F1 and F3 HAL / LL libraries
[betaflight.git] / lib / main / STM32F3 / Drivers / CMSIS / DSP_Lib / Source / FilteringFunctions / arm_conv_partial_opt_q7.c
blobe8fcce5bb4f5c14cc180faa449dae367e368d532
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
3 *
4 * $Date: 19. March 2015
5 * $Revision: V.1.4.5
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_conv_partial_opt_q7.c
9 *
10 * Description: Partial convolution of Q7 sequences.
12 * Target Processor: Cortex-M4/Cortex-M3
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
41 #include "arm_math.h"
43 /**
44 * @ingroup groupFilters
47 /**
48 * @addtogroup PartialConv
49 * @{
52 /**
53 * @brief Partial convolution of Q7 sequences.
54 * @param[in] *pSrcA points to the first input sequence.
55 * @param[in] srcALen length of the first input sequence.
56 * @param[in] *pSrcB points to the second input sequence.
57 * @param[in] srcBLen length of the second input sequence.
58 * @param[out] *pDst points to the location where the output result is written.
59 * @param[in] firstIndex is the first output sample to start with.
60 * @param[in] numPoints is the number of output points to be computed.
61 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
62 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
63 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
65 * \par Restrictions
66 * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
67 * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
74 #ifndef UNALIGNED_SUPPORT_DISABLE
76 arm_status arm_conv_partial_opt_q7(
77 q7_t * pSrcA,
78 uint32_t srcALen,
79 q7_t * pSrcB,
80 uint32_t srcBLen,
81 q7_t * pDst,
82 uint32_t firstIndex,
83 uint32_t numPoints,
84 q15_t * pScratch1,
85 q15_t * pScratch2)
88 q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */
89 q15_t x4; /* Temporary input variable */
90 q7_t *pIn1, *pIn2; /* inputA and inputB pointer */
91 uint32_t j, k, blkCnt, tapCnt; /* loop counter */
92 q7_t *px; /* Temporary input1 pointer */
93 q15_t *py; /* Temporary input2 pointer */
94 q31_t acc0, acc1, acc2, acc3; /* Accumulator */
95 q31_t x1, x2, x3, y1; /* Temporary input variables */
96 arm_status status;
97 q7_t *pOut = pDst; /* output pointer */
98 q7_t out0, out1, out2, out3; /* temporary variables */
100 /* Check for range of output samples to be calculated */
101 if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
103 /* Set status as ARM_MATH_ARGUMENT_ERROR */
104 status = ARM_MATH_ARGUMENT_ERROR;
106 else
109 /* The algorithm implementation is based on the lengths of the inputs. */
110 /* srcB is always made to slide across srcA. */
111 /* So srcBLen is always considered as shorter or equal to srcALen */
112 if(srcALen >= srcBLen)
114 /* Initialization of inputA pointer */
115 pIn1 = pSrcA;
117 /* Initialization of inputB pointer */
118 pIn2 = pSrcB;
120 else
122 /* Initialization of inputA pointer */
123 pIn1 = pSrcB;
125 /* Initialization of inputB pointer */
126 pIn2 = pSrcA;
128 /* srcBLen is always considered as shorter or equal to srcALen */
129 j = srcBLen;
130 srcBLen = srcALen;
131 srcALen = j;
134 /* pointer to take end of scratch2 buffer */
135 pScr2 = pScratch2;
137 /* points to smaller length sequence */
138 px = pIn2 + srcBLen - 1;
140 /* Apply loop unrolling and do 4 Copies simultaneously. */
141 k = srcBLen >> 2u;
143 /* First part of the processing with loop unrolling copies 4 data points at a time.
144 ** a second loop below copies for the remaining 1 to 3 samples. */
145 while(k > 0u)
147 /* copy second buffer in reversal manner */
148 x4 = (q15_t) * px--;
149 *pScr2++ = x4;
150 x4 = (q15_t) * px--;
151 *pScr2++ = x4;
152 x4 = (q15_t) * px--;
153 *pScr2++ = x4;
154 x4 = (q15_t) * px--;
155 *pScr2++ = x4;
157 /* Decrement the loop counter */
158 k--;
161 /* If the count is not a multiple of 4, copy remaining samples here.
162 ** No loop unrolling is used. */
163 k = srcBLen % 0x4u;
165 while(k > 0u)
167 /* copy second buffer in reversal manner for remaining samples */
168 x4 = (q15_t) * px--;
169 *pScr2++ = x4;
171 /* Decrement the loop counter */
172 k--;
175 /* Initialze temporary scratch pointer */
176 pScr1 = pScratch1;
178 /* Fill (srcBLen - 1u) zeros in scratch buffer */
179 arm_fill_q15(0, pScr1, (srcBLen - 1u));
181 /* Update temporary scratch pointer */
182 pScr1 += (srcBLen - 1u);
184 /* Copy (srcALen) samples in scratch buffer */
185 /* Apply loop unrolling and do 4 Copies simultaneously. */
186 k = srcALen >> 2u;
188 /* First part of the processing with loop unrolling copies 4 data points at a time.
189 ** a second loop below copies for the remaining 1 to 3 samples. */
190 while(k > 0u)
192 /* copy second buffer in reversal manner */
193 x4 = (q15_t) * pIn1++;
194 *pScr1++ = x4;
195 x4 = (q15_t) * pIn1++;
196 *pScr1++ = x4;
197 x4 = (q15_t) * pIn1++;
198 *pScr1++ = x4;
199 x4 = (q15_t) * pIn1++;
200 *pScr1++ = x4;
202 /* Decrement the loop counter */
203 k--;
206 /* If the count is not a multiple of 4, copy remaining samples here.
207 ** No loop unrolling is used. */
208 k = srcALen % 0x4u;
210 while(k > 0u)
212 /* copy second buffer in reversal manner for remaining samples */
213 x4 = (q15_t) * pIn1++;
214 *pScr1++ = x4;
216 /* Decrement the loop counter */
217 k--;
220 /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
221 arm_fill_q15(0, pScr1, (srcBLen - 1u));
223 /* Update pointer */
224 pScr1 += (srcBLen - 1u);
227 /* Temporary pointer for scratch2 */
228 py = pScratch2;
230 /* Initialization of pIn2 pointer */
231 pIn2 = (q7_t *) py;
233 pScr2 = py;
235 pOut = pDst + firstIndex;
237 pScratch1 += firstIndex;
239 /* Actual convolution process starts here */
240 blkCnt = (numPoints) >> 2;
243 while(blkCnt > 0)
245 /* Initialze temporary scratch pointer as scratch1 */
246 pScr1 = pScratch1;
248 /* Clear Accumlators */
249 acc0 = 0;
250 acc1 = 0;
251 acc2 = 0;
252 acc3 = 0;
254 /* Read two samples from scratch1 buffer */
255 x1 = *__SIMD32(pScr1)++;
257 /* Read next two samples from scratch1 buffer */
258 x2 = *__SIMD32(pScr1)++;
260 tapCnt = (srcBLen) >> 2u;
262 while(tapCnt > 0u)
265 /* Read four samples from smaller buffer */
266 y1 = _SIMD32_OFFSET(pScr2);
268 /* multiply and accumlate */
269 acc0 = __SMLAD(x1, y1, acc0);
270 acc2 = __SMLAD(x2, y1, acc2);
272 /* pack input data */
273 #ifndef ARM_MATH_BIG_ENDIAN
274 x3 = __PKHBT(x2, x1, 0);
275 #else
276 x3 = __PKHBT(x1, x2, 0);
277 #endif
279 /* multiply and accumlate */
280 acc1 = __SMLADX(x3, y1, acc1);
282 /* Read next two samples from scratch1 buffer */
283 x1 = *__SIMD32(pScr1)++;
285 /* pack input data */
286 #ifndef ARM_MATH_BIG_ENDIAN
287 x3 = __PKHBT(x1, x2, 0);
288 #else
289 x3 = __PKHBT(x2, x1, 0);
290 #endif
292 acc3 = __SMLADX(x3, y1, acc3);
294 /* Read four samples from smaller buffer */
295 y1 = _SIMD32_OFFSET(pScr2 + 2u);
297 acc0 = __SMLAD(x2, y1, acc0);
299 acc2 = __SMLAD(x1, y1, acc2);
301 acc1 = __SMLADX(x3, y1, acc1);
303 x2 = *__SIMD32(pScr1)++;
305 #ifndef ARM_MATH_BIG_ENDIAN
306 x3 = __PKHBT(x2, x1, 0);
307 #else
308 x3 = __PKHBT(x1, x2, 0);
309 #endif
311 acc3 = __SMLADX(x3, y1, acc3);
313 pScr2 += 4u;
316 /* Decrement the loop counter */
317 tapCnt--;
322 /* Update scratch pointer for remaining samples of smaller length sequence */
323 pScr1 -= 4u;
326 /* apply same above for remaining samples of smaller length sequence */
327 tapCnt = (srcBLen) & 3u;
329 while(tapCnt > 0u)
332 /* accumlate the results */
333 acc0 += (*pScr1++ * *pScr2);
334 acc1 += (*pScr1++ * *pScr2);
335 acc2 += (*pScr1++ * *pScr2);
336 acc3 += (*pScr1++ * *pScr2++);
338 pScr1 -= 3u;
340 /* Decrement the loop counter */
341 tapCnt--;
344 blkCnt--;
346 /* Store the result in the accumulator in the destination buffer. */
347 out0 = (q7_t) (__SSAT(acc0 >> 7u, 8));
348 out1 = (q7_t) (__SSAT(acc1 >> 7u, 8));
349 out2 = (q7_t) (__SSAT(acc2 >> 7u, 8));
350 out3 = (q7_t) (__SSAT(acc3 >> 7u, 8));
352 *__SIMD32(pOut)++ = __PACKq7(out0, out1, out2, out3);
354 /* Initialization of inputB pointer */
355 pScr2 = py;
357 pScratch1 += 4u;
361 blkCnt = (numPoints) & 0x3;
363 /* Calculate convolution for remaining samples of Bigger length sequence */
364 while(blkCnt > 0)
366 /* Initialze temporary scratch pointer as scratch1 */
367 pScr1 = pScratch1;
369 /* Clear Accumlators */
370 acc0 = 0;
372 tapCnt = (srcBLen) >> 1u;
374 while(tapCnt > 0u)
377 /* Read next two samples from scratch1 buffer */
378 x1 = *__SIMD32(pScr1)++;
380 /* Read two samples from smaller buffer */
381 y1 = *__SIMD32(pScr2)++;
383 acc0 = __SMLAD(x1, y1, acc0);
385 /* Decrement the loop counter */
386 tapCnt--;
389 tapCnt = (srcBLen) & 1u;
391 /* apply same above for remaining samples of smaller length sequence */
392 while(tapCnt > 0u)
395 /* accumlate the results */
396 acc0 += (*pScr1++ * *pScr2++);
398 /* Decrement the loop counter */
399 tapCnt--;
402 blkCnt--;
404 /* Store the result in the accumulator in the destination buffer. */
405 *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
407 /* Initialization of inputB pointer */
408 pScr2 = py;
410 pScratch1 += 1u;
414 /* set status as ARM_MATH_SUCCESS */
415 status = ARM_MATH_SUCCESS;
420 return (status);
424 #else
426 arm_status arm_conv_partial_opt_q7(
427 q7_t * pSrcA,
428 uint32_t srcALen,
429 q7_t * pSrcB,
430 uint32_t srcBLen,
431 q7_t * pDst,
432 uint32_t firstIndex,
433 uint32_t numPoints,
434 q15_t * pScratch1,
435 q15_t * pScratch2)
438 q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */
439 q15_t x4; /* Temporary input variable */
440 q7_t *pIn1, *pIn2; /* inputA and inputB pointer */
441 uint32_t j, k, blkCnt, tapCnt; /* loop counter */
442 q7_t *px; /* Temporary input1 pointer */
443 q15_t *py; /* Temporary input2 pointer */
444 q31_t acc0, acc1, acc2, acc3; /* Accumulator */
445 arm_status status;
446 q7_t *pOut = pDst; /* output pointer */
447 q15_t x10, x11, x20, x21; /* Temporary input variables */
448 q15_t y10, y11; /* Temporary input variables */
450 /* Check for range of output samples to be calculated */
451 if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
453 /* Set status as ARM_MATH_ARGUMENT_ERROR */
454 status = ARM_MATH_ARGUMENT_ERROR;
456 else
459 /* The algorithm implementation is based on the lengths of the inputs. */
460 /* srcB is always made to slide across srcA. */
461 /* So srcBLen is always considered as shorter or equal to srcALen */
462 if(srcALen >= srcBLen)
464 /* Initialization of inputA pointer */
465 pIn1 = pSrcA;
467 /* Initialization of inputB pointer */
468 pIn2 = pSrcB;
470 else
472 /* Initialization of inputA pointer */
473 pIn1 = pSrcB;
475 /* Initialization of inputB pointer */
476 pIn2 = pSrcA;
478 /* srcBLen is always considered as shorter or equal to srcALen */
479 j = srcBLen;
480 srcBLen = srcALen;
481 srcALen = j;
484 /* pointer to take end of scratch2 buffer */
485 pScr2 = pScratch2;
487 /* points to smaller length sequence */
488 px = pIn2 + srcBLen - 1;
490 /* Apply loop unrolling and do 4 Copies simultaneously. */
491 k = srcBLen >> 2u;
493 /* First part of the processing with loop unrolling copies 4 data points at a time.
494 ** a second loop below copies for the remaining 1 to 3 samples. */
495 while(k > 0u)
497 /* copy second buffer in reversal manner */
498 x4 = (q15_t) * px--;
499 *pScr2++ = x4;
500 x4 = (q15_t) * px--;
501 *pScr2++ = x4;
502 x4 = (q15_t) * px--;
503 *pScr2++ = x4;
504 x4 = (q15_t) * px--;
505 *pScr2++ = x4;
507 /* Decrement the loop counter */
508 k--;
511 /* If the count is not a multiple of 4, copy remaining samples here.
512 ** No loop unrolling is used. */
513 k = srcBLen % 0x4u;
515 while(k > 0u)
517 /* copy second buffer in reversal manner for remaining samples */
518 x4 = (q15_t) * px--;
519 *pScr2++ = x4;
521 /* Decrement the loop counter */
522 k--;
525 /* Initialze temporary scratch pointer */
526 pScr1 = pScratch1;
528 /* Fill (srcBLen - 1u) zeros in scratch buffer */
529 arm_fill_q15(0, pScr1, (srcBLen - 1u));
531 /* Update temporary scratch pointer */
532 pScr1 += (srcBLen - 1u);
534 /* Copy (srcALen) samples in scratch buffer */
535 /* Apply loop unrolling and do 4 Copies simultaneously. */
536 k = srcALen >> 2u;
538 /* First part of the processing with loop unrolling copies 4 data points at a time.
539 ** a second loop below copies for the remaining 1 to 3 samples. */
540 while(k > 0u)
542 /* copy second buffer in reversal manner */
543 x4 = (q15_t) * pIn1++;
544 *pScr1++ = x4;
545 x4 = (q15_t) * pIn1++;
546 *pScr1++ = x4;
547 x4 = (q15_t) * pIn1++;
548 *pScr1++ = x4;
549 x4 = (q15_t) * pIn1++;
550 *pScr1++ = x4;
552 /* Decrement the loop counter */
553 k--;
556 /* If the count is not a multiple of 4, copy remaining samples here.
557 ** No loop unrolling is used. */
558 k = srcALen % 0x4u;
560 while(k > 0u)
562 /* copy second buffer in reversal manner for remaining samples */
563 x4 = (q15_t) * pIn1++;
564 *pScr1++ = x4;
566 /* Decrement the loop counter */
567 k--;
570 /* Apply loop unrolling and do 4 Copies simultaneously. */
571 k = (srcBLen - 1u) >> 2u;
573 /* First part of the processing with loop unrolling copies 4 data points at a time.
574 ** a second loop below copies for the remaining 1 to 3 samples. */
575 while(k > 0u)
577 /* copy second buffer in reversal manner */
578 *pScr1++ = 0;
579 *pScr1++ = 0;
580 *pScr1++ = 0;
581 *pScr1++ = 0;
583 /* Decrement the loop counter */
584 k--;
587 /* If the count is not a multiple of 4, copy remaining samples here.
588 ** No loop unrolling is used. */
589 k = (srcBLen - 1u) % 0x4u;
591 while(k > 0u)
593 /* copy second buffer in reversal manner for remaining samples */
594 *pScr1++ = 0;
596 /* Decrement the loop counter */
597 k--;
601 /* Temporary pointer for scratch2 */
602 py = pScratch2;
604 /* Initialization of pIn2 pointer */
605 pIn2 = (q7_t *) py;
607 pScr2 = py;
609 pOut = pDst + firstIndex;
611 pScratch1 += firstIndex;
613 /* Actual convolution process starts here */
614 blkCnt = (numPoints) >> 2;
617 while(blkCnt > 0)
619 /* Initialze temporary scratch pointer as scratch1 */
620 pScr1 = pScratch1;
622 /* Clear Accumlators */
623 acc0 = 0;
624 acc1 = 0;
625 acc2 = 0;
626 acc3 = 0;
628 /* Read two samples from scratch1 buffer */
629 x10 = *pScr1++;
630 x11 = *pScr1++;
632 /* Read next two samples from scratch1 buffer */
633 x20 = *pScr1++;
634 x21 = *pScr1++;
636 tapCnt = (srcBLen) >> 2u;
638 while(tapCnt > 0u)
641 /* Read four samples from smaller buffer */
642 y10 = *pScr2;
643 y11 = *(pScr2 + 1u);
645 /* multiply and accumlate */
646 acc0 += (q31_t) x10 *y10;
647 acc0 += (q31_t) x11 *y11;
648 acc2 += (q31_t) x20 *y10;
649 acc2 += (q31_t) x21 *y11;
652 acc1 += (q31_t) x11 *y10;
653 acc1 += (q31_t) x20 *y11;
655 /* Read next two samples from scratch1 buffer */
656 x10 = *pScr1;
657 x11 = *(pScr1 + 1u);
659 /* multiply and accumlate */
660 acc3 += (q31_t) x21 *y10;
661 acc3 += (q31_t) x10 *y11;
663 /* Read next two samples from scratch2 buffer */
664 y10 = *(pScr2 + 2u);
665 y11 = *(pScr2 + 3u);
667 /* multiply and accumlate */
668 acc0 += (q31_t) x20 *y10;
669 acc0 += (q31_t) x21 *y11;
670 acc2 += (q31_t) x10 *y10;
671 acc2 += (q31_t) x11 *y11;
672 acc1 += (q31_t) x21 *y10;
673 acc1 += (q31_t) x10 *y11;
675 /* Read next two samples from scratch1 buffer */
676 x20 = *(pScr1 + 2);
677 x21 = *(pScr1 + 3);
679 /* multiply and accumlate */
680 acc3 += (q31_t) x11 *y10;
681 acc3 += (q31_t) x20 *y11;
683 /* update scratch pointers */
685 pScr1 += 4u;
686 pScr2 += 4u;
688 /* Decrement the loop counter */
689 tapCnt--;
694 /* Update scratch pointer for remaining samples of smaller length sequence */
695 pScr1 -= 4u;
698 /* apply same above for remaining samples of smaller length sequence */
699 tapCnt = (srcBLen) & 3u;
701 while(tapCnt > 0u)
704 /* accumlate the results */
705 acc0 += (*pScr1++ * *pScr2);
706 acc1 += (*pScr1++ * *pScr2);
707 acc2 += (*pScr1++ * *pScr2);
708 acc3 += (*pScr1++ * *pScr2++);
710 pScr1 -= 3u;
712 /* Decrement the loop counter */
713 tapCnt--;
716 blkCnt--;
718 /* Store the result in the accumulator in the destination buffer. */
719 *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
720 *pOut++ = (q7_t) (__SSAT(acc1 >> 7u, 8));
721 *pOut++ = (q7_t) (__SSAT(acc2 >> 7u, 8));
722 *pOut++ = (q7_t) (__SSAT(acc3 >> 7u, 8));
724 /* Initialization of inputB pointer */
725 pScr2 = py;
727 pScratch1 += 4u;
731 blkCnt = (numPoints) & 0x3;
733 /* Calculate convolution for remaining samples of Bigger length sequence */
734 while(blkCnt > 0)
736 /* Initialze temporary scratch pointer as scratch1 */
737 pScr1 = pScratch1;
739 /* Clear Accumlators */
740 acc0 = 0;
742 tapCnt = (srcBLen) >> 1u;
744 while(tapCnt > 0u)
747 /* Read next two samples from scratch1 buffer */
748 x10 = *pScr1++;
749 x11 = *pScr1++;
751 /* Read two samples from smaller buffer */
752 y10 = *pScr2++;
753 y11 = *pScr2++;
755 /* multiply and accumlate */
756 acc0 += (q31_t) x10 *y10;
757 acc0 += (q31_t) x11 *y11;
759 /* Decrement the loop counter */
760 tapCnt--;
763 tapCnt = (srcBLen) & 1u;
765 /* apply same above for remaining samples of smaller length sequence */
766 while(tapCnt > 0u)
769 /* accumlate the results */
770 acc0 += (*pScr1++ * *pScr2++);
772 /* Decrement the loop counter */
773 tapCnt--;
776 blkCnt--;
778 /* Store the result in the accumulator in the destination buffer. */
779 *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
781 /* Initialization of inputB pointer */
782 pScr2 = py;
784 pScratch1 += 1u;
788 /* set status as ARM_MATH_SUCCESS */
789 status = ARM_MATH_SUCCESS;
793 return (status);
797 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
801 /**
802 * @} end of PartialConv group