddity is because the Linux kernel defines elf_vrregset_t as
167 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
168 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
169 the vrsave as an extra 4 bytes at the end. I opted for creating a
170 flat array of chars, so that it is easier to manipulate for gdb.
172 There are 32 vector registers 16 bytes longs, plus a VSCR register
173 which is only 4 bytes long, but is fetched as a 16 bytes
174 quantity. Up to here we have the elf_vrregset_t structure.
175 Appended to this there is space for the VRSAVE register: 4 bytes.
176 Even though this vrsave register is not included in the regset
177 typedef, it is handled by the ptrace requests.
179 The layout is like this (where x is the actual value of the vscr reg): */
182 Big-Endian:
183 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
184 <-------> <-------><-------><->
185 VR0 VR31 VSCR VRSAVE
186 Little-Endian:
187 |.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
188 <-------> <-------><-------><->
189 VR0 VR31 VSCR VRSAVE
192 typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];
194 /* This is the layout of the POWER7 VSX registers and the way they overlap
195 with the existing FPR and VMX registers.
197 VSR doubleword 0 VSR doubleword 1
198 ----------------------------------------------------------------
199 VSR[0] | FPR[0] | |
200 ----------------------------------------------------------------
201 VSR[1] | FPR[1] | |
202 ----------------------------------------------------------------
203 | ... | |
204 | ... | |
205 ----------------------------------------------------------------
206 VSR[30] | FPR[30] | |
207 ----------------------------------------------------------------
208 VSR[31] | FPR[31] | |
209 ----------------------------------------------------------------
210 VSR[32] | VR[0] |
211 ----------------------------------------------------------------
212 VSR[33] | VR[1] |
213 ----------------------------------------------------------------
214 | ... |
215 | ... |
216 ----------------------------------------------------------------
217 VSR[62] | VR[30] |
218 ----------------------------------------------------------------
219 VSR[63] | VR[31] |
220 ----------------------------------------------------------------
222 VSX has 64 128bit registers. The first 32 registers overlap with
223 the FP registers (doubleword 0) and hence extend them with additional
224 64 bits (doubleword 1). The other 32 regs overlap with the VMX
225 registers. */
226 typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];
228 /* On PPC processors that support the Signal Processing Extension
229 (SPE) APU, the general-purpose registers are 64 bits long.
230 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
231 ptrace calls only access the lower half of each register, to allow
232 them to behave the same way they do on non-SPE systems. There's a
233 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
234 read and write the top halves of all the general-purpose registers
235 at once, along with some SPE-specific registers.
237 GDB itself continues to claim the general-purpose registers are 32
238 bits long. It has unnamed raw registers that hold the upper halves
239 of the gprs, and the full 64-bit SIMD views of the registers,
240 'ev0' -- 'ev31', are pseudo-registers that splice the top and
241 bottom halves together.
243 This is the structure filled in by PTRACE_GETEVRREGS and written to
244 the inferior's registers by PTRACE_SETEVRREGS. */
245 struct gdb_evrregset_t
247 unsigned long evr[32];
248 unsigned long long acc;
249 unsigned long spefscr;
252 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
253 PTRACE_SETVSXREGS requests, for reading and writing the VSX
254 POWER7 registers 0 through 31. Zero if we've tried one of them and
255 gotten an error. Note that VSX registers 32 through 63 overlap
256 with VR registers 0 through 31. */
257 int have_ptrace_getsetvsxregs = 1;
259 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
260 PTRACE_SETVRREGS requests, for reading and writing the Altivec
261 registers. Zero if we've tried one of them and gotten an
262 error. */
263 int have_ptrace_getvrregs = 1;
265 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
266 PTRACE_SETEVRREGS requests, for reading and writing the SPE
267 registers. Zero if we've tried one of them and gotten an
268 error. */
269 int have_ptrace_getsetevrregs = 1;
271 /* Non-zero if our kernel may support the PTRACE_GETREGS and
272 PTRACE_SETREGS requests, for reading and writing the
273 general-purpose registers. Zero if we've tried one of
274 them and gotten an error. */
275 int have_ptrace_getsetregs = 1;
277 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
278 PTRACE_SETFPREGS requests, for reading and writing the
279 floating-pointers registers. Zero if we've tried one of
280 them and gotten an error. */
281 int have_ptrace_getsetfpregs = 1;
283 /* Private arch info associated with each thread lwp_info object, used
284 for debug register handling. */
286 struct arch_lwp_info
288 /* When true, indicates that the debug registers installed in the
289 thread no longer correspond to the watchpoints and breakpoints
290 requested by GDB. */
291 bool debug_regs_stale;
293 /* We need a back-reference to the PTID of the thread so that we can
294 cleanup the debug register state of the thread in
295 low_delete_thread. */
296 ptid_t lwp_ptid;
299 /* Class used to detect which set of ptrace requests that
300 ppc_linux_nat_target will use to install and remove hardware
301 breakpoints and watchpoints.
303 The interface is only detected once, testing the ptrace calls. The
304 result can indicate that no interface is available.
306 The Linux kernel provides two different sets of ptrace requests to
307 handle hardware watchpoints and breakpoints for Power:
309 - PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and
310 PPC_PTRACE_DELHWDEBUG.
314 - PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG
316 The first set is the more flexible one and allows setting watchpoints
317 with a variable watched region length and, for BookE processors,
318 multiple types of debug registers (e.g. hardware breakpoints and
319 hardware-assisted conditions for watchpoints). The second one only
320 allows setting one debug register, a watchpoint, so we only use it if
321 the first one is not available. */
323 class ppc_linux_dreg_interface
325 public:
327 ppc_linux_dreg_interface ()
328 : m_interface (), m_hwdebug_info ()
332 DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface);
334 /* One and only one of these three functions returns true, indicating
335 whether the corresponding interface is the one we detected. The
336 interface must already have been detected as a precondition. */
338 bool hwdebug_p ()
340 gdb_assert (detected_p ());
341 return *m_interface == HWDEBUG;
344 bool debugreg_p ()
346 gdb_assert (detected_p ());
347 return *m_interface == DEBUGREG;
350 bool unavailable_p ()
352 gdb_assert (detected_p ());
353 return *m_interface == UNAVAILABLE;
356 /* Returns the debug register capabilities of the target. Should only
357 be called if the interface is HWDEBUG. */
358 const struct ppc_debug_info &hwdebug_info ()
360 gdb_assert (hwdebug_p ());
362 return m_hwdebug_info;
365 /* Returns true if the interface has already been detected. This is
366 useful for cases when we know there is no work to be done if the
367 interface hasn't been detected yet. */
368 bool detected_p ()
370 return m_interface.has_value ();
373 /* Detect the available interface, if any, if it hasn't been detected
374 before, using PTID for the necessary ptrace calls. */
376 void detect (const ptid_t &ptid)
378 if (m_interface.has_value ())
379 return;
381 gdb_assert (ptid.lwp_p ());
383 bool no_features = false;
385 if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info)
386 >= 0)
388 /* If there are no advertised features, we don't use the
389 HWDEBUG interface and try the DEBUGREG interface instead.
390 It shouldn't be necessary to do this, however, when the
391 kernel is configured without CONFIG_HW_BREAKPOINTS (selected
392 by CONFIG_PERF_EVENTS), there is a bug that causes
393 watchpoints installed with the HWDEBUG interface not to
394 trigger. When this is the case, features will be zero,
395 which we use as an indicator to fall back to the DEBUGREG
396 interface. */
397 if (m_hwdebug_info.features != 0)
399 m_interface.emplace (HWDEBUG);
400 return;
402 else
403 no_features = true;
406 /* EIO indicates that the request is invalid, so we try DEBUGREG
407 next. Technically, it can also indicate other failures, but we
408 can't differentiate those.
410 Other errors could happen for various reasons. We could get an
411 ESRCH if the traced thread was killed by a signal. Trying to
412 detect the interface with another thread in the future would be
413 complicated, as callers would have to handle an "unknown
414 interface" case. It's also unclear if raising an exception
415 here would be safe.
417 Other errors, such as ENODEV, could be more permanent and cause
418 a failure for any thread.
420 For simplicity, with all errors other than EIO, we set the
421 interface to UNAVAILABLE and don't try DEBUGREG. If DEBUGREG
422 fails too, we'll also set the interface to UNAVAILABLE. It's
423 unlikely that trying the DEBUGREG interface with this same thread
424 would work, for errors other than EIO. This means that these
425 errors will cause hardware watchpoints and breakpoints to become
426 unavailable throughout a GDB session. */
428 if (no_features || errno == EIO)
430 unsigned long wp;
432 if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0)
434 m_interface.emplace (DEBUGREG);
435 return;
439 if (errno != EIO)
440 warning (_("Error when detecting the debug register interface. "
441 "Debug registers will be unavailable."));
443 m_interface.emplace (UNAVAILABLE);
444 return;
447 private:
449 /* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO,
450 PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG.
452 DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and
453 PTRACE_GET_DEBUGREG.
455 UNAVAILABLE can indicate that the kernel doesn't support any of the
456 two sets of requests or that there was an error when we tried to
457 detect which interface is available. */
459 enum debug_reg_interface
461 UNAVAILABLE,
462 HWDEBUG,
463 DEBUGREG
466 /* The interface option. Initialized if has_value () returns true. */
467 gdb::optional<enum debug_reg_interface> m_interface;
469 /* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO. Only
470 valid if we determined that the interface is HWDEBUG. */
471 struct ppc_debug_info m_hwdebug_info;
474 /* Per-process information. This includes the hardware watchpoints and
475 breakpoints that GDB requested to this target. */
477 struct ppc_linux_process_info
479 /* The list of hardware watchpoints and breakpoints that GDB requested
480 for this process.
482 Only used when the interface is HWDEBUG. */
483 std::list<struct ppc_hw_breakpoint> requested_hw_bps;
485 /* The watchpoint value that GDB requested for this process.
487 Only used when the interface is DEBUGREG. */
488 gdb::optional<long> requested_wp_val;
491 struct ppc_linux_nat_target final : public linux_nat_target
493 /* Add our register access methods. */
494 void fetch_registers (struct regcache *, int) override;
495 void store_registers (struct regcache *, int) override;
497 /* Add our breakpoint/watchpoint methods. */
498 int can_use_hw_breakpoint (enum bptype, int, int) override;
500 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
501 override;
503 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
504 override;
506 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
508 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
509 struct expression *) override;
511 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
512 struct expression *) override;
514 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
515 override;
517 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
518 override;
520 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
522 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
523 override;
525 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
527 int ranged_break_num_registers () override;
529 const struct target_desc *read_description () override;
531 int auxv_parse (const gdb_byte **readptr,
532 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
533 override;
535 /* Override linux_nat_target low methods. */
536 bool low_stopped_by_watchpoint () override;
538 bool low_stopped_data_address (CORE_ADDR *) override;
540 void low_new_thread (struct lwp_info *lp) override;
542 void low_delete_thread (arch_lwp_info *) override;
544 void low_new_fork (struct lwp_info *, pid_t) override;
546 void low_new_clone (struct lwp_info *, pid_t) override;
548 void low_forget_process (pid_t pid) override;
550 void low_prepare_to_resume (struct lwp_info *) override;
552 private:
554 void copy_thread_dreg_state (const ptid_t &parent_ptid,
555 const ptid_t &child_ptid);
557 void mark_thread_stale (struct lwp_info *lp);
559 void mark_debug_registers_changed (pid_t pid);
561 void register_hw_breakpoint (pid_t pid,
562 const struct ppc_hw_breakpoint &bp);
564 void clear_hw_breakpoint (pid_t pid,
565 const struct ppc_hw_breakpoint &a);
567 void register_wp (pid_t pid, long wp_value);
569 void clear_wp (pid_t pid);
571 bool can_use_watchpoint_cond_accel (void);
573 void calculate_dvc (CORE_ADDR addr, int len,
574 CORE_ADDR data_value,
575 uint32_t *condition_mode,
576 uint64_t *condition_value);
578 int check_condition (CORE_ADDR watch_addr,
579 struct expression *cond,
580 CORE_ADDR *data_value, int *len);
582 int num_memory_accesses (const std::vector<value_ref_ptr> &chain);
584 int get_trigger_type (enum target_hw_bp_type type);
586 void create_watchpoint_request (struct ppc_hw_breakpoint *p,
587 CORE_ADDR addr,
588 int len,
589 enum target_hw_bp_type type,
590 struct expression *cond,
591 int insert);
593 bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
594 const struct ppc_hw_breakpoint &b);
596 void init_arch_lwp_info (struct lwp_info *lp);
598 arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp);
600 /* The ptrace interface we'll use to install hardware watchpoints and
601 breakpoints (debug registers). */
602 ppc_linux_dreg_interface m_dreg_interface;
604 /* A map from pids to structs containing info specific to each
605 process. */
606 std::unordered_map<pid_t, ppc_linux_process_info> m_process_info;
608 /* Callable object to hash ptids by their lwp number. */
609 struct ptid_hash
611 std::size_t operator() (const ptid_t &ptid) const
613 return std::hash<long>{} (ptid.lwp ());
617 /* A map from ptid_t objects to a list of pairs of slots and hardware
618 breakpoint objects. This keeps track of which hardware breakpoints
619 and watchpoints were last installed in each slot of each thread.
621 Only used when the interface is HWDEBUG. */
622 std::unordered_map <ptid_t,
623 std::list<std::pair<long, ppc_hw_breakpoint>>,
624 ptid_hash> m_installed_hw_bps;
627 static ppc_linux_nat_target the_ppc_linux_nat_target;
629 /* registers layout, as presented by the ptrace interface:
630 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
631 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
632 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
633 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
634 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
635 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
636 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
637 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
638 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
639 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
640 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
641 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
642 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
644 static int
645 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
647 int u_addr = -1;
648 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
649 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
650 interface, and not the wordsize of the program's ABI. */
651 int wordsize = sizeof (long);
653 /* General purpose registers occupy 1 slot each in the buffer. */
654 if (regno >= tdep->ppc_gp0_regnum
655 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
656 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
658 /* Floating point regs: eight bytes each in both 32- and 64-bit
659 ptrace interfaces. Thus, two slots each in 32-bit interface, one
660 slot each in 64-bit interface. */
661 if (tdep->ppc_fp0_regnum >= 0
662 && regno >= tdep->ppc_fp0_regnum
663 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
664 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
666 /* UISA special purpose registers: 1 slot each. */
667 if (regno == gdbarch_pc_regnum (gdbarch))
668 u_addr = PT_NIP * wordsize;
669 if (regno == tdep->ppc_lr_regnum)
670 u_addr = PT_LNK * wordsize;
671 if (regno == tdep->ppc_cr_regnum)
672 u_addr = PT_CCR * wordsize;
673 if (regno == tdep->ppc_xer_regnum)
674 u_addr = PT_XER * wordsize;
675 if (regno == tdep->ppc_ctr_regnum)
676 u_addr = PT_CTR * wordsize;
677 #ifdef PT_MQ
678 if (regno == tdep->ppc_mq_regnum)
679 u_addr = PT_MQ * wordsize;
680 #endif
681 if (regno == tdep->ppc_ps_regnum)
682 u_addr = PT_MSR * wordsize;
683 if (regno == PPC_ORIG_R3_REGNUM)
684 u_addr = PT_ORIG_R3 * wordsize;
685 if (regno == PPC_TRAP_REGNUM)
686 u_addr = PT_TRAP * wordsize;
687 if (tdep->ppc_fpscr_regnum >= 0
688 && regno == tdep->ppc_fpscr_regnum)
690 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
691 kernel headers incorrectly contained the 32-bit definition of
692 PT_FPSCR. For the 32-bit definition, floating-point
693 registers occupy two 32-bit "slots", and the FPSCR lives in
694 the second half of such a slot-pair (hence +1). For 64-bit,
695 the FPSCR instead occupies the full 64-bit 2-word-slot and
696 hence no adjustment is necessary. Hack around this. */
697 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
698 u_addr = (48 + 32) * wordsize;
699 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
700 slot and not just its second word. The PT_FPSCR supplied when
701 GDB is compiled as a 32-bit app doesn't reflect this. */
702 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
703 && PT_FPSCR == (48 + 2*32 + 1))
704 u_addr = (48 + 2*32) * wordsize;
705 else
706 u_addr = PT_FPSCR * wordsize;
708 return u_addr;
711 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
712 registers set mechanism, as opposed to the interface for all the
713 other registers, that stores/fetches each register individually. */
714 static void
715 fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
717 int ret;
718 gdb_vsxregset_t regs;
719 const struct regset *vsxregset = ppc_linux_vsxregset ();
721 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
722 if (ret < 0)
724 if (errno == EIO)
726 have_ptrace_getsetvsxregs = 0;
727 return;
729 perror_with_name (_("Unable to fetch VSX registers"));
732 vsxregset->supply_regset (vsxregset, regcache, regno, &regs,
733 PPC_LINUX_SIZEOF_VSXREGSET);
736 /* The Linux kernel ptrace interface for AltiVec registers uses the
737 registers set mechanism, as opposed to the interface for all the
738 other registers, that stores/fetches each register individually. */
739 static void
740 fetch_altivec_registers (struct regcache *regcache, int tid,
741 int regno)
743 int ret;
744 gdb_vrregset_t regs;
745 struct gdbarch *gdbarch = regcache->arch ();
746 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
748 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
749 if (ret < 0)
751 if (errno == EIO)
753 have_ptrace_getvrregs = 0;
754 return;
756 perror_with_name (_("Unable to fetch AltiVec registers"));
759 vrregset->supply_regset (vrregset, regcache, regno, &regs,
760 PPC_LINUX_SIZEOF_VRREGSET);
763 /* Fetch the top 32 bits of TID's general-purpose registers and the
764 SPE-specific registers, and place the results in EVRREGSET. If we
765 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
766 zeros.
768 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
769 PTRACE_SETEVRREGS requests are supported is isolated here, and in
770 set_spe_registers. */
771 static void
772 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
774 if (have_ptrace_getsetevrregs)
776 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
777 return;
778 else
780 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
781 we just return zeros. */
782 if (errno == EIO)
783 have_ptrace_getsetevrregs = 0;
784 else
785 /* Anything else needs to be reported. */
786 perror_with_name (_("Unable to fetch SPE registers"));
790 memset (evrregset, 0, sizeof (*evrregset));
793 /* Supply values from TID for SPE-specific raw registers: the upper
794 halves of the GPRs, the accumulator, and the spefscr. REGNO must
795 be the number of an upper half register, acc, spefscr, or -1 to
796 supply the values of all registers. */
797 static void
798 fetch_spe_register (struct regcache *regcache, int tid, int regno)
800 struct gdbarch *gdbarch = regcache->arch ();
801 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
802 struct gdb_evrregset_t evrregs;
804 gdb_assert (sizeof (evrregs.evr[0])
805 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
806 gdb_assert (sizeof (evrregs.acc)
807 == register_size (gdbarch, tdep->ppc_acc_regnum));
808 gdb_assert (sizeof (evrregs.spefscr)
809 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
811 get_spe_registers (tid, &evrregs);
813 if (regno == -1)
815 int i;
817 for (i = 0; i < ppc_num_gprs; i++)
818 regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
820 else if (tdep->ppc_ev0_upper_regnum <= regno
821 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
822 regcache->raw_supply (regno,
823 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
825 if (regno == -1
826 || regno == tdep->ppc_acc_regnum)
827 regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);
829 if (regno == -1
830 || regno == tdep->ppc_spefscr_regnum)
831 regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
834 /* Use ptrace to fetch all registers from the register set with note
835 type REGSET_ID, size REGSIZE, and layout described by REGSET, from
836 process/thread TID and supply their values to REGCACHE. If ptrace
837 returns ENODATA to indicate the regset is unavailable, mark the
838 registers as unavailable in REGCACHE. */
840 static void
841 fetch_regset (struct regcache *regcache, int tid,
842 int regset_id, int regsetsize, const struct regset *regset)
844 void *buf = alloca (regsetsize);
845 struct iovec iov;
847 iov.iov_base = buf;
848 iov.iov_len = regsetsize;
850 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
852 if (errno == ENODATA)
853 regset->supply_regset (regset, regcache, -1, NULL, regsetsize);
854 else
855 perror_with_name (_("Couldn't get register set"));
857 else
858 regset->supply_regset (regset, regcache, -1, buf, regsetsize);
861 /* Use ptrace to store register REGNUM of the regset with note type
862 REGSET_ID, size REGSETSIZE, and layout described by REGSET, from
863 REGCACHE back to process/thread TID. If REGNUM is -1 all registers
864 in the set are collected and stored. */
866 static void
867 store_regset (const struct regcache *regcache, int tid, int regnum,
868 int regset_id, int regsetsize, const struct regset *regset)
870 void *buf = alloca (regsetsize);
871 struct iovec iov;
873 iov.iov_base = buf;
874 iov.iov_len = regsetsize;
876 /* Make sure that the buffer that will be stored has up to date values
877 for the registers that won't be collected. */
878 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
879 perror_with_name (_("Couldn't get register set"));
881 regset->collect_regset (regset, regcache, regnum, buf, regsetsize);
883 if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0)
884 perror_with_name (_("Couldn't set register set"));
887 /* Check whether the kernel provides a register set with number
888 REGSET_ID of size REGSETSIZE for process/thread TID. */
890 static bool
891 check_regset (int tid, int regset_id, int regsetsize)
893 void *buf = alloca (regsetsize);
894 struct iovec iov;
896 iov.iov_base = buf;
897 iov.iov_len = regsetsize;
899 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0
900 || errno == ENODATA)
901 return true;
902 else
903 return false;
906 static void
907 fetch_register (struct regcache *regcache, int tid, int regno)
909 struct gdbarch *gdbarch = regcache->arch ();
910 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
911 /* This isn't really an address. But ptrace thinks of it as one. */
912 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
913 int bytes_transferred;
914 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
916 if (altivec_register_p (gdbarch, regno))
918 /* If this is the first time through, or if it is not the first
919 time through, and we have confirmed that there is kernel
920 support for such a ptrace request, then go and fetch the
921 register. */
922 if (have_ptrace_getvrregs)
924 fetch_altivec_registers (regcache, tid, regno);
925 return;
927 /* If we have discovered that there is no ptrace support for
928 AltiVec registers, fall through and return zeroes, because
929 regaddr will be -1 in this case. */
931 else if (vsx_register_p (gdbarch, regno))
933 if (have_ptrace_getsetvsxregs)
935 fetch_vsx_registers (regcache, tid, regno);
936 return;
939 else if (spe_register_p (gdbarch, regno))
941 fetch_spe_register (regcache, tid, regno);
942 return;
944 else if (regno == PPC_DSCR_REGNUM)
946 gdb_assert (tdep->ppc_dscr_regnum != -1);
948 fetch_regset (regcache, tid, NT_PPC_DSCR,
949 PPC_LINUX_SIZEOF_DSCRREGSET,
950 &ppc32_linux_dscrregset);
951 return;
953 else if (regno == PPC_PPR_REGNUM)
955 gdb_assert (tdep->ppc_ppr_regnum != -1);
957 fetch_regset (regcache, tid, NT_PPC_PPR,
958 PPC_LINUX_SIZEOF_PPRREGSET,
959 &ppc32_linux_pprregset);
960 return;
962 else if (regno == PPC_TAR_REGNUM)
964 gdb_assert (tdep->ppc_tar_regnum != -1);
966 fetch_regset (regcache, tid, NT_PPC_TAR,
967 PPC_LINUX_SIZEOF_TARREGSET,
968 &ppc32_linux_tarregset);
969 return;
971 else if (PPC_IS_EBB_REGNUM (regno))
973 gdb_assert (tdep->have_ebb);
975 fetch_regset (regcache, tid, NT_PPC_EBB,
976 PPC_LINUX_SIZEOF_EBBREGSET,
977 &ppc32_linux_ebbregset);
978 return;
980 else if (PPC_IS_PMU_REGNUM (regno))
982 gdb_assert (tdep->ppc_mmcr0_regnum != -1);
984 fetch_regset (regcache, tid, NT_PPC_PMU,
985 PPC_LINUX_SIZEOF_PMUREGSET,
986 &ppc32_linux_pmuregset);
987 return;
989 else if (PPC_IS_TMSPR_REGNUM (regno))
991 gdb_assert (tdep->have_htm_spr);
993 fetch_regset (regcache, tid, NT_PPC_TM_SPR,
994 PPC_LINUX_SIZEOF_TM_SPRREGSET,
995 &ppc32_linux_tm_sprregset);
996 return;
998 else if (PPC_IS_CKPTGP_REGNUM (regno))
1000 gdb_assert (tdep->have_htm_core);
1002 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1003 fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
1004 (tdep->wordsize == 4?
1005 PPC32_LINUX_SIZEOF_CGPRREGSET
1006 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1007 cgprregset);
1008 return;
1010 else if (PPC_IS_CKPTFP_REGNUM (regno))
1012 gdb_assert (tdep->have_htm_fpu);
1014 fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
1015 PPC_LINUX_SIZEOF_CFPRREGSET,
1016 &ppc32_linux_cfprregset);
1017 return;
1019 else if (PPC_IS_CKPTVMX_REGNUM (regno))
1021 gdb_assert (tdep->have_htm_altivec);
1023 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1024 fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
1025 PPC_LINUX_SIZEOF_CVMXREGSET,
1026 cvmxregset);
1027 return;
1029 else if (PPC_IS_CKPTVSX_REGNUM (regno))
1031 gdb_assert (tdep->have_htm_vsx);
1033 fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
1034 PPC_LINUX_SIZEOF_CVSXREGSET,
1035 &ppc32_linux_cvsxregset);
1036 return;
1038 else if (regno == PPC_CPPR_REGNUM)
1040 gdb_assert (tdep->ppc_cppr_regnum != -1);
1042 fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
1043 PPC_LINUX_SIZEOF_CPPRREGSET,
1044 &ppc32_linux_cpprregset);
1045 return;
1047 else if (regno == PPC_CDSCR_REGNUM)
1049 gdb_assert (tdep->ppc_cdscr_regnum != -1);
1051 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
1052 PPC_LINUX_SIZEOF_CDSCRREGSET,
1053 &ppc32_linux_cdscrregset);
1054 return;
1056 else if (regno == PPC_CTAR_REGNUM)
1058 gdb_assert (tdep->ppc_ctar_regnum != -1);
1060 fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
1061 PPC_LINUX_SIZEOF_CTARREGSET,
1062 &ppc32_linux_ctarregset);
1063 return;
1066 if (regaddr == -1)
1068 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
1069 regcache->raw_supply (regno, buf);
1070 return;
1073 /* Read the raw register using sizeof(long) sized chunks. On a
1074 32-bit platform, 64-bit floating-point registers will require two
1075 transfers. */
1076 for (bytes_transferred = 0;
1077 bytes_transferred < register_size (gdbarch, regno);
1078 bytes_transferred += sizeof (long))
1080 long l;
1082 errno = 0;
1083 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
1084 regaddr += sizeof (long);
1085 if (errno != 0)
1087 char message[128];
1088 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
1089 gdbarch_register_name (gdbarch, regno), regno);
1090 perror_with_name (message);
1092 memcpy (&buf[bytes_transferred], &l, sizeof (l));
1095 /* Now supply the register. Keep in mind that the regcache's idea
1096 of the register's size may not be a multiple of sizeof
1097 (long). */
1098 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1100 /* Little-endian values are always found at the left end of the
1101 bytes transferred. */
1102 regcache->raw_supply (regno, buf);
1104 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1106 /* Big-endian values are found at the right end of the bytes
1107 transferred. */
1108 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
1109 regcache->raw_supply (regno, buf + padding);
1111 else
1112 internal_error (_("fetch_register: unexpected byte order: %d"),
1113 gdbarch_byte_order (gdbarch));
1116 /* This function actually issues the request to ptrace, telling
1117 it to get all general-purpose registers and put them into the
1118 specified regset.
1120 If the ptrace request does not exist, this function returns 0
1121 and properly sets the have_ptrace_* flag. If the request fails,
1122 this function calls perror_with_name. Otherwise, if the request
1123 succeeds, then the regcache gets filled and 1 is returned. */
1124 static int
1125 fetch_all_gp_regs (struct regcache *regcache, int tid)
1127 gdb_gregset_t gregset;
1129 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1131 if (errno == EIO)
1133 have_ptrace_getsetregs = 0;
1134 return 0;
1136 perror_with_name (_("Couldn't get general-purpose registers"));
1139 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
1141 return 1;
1144 /* This is a wrapper for the fetch_all_gp_regs function. It is
1145 responsible for verifying if this target has the ptrace request
1146 that can be used to fetch all general-purpose registers at one
1147 shot. If it doesn't, then we should fetch them using the
1148 old-fashioned way, which is to iterate over the registers and
1149 request them one by one. */
1150 static void
1151 fetch_gp_regs (struct regcache *regcache, int tid)
1153 struct gdbarch *gdbarch = regcache->arch ();
1154 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1155 int i;
1157 if (have_ptrace_getsetregs)
1158 if (fetch_all_gp_regs (regcache, tid))
1159 return;
1161 /* If we've hit this point, it doesn't really matter which
1162 architecture we are using. We just need to read the
1163 registers in the "old-fashioned way". */
1164 for (i = 0; i < ppc_num_gprs; i++)
1165 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1168 /* This function actually issues the request to ptrace, telling
1169 it to get all floating-point registers and put them into the
1170 specified regset.
1172 If the ptrace request does not exist, this function returns 0
1173 and properly sets the have_ptrace_* flag. If the request fails,
1174 this function calls perror_with_name. Otherwise, if the request
1175 succeeds, then the regcache gets filled and 1 is returned. */
1176 static int
1177 fetch_all_fp_regs (struct regcache *regcache, int tid)
1179 gdb_fpregset_t fpregs;
1181 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1183 if (errno == EIO)
1185 have_ptrace_getsetfpregs = 0;
1186 return 0;
1188 perror_with_name (_("Couldn't get floating-point registers"));
1191 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
1193 return 1;
1196 /* This is a wrapper for the fetch_all_fp_regs function. It is
1197 responsible for verifying if this target has the ptrace request
1198 that can be used to fetch all floating-point registers at one
1199 shot. If it doesn't, then we should fetch them using the
1200 old-fashioned way, which is to iterate over the registers and
1201 request them one by one. */
1202 static void
1203 fetch_fp_regs (struct regcache *regcache, int tid)
1205 struct gdbarch *gdbarch = regcache->arch ();
1206 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1207 int i;
1209 if (have_ptrace_getsetfpregs)
1210 if (fetch_all_fp_regs (regcache, tid))
1211 return;
1213 /* If we've hit this point, it doesn't really matter which
1214 architecture we are using. We just need to read the
1215 registers in the "old-fashioned way". */
1216 for (i = 0; i < ppc_num_fprs; i++)
1217 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1220 static void
1221 fetch_ppc_registers (struct regcache *regcache, int tid)
1223 struct gdbarch *gdbarch = regcache->arch ();
1224 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1226 fetch_gp_regs (regcache, tid);
1227 if (tdep->ppc_fp0_regnum >= 0)
1228 fetch_fp_regs (regcache, tid);
1229 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1230 if (tdep->ppc_ps_regnum != -1)
1231 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
1232 if (tdep->ppc_cr_regnum != -1)
1233 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
1234 if (tdep->ppc_lr_regnum != -1)
1235 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
1236 if (tdep->ppc_ctr_regnum != -1)
1237 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
1238 if (tdep->ppc_xer_regnum != -1)
1239 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
1240 if (tdep->ppc_mq_regnum != -1)
1241 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
1242 if (ppc_linux_trap_reg_p (gdbarch))
1244 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1245 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
1247 if (tdep->ppc_fpscr_regnum != -1)
1248 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
1249 if (have_ptrace_getvrregs)
1250 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1251 fetch_altivec_registers (regcache, tid, -1);
1252 if (have_ptrace_getsetvsxregs)
1253 if (tdep->ppc_vsr0_upper_regnum != -1)
1254 fetch_vsx_registers (regcache, tid, -1);
1255 if (tdep->ppc_ev0_upper_regnum >= 0)
1256 fetch_spe_register (regcache, tid, -1);
1257 if (tdep->ppc_ppr_regnum != -1)
1258 fetch_regset (regcache, tid, NT_PPC_PPR,
1259 PPC_LINUX_SIZEOF_PPRREGSET,
1260 &ppc32_linux_pprregset);
1261 if (tdep->ppc_dscr_regnum != -1)
1262 fetch_regset (regcache, tid, NT_PPC_DSCR,
1263 PPC_LINUX_SIZEOF_DSCRREGSET,
1264 &ppc32_linux_dscrregset);
1265 if (tdep->ppc_tar_regnum != -1)
1266 fetch_regset (regcache, tid, NT_PPC_TAR,
1267 PPC_LINUX_SIZEOF_TARREGSET,
1268 &ppc32_linux_tarregset);
1269 if (tdep->have_ebb)
1270 fetch_regset (regcache, tid, NT_PPC_EBB,
1271 PPC_LINUX_SIZEOF_EBBREGSET,
1272 &ppc32_linux_ebbregset);
1273 if (tdep->ppc_mmcr0_regnum != -1)
1274 fetch_regset (regcache, tid, NT_PPC_PMU,
1275 PPC_LINUX_SIZEOF_PMUREGSET,
1276 &ppc32_linux_pmuregset);
1277 if (tdep->have_htm_spr)
1278 fetch_regset (regcache, tid, NT_PPC_TM_SPR,
1279 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1280 &ppc32_linux_tm_sprregset);
1281 if (tdep->have_htm_core)
1283 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1284 fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
1285 (tdep->wordsize == 4?
1286 PPC32_LINUX_SIZEOF_CGPRREGSET
1287 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1288 cgprregset);
1290 if (tdep->have_htm_fpu)
1291 fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
1292 PPC_LINUX_SIZEOF_CFPRREGSET,
1293 &ppc32_linux_cfprregset);
1294 if (tdep->have_htm_altivec)
1296 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1297 fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
1298 PPC_LINUX_SIZEOF_CVMXREGSET,
1299 cvmxregset);
1301 if (tdep->have_htm_vsx)
1302 fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
1303 PPC_LINUX_SIZEOF_CVSXREGSET,
1304 &ppc32_linux_cvsxregset);
1305 if (tdep->ppc_cppr_regnum != -1)
1306 fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
1307 PPC_LINUX_SIZEOF_CPPRREGSET,
1308 &ppc32_linux_cpprregset);
1309 if (tdep->ppc_cdscr_regnum != -1)
1310 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
1311 PPC_LINUX_SIZEOF_CDSCRREGSET,
1312 &ppc32_linux_cdscrregset);
1313 if (tdep->ppc_ctar_regnum != -1)
1314 fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
1315 PPC_LINUX_SIZEOF_CTARREGSET,
1316 &ppc32_linux_ctarregset);
1319 /* Fetch registers from the child process. Fetch all registers if
1320 regno == -1, otherwise fetch all general registers or all floating
1321 point registers depending upon the value of regno. */
1322 void
1323 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
1325 pid_t tid = get_ptrace_pid (regcache->ptid ());
1327 if (regno == -1)
1328 fetch_ppc_registers (regcache, tid);
1329 else
1330 fetch_register (regcache, tid, regno);
1333 static void
1334 store_vsx_registers (const struct regcache *regcache, int tid, int regno)
1336 int ret;
1337 gdb_vsxregset_t regs;
1338 const struct regset *vsxregset = ppc_linux_vsxregset ();
1340 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1341 if (ret < 0)
1343 if (errno == EIO)
1345 have_ptrace_getsetvsxregs = 0;
1346 return;
1348 perror_with_name (_("Unable to fetch VSX registers"));
1351 vsxregset->collect_regset (vsxregset, regcache, regno, &regs,
1352 PPC_LINUX_SIZEOF_VSXREGSET);
1354 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
1355 if (ret < 0)
1356 perror_with_name (_("Unable to store VSX registers"));
1359 static void
1360 store_altivec_registers (const struct regcache *regcache, int tid,
1361 int regno)
1363 int ret;
1364 gdb_vrregset_t regs;
1365 struct gdbarch *gdbarch = regcache->arch ();
1366 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
1368 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1369 if (ret < 0)
1371 if (errno == EIO)
1373 have_ptrace_getvrregs = 0;
1374 return;
1376 perror_with_name (_("Unable to fetch AltiVec registers"));
1379 vrregset->collect_regset (vrregset, regcache, regno, &regs,
1380 PPC_LINUX_SIZEOF_VRREGSET);
1382 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
1383 if (ret < 0)
1384 perror_with_name (_("Unable to store AltiVec registers"));
1387 /* Assuming TID refers to an SPE process, set the top halves of TID's
1388 general-purpose registers and its SPE-specific registers to the
1389 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
1390 nothing.
1392 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
1393 PTRACE_SETEVRREGS requests are supported is isolated here, and in
1394 get_spe_registers. */
1395 static void
1396 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
1398 if (have_ptrace_getsetevrregs)
1400 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
1401 return;
1402 else
1404 /* EIO means that the PTRACE_SETEVRREGS request isn't
1405 supported; we fail silently, and don't try the call
1406 again. */
1407 if (errno == EIO)
1408 have_ptrace_getsetevrregs = 0;
1409 else
1410 /* Anything else needs to be reported. */
1411 perror_with_name (_("Unable to set SPE registers"));
1416 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
1417 If REGNO is -1, write the values of all the SPE-specific
1418 registers. */
1419 static void
1420 store_spe_register (const struct regcache *regcache, int tid, int regno)
1422 struct gdbarch *gdbarch = regcache->arch ();
1423 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1424 struct gdb_evrregset_t evrregs;
1426 gdb_assert (sizeof (evrregs.evr[0])
1427 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
1428 gdb_assert (sizeof (evrregs.acc)
1429 == register_size (gdbarch, tdep->ppc_acc_regnum));
1430 gdb_assert (sizeof (evrregs.spefscr)
1431 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
1433 if (regno == -1)
1434 /* Since we're going to write out every register, the code below
1435 should store to every field of evrregs; if that doesn't happen,
1436 make it obvious by initializing it with suspicious values. */
1437 memset (&evrregs, 42, sizeof (evrregs));
1438 else
1439 /* We can only read and write the entire EVR register set at a
1440 time, so to write just a single register, we do a
1441 read-modify-write maneuver. */
1442 get_spe_registers (tid, &evrregs);
1444 if (regno == -1)
1446 int i;
1448 for (i = 0; i < ppc_num_gprs; i++)
1449 regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i,
1450 &evrregs.evr[i]);
1452 else if (tdep->ppc_ev0_upper_regnum <= regno
1453 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1454 regcache->raw_collect (regno,
1455 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1457 if (regno == -1
1458 || regno == tdep->ppc_acc_regnum)
1459 regcache->raw_collect (tdep->ppc_acc_regnum,
1460 &evrregs.acc);
1462 if (regno == -1
1463 || regno == tdep->ppc_spefscr_regnum)
1464 regcache->raw_collect (tdep->ppc_spefscr_regnum,
1465 &evrregs.spefscr);
1467 /* Write back the modified register set. */
1468 set_spe_registers (tid, &evrregs);
1471 static void
1472 store_register (const struct regcache *regcache, int tid, int regno)
1474 struct gdbarch *gdbarch = regcache->arch ();
1475 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1476 /* This isn't really an address. But ptrace thinks of it as one. */
1477 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1478 int i;
1479 size_t bytes_to_transfer;
1480 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1482 if (altivec_register_p (gdbarch, regno))
1484 store_altivec_registers (regcache, tid, regno);
1485 return;
1487 else if (vsx_register_p (gdbarch, regno))
1489 store_vsx_registers (regcache, tid, regno);
1490 return;
1492 else if (spe_register_p (gdbarch, regno))
1494 store_spe_register (regcache, tid, regno);
1495 return;
1497 else if (regno == PPC_DSCR_REGNUM)
1499 gdb_assert (tdep->ppc_dscr_regnum != -1);
1501 store_regset (regcache, tid, regno, NT_PPC_DSCR,
1502 PPC_LINUX_SIZEOF_DSCRREGSET,
1503 &ppc32_linux_dscrregset);
1504 return;
1506 else if (regno == PPC_PPR_REGNUM)
1508 gdb_assert (tdep->ppc_ppr_regnum != -1);
1510 store_regset (regcache, tid, regno, NT_PPC_PPR,
1511 PPC_LINUX_SIZEOF_PPRREGSET,
1512 &ppc32_linux_pprregset);
1513 return;
1515 else if (regno == PPC_TAR_REGNUM)
1517 gdb_assert (tdep->ppc_tar_regnum != -1);
1519 store_regset (regcache, tid, regno, NT_PPC_TAR,
1520 PPC_LINUX_SIZEOF_TARREGSET,
1521 &ppc32_linux_tarregset);
1522 return;
1524 else if (PPC_IS_EBB_REGNUM (regno))
1526 gdb_assert (tdep->have_ebb);
1528 store_regset (regcache, tid, regno, NT_PPC_EBB,
1529 PPC_LINUX_SIZEOF_EBBREGSET,
1530 &ppc32_linux_ebbregset);
1531 return;
1533 else if (PPC_IS_PMU_REGNUM (regno))
1535 gdb_assert (tdep->ppc_mmcr0_regnum != -1);
1537 store_regset (regcache, tid, regno, NT_PPC_PMU,
1538 PPC_LINUX_SIZEOF_PMUREGSET,
1539 &ppc32_linux_pmuregset);
1540 return;
1542 else if (PPC_IS_TMSPR_REGNUM (regno))
1544 gdb_assert (tdep->have_htm_spr);
1546 store_regset (regcache, tid, regno, NT_PPC_TM_SPR,
1547 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1548 &ppc32_linux_tm_sprregset);
1549 return;
1551 else if (PPC_IS_CKPTGP_REGNUM (regno))
1553 gdb_assert (tdep->have_htm_core);
1555 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1556 store_regset (regcache, tid, regno, NT_PPC_TM_CGPR,
1557 (tdep->wordsize == 4?
1558 PPC32_LINUX_SIZEOF_CGPRREGSET
1559 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1560 cgprregset);
1561 return;
1563 else if (PPC_IS_CKPTFP_REGNUM (regno))
1565 gdb_assert (tdep->have_htm_fpu);
1567 store_regset (regcache, tid, regno, NT_PPC_TM_CFPR,
1568 PPC_LINUX_SIZEOF_CFPRREGSET,
1569 &ppc32_linux_cfprregset);
1570 return;
1572 else if (PPC_IS_CKPTVMX_REGNUM (regno))
1574 gdb_assert (tdep->have_htm_altivec);
1576 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1577 store_regset (regcache, tid, regno, NT_PPC_TM_CVMX,
1578 PPC_LINUX_SIZEOF_CVMXREGSET,
1579 cvmxregset);
1580 return;
1582 else if (PPC_IS_CKPTVSX_REGNUM (regno))
1584 gdb_assert (tdep->have_htm_vsx);
1586 store_regset (regcache, tid, regno, NT_PPC_TM_CVSX,
1587 PPC_LINUX_SIZEOF_CVSXREGSET,
1588 &ppc32_linux_cvsxregset);
1589 return;
1591 else if (regno == PPC_CPPR_REGNUM)
1593 gdb_assert (tdep->ppc_cppr_regnum != -1);
1595 store_regset (regcache, tid, regno, NT_PPC_TM_CPPR,
1596 PPC_LINUX_SIZEOF_CPPRREGSET,
1597 &ppc32_linux_cpprregset);
1598 return;
1600 else if (regno == PPC_CDSCR_REGNUM)
1602 gdb_assert (tdep->ppc_cdscr_regnum != -1);
1604 store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR,
1605 PPC_LINUX_SIZEOF_CDSCRREGSET,
1606 &ppc32_linux_cdscrregset);
1607 return;
1609 else if (regno == PPC_CTAR_REGNUM)
1611 gdb_assert (tdep->ppc_ctar_regnum != -1);
1613 store_regset (regcache, tid, regno, NT_PPC_TM_CTAR,
1614 PPC_LINUX_SIZEOF_CTARREGSET,
1615 &ppc32_linux_ctarregset);
1616 return;
1619 if (regaddr == -1)
1620 return;
1622 /* First collect the register. Keep in mind that the regcache's
1623 idea of the register's size may not be a multiple of sizeof
1624 (long). */
1625 memset (buf, 0, sizeof buf);
1626 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1627 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1629 /* Little-endian values always sit at the left end of the buffer. */
1630 regcache->raw_collect (regno, buf);
1632 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1634 /* Big-endian values sit at the right end of the buffer. */
1635 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1636 regcache->raw_collect (regno, buf + padding);
1639 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1641 long l;
1643 memcpy (&l, &buf[i], sizeof (l));
1644 errno = 0;
1645 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1646 regaddr += sizeof (long);
1648 if (errno == EIO
1649 && (regno == tdep->ppc_fpscr_regnum
1650 || regno == PPC_ORIG_R3_REGNUM
1651 || regno == PPC_TRAP_REGNUM))
1653 /* Some older kernel versions don't allow fpscr, orig_r3
1654 or trap to be written. */
1655 continue;
1658 if (errno != 0)
1660 char message[128];
1661 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1662 gdbarch_register_name (gdbarch, regno), regno);
1663 perror_with_name (message);
1668 /* This function actually issues the request to ptrace, telling
1669 it to store all general-purpose registers present in the specified
1670 regset.
1672 If the ptrace request does not exist, this function returns 0
1673 and properly sets the have_ptrace_* flag. If the request fails,
1674 this function calls perror_with_name. Otherwise, if the request
1675 succeeds, then the regcache is stored and 1 is returned. */
1676 static int
1677 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1679 gdb_gregset_t gregset;
1681 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1683 if (errno == EIO)
1685 have_ptrace_getsetregs = 0;
1686 return 0;
1688 perror_with_name (_("Couldn't get general-purpose registers"));
1691 fill_gregset (regcache, &gregset, regno);
1693 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1695 if (errno == EIO)
1697 have_ptrace_getsetregs = 0;
1698 return 0;
1700 perror_with_name (_("Couldn't set general-purpose registers"));
1703 return 1;
1706 /* This is a wrapper for the store_all_gp_regs function. It is
1707 responsible for verifying if this target has the ptrace request
1708 that can be used to store all general-purpose registers at one
1709 shot. If it doesn't, then we should store them using the
1710 old-fashioned way, which is to iterate over the registers and
1711 store them one by one. */
1712 static void
1713 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1715 struct gdbarch *gdbarch = regcache->arch ();
1716 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1717 int i;
1719 if (have_ptrace_getsetregs)
1720 if (store_all_gp_regs (regcache, tid, regno))
1721 return;
1723 /* If we hit this point, it doesn't really matter which
1724 architecture we are using. We just need to store the
1725 registers in the "old-fashioned way". */
1726 for (i = 0; i < ppc_num_gprs; i++)
1727 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1730 /* This function actually issues the request to ptrace, telling
1731 it to store all floating-point registers present in the specified
1732 regset.
1734 If the ptrace request does not exist, this function returns 0
1735 and properly sets the have_ptrace_* flag. If the request fails,
1736 this function calls perror_with_name. Otherwise, if the request
1737 succeeds, then the regcache is stored and 1 is returned. */
1738 static int
1739 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1741 gdb_fpregset_t fpregs;
1743 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1745 if (errno == EIO)
1747 have_ptrace_getsetfpregs = 0;
1748 return 0;
1750 perror_with_name (_("Couldn't get floating-point registers"));
1753 fill_fpregset (regcache, &fpregs, regno);
1755 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1757 if (errno == EIO)
1759 have_ptrace_getsetfpregs = 0;
1760 return 0;
1762 perror_with_name (_("Couldn't set floating-point registers"));
1765 return 1;
1768 /* This is a wrapper for the store_all_fp_regs function. It is
1769 responsible for verifying if this target has the ptrace request
1770 that can be used to store all floating-point registers at one
1771 shot. If it doesn't, then we should store them using the
1772 old-fashioned way, which is to iterate over the registers and
1773 store them one by one. */
1774 static void
1775 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1777 struct gdbarch *gdbarch = regcache->arch ();
1778 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1779 int i;
1781 if (have_ptrace_getsetfpregs)
1782 if (store_all_fp_regs (regcache, tid, regno))
1783 return;
1785 /* If we hit this point, it doesn't really matter which
1786 architecture we are using. We just need to store the
1787 registers in the "old-fashioned way". */
1788 for (i = 0; i < ppc_num_fprs; i++)
1789 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1792 static void
1793 store_ppc_registers (const struct regcache *regcache, int tid)
1795 struct gdbarch *gdbarch = regcache->arch ();
1796 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1798 store_gp_regs (regcache, tid, -1);
1799 if (tdep->ppc_fp0_regnum >= 0)
1800 store_fp_regs (regcache, tid, -1);
1801 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1802 if (tdep->ppc_ps_regnum != -1)
1803 store_register (regcache, tid, tdep->ppc_ps_regnum);
1804 if (tdep->ppc_cr_regnum != -1)
1805 store_register (regcache, tid, tdep->ppc_cr_regnum);
1806 if (tdep->ppc_lr_regnum != -1)
1807 store_register (regcache, tid, tdep->ppc_lr_regnum);
1808 if (tdep->ppc_ctr_regnum != -1)
1809 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1810 if (tdep->ppc_xer_regnum != -1)
1811 store_register (regcache, tid, tdep->ppc_xer_regnum);
1812 if (tdep->ppc_mq_regnum != -1)
1813 store_register (regcache, tid, tdep->ppc_mq_regnum);
1814 if (tdep->ppc_fpscr_regnum != -1)
1815 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1816 if (ppc_linux_trap_reg_p (gdbarch))
1818 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1819 store_register (regcache, tid, PPC_TRAP_REGNUM);
1821 if (have_ptrace_getvrregs)
1822 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1823 store_altivec_registers (regcache, tid, -1);
1824 if (have_ptrace_getsetvsxregs)
1825 if (tdep->ppc_vsr0_upper_regnum != -1)
1826 store_vsx_registers (regcache, tid, -1);
1827 if (tdep->ppc_ev0_upper_regnum >= 0)
1828 store_spe_register (regcache, tid, -1);
1829 if (tdep->ppc_ppr_regnum != -1)
1830 store_regset (regcache, tid, -1, NT_PPC_PPR,
1831 PPC_LINUX_SIZEOF_PPRREGSET,
1832 &ppc32_linux_pprregset);
1833 if (tdep->ppc_dscr_regnum != -1)
1834 store_regset (regcache, tid, -1, NT_PPC_DSCR,
1835 PPC_LINUX_SIZEOF_DSCRREGSET,
1836 &ppc32_linux_dscrregset);
1837 if (tdep->ppc_tar_regnum != -1)
1838 store_regset (regcache, tid, -1, NT_PPC_TAR,
1839 PPC_LINUX_SIZEOF_TARREGSET,
1840 &ppc32_linux_tarregset);
1842 if (tdep->ppc_mmcr0_regnum != -1)
1843 store_regset (regcache, tid, -1, NT_PPC_PMU,
1844 PPC_LINUX_SIZEOF_PMUREGSET,
1845 &ppc32_linux_pmuregset);
1847 if (tdep->have_htm_spr)
1848 store_regset (regcache, tid, -1, NT_PPC_TM_SPR,
1849 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1850 &ppc32_linux_tm_sprregset);
1852 /* Because the EBB and checkpointed HTM registers can be
1853 unavailable, attempts to store them here would cause this
1854 function to fail most of the time, so we ignore them. */
1857 void
1858 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
1860 pid_t tid = get_ptrace_pid (regcache->ptid ());
1862 if (regno >= 0)
1863 store_register (regcache, tid, regno);
1864 else
1865 store_ppc_registers (regcache, tid);
1868 /* Functions for transferring registers between a gregset_t or fpregset_t
1869 (see sys/ucontext.h) and gdb's regcache. The word size is that used
1870 by the ptrace interface, not the current program's ABI. Eg. if a
1871 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
1872 read or write 64-bit gregsets. This is to suit the host libthread_db. */
1874 void
1875 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
1877 const struct regset *regset = ppc_linux_gregset (sizeof (long));
1879 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
1882 void
1883 fill_gregset (const struct regcache *regcache,
1884 gdb_gregset_t *gregsetp, int regno)
1886 const struct regset *regset = ppc_linux_gregset (sizeof (long));
1888 if (regno == -1)
1889 memset (gregsetp, 0, sizeof (*gregsetp));
1890 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
1893 void
1894 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
1896 const struct regset *regset = ppc_linux_fpregset ();
1898 ppc_supply_fpregset (regset, regcache, -1,
1899 fpregsetp, sizeof (*fpregsetp));
1902 void
1903 fill_fpregset (const struct regcache *regcache,
1904 gdb_fpregset_t *fpregsetp, int regno)
1906 const struct regset *regset = ppc_linux_fpregset ();
1908 ppc_collect_fpregset (regset, regcache, regno,
1909 fpregsetp, sizeof (*fpregsetp));
1913 ppc_linux_nat_target::auxv_parse (const gdb_byte **readptr,
1914 const gdb_byte *endptr, CORE_ADDR *typep,
1915 CORE_ADDR *valp)
1917 int tid = inferior_ptid.lwp ();
1918 if (tid == 0)
1919 tid = inferior_ptid.pid ();
1921 int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
1923 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1924 const gdb_byte *ptr = *readptr;
1926 if (endptr == ptr)
1927 return 0;
1929 if (endptr - ptr < sizeof_auxv_field * 2)
1930 return -1;
1932 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
1933 ptr += sizeof_auxv_field;
1934 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
1935 ptr += sizeof_auxv_field;
1937 *readptr = ptr;
1938 return 1;
1941 const struct target_desc *
1942 ppc_linux_nat_target::read_description ()
1944 if (inferior_ptid == null_ptid)
1945 return this->beneath ()->read_description ();
1947 int tid = inferior_ptid.pid ();
1949 if (have_ptrace_getsetevrregs)
1951 struct gdb_evrregset_t evrregset;
1953 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
1954 return tdesc_powerpc_e500l;
1956 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
1957 Anything else needs to be reported. */
1958 else if (errno != EIO)
1959 perror_with_name (_("Unable to fetch SPE registers"));
1962 struct ppc_linux_features features = ppc_linux_no_features;
1964 features.wordsize = ppc_linux_target_wordsize (tid);
1966 CORE_ADDR hwcap = linux_get_hwcap ();
1967 CORE_ADDR hwcap2 = linux_get_hwcap2 ();
1969 if (have_ptrace_getsetvsxregs
1970 && (hwcap & PPC_FEATURE_HAS_VSX))
1972 gdb_vsxregset_t vsxregset;
1974 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
1975 features.vsx = true;
1977 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
1978 Anything else needs to be reported. */
1979 else if (errno != EIO)
1980 perror_with_name (_("Unable to fetch VSX registers"));
1983 if (have_ptrace_getvrregs
1984 && (hwcap & PPC_FEATURE_HAS_ALTIVEC))
1986 gdb_vrregset_t vrregset;
1988 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
1989 features.altivec = true;
1991 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
1992 Anything else needs to be reported. */
1993 else if (errno != EIO)
1994 perror_with_name (_("Unable to fetch AltiVec registers"));
1997 features.isa205 = ppc_linux_has_isa205 (hwcap);
1999 if ((hwcap2 & PPC_FEATURE2_DSCR)
2000 && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET)
2001 && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET))
2003 features.ppr_dscr = true;
2004 if ((hwcap2 & PPC_FEATURE2_ARCH_2_07)
2005 && (hwcap2 & PPC_FEATURE2_TAR)
2006 && (hwcap2 & PPC_FEATURE2_EBB)
2007 && check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET)
2008 && check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET)
2009 && check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET))
2011 features.isa207 = true;
2012 if ((hwcap2 & PPC_FEATURE2_HTM)
2013 && check_regset (tid, NT_PPC_TM_SPR,
2014 PPC_LINUX_SIZEOF_TM_SPRREGSET))
2015 features.htm = true;
2019 return ppc_linux_match_description (features);
2022 /* Routines for installing hardware watchpoints and breakpoints. When
2023 GDB requests a hardware watchpoint or breakpoint to be installed, we
2024 register the request for the pid of inferior_ptid in a map with one
2025 entry per process. We then issue a stop request to all the threads of
2026 this process, and mark a per-thread flag indicating that their debug
2027 registers should be updated. Right before they are next resumed, we
2028 remove all previously installed debug registers and install all the
2029 ones GDB requested. We then update a map with one entry per thread
2030 that keeps track of what debug registers were last installed in each
2031 thread.
2033 We use this second map to remove installed registers before installing
2034 the ones requested by GDB, and to copy the debug register state after
2035 a thread clones or forks, since depending on the kernel configuration,
2036 debug registers can be inherited. */
2038 /* Check if we support and have enough resources to install a hardware
2039 watchpoint or breakpoint. See the description in target.h. */
2042 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt,
2043 int ot)
2045 int total_hw_wp, total_hw_bp;
2047 m_dreg_interface.detect (inferior_ptid);
2049 if (m_dreg_interface.unavailable_p ())
2050 return 0;
2052 if (m_dreg_interface.hwdebug_p ())
2054 /* When PowerPC HWDEBUG ptrace interface is available, the number of
2055 available hardware watchpoints and breakpoints is stored at the
2056 hwdebug_info struct. */
2057 total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps;
2058 total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps;
2060 else
2062 gdb_assert (m_dreg_interface.debugreg_p ());
2064 /* With the DEBUGREG ptrace interface, we should consider having 1
2065 hardware watchpoint and no hardware breakpoints. */
2066 total_hw_bp = 0;
2067 total_hw_wp = 1;
2070 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
2071 || type == bp_access_watchpoint || type == bp_watchpoint)
2073 if (total_hw_wp == 0)
2074 return 0;
2075 else if (cnt + ot > total_hw_wp)
2076 return -1;
2077 else
2078 return 1;
2080 else if (type == bp_hardware_breakpoint)
2082 if (total_hw_bp == 0)
2083 return 0;
2084 else if (cnt > total_hw_bp)
2085 return -1;
2086 else
2087 return 1;
2090 return 0;
2093 /* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise. */
2096 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2098 /* Handle sub-8-byte quantities. */
2099 if (len <= 0)
2100 return 0;
2102 m_dreg_interface.detect (inferior_ptid);
2104 if (m_dreg_interface.unavailable_p ())
2105 return 0;
2107 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
2108 restrictions for watchpoints in the processors. In that case, we use that
2109 information to determine the hardcoded watchable region for
2110 watchpoints. */
2111 if (m_dreg_interface.hwdebug_p ())
2113 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
2114 .hwdebug_info ());
2115 int region_size = hwdebug_info.data_bp_alignment;
2116 int region_align = region_size;
2118 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
2119 watchpoints and can watch any access within an arbitrary memory
2120 region. This is useful to watch arrays and structs, for instance. It
2121 takes two hardware watchpoints though. */
2122 if (len > 1
2123 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
2124 && (linux_get_hwcap () & PPC_FEATURE_BOOKE))
2125 return 2;
2126 /* Check if the processor provides DAWR interface. */
2127 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
2129 /* DAWR interface allows to watch up to 512 byte wide ranges. */
2130 region_size = 512;
2131 /* DAWR interface allows to watch up to 512 byte wide ranges which
2132 can't cross a 512 byte boundary on machines that don't have a
2133 second DAWR (P9 or less). */
2134 if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31))
2135 region_align = 512;
2137 /* Server processors provide one hardware watchpoint and addr+len should
2138 fall in the watchable region provided by the ptrace interface. */
2139 if (region_align
2140 && (addr + len > (addr & ~(region_align - 1)) + region_size))
2141 return 0;
2143 /* addr+len must fall in the 8 byte watchable region for DABR-based
2144 processors (i.e., server processors). Without the new PowerPC HWDEBUG
2145 ptrace interface, DAC-based processors (i.e., embedded processors) will
2146 use addresses aligned to 4-bytes due to the way the read/write flags are
2147 passed in the old ptrace interface. */
2148 else
2150 gdb_assert (m_dreg_interface.debugreg_p ());
2152 if (((linux_get_hwcap () & PPC_FEATURE_BOOKE)
2153 && (addr + len) > (addr & ~3) + 4)
2154 || (addr + len) > (addr & ~7) + 8)
2155 return 0;
2158 return 1;
2161 /* This function compares two ppc_hw_breakpoint structs
2162 field-by-field. */
2164 bool
2165 ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
2166 const struct ppc_hw_breakpoint &b)
2168 return (a.trigger_type == b.trigger_type
2169 && a.addr_mode == b.addr_mode
2170 && a.condition_mode == b.condition_mode
2171 && a.addr == b.addr
2172 && a.addr2 == b.addr2
2173 && a.condition_value == b.condition_value);
2176 /* Return the number of registers needed for a ranged breakpoint. */
2179 ppc_linux_nat_target::ranged_break_num_registers ()
2181 m_dreg_interface.detect (inferior_ptid);
2183 return ((m_dreg_interface.hwdebug_p ()
2184 && (m_dreg_interface.hwdebug_info ().features
2185 & PPC_DEBUG_FEATURE_INSN_BP_RANGE))?
2186 2 : -1);
2189 /* Register the hardware breakpoint described by BP_TGT, to be inserted
2190 when the threads of inferior_ptid are resumed. Returns 0 for success,
2191 or -1 if the HWDEBUG interface that we need for hardware breakpoints
2192 is not available. */
2195 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
2196 struct bp_target_info *bp_tgt)
2198 struct ppc_hw_breakpoint p;
2200 m_dreg_interface.detect (inferior_ptid);
2202 if (!m_dreg_interface.hwdebug_p ())
2203 return -1;
2205 p.version = PPC_DEBUG_CURRENT_VERSION;
2206 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
2207 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2208 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
2209 p.condition_value = 0;
2211 if (bp_tgt->length)
2213 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2215 /* The breakpoint will trigger if the address of the instruction is
2216 within the defined range, as follows: p.addr <= address < p.addr2. */
2217 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
2219 else
2221 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2222 p.addr2 = 0;
2225 register_hw_breakpoint (inferior_ptid.pid (), p);
2227 return 0;
2230 /* Clear a registration for the hardware breakpoint given by type BP_TGT.
2231 It will be removed from the threads of inferior_ptid when they are
2232 next resumed. Returns 0 for success, or -1 if the HWDEBUG interface
2233 that we need for hardware breakpoints is not available. */
2236 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
2237 struct bp_target_info *bp_tgt)
2239 struct ppc_hw_breakpoint p;
2241 m_dreg_interface.detect (inferior_ptid);
2243 if (!m_dreg_interface.hwdebug_p ())
2244 return -1;
2246 p.version = PPC_DEBUG_CURRENT_VERSION;
2247 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
2248 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2249 p.addr = (uint64_t) bp_tgt->placed_address;
2250 p.condition_value = 0;
2252 if (bp_tgt->length)
2254 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2256 /* The breakpoint will trigger if the address of the instruction is within
2257 the defined range, as follows: p.addr <= address < p.addr2. */
2258 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
2260 else
2262 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2263 p.addr2 = 0;
2266 clear_hw_breakpoint (inferior_ptid.pid (), p);
2268 return 0;
2271 /* Return the trigger value to set in a ppc_hw_breakpoint object for a
2272 given hardware watchpoint TYPE. We assume type is not hw_execute. */
2275 ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type)
2277 int t;
2279 if (type == hw_read)
2280 t = PPC_BREAKPOINT_TRIGGER_READ;
2281 else if (type == hw_write)
2282 t = PPC_BREAKPOINT_TRIGGER_WRITE;
2283 else
2284 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
2286 return t;
2289 /* Register a new masked watchpoint at ADDR using the mask MASK, to be
2290 inserted when the threads of inferior_ptid are resumed. RW may be
2291 hw_read for a read watchpoint, hw_write for a write watchpoint or
2292 hw_access for an access watchpoint. */
2295 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
2296 target_hw_bp_type rw)
2298 struct ppc_hw_breakpoint p;
2300 gdb_assert (m_dreg_interface.hwdebug_p ());
2302 p.version = PPC_DEBUG_CURRENT_VERSION;
2303 p.trigger_type = get_trigger_type (rw);
2304 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
2305 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2306 p.addr = addr;
2307 p.addr2 = mask;
2308 p.condition_value = 0;
2310 register_hw_breakpoint (inferior_ptid.pid (), p);
2312 return 0;
2315 /* Clear a registration for a masked watchpoint at ADDR with the mask
2316 MASK. It will be removed from the threads of inferior_ptid when they
2317 are next resumed. RW may be hw_read for a read watchpoint, hw_write
2318 for a write watchpoint or hw_access for an access watchpoint. */
2321 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
2322 target_hw_bp_type rw)
2324 struct ppc_hw_breakpoint p;
2326 gdb_assert (m_dreg_interface.hwdebug_p ());
2328 p.version = PPC_DEBUG_CURRENT_VERSION;
2329 p.trigger_type = get_trigger_type (rw);
2330 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
2331 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2332 p.addr = addr;
2333 p.addr2 = mask;
2334 p.condition_value = 0;
2336 clear_hw_breakpoint (inferior_ptid.pid (), p);
2338 return 0;
2341 /* Check whether we have at least one free DVC register for the threads
2342 of the pid of inferior_ptid. */
2344 bool
2345 ppc_linux_nat_target::can_use_watchpoint_cond_accel (void)
2347 m_dreg_interface.detect (inferior_ptid);
2349 if (!m_dreg_interface.hwdebug_p ())
2350 return false;
2352 int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs;
2354 if (cnt == 0)
2355 return false;
2357 auto process_it = m_process_info.find (inferior_ptid.pid ());
2359 /* No breakpoints or watchpoints have been requested for this process,
2360 we have at least one free DVC register. */
2361 if (process_it == m_process_info.end ())
2362 return true;
2364 for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps)
2365 if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2366 cnt--;
2368 if (cnt <= 0)
2369 return false;
2371 return true;
2374 /* Calculate the enable bits and the contents of the Data Value Compare
2375 debug register present in BookE processors.
2377 ADDR is the address to be watched, LEN is the length of watched data
2378 and DATA_VALUE is the value which will trigger the watchpoint.
2379 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
2380 CONDITION_VALUE will hold the value which should be put in the
2381 DVC register. */
2383 void
2384 ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len,
2385 CORE_ADDR data_value,
2386 uint32_t *condition_mode,
2387 uint64_t *condition_value)
2389 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface.
2390 hwdebug_info ());
2392 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
2393 rightmost_enabled_byte;
2394 CORE_ADDR addr_end_data, addr_end_dvc;
2396 /* The DVC register compares bytes within fixed-length windows which
2397 are word-aligned, with length equal to that of the DVC register.
2398 We need to calculate where our watch region is relative to that
2399 window and enable comparison of the bytes which fall within it. */
2401 align_offset = addr % hwdebug_info.sizeof_condition;
2402 addr_end_data = addr + len;
2403 addr_end_dvc = (addr - align_offset
2404 + hwdebug_info.sizeof_condition);
2405 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
2406 addr_end_data - addr_end_dvc : 0;
2407 num_byte_enable = len - num_bytes_off_dvc;
2408 /* Here, bytes are numbered from right to left. */
2409 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
2410 addr_end_dvc - addr_end_data : 0;
2412 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
2413 for (i = 0; i < num_byte_enable; i++)
2414 *condition_mode
2415 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
2417 /* Now we need to match the position within the DVC of the comparison
2418 value with where the watch region is relative to the window
2419 (i.e., the ALIGN_OFFSET). */
2421 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
2422 << rightmost_enabled_byte * 8);
2425 /* Return the number of memory locations that need to be accessed to
2426 evaluate the expression which generated the given value chain.
2427 Returns -1 if there's any register access involved, or if there are
2428 other kinds of values which are not acceptable in a condition
2429 expression (e.g., lval_computed or lval_internalvar). */
2432 ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr>
2433 &chain)
2435 int found_memory_cnt = 0;
2437 /* The idea here is that evaluating an expression generates a series
2438 of values, one holding the value of every subexpression. (The
2439 expression a*b+c has five subexpressions: a, b, a*b, c, and
2440 a*b+c.) GDB's values hold almost enough information to establish
2441 the criteria given above --- they identify memory lvalues,
2442 register lvalues, computed values, etcetera. So we can evaluate
2443 the expression, and then scan the chain of values that leaves
2444 behind to determine the memory locations involved in the evaluation
2445 of an expression.
2447 However, I don't think that the values returned by inferior
2448 function calls are special in any way. So this function may not
2449 notice that an expression contains an inferior function call.
2450 FIXME. */
2452 for (const value_ref_ptr &iter : chain)
2454 struct value *v = iter.get ();
2456 /* Constants and values from the history are fine. */
2457 if (v->lval () == not_lval || !v->deprecated_modifiable ())
2458 continue;
2459 else if (v->lval () == lval_memory)
2461 /* A lazy memory lvalue is one that GDB never needed to fetch;
2462 we either just used its address (e.g., `a' in `a.b') or
2463 we never needed it at all (e.g., `a' in `a,b'). */
2464 if (!v->lazy ())
2465 found_memory_cnt++;
2467 /* Other kinds of values are not fine. */
2468 else
2469 return -1;
2472 return found_memory_cnt;
2475 /* Verifies whether the expression COND can be implemented using the
2476 DVC (Data Value Compare) register in BookE processors. The expression
2477 must test the watch value for equality with a constant expression.
2478 If the function returns 1, DATA_VALUE will contain the constant against
2479 which the watch value should be compared and LEN will contain the size
2480 of the constant. */
2483 ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr,
2484 struct expression *cond,
2485 CORE_ADDR *data_value, int *len)
2487 int num_accesses_left, num_accesses_right;
2488 struct value *left_val, *right_val;
2489 std::vector<value_ref_ptr> left_chain, right_chain;
2491 expr::equal_operation *eqop
2492 = dynamic_cast<expr::equal_operation *> (cond->op.get ());
2493 if (eqop == nullptr)
2494 return 0;
2495 expr::operation *lhs = eqop->get_lhs ();
2496 expr::operation *rhs = eqop->get_rhs ();
2498 fetch_subexp_value (cond, lhs, &left_val, NULL, &left_chain, false);
2499 num_accesses_left = num_memory_accesses (left_chain);
2501 if (left_val == NULL || num_accesses_left < 0)
2502 return 0;
2504 fetch_subexp_value (cond, rhs, &right_val, NULL, &right_chain, false);
2505 num_accesses_right = num_memory_accesses (right_chain);
2507 if (right_val == NULL || num_accesses_right < 0)
2508 return 0;
2510 if (num_accesses_left == 1 && num_accesses_right == 0
2511 && left_val->lval () == lval_memory
2512 && left_val->address () == watch_addr)
2514 *data_value = value_as_long (right_val);
2516 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
2517 the same type as the memory region referenced by LEFT_VAL. */
2518 *len = check_typedef (left_val->type ())->length ();
2520 else if (num_accesses_left == 0 && num_accesses_right == 1
2521 && right_val->lval () == lval_memory
2522 && right_val->address () == watch_addr)
2524 *data_value = value_as_long (left_val);
2526 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
2527 the same type as the memory region referenced by RIGHT_VAL. */
2528 *len = check_typedef (right_val->type ())->length ();
2530 else
2531 return 0;
2533 return 1;
2536 /* Return true if the target is capable of using hardware to evaluate the
2537 condition expression, thus only triggering the watchpoint when it is
2538 true. */
2540 bool
2541 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr,
2542 int len, int rw,
2543 struct expression *cond)
2545 CORE_ADDR data_value;
2547 m_dreg_interface.detect (inferior_ptid);
2549 return (m_dreg_interface.hwdebug_p ()
2550 && (m_dreg_interface.hwdebug_info ().num_condition_regs > 0)
2551 && check_condition (addr, cond, &data_value, &len));
2554 /* Set up P with the parameters necessary to request a watchpoint covering
2555 LEN bytes starting at ADDR and if possible with condition expression COND
2556 evaluated by hardware. INSERT tells if we are creating a request for
2557 inserting or removing the watchpoint. */
2559 void
2560 ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p,
2561 CORE_ADDR addr, int len,
2562 enum target_hw_bp_type type,
2563 struct expression *cond,
2564 int insert)
2566 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
2567 .hwdebug_info ());
2569 if (len == 1
2570 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2572 int use_condition;
2573 CORE_ADDR data_value;
2575 use_condition = (insert? can_use_watchpoint_cond_accel ()
2576 : hwdebug_info.num_condition_regs > 0);
2577 if (cond && use_condition && check_condition (addr, cond,
2578 &data_value, &len))
2579 calculate_dvc (addr, len, data_value, &p->condition_mode,
2580 &p->condition_value);
2581 else
2583 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2584 p->condition_value = 0;
2587 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2588 p->addr2 = 0;
2590 else
2592 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2593 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2594 p->condition_value = 0;
2596 /* The watchpoint will trigger if the address of the memory access is
2597 within the defined range, as follows: p->addr <= address < p->addr2.
2599 Note that the above sentence just documents how ptrace interprets
2600 its arguments; the watchpoint is set to watch the range defined by
2601 the user _inclusively_, as specified by the user interface. */
2602 p->addr2 = (uint64_t) addr + len;
2605 p->version = PPC_DEBUG_CURRENT_VERSION;
2606 p->trigger_type = get_trigger_type (type);
2607 p->addr = (uint64_t) addr;
2610 /* Register a watchpoint, to be inserted when the threads of the group of
2611 inferior_ptid are next resumed. Returns 0 on success, and -1 if there
2612 is no ptrace interface available to install the watchpoint. */
2615 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2616 enum target_hw_bp_type type,
2617 struct expression *cond)
2619 m_dreg_interface.detect (inferior_ptid);
2621 if (m_dreg_interface.unavailable_p ())
2622 return -1;
2624 if (m_dreg_interface.hwdebug_p ())
2626 struct ppc_hw_breakpoint p;
2628 create_watchpoint_request (&p, addr, len, type, cond, 1);
2630 register_hw_breakpoint (inferior_ptid.pid (), p);
2632 else
2634 gdb_assert (m_dreg_interface.debugreg_p ());
2636 long wp_value;
2637 long read_mode, write_mode;
2639 if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
2641 /* PowerPC 440 requires only the read/write flags to be passed
2642 to the kernel. */
2643 read_mode = 1;
2644 write_mode = 2;
2646 else
2648 /* PowerPC 970 and other DABR-based processors are required to pass
2649 the Breakpoint Translation bit together with the flags. */
2650 read_mode = 5;
2651 write_mode = 6;
2654 wp_value = addr & ~(read_mode | write_mode);
2655 switch (type)
2657 case hw_read:
2658 /* Set read and translate bits. */
2659 wp_value |= read_mode;
2660 break;
2661 case hw_write:
2662 /* Set write and translate bits. */
2663 wp_value |= write_mode;
2664 break;
2665 case hw_access:
2666 /* Set read, write and translate bits. */
2667 wp_value |= read_mode | write_mode;
2668 break;
2671 register_wp (inferior_ptid.pid (), wp_value);
2674 return 0;
2677 /* Clear a registration for a hardware watchpoint. It will be removed
2678 from the threads of the group of inferior_ptid when they are next
2679 resumed. */
2682 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2683 enum target_hw_bp_type type,
2684 struct expression *cond)
2686 gdb_assert (!m_dreg_interface.unavailable_p ());
2688 if (m_dreg_interface.hwdebug_p ())
2690 struct ppc_hw_breakpoint p;
2692 create_watchpoint_request (&p, addr, len, type, cond, 0);
2694 clear_hw_breakpoint (inferior_ptid.pid (), p);
2696 else
2698 gdb_assert (m_dreg_interface.debugreg_p ());
2700 clear_wp (inferior_ptid.pid ());
2703 return 0;
2706 /* Clean up the per-process info associated with PID. When using the
2707 HWDEBUG interface, we also erase the per-thread state of installed
2708 debug registers for all the threads that belong to the group of PID.
2710 Usually the thread state is cleaned up by low_delete_thread. We also
2711 do it here because low_new_thread is not called for the initial LWP,
2712 so low_delete_thread won't be able to clean up this state. */
2714 void
2715 ppc_linux_nat_target::low_forget_process (pid_t pid)
2717 if ((!m_dreg_interface.detected_p ())
2718 || (m_dreg_interface.unavailable_p ()))
2719 return;
2721 ptid_t pid_ptid (pid, 0, 0);
2723 m_process_info.erase (pid);
2725 if (m_dreg_interface.hwdebug_p ())
2727 for (auto it = m_installed_hw_bps.begin ();
2728 it != m_installed_hw_bps.end ();)
2730 if (it->first.matches (pid_ptid))
2731 it = m_installed_hw_bps.erase (it);
2732 else
2733 it++;
2738 /* Copy the per-process state associated with the pid of PARENT to the
2739 state of CHILD_PID. GDB expects that a forked process will have the
2740 same hardware breakpoints and watchpoints as the parent.
2742 If we're using the HWDEBUG interface, also copy the thread debug
2743 register state for the ptid of PARENT to the state for CHILD_PID.
2745 Like for clone events, we assume the kernel will copy the debug
2746 registers from the parent thread to the child. The
2747 low_prepare_to_resume function is made to work even if it doesn't.
2749 We copy the thread state here and not in low_new_thread since we don't
2750 have the pid of the parent in low_new_thread. Even if we did,
2751 low_new_thread might not be called immediately after the fork event is
2752 detected. For instance, with the checkpointing system (see
2753 linux-fork.c), the thread won't be added until GDB decides to switch
2754 to a new checkpointed process. At that point, the debug register
2755 state of the parent thread is unlikely to correspond to the state it
2756 had at the point when it forked. */
2758 void
2759 ppc_linux_nat_target::low_new_fork (struct lwp_info *parent,
2760 pid_t child_pid)
2762 if ((!m_dreg_interface.detected_p ())
2763 || (m_dreg_interface.unavailable_p ()))
2764 return;
2766 auto process_it = m_process_info.find (parent->ptid.pid ());
2768 if (process_it != m_process_info.end ())
2769 m_process_info[child_pid] = m_process_info[parent->ptid.pid ()];
2771 if (m_dreg_interface.hwdebug_p ())
2773 ptid_t child_ptid (child_pid, child_pid, 0);
2775 copy_thread_dreg_state (parent->ptid, child_ptid);
2779 /* Copy the thread debug register state from the PARENT thread to the the
2780 state for CHILD_LWP, if we're using the HWDEBUG interface. We assume
2781 the kernel copies the debug registers from one thread to another after
2782 a clone event. The low_prepare_to_resume function is made to work
2783 even if it doesn't. */
2785 void
2786 ppc_linux_nat_target::low_new_clone (struct lwp_info *parent,
2787 pid_t child_lwp)
2789 if ((!m_dreg_interface.detected_p ())
2790 || (m_dreg_interface.unavailable_p ()))
2791 return;
2793 if (m_dreg_interface.hwdebug_p ())
2795 ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0);
2797 copy_thread_dreg_state (parent->ptid, child_ptid);
2801 /* Initialize the arch-specific thread state for LP so that it contains
2802 the ptid for lp, so that we can use it in low_delete_thread. Mark the
2803 new thread LP as stale so that we update its debug registers before
2804 resuming it. This is not called for the initial thread. */
2806 void
2807 ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
2809 init_arch_lwp_info (lp);
2811 mark_thread_stale (lp);
2814 /* Delete the per-thread debug register stale flag. */
2816 void
2817 ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info
2818 *lp_arch_info)
2820 if (lp_arch_info != NULL)
2822 if (m_dreg_interface.detected_p ()
2823 && m_dreg_interface.hwdebug_p ())
2824 m_installed_hw_bps.erase (lp_arch_info->lwp_ptid);
2826 xfree (lp_arch_info);
2830 /* Install or delete debug registers in thread LP so that it matches what
2831 GDB requested before it is resumed. */
2833 void
2834 ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp)
2836 if ((!m_dreg_interface.detected_p ())
2837 || (m_dreg_interface.unavailable_p ()))
2838 return;
2840 /* We have to re-install or clear the debug registers if we set the
2841 stale flag.
2843 In addition, some kernels configurations can disable a hardware
2844 watchpoint after it is hit. Usually, GDB will remove and re-install
2845 a hardware watchpoint when the thread stops if "breakpoint
2846 always-inserted" is off, or to single-step a watchpoint. But so
2847 that we don't rely on this behavior, if we stop due to a hardware
2848 breakpoint or watchpoint, we also refresh our debug registers. */
2850 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
2852 bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
2853 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
2854 || lp_arch_info->debug_regs_stale);
2856 if (!stale_dregs)
2857 return;
2859 gdb_assert (lp->ptid.lwp_p ());
2861 auto process_it = m_process_info.find (lp->ptid.pid ());
2863 if (m_dreg_interface.hwdebug_p ())
2865 /* First, delete any hardware watchpoint or breakpoint installed in
2866 the inferior and update the thread state. */
2867 auto installed_it = m_installed_hw_bps.find (lp->ptid);
2869 if (installed_it != m_installed_hw_bps.end ())
2871 auto &bp_list = installed_it->second;
2873 for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();)
2875 /* We ignore ENOENT to account for various possible kernel
2876 behaviors, e.g. the kernel might or might not copy debug
2877 registers across forks and clones, and we always copy
2878 the debug register state when fork and clone events are
2879 detected. */
2880 if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0,
2881 bp_it->first) < 0)
2882 if (errno != ENOENT)
2883 perror_with_name (_("Error deleting hardware "
2884 "breakpoint or watchpoint"));
2886 /* We erase the entries one at a time after successfully
2887 removing the corresponding slot form the thread so that
2888 if we throw an exception above in a future iteration the
2889 map remains consistent. */
2890 bp_it = bp_list.erase (bp_it);
2893 gdb_assert (bp_list.empty ());
2896 /* Now we install all the requested hardware breakpoints and
2897 watchpoints and update the thread state. */
2899 if (process_it != m_process_info.end ())
2901 auto &bp_list = m_installed_hw_bps[lp->ptid];
2903 for (ppc_hw_breakpoint bp
2904 : process_it->second.requested_hw_bps)
2906 long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (),
2907 0, &bp);
2909 if (slot < 0)
2910 perror_with_name (_("Error setting hardware "
2911 "breakpoint or watchpoint"));
2913 /* Keep track of which slots we installed in this
2914 thread. */
2915 bp_list.emplace (bp_list.begin (), slot, bp);
2919 else
2921 gdb_assert (m_dreg_interface.debugreg_p ());
2923 /* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint. We
2924 always clear the watchpoint instead of just overwriting it, in
2925 case there is a request for a new watchpoint, because on some
2926 older kernel versions and configurations simply overwriting the
2927 watchpoint after it was hit would not re-enable it. */
2928 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0)
2929 perror_with_name (_("Error clearing hardware watchpoint"));
2931 /* GDB requested a watchpoint to be installed. */
2932 if (process_it != m_process_info.end ()
2933 && process_it->second.requested_wp_val.has_value ())
2935 long wp = *(process_it->second.requested_wp_val);
2937 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0)
2938 perror_with_name (_("Error setting hardware watchpoint"));
2942 lp_arch_info->debug_regs_stale = false;
2945 /* Return true if INFERIOR_PTID is known to have been stopped by a
2946 hardware watchpoint, false otherwise. If true is returned, write the
2947 address that the kernel reported as causing the SIGTRAP in ADDR_P. */
2949 bool
2950 ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p)
2952 siginfo_t siginfo;
2954 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2955 return false;
2957 if (siginfo.si_signo != SIGTRAP
2958 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2959 return false;
2961 gdb_assert (!m_dreg_interface.unavailable_p ());
2963 /* Check if this signal corresponds to a hardware breakpoint. We only
2964 need to check this if we're using the HWDEBUG interface, since the
2965 DEBUGREG interface only allows setting one hardware watchpoint. */
2966 if (m_dreg_interface.hwdebug_p ())
2968 /* The index (or slot) of the *point is passed in the si_errno
2969 field. Currently, this is only the case if the kernel was
2970 configured with CONFIG_PPC_ADV_DEBUG_REGS. If not, we assume
2971 the kernel will set si_errno to a value that doesn't correspond
2972 to any real slot. */
2973 int slot = siginfo.si_errno;
2975 auto installed_it = m_installed_hw_bps.find (inferior_ptid);
2977 /* We must have installed slots for the thread if it got a
2978 TRAP_HWBKPT signal. */
2979 gdb_assert (installed_it != m_installed_hw_bps.end ());
2981 for (const auto & slot_bp_pair : installed_it->second)
2982 if (slot_bp_pair.first == slot
2983 && (slot_bp_pair.second.trigger_type
2984 == PPC_BREAKPOINT_TRIGGER_EXECUTE))
2985 return false;
2988 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2989 return true;
2992 /* Return true if INFERIOR_PTID is known to have been stopped by a
2993 hardware watchpoint, false otherwise. */
2995 bool
2996 ppc_linux_nat_target::low_stopped_by_watchpoint ()
2998 CORE_ADDR addr;
2999 return low_stopped_data_address (&addr);
3002 bool
3003 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
3004 CORE_ADDR start,
3005 int length)
3007 gdb_assert (!m_dreg_interface.unavailable_p ());
3009 int mask;
3011 if (m_dreg_interface.hwdebug_p ()
3012 && (linux_get_hwcap () & PPC_FEATURE_BOOKE))
3013 return start <= addr && start + length >= addr;
3014 else if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
3015 mask = 3;
3016 else
3017 mask = 7;
3019 addr &= ~mask;
3021 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
3022 return start <= addr + mask && start + length - 1 >= addr;
3025 /* Return the number of registers needed for a masked hardware watchpoint. */
3028 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr,
3029 CORE_ADDR mask)
3031 m_dreg_interface.detect (inferior_ptid);
3033 if (!m_dreg_interface.hwdebug_p ()
3034 || (m_dreg_interface.hwdebug_info ().features
3035 & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
3036 return -1;
3037 else if ((mask & 0xC0000000) != 0xC0000000)
3039 warning (_("The given mask covers kernel address space "
3040 "and cannot be used.\n"));
3042 return -2;
3044 else
3045 return 2;
3048 /* Copy the per-thread debug register state, if any, from thread
3049 PARENT_PTID to thread CHILD_PTID, if the debug register being used is
3050 HWDEBUG. */
3052 void
3053 ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid,
3054 const ptid_t &child_ptid)
3056 gdb_assert (m_dreg_interface.hwdebug_p ());
3058 auto installed_it = m_installed_hw_bps.find (parent_ptid);
3060 if (installed_it != m_installed_hw_bps.end ())
3061 m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid];
3064 /* Mark the debug register stale flag for the new thread, if we have
3065 already detected which debug register interface we use. */
3067 void
3068 ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp)
3070 if ((!m_dreg_interface.detected_p ())
3071 || (m_dreg_interface.unavailable_p ()))
3072 return;
3074 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
3076 lp_arch_info->debug_regs_stale = true;
3079 /* Mark all the threads of the group of PID as stale with respect to
3080 debug registers and issue a stop request to each such thread that
3081 isn't already stopped. */
3083 void
3084 ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid)
3086 /* We do this in two passes to make sure all threads are marked even if
3087 we get an exception when stopping one of them. */
3089 iterate_over_lwps (ptid_t (pid),
3090 [this] (struct lwp_info *lp) -> int {
3091 this->mark_thread_stale (lp);
3092 return 0;
3095 iterate_over_lwps (ptid_t (pid),
3096 [] (struct lwp_info *lp) -> int {
3097 if (!lwp_is_stopped (lp))
3098 linux_stop_lwp (lp);
3099 return 0;
3103 /* Register a hardware breakpoint or watchpoint BP for the pid PID, then
3104 mark the stale flag for all threads of the group of PID, and issue a
3105 stop request for them. The breakpoint or watchpoint will be installed
3106 the next time each thread is resumed. Should only be used if the
3107 debug register interface is HWDEBUG. */
3109 void
3110 ppc_linux_nat_target::register_hw_breakpoint (pid_t pid,
3111 const struct
3112 ppc_hw_breakpoint &bp)
3114 gdb_assert (m_dreg_interface.hwdebug_p ());
3116 m_process_info[pid].requested_hw_bps.push_back (bp);
3118 mark_debug_registers_changed (pid);
3121 /* Clear a registration for a hardware breakpoint or watchpoint BP for
3122 the pid PID, then mark the stale flag for all threads of the group of
3123 PID, and issue a stop request for them. The breakpoint or watchpoint
3124 will be removed the next time each thread is resumed. Should only be
3125 used if the debug register interface is HWDEBUG. */
3127 void
3128 ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid,
3129 const struct ppc_hw_breakpoint &bp)
3131 gdb_assert (m_dreg_interface.hwdebug_p ());
3133 auto process_it = m_process_info.find (pid);
3135 gdb_assert (process_it != m_process_info.end ());
3137 auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (),
3138 process_it->second.requested_hw_bps.end (),
3139 [&bp, this]
3140 (const struct ppc_hw_breakpoint &curr)
3141 { return hwdebug_point_cmp (bp, curr); }
3144 /* If GDB is removing a watchpoint, it must have been inserted. */
3145 gdb_assert (bp_it != process_it->second.requested_hw_bps.end ());
3147 process_it->second.requested_hw_bps.erase (bp_it);
3149 mark_debug_registers_changed (pid);
3152 /* Register the hardware watchpoint value WP_VALUE for the pid PID,
3153 then mark the stale flag for all threads of the group of PID, and
3154 issue a stop request for them. The breakpoint or watchpoint will be
3155 installed the next time each thread is resumed. Should only be used
3156 if the debug register interface is DEBUGREG. */
3158 void
3159 ppc_linux_nat_target::register_wp (pid_t pid, long wp_value)
3161 gdb_assert (m_dreg_interface.debugreg_p ());
3163 /* Our other functions should have told GDB that we only have one
3164 hardware watchpoint with this interface. */
3165 gdb_assert (!m_process_info[pid].requested_wp_val.has_value ());
3167 m_process_info[pid].requested_wp_val.emplace (wp_value);
3169 mark_debug_registers_changed (pid);
3172 /* Clear the hardware watchpoint registration for the pid PID, then mark
3173 the stale flag for all threads of the group of PID, and issue a stop
3174 request for them. The breakpoint or watchpoint will be installed the
3175 next time each thread is resumed. Should only be used if the debug
3176 register interface is DEBUGREG. */
3178 void
3179 ppc_linux_nat_target::clear_wp (pid_t pid)
3181 gdb_assert (m_dreg_interface.debugreg_p ());
3183 auto process_it = m_process_info.find (pid);
3185 gdb_assert (process_it != m_process_info.end ());
3186 gdb_assert (process_it->second.requested_wp_val.has_value ());
3188 process_it->second.requested_wp_val.reset ();
3190 mark_debug_registers_changed (pid);
3193 /* Initialize the arch-specific thread state for LWP, if it not already
3194 created. */
3196 void
3197 ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp)
3199 if (lwp_arch_private_info (lp) == NULL)
3201 lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
3202 lwp_arch_private_info (lp)->debug_regs_stale = false;
3203 lwp_arch_private_info (lp)->lwp_ptid = lp->ptid;
3207 /* Get the arch-specific thread state for LWP, creating it if
3208 necessary. */
3210 arch_lwp_info *
3211 ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp)
3213 init_arch_lwp_info (lp);
3215 return lwp_arch_private_info (lp);
3218 void _initialize_ppc_linux_nat ();
3219 void
3220 _initialize_ppc_linux_nat ()
3222 linux_target = &the_ppc_linux_nat_target;
3224 /* Register the target. */
3225 add_inf_child_target (linux_target);