Refactor Feedforward Angle and RC Smoothing - mashup of 12578 and 12594 (#12605)
[betaflight.git] / src / main / flight / pid.c
blob86eca7936e4a99cf9440e7fdfeff2124ba70cfe6
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <math.h>
27 #include "platform.h"
29 #include "build/build_config.h"
30 #include "build/debug.h"
32 #include "common/axis.h"
33 #include "common/filter.h"
35 #include "config/config.h"
36 #include "config/config_reset.h"
37 #include "config/simplified_tuning.h"
39 #include "drivers/pwm_output.h"
40 #include "drivers/sound_beeper.h"
41 #include "drivers/time.h"
43 #include "fc/controlrate_profile.h"
44 #include "fc/core.h"
45 #include "fc/rc.h"
46 #include "fc/rc_controls.h"
47 #include "fc/runtime_config.h"
49 #include "flight/gps_rescue.h"
50 #include "flight/imu.h"
51 #include "flight/mixer.h"
52 #include "flight/rpm_filter.h"
54 #include "io/gps.h"
56 #include "pg/pg.h"
57 #include "pg/pg_ids.h"
59 #include "sensors/acceleration.h"
60 #include "sensors/battery.h"
61 #include "sensors/gyro.h"
63 #include "pid.h"
65 typedef enum {
66 LEVEL_MODE_OFF = 0,
67 LEVEL_MODE_R,
68 LEVEL_MODE_RP,
69 } levelMode_e;
71 const char pidNames[] =
72 "ROLL;"
73 "PITCH;"
74 "YAW;"
75 "LEVEL;"
76 "MAG;";
78 FAST_DATA_ZERO_INIT uint32_t targetPidLooptime;
79 FAST_DATA_ZERO_INIT pidAxisData_t pidData[XYZ_AXIS_COUNT];
80 FAST_DATA_ZERO_INIT pidRuntime_t pidRuntime;
82 #if defined(USE_ABSOLUTE_CONTROL)
83 STATIC_UNIT_TESTED FAST_DATA_ZERO_INIT float axisError[XYZ_AXIS_COUNT];
84 #endif
86 #if defined(USE_THROTTLE_BOOST)
87 FAST_DATA_ZERO_INIT float throttleBoost;
88 pt1Filter_t throttleLpf;
89 #endif
91 PG_REGISTER_WITH_RESET_TEMPLATE(pidConfig_t, pidConfig, PG_PID_CONFIG, 3);
93 #if !defined(DEFAULT_PID_PROCESS_DENOM)
94 #if defined(STM32F411xE)
95 #define DEFAULT_PID_PROCESS_DENOM 2
96 #else
97 #define DEFAULT_PID_PROCESS_DENOM 1
98 #endif
99 #endif
101 #ifdef USE_RUNAWAY_TAKEOFF
102 PG_RESET_TEMPLATE(pidConfig_t, pidConfig,
103 .pid_process_denom = DEFAULT_PID_PROCESS_DENOM,
104 .runaway_takeoff_prevention = true,
105 .runaway_takeoff_deactivate_throttle = 20, // throttle level % needed to accumulate deactivation time
106 .runaway_takeoff_deactivate_delay = 500, // Accumulated time (in milliseconds) before deactivation in successful takeoff
108 #else
109 PG_RESET_TEMPLATE(pidConfig_t, pidConfig,
110 .pid_process_denom = DEFAULT_PID_PROCESS_DENOM,
112 #endif
114 #ifdef USE_ACRO_TRAINER
115 #define ACRO_TRAINER_LOOKAHEAD_RATE_LIMIT 500.0f // Max gyro rate for lookahead time scaling
116 #define ACRO_TRAINER_SETPOINT_LIMIT 1000.0f // Limit the correcting setpoint
117 #endif // USE_ACRO_TRAINER
119 #define CRASH_RECOVERY_DETECTION_DELAY_US 1000000 // 1 second delay before crash recovery detection is active after entering a self-level mode
121 #define LAUNCH_CONTROL_YAW_ITERM_LIMIT 50 // yaw iterm windup limit when launch mode is "FULL" (all axes)
123 PG_REGISTER_ARRAY_WITH_RESET_FN(pidProfile_t, PID_PROFILE_COUNT, pidProfiles, PG_PID_PROFILE, 7);
125 void resetPidProfile(pidProfile_t *pidProfile)
127 RESET_CONFIG(pidProfile_t, pidProfile,
128 .pid = {
129 [PID_ROLL] = PID_ROLL_DEFAULT,
130 [PID_PITCH] = PID_PITCH_DEFAULT,
131 [PID_YAW] = PID_YAW_DEFAULT,
132 [PID_LEVEL] = { 50, 75, 75, 50 },
133 [PID_MAG] = { 40, 0, 0, 0 },
135 .pidSumLimit = PIDSUM_LIMIT,
136 .pidSumLimitYaw = PIDSUM_LIMIT_YAW,
137 .yaw_lowpass_hz = 100,
138 .dterm_notch_hz = 0,
139 .dterm_notch_cutoff = 0,
140 .itermWindupPointPercent = 85,
141 .pidAtMinThrottle = PID_STABILISATION_ON,
142 .angle_limit = 60,
143 .feedforward_transition = 0,
144 .yawRateAccelLimit = 0,
145 .rateAccelLimit = 0,
146 .anti_gravity_gain = 80,
147 .crash_time = 500, // ms
148 .crash_delay = 0, // ms
149 .crash_recovery_angle = 10, // degrees
150 .crash_recovery_rate = 100, // degrees/second
151 .crash_dthreshold = 50, // degrees/second/second
152 .crash_gthreshold = 400, // degrees/second
153 .crash_setpoint_threshold = 350, // degrees/second
154 .crash_recovery = PID_CRASH_RECOVERY_OFF, // off by default
155 .horizon_limit_degrees = 135,
156 .horizon_ignore_sticks = false,
157 .crash_limit_yaw = 200,
158 .itermLimit = 400,
159 .throttle_boost = 5,
160 .throttle_boost_cutoff = 15,
161 .iterm_rotation = false,
162 .iterm_relax = ITERM_RELAX_RP,
163 .iterm_relax_cutoff = ITERM_RELAX_CUTOFF_DEFAULT,
164 .iterm_relax_type = ITERM_RELAX_SETPOINT,
165 .acro_trainer_angle_limit = 20,
166 .acro_trainer_lookahead_ms = 50,
167 .acro_trainer_debug_axis = FD_ROLL,
168 .acro_trainer_gain = 75,
169 .abs_control_gain = 0,
170 .abs_control_limit = 90,
171 .abs_control_error_limit = 20,
172 .abs_control_cutoff = 11,
173 .dterm_lpf1_static_hz = DTERM_LPF1_DYN_MIN_HZ_DEFAULT,
174 // NOTE: dynamic lpf is enabled by default so this setting is actually
175 // overridden and the static lowpass 1 is disabled. We can't set this
176 // value to 0 otherwise Configurator versions 10.4 and earlier will also
177 // reset the lowpass filter type to PT1 overriding the desired BIQUAD setting.
178 .dterm_lpf2_static_hz = DTERM_LPF2_HZ_DEFAULT, // second Dterm LPF ON by default
179 .dterm_lpf1_type = FILTER_PT1,
180 .dterm_lpf2_type = FILTER_PT1,
181 .dterm_lpf1_dyn_min_hz = DTERM_LPF1_DYN_MIN_HZ_DEFAULT,
182 .dterm_lpf1_dyn_max_hz = DTERM_LPF1_DYN_MAX_HZ_DEFAULT,
183 .launchControlMode = LAUNCH_CONTROL_MODE_NORMAL,
184 .launchControlThrottlePercent = 20,
185 .launchControlAngleLimit = 0,
186 .launchControlGain = 40,
187 .launchControlAllowTriggerReset = true,
188 .use_integrated_yaw = false,
189 .integrated_yaw_relax = 200,
190 .thrustLinearization = 0,
191 .d_min = D_MIN_DEFAULT,
192 .d_min_gain = 37,
193 .d_min_advance = 20,
194 .motor_output_limit = 100,
195 .auto_profile_cell_count = AUTO_PROFILE_CELL_COUNT_STAY,
196 .transient_throttle_limit = 0,
197 .profileName = { 0 },
198 .dyn_idle_min_rpm = 0,
199 .dyn_idle_p_gain = 50,
200 .dyn_idle_i_gain = 50,
201 .dyn_idle_d_gain = 50,
202 .dyn_idle_max_increase = 150,
203 .dyn_idle_start_increase = 50,
204 .feedforward_averaging = FEEDFORWARD_AVERAGING_OFF,
205 .feedforward_max_rate_limit = 90,
206 .feedforward_smooth_factor = 25,
207 .feedforward_jitter_factor = 7,
208 .feedforward_boost = 15,
209 .dterm_lpf1_dyn_expo = 5,
210 .level_race_mode = false,
211 .vbat_sag_compensation = 0,
212 .simplified_pids_mode = PID_SIMPLIFIED_TUNING_RPY,
213 .simplified_master_multiplier = SIMPLIFIED_TUNING_DEFAULT,
214 .simplified_roll_pitch_ratio = SIMPLIFIED_TUNING_DEFAULT,
215 .simplified_i_gain = SIMPLIFIED_TUNING_DEFAULT,
216 .simplified_d_gain = SIMPLIFIED_TUNING_D_DEFAULT,
217 .simplified_pi_gain = SIMPLIFIED_TUNING_DEFAULT,
218 .simplified_dmin_ratio = SIMPLIFIED_TUNING_D_DEFAULT,
219 .simplified_feedforward_gain = SIMPLIFIED_TUNING_DEFAULT,
220 .simplified_pitch_pi_gain = SIMPLIFIED_TUNING_DEFAULT,
221 .simplified_dterm_filter = true,
222 .simplified_dterm_filter_multiplier = SIMPLIFIED_TUNING_DEFAULT,
223 .anti_gravity_cutoff_hz = 5,
224 .anti_gravity_p_gain = 100,
225 .tpa_mode = TPA_MODE_D,
226 .tpa_rate = 65,
227 .tpa_breakpoint = 1350,
228 .angle_feedforward_smoothing_ms = 80,
229 .angle_earth_ref = 100,
230 .horizon_delay_ms = 500, // 500ms time constant on any increase in horizon strength
233 #ifndef USE_D_MIN
234 pidProfile->pid[PID_ROLL].D = 30;
235 pidProfile->pid[PID_PITCH].D = 32;
236 #endif
239 void pgResetFn_pidProfiles(pidProfile_t *pidProfiles)
241 for (int i = 0; i < PID_PROFILE_COUNT; i++) {
242 resetPidProfile(&pidProfiles[i]);
246 // Scale factors to make best use of range with D_LPF debugging, aiming for max +/-16K as debug values are 16 bit
247 #define D_LPF_RAW_SCALE 25
248 #define D_LPF_FILT_SCALE 22
251 void pidSetItermAccelerator(float newItermAccelerator)
253 pidRuntime.itermAccelerator = newItermAccelerator;
256 bool pidOsdAntiGravityActive(void)
258 return (pidRuntime.itermAccelerator > pidRuntime.antiGravityOsdCutoff);
261 void pidStabilisationState(pidStabilisationState_e pidControllerState)
263 pidRuntime.pidStabilisationEnabled = (pidControllerState == PID_STABILISATION_ON) ? true : false;
266 const angle_index_t rcAliasToAngleIndexMap[] = { AI_ROLL, AI_PITCH };
268 void pidResetIterm(void)
270 for (int axis = 0; axis < 3; axis++) {
271 pidData[axis].I = 0.0f;
272 #if defined(USE_ABSOLUTE_CONTROL)
273 axisError[axis] = 0.0f;
274 #endif
278 void pidUpdateTpaFactor(float throttle)
280 pidProfile_t *currentPidProfile;
282 currentPidProfile = pidProfilesMutable(systemConfig()->pidProfileIndex);
283 const float tpaBreakpoint = (currentPidProfile->tpa_breakpoint - 1000) / 1000.0f;
284 float tpaRate = currentPidProfile->tpa_rate / 100.0f;
286 if (throttle > tpaBreakpoint) {
287 if (throttle < 1.0f) {
288 tpaRate *= (throttle - tpaBreakpoint) / (1.0f - tpaBreakpoint);
290 } else {
291 tpaRate = 0.0f;
293 pidRuntime.tpaFactor = 1.0f - tpaRate;
296 void pidUpdateAntiGravityThrottleFilter(float throttle)
298 static float previousThrottle = 0.0f;
299 const float throttleInv = 1.0f - throttle;
300 float throttleDerivative = fabsf(throttle - previousThrottle) * pidRuntime.pidFrequency;
301 DEBUG_SET(DEBUG_ANTI_GRAVITY, 0, lrintf(throttleDerivative * 100));
302 throttleDerivative *= throttleInv * throttleInv;
303 // generally focus on the low throttle period
304 if (throttle > previousThrottle) {
305 throttleDerivative *= throttleInv * 0.5f;
306 // when increasing throttle, focus even more on the low throttle range
308 previousThrottle = throttle;
309 throttleDerivative = pt2FilterApply(&pidRuntime.antiGravityLpf, throttleDerivative);
310 // lower cutoff suppresses peaks relative to troughs and prolongs the effects
311 // PT2 smoothing of throttle derivative.
312 // 6 is a typical value for the peak boost factor with default cutoff of 6Hz
313 DEBUG_SET(DEBUG_ANTI_GRAVITY, 1, lrintf(throttleDerivative * 100));
314 pidRuntime.antiGravityThrottleD = throttleDerivative;
317 #ifdef USE_ACRO_TRAINER
318 void pidAcroTrainerInit(void)
320 pidRuntime.acroTrainerAxisState[FD_ROLL] = 0;
321 pidRuntime.acroTrainerAxisState[FD_PITCH] = 0;
323 #endif // USE_ACRO_TRAINER
325 #ifdef USE_THRUST_LINEARIZATION
326 float pidCompensateThrustLinearization(float throttle)
328 if (pidRuntime.thrustLinearization != 0.0f) {
329 // for whoops where a lot of TL is needed, allow more throttle boost
330 const float throttleReversed = (1.0f - throttle);
331 throttle /= 1.0f + pidRuntime.throttleCompensateAmount * sq(throttleReversed);
333 return throttle;
336 float pidApplyThrustLinearization(float motorOutput)
338 if (pidRuntime.thrustLinearization != 0.0f) {
339 if (motorOutput > 0.0f) {
340 const float motorOutputReversed = (1.0f - motorOutput);
341 motorOutput *= 1.0f + sq(motorOutputReversed) * pidRuntime.thrustLinearization;
344 return motorOutput;
346 #endif
348 #if defined(USE_ACC)
349 // Calculate strength of horizon leveling; 0 = none, 1.0 = most leveling
350 STATIC_UNIT_TESTED FAST_CODE_NOINLINE float calcHorizonLevelStrength(void)
352 const float currentInclination = MAX(abs(attitude.values.roll), abs(attitude.values.pitch)) * 0.1f;
353 // 0 when level, 90 when vertical, 180 when inverted (degrees):
354 float absMaxStickDeflection = MAX(fabsf(getRcDeflection(FD_ROLL)), fabsf(getRcDeflection(FD_PITCH)));
355 // 0-1, smoothed if RC smoothing is enabled
357 float horizonLevelStrength = MAX((pidRuntime.horizonLimitDegrees - currentInclination) * pidRuntime.horizonLimitDegreesInv, 0.0f);
358 // 1.0 when attitude is 'flat', 0 when angle is equal to, or greater than, horizonLimitDegrees
359 horizonLevelStrength *= MAX((pidRuntime.horizonLimitSticks - absMaxStickDeflection) * pidRuntime.horizonLimitSticksInv, pidRuntime.horizonIgnoreSticks);
360 // use the value of horizonIgnoreSticks to enable/disable this effect.
361 // value should be 1.0 at center stick, 0.0 at max stick deflection:
362 horizonLevelStrength *= pidRuntime.horizonGain;
364 if (pidRuntime.horizonDelayMs) {
365 const float horizonLevelStrengthSmoothed = pt1FilterApply(&pidRuntime.horizonSmoothingPt1, horizonLevelStrength);
366 horizonLevelStrength = MIN(horizonLevelStrength, horizonLevelStrengthSmoothed);
368 return horizonLevelStrength;
369 // 1 means full levelling, 0 means none
372 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM to avoid overflow.
373 // The impact is possibly slightly slower performance on F7/H7 but they have more than enough
374 // processing power that it should be a non-issue.
375 STATIC_UNIT_TESTED FAST_CODE_NOINLINE float pidLevel(int axis, const pidProfile_t *pidProfile, const rollAndPitchTrims_t *angleTrim,
376 float currentPidSetpoint, float horizonLevelStrength)
378 // Applies only to axes that are in Angle mode
379 // We now use Acro Rates, transformed into the range +/- 1, to provide setpoints
380 const float angleLimit = pidProfile->angle_limit;
381 float angleFeedforward = 0.0f;
383 #ifdef USE_FEEDFORWARD
384 angleFeedforward = angleLimit * getFeedforward(axis) * pidRuntime.angleFeedforwardGain * pidRuntime.maxRcRateInv[axis];
385 // angle feedforward must be heavily filtered, at the PID loop rate, with limited user control over time constant
386 // it MUST be very delayed to avoid early overshoot and being too aggressive
387 angleFeedforward = pt3FilterApply(&pidRuntime.angleFeedforwardPt3[axis], angleFeedforward);
388 #endif
390 float angleTarget = angleLimit * currentPidSetpoint * pidRuntime.maxRcRateInv[axis];
391 // use acro rates for the angle target in both horizon and angle modes, converted to -1 to +1 range using maxRate
393 #ifdef USE_GPS_RESCUE
394 angleTarget += gpsRescueAngle[axis] / 100.0f; // Angle is in centidegrees, stepped on roll at 10Hz but not on pitch
395 #endif
396 const float currentAngle = (attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f; // stepped at 500hz with some 4ms flat spots
397 const float errorAngle = angleTarget - currentAngle;
398 float angleRate = errorAngle * pidRuntime.angleGain + angleFeedforward;
400 // minimise cross-axis wobble due to faster yaw responses than roll or pitch, and make co-ordinated yaw turns
401 // by compensating for the effect of yaw on roll while pitched, and on pitch while rolled
402 // earthRef code here takes about 76 cycles, if conditional on angleEarthRef it takes about 100. sin_approx costs most of those cycles.
403 float sinAngle = sin_approx(DEGREES_TO_RADIANS(pidRuntime.angleTarget[axis == FD_ROLL ? FD_PITCH : FD_ROLL]));
404 sinAngle *= (axis == FD_ROLL) ? -1.0f : 1.0f; // must be negative for Roll
405 angleRate += pidRuntime.angleYawSetpoint * sinAngle * pidRuntime.angleEarthRef;
406 pidRuntime.angleTarget[axis] = angleTarget; // set target for alternate axis to current axis, for use in preceding calculation
408 // smooth final angle rate output to clean up attitude signal steps (500hz), GPS steps (10 or 100hz), RC steps etc
409 // this filter runs at ATTITUDE_CUTOFF_HZ, currently 50hz, so GPS roll may be a bit steppy
410 angleRate = pt3FilterApply(&pidRuntime.attitudeFilter[axis], angleRate);
412 if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(GPS_RESCUE_MODE)) {
413 currentPidSetpoint = angleRate;
414 } else {
415 // can only be HORIZON mode - crossfade Angle rate and Acro rate
416 currentPidSetpoint = currentPidSetpoint * (1.0f - horizonLevelStrength) + angleRate * horizonLevelStrength;
419 //logging
420 if (axis == FD_ROLL) {
421 DEBUG_SET(DEBUG_ANGLE_MODE, 0, lrintf(angleTarget * 10.0f)); // target angle
422 DEBUG_SET(DEBUG_ANGLE_MODE, 1, lrintf(errorAngle * pidRuntime.angleGain * 10.0f)); // un-smoothed error correction in degrees
423 DEBUG_SET(DEBUG_ANGLE_MODE, 2, lrintf(angleFeedforward * 10.0f)); // feedforward amount in degrees
424 DEBUG_SET(DEBUG_ANGLE_MODE, 3, lrintf(currentAngle * 10.0f)); // angle returned
426 DEBUG_SET(DEBUG_ANGLE_TARGET, 0, lrintf(angleTarget * 10.0f));
427 DEBUG_SET(DEBUG_ANGLE_TARGET, 1, lrintf(sinAngle * 10.0f)); // modification factor from earthRef
428 // debug ANGLE_TARGET 2 is yaw attenuation
429 DEBUG_SET(DEBUG_ANGLE_TARGET, 3, lrintf(currentAngle * 10.0f)); // angle returned
432 DEBUG_SET(DEBUG_CURRENT_ANGLE, axis, lrintf(currentAngle * 10.0f)); // current angle
433 return currentPidSetpoint;
436 static FAST_CODE_NOINLINE void handleCrashRecovery(
437 const pidCrashRecovery_e crash_recovery, const rollAndPitchTrims_t *angleTrim,
438 const int axis, const timeUs_t currentTimeUs, const float gyroRate, float *currentPidSetpoint, float *errorRate)
440 if (pidRuntime.inCrashRecoveryMode && cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) > pidRuntime.crashTimeDelayUs) {
441 if (crash_recovery == PID_CRASH_RECOVERY_BEEP) {
442 BEEP_ON;
444 if (axis == FD_YAW) {
445 *errorRate = constrainf(*errorRate, -pidRuntime.crashLimitYaw, pidRuntime.crashLimitYaw);
446 } else {
447 // on roll and pitch axes calculate currentPidSetpoint and errorRate to level the aircraft to recover from crash
448 if (sensors(SENSOR_ACC)) {
449 // errorAngle is deviation from horizontal
450 const float errorAngle = -(attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
451 *currentPidSetpoint = errorAngle * pidRuntime.angleGain;
452 *errorRate = *currentPidSetpoint - gyroRate;
455 // reset iterm, since accumulated error before crash is now meaningless
456 // and iterm windup during crash recovery can be extreme, especially on yaw axis
457 pidData[axis].I = 0.0f;
458 if (cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) > pidRuntime.crashTimeLimitUs
459 || (getMotorMixRange() < 1.0f
460 && fabsf(gyro.gyroADCf[FD_ROLL]) < pidRuntime.crashRecoveryRate
461 && fabsf(gyro.gyroADCf[FD_PITCH]) < pidRuntime.crashRecoveryRate
462 && fabsf(gyro.gyroADCf[FD_YAW]) < pidRuntime.crashRecoveryRate)) {
463 if (sensors(SENSOR_ACC)) {
464 // check aircraft nearly level
465 if (abs(attitude.raw[FD_ROLL] - angleTrim->raw[FD_ROLL]) < pidRuntime.crashRecoveryAngleDeciDegrees
466 && abs(attitude.raw[FD_PITCH] - angleTrim->raw[FD_PITCH]) < pidRuntime.crashRecoveryAngleDeciDegrees) {
467 pidRuntime.inCrashRecoveryMode = false;
468 BEEP_OFF;
470 } else {
471 pidRuntime.inCrashRecoveryMode = false;
472 BEEP_OFF;
478 static FAST_CODE_NOINLINE void detectAndSetCrashRecovery(
479 const pidCrashRecovery_e crash_recovery, const int axis,
480 const timeUs_t currentTimeUs, const float delta, const float errorRate)
482 // if crash recovery is on and accelerometer enabled and there is no gyro overflow, then check for a crash
483 // no point in trying to recover if the crash is so severe that the gyro overflows
484 if ((crash_recovery || FLIGHT_MODE(GPS_RESCUE_MODE)) && !gyroOverflowDetected()) {
485 if (ARMING_FLAG(ARMED)) {
486 if (getMotorMixRange() >= 1.0f && !pidRuntime.inCrashRecoveryMode
487 && fabsf(delta) > pidRuntime.crashDtermThreshold
488 && fabsf(errorRate) > pidRuntime.crashGyroThreshold
489 && fabsf(getSetpointRate(axis)) < pidRuntime.crashSetpointThreshold) {
490 if (crash_recovery == PID_CRASH_RECOVERY_DISARM) {
491 setArmingDisabled(ARMING_DISABLED_CRASH_DETECTED);
492 disarm(DISARM_REASON_CRASH_PROTECTION);
493 } else {
494 pidRuntime.inCrashRecoveryMode = true;
495 pidRuntime.crashDetectedAtUs = currentTimeUs;
498 if (pidRuntime.inCrashRecoveryMode && cmpTimeUs(currentTimeUs, pidRuntime.crashDetectedAtUs) < pidRuntime.crashTimeDelayUs && (fabsf(errorRate) < pidRuntime.crashGyroThreshold
499 || fabsf(getSetpointRate(axis)) > pidRuntime.crashSetpointThreshold)) {
500 pidRuntime.inCrashRecoveryMode = false;
501 BEEP_OFF;
503 } else if (pidRuntime.inCrashRecoveryMode) {
504 pidRuntime.inCrashRecoveryMode = false;
505 BEEP_OFF;
509 #endif // USE_ACC
511 #ifdef USE_ACRO_TRAINER
513 int acroTrainerSign(float x)
515 return x > 0 ? 1 : -1;
518 // Acro Trainer - Manipulate the setPoint to limit axis angle while in acro mode
519 // There are three states:
520 // 1. Current angle has exceeded limit
521 // Apply correction to return to limit (similar to pidLevel)
522 // 2. Future overflow has been projected based on current angle and gyro rate
523 // Manage the setPoint to control the gyro rate as the actual angle approaches the limit (try to prevent overshoot)
524 // 3. If no potential overflow is detected, then return the original setPoint
526 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM. We accept the
527 // performance decrease when Acro Trainer mode is active under the assumption that user is unlikely to be
528 // expecting ultimate flight performance at very high loop rates when in this mode.
529 static FAST_CODE_NOINLINE float applyAcroTrainer(int axis, const rollAndPitchTrims_t *angleTrim, float setPoint)
531 float ret = setPoint;
533 if (!FLIGHT_MODE(ANGLE_MODE) && !FLIGHT_MODE(HORIZON_MODE) && !FLIGHT_MODE(GPS_RESCUE_MODE)) {
534 bool resetIterm = false;
535 float projectedAngle = 0;
536 const int setpointSign = acroTrainerSign(setPoint);
537 const float currentAngle = (attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
538 const int angleSign = acroTrainerSign(currentAngle);
540 if ((pidRuntime.acroTrainerAxisState[axis] != 0) && (pidRuntime.acroTrainerAxisState[axis] != setpointSign)) { // stick has reversed - stop limiting
541 pidRuntime.acroTrainerAxisState[axis] = 0;
544 // Limit and correct the angle when it exceeds the limit
545 if ((fabsf(currentAngle) > pidRuntime.acroTrainerAngleLimit) && (pidRuntime.acroTrainerAxisState[axis] == 0)) {
546 if (angleSign == setpointSign) {
547 pidRuntime.acroTrainerAxisState[axis] = angleSign;
548 resetIterm = true;
552 if (pidRuntime.acroTrainerAxisState[axis] != 0) {
553 ret = constrainf(((pidRuntime.acroTrainerAngleLimit * angleSign) - currentAngle) * pidRuntime.acroTrainerGain, -ACRO_TRAINER_SETPOINT_LIMIT, ACRO_TRAINER_SETPOINT_LIMIT);
554 } else {
556 // Not currently over the limit so project the angle based on current angle and
557 // gyro angular rate using a sliding window based on gyro rate (faster rotation means larger window.
558 // If the projected angle exceeds the limit then apply limiting to minimize overshoot.
559 // Calculate the lookahead window by scaling proportionally with gyro rate from 0-500dps
560 float checkInterval = constrainf(fabsf(gyro.gyroADCf[axis]) / ACRO_TRAINER_LOOKAHEAD_RATE_LIMIT, 0.0f, 1.0f) * pidRuntime.acroTrainerLookaheadTime;
561 projectedAngle = (gyro.gyroADCf[axis] * checkInterval) + currentAngle;
562 const int projectedAngleSign = acroTrainerSign(projectedAngle);
563 if ((fabsf(projectedAngle) > pidRuntime.acroTrainerAngleLimit) && (projectedAngleSign == setpointSign)) {
564 ret = ((pidRuntime.acroTrainerAngleLimit * projectedAngleSign) - projectedAngle) * pidRuntime.acroTrainerGain;
565 resetIterm = true;
569 if (resetIterm) {
570 pidData[axis].I = 0;
573 if (axis == pidRuntime.acroTrainerDebugAxis) {
574 DEBUG_SET(DEBUG_ACRO_TRAINER, 0, lrintf(currentAngle * 10.0f));
575 DEBUG_SET(DEBUG_ACRO_TRAINER, 1, pidRuntime.acroTrainerAxisState[axis]);
576 DEBUG_SET(DEBUG_ACRO_TRAINER, 2, lrintf(ret));
577 DEBUG_SET(DEBUG_ACRO_TRAINER, 3, lrintf(projectedAngle * 10.0f));
581 return ret;
583 #endif // USE_ACRO_TRAINER
585 static float accelerationLimit(int axis, float currentPidSetpoint)
587 static float previousSetpoint[XYZ_AXIS_COUNT];
588 const float currentVelocity = currentPidSetpoint - previousSetpoint[axis];
590 if (fabsf(currentVelocity) > pidRuntime.maxVelocity[axis]) {
591 currentPidSetpoint = (currentVelocity > 0) ? previousSetpoint[axis] + pidRuntime.maxVelocity[axis] : previousSetpoint[axis] - pidRuntime.maxVelocity[axis];
594 previousSetpoint[axis] = currentPidSetpoint;
595 return currentPidSetpoint;
598 static void rotateVector(float v[XYZ_AXIS_COUNT], float rotation[XYZ_AXIS_COUNT])
600 // rotate v around rotation vector rotation
601 // rotation in radians, all elements must be small
602 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
603 int i_1 = (i + 1) % 3;
604 int i_2 = (i + 2) % 3;
605 float newV = v[i_1] + v[i_2] * rotation[i];
606 v[i_2] -= v[i_1] * rotation[i];
607 v[i_1] = newV;
611 STATIC_UNIT_TESTED void rotateItermAndAxisError(void)
613 if (pidRuntime.itermRotation
614 #if defined(USE_ABSOLUTE_CONTROL)
615 || pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR
616 #endif
618 const float gyroToAngle = pidRuntime.dT * RAD;
619 float rotationRads[XYZ_AXIS_COUNT];
620 for (int i = FD_ROLL; i <= FD_YAW; i++) {
621 rotationRads[i] = gyro.gyroADCf[i] * gyroToAngle;
623 #if defined(USE_ABSOLUTE_CONTROL)
624 if (pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR) {
625 rotateVector(axisError, rotationRads);
627 #endif
628 if (pidRuntime.itermRotation) {
629 float v[XYZ_AXIS_COUNT];
630 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
631 v[i] = pidData[i].I;
633 rotateVector(v, rotationRads );
634 for (int i = 0; i < XYZ_AXIS_COUNT; i++) {
635 pidData[i].I = v[i];
641 #if defined(USE_ITERM_RELAX)
642 #if defined(USE_ABSOLUTE_CONTROL)
643 STATIC_UNIT_TESTED void applyAbsoluteControl(const int axis, const float gyroRate, float *currentPidSetpoint, float *itermErrorRate)
645 if (pidRuntime.acGain > 0 || debugMode == DEBUG_AC_ERROR) {
646 const float setpointLpf = pt1FilterApply(&pidRuntime.acLpf[axis], *currentPidSetpoint);
647 const float setpointHpf = fabsf(*currentPidSetpoint - setpointLpf);
648 float acErrorRate = 0;
649 const float gmaxac = setpointLpf + 2 * setpointHpf;
650 const float gminac = setpointLpf - 2 * setpointHpf;
651 if (gyroRate >= gminac && gyroRate <= gmaxac) {
652 const float acErrorRate1 = gmaxac - gyroRate;
653 const float acErrorRate2 = gminac - gyroRate;
654 if (acErrorRate1 * axisError[axis] < 0) {
655 acErrorRate = acErrorRate1;
656 } else {
657 acErrorRate = acErrorRate2;
659 if (fabsf(acErrorRate * pidRuntime.dT) > fabsf(axisError[axis]) ) {
660 acErrorRate = -axisError[axis] * pidRuntime.pidFrequency;
662 } else {
663 acErrorRate = (gyroRate > gmaxac ? gmaxac : gminac ) - gyroRate;
666 if (isAirmodeActivated()) {
667 axisError[axis] = constrainf(axisError[axis] + acErrorRate * pidRuntime.dT,
668 -pidRuntime.acErrorLimit, pidRuntime.acErrorLimit);
669 const float acCorrection = constrainf(axisError[axis] * pidRuntime.acGain, -pidRuntime.acLimit, pidRuntime.acLimit);
670 *currentPidSetpoint += acCorrection;
671 *itermErrorRate += acCorrection;
672 DEBUG_SET(DEBUG_AC_CORRECTION, axis, lrintf(acCorrection * 10));
673 if (axis == FD_ROLL) {
674 DEBUG_SET(DEBUG_ITERM_RELAX, 3, lrintf(acCorrection * 10));
677 DEBUG_SET(DEBUG_AC_ERROR, axis, lrintf(axisError[axis] * 10));
680 #endif
682 STATIC_UNIT_TESTED void applyItermRelax(const int axis, const float iterm,
683 const float gyroRate, float *itermErrorRate, float *currentPidSetpoint)
685 const float setpointLpf = pt1FilterApply(&pidRuntime.windupLpf[axis], *currentPidSetpoint);
686 const float setpointHpf = fabsf(*currentPidSetpoint - setpointLpf);
688 if (pidRuntime.itermRelax) {
689 if (axis < FD_YAW || pidRuntime.itermRelax == ITERM_RELAX_RPY || pidRuntime.itermRelax == ITERM_RELAX_RPY_INC) {
690 float itermRelaxThreshold = ITERM_RELAX_SETPOINT_THRESHOLD;
691 if (FLIGHT_MODE(ANGLE_MODE)) {
692 itermRelaxThreshold *= 0.2f;
694 const float itermRelaxFactor = MAX(0, 1 - setpointHpf / itermRelaxThreshold);
695 const bool isDecreasingI =
696 ((iterm > 0) && (*itermErrorRate < 0)) || ((iterm < 0) && (*itermErrorRate > 0));
697 if ((pidRuntime.itermRelax >= ITERM_RELAX_RP_INC) && isDecreasingI) {
698 // Do Nothing, use the precalculed itermErrorRate
699 } else if (pidRuntime.itermRelaxType == ITERM_RELAX_SETPOINT) {
700 *itermErrorRate *= itermRelaxFactor;
701 } else if (pidRuntime.itermRelaxType == ITERM_RELAX_GYRO ) {
702 *itermErrorRate = fapplyDeadband(setpointLpf - gyroRate, setpointHpf);
703 } else {
704 *itermErrorRate = 0.0f;
707 if (axis == FD_ROLL) {
708 DEBUG_SET(DEBUG_ITERM_RELAX, 0, lrintf(setpointHpf));
709 DEBUG_SET(DEBUG_ITERM_RELAX, 1, lrintf(itermRelaxFactor * 100.0f));
710 DEBUG_SET(DEBUG_ITERM_RELAX, 2, lrintf(*itermErrorRate));
714 #if defined(USE_ABSOLUTE_CONTROL)
715 applyAbsoluteControl(axis, gyroRate, currentPidSetpoint, itermErrorRate);
716 #endif
719 #endif
721 #ifdef USE_AIRMODE_LPF
722 void pidUpdateAirmodeLpf(float currentOffset)
724 if (pidRuntime.airmodeThrottleOffsetLimit == 0.0f) {
725 return;
728 float offsetHpf = currentOffset * 2.5f;
729 offsetHpf = offsetHpf - pt1FilterApply(&pidRuntime.airmodeThrottleLpf2, offsetHpf);
731 // During high frequency oscillation 2 * currentOffset averages to the offset required to avoid mirroring of the waveform
732 pt1FilterApply(&pidRuntime.airmodeThrottleLpf1, offsetHpf);
733 // Bring offset up immediately so the filter only applies to the decline
734 if (currentOffset * pidRuntime.airmodeThrottleLpf1.state >= 0 && fabsf(currentOffset) > pidRuntime.airmodeThrottleLpf1.state) {
735 pidRuntime.airmodeThrottleLpf1.state = currentOffset;
737 pidRuntime.airmodeThrottleLpf1.state = constrainf(pidRuntime.airmodeThrottleLpf1.state, -pidRuntime.airmodeThrottleOffsetLimit, pidRuntime.airmodeThrottleOffsetLimit);
740 float pidGetAirmodeThrottleOffset(void)
742 return pidRuntime.airmodeThrottleLpf1.state;
744 #endif
746 #ifdef USE_LAUNCH_CONTROL
747 #define LAUNCH_CONTROL_MAX_RATE 100.0f
748 #define LAUNCH_CONTROL_MIN_RATE 5.0f
749 #define LAUNCH_CONTROL_ANGLE_WINDOW 10.0f // The remaining angle degrees where rate dampening starts
751 // Use the FAST_CODE_NOINLINE directive to avoid this code from being inlined into ITCM RAM to avoid overflow.
752 // The impact is possibly slightly slower performance on F7/H7 but they have more than enough
753 // processing power that it should be a non-issue.
754 static FAST_CODE_NOINLINE float applyLaunchControl(int axis, const rollAndPitchTrims_t *angleTrim)
756 float ret = 0.0f;
758 // Scale the rates based on stick deflection only. Fixed rates with a max of 100deg/sec
759 // reached at 50% stick deflection. This keeps the launch control positioning consistent
760 // regardless of the user's rates.
761 if ((axis == FD_PITCH) || (pidRuntime.launchControlMode != LAUNCH_CONTROL_MODE_PITCHONLY)) {
762 const float stickDeflection = constrainf(getRcDeflection(axis), -0.5f, 0.5f);
763 ret = LAUNCH_CONTROL_MAX_RATE * stickDeflection * 2;
766 #if defined(USE_ACC)
767 // If ACC is enabled and a limit angle is set, then try to limit forward tilt
768 // to that angle and slow down the rate as the limit is approached to reduce overshoot
769 if ((axis == FD_PITCH) && (pidRuntime.launchControlAngleLimit > 0) && (ret > 0)) {
770 const float currentAngle = (attitude.raw[axis] - angleTrim->raw[axis]) / 10.0f;
771 if (currentAngle >= pidRuntime.launchControlAngleLimit) {
772 ret = 0.0f;
773 } else {
774 //for the last 10 degrees scale the rate from the current input to 5 dps
775 const float angleDelta = pidRuntime.launchControlAngleLimit - currentAngle;
776 if (angleDelta <= LAUNCH_CONTROL_ANGLE_WINDOW) {
777 ret = scaleRangef(angleDelta, 0, LAUNCH_CONTROL_ANGLE_WINDOW, LAUNCH_CONTROL_MIN_RATE, ret);
781 #else
782 UNUSED(angleTrim);
783 #endif
785 return ret;
787 #endif
789 // Betaflight pid controller, which will be maintained in the future with additional features specialised for current (mini) multirotor usage.
790 // Based on 2DOF reference design (matlab)
791 void FAST_CODE pidController(const pidProfile_t *pidProfile, timeUs_t currentTimeUs)
793 static float previousGyroRateDterm[XYZ_AXIS_COUNT];
794 static float previousRawGyroRateDterm[XYZ_AXIS_COUNT];
796 #ifdef USE_TPA_MODE
797 const float tpaFactorKp = (pidProfile->tpa_mode == TPA_MODE_PD) ? pidRuntime.tpaFactor : 1.0f;
798 #else
799 const float tpaFactorKp = pidRuntime.tpaFactor;
800 #endif
802 #ifdef USE_YAW_SPIN_RECOVERY
803 const bool yawSpinActive = gyroYawSpinDetected();
804 #endif
806 const bool launchControlActive = isLaunchControlActive();
808 #if defined(USE_ACC)
809 static timeUs_t levelModeStartTimeUs = 0;
810 static bool gpsRescuePreviousState = false;
811 const rollAndPitchTrims_t *angleTrim = &accelerometerConfig()->accelerometerTrims;
812 float horizonLevelStrength = 0.0f;
814 const bool gpsRescueIsActive = FLIGHT_MODE(GPS_RESCUE_MODE);
815 levelMode_e levelMode;
816 if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE) || gpsRescueIsActive) {
817 if (pidRuntime.levelRaceMode && !gpsRescueIsActive) {
818 levelMode = LEVEL_MODE_R;
819 } else {
820 levelMode = LEVEL_MODE_RP;
823 // Keep track of when we entered a self-level mode so that we can
824 // add a guard time before crash recovery can activate.
825 // Also reset the guard time whenever GPS Rescue is activated.
826 if ((levelModeStartTimeUs == 0) || (gpsRescueIsActive && !gpsRescuePreviousState)) {
827 levelModeStartTimeUs = currentTimeUs;
830 // Calc horizonLevelStrength if needed
831 if (FLIGHT_MODE(HORIZON_MODE)) {
832 horizonLevelStrength = calcHorizonLevelStrength();
834 } else {
835 levelMode = LEVEL_MODE_OFF;
836 levelModeStartTimeUs = 0;
839 gpsRescuePreviousState = gpsRescueIsActive;
840 #else
841 UNUSED(pidProfile);
842 UNUSED(currentTimeUs);
843 #endif
845 // Anti Gravity
846 if (pidRuntime.antiGravityEnabled) {
847 pidRuntime.antiGravityThrottleD *= pidRuntime.antiGravityGain;
848 // used later to increase pTerm
849 pidRuntime.itermAccelerator = pidRuntime.antiGravityThrottleD * ANTIGRAVITY_KI;
850 } else {
851 pidRuntime.antiGravityThrottleD = 0.0f;
852 pidRuntime.itermAccelerator = 0.0f;
854 DEBUG_SET(DEBUG_ANTI_GRAVITY, 2, lrintf((1 + (pidRuntime.itermAccelerator / pidRuntime.pidCoefficient[FD_PITCH].Ki)) * 1000));
855 // amount of antigravity added relative to user's pitch iTerm coefficient
856 // used later to increase iTerm
858 // iTerm windup (attenuation of iTerm if motorMix range is large)
859 float dynCi = 1.0;
860 if (pidRuntime.itermWindupPointInv > 1.0f) {
861 dynCi = constrainf((1.0f - getMotorMixRange()) * pidRuntime.itermWindupPointInv, 0.0f, 1.0f);
864 // Precalculate gyro delta for D-term here, this allows loop unrolling
865 float gyroRateDterm[XYZ_AXIS_COUNT];
866 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
867 gyroRateDterm[axis] = gyro.gyroADCf[axis];
868 // -----calculate raw, unfiltered D component
870 // Divide rate change by dT to get differential (ie dr/dt).
871 // dT is fixed and calculated from the target PID loop time
872 // This is done to avoid DTerm spikes that occur with dynamically
873 // calculated deltaT whenever another task causes the PID
874 // loop execution to be delayed.
876 // Log the unfiltered D for ROLL and PITCH
877 if (axis != FD_YAW) {
878 const float delta = (previousRawGyroRateDterm[axis] - gyroRateDterm[axis]) * pidRuntime.pidFrequency / D_LPF_RAW_SCALE;
879 previousRawGyroRateDterm[axis] = gyroRateDterm[axis];
880 DEBUG_SET(DEBUG_D_LPF, axis, lrintf(delta));
883 gyroRateDterm[axis] = pidRuntime.dtermNotchApplyFn((filter_t *) &pidRuntime.dtermNotch[axis], gyroRateDterm[axis]);
884 gyroRateDterm[axis] = pidRuntime.dtermLowpassApplyFn((filter_t *) &pidRuntime.dtermLowpass[axis], gyroRateDterm[axis]);
885 gyroRateDterm[axis] = pidRuntime.dtermLowpass2ApplyFn((filter_t *) &pidRuntime.dtermLowpass2[axis], gyroRateDterm[axis]);
888 rotateItermAndAxisError();
890 #ifdef USE_RPM_FILTER
891 rpmFilterUpdate();
892 #endif
894 // ----------PID controller----------
895 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
897 float currentPidSetpoint = getSetpointRate(axis);
898 if (pidRuntime.maxVelocity[axis]) {
899 currentPidSetpoint = accelerationLimit(axis, currentPidSetpoint);
901 // Yaw control is GYRO based, direct sticks control is applied to rate PID
902 // When Race Mode is active PITCH control is also GYRO based in level or horizon mode
903 #if defined(USE_ACC)
904 pidRuntime.axisInAngleMode[axis] = false;
905 if (axis < FD_YAW) {
906 if (levelMode == LEVEL_MODE_RP || (levelMode == LEVEL_MODE_R && axis == FD_ROLL)) {
907 pidRuntime.axisInAngleMode[axis] = true;
908 currentPidSetpoint = pidLevel(axis, pidProfile, angleTrim, currentPidSetpoint, horizonLevelStrength);
910 } else { // yaw axis only
911 if (levelMode == LEVEL_MODE_RP) {
912 // if earth referencing is requested, attenuate yaw axis setpoint when pitched or rolled
913 // and send yawSetpoint to Angle code to modulate pitch and roll
914 // code cost is 107 cycles when earthRef enabled, 20 otherwise, nearly all in cos_approx
915 if (pidRuntime.angleEarthRef) {
916 pidRuntime.angleYawSetpoint = currentPidSetpoint;
917 float maxAngleTargetAbs = pidRuntime.angleEarthRef * fmaxf( fabsf(pidRuntime.angleTarget[FD_ROLL]), fabsf(pidRuntime.angleTarget[FD_PITCH]) );
918 maxAngleTargetAbs *= (FLIGHT_MODE(HORIZON_MODE)) ? horizonLevelStrength : 1.0f;
919 // reduce compensation whenever Horizon uses less levelling
920 currentPidSetpoint *= cos_approx(DEGREES_TO_RADIANS(maxAngleTargetAbs));
921 DEBUG_SET(DEBUG_ANGLE_TARGET, 2, currentPidSetpoint); // yaw setpoint after attenuation
925 #endif
927 #ifdef USE_ACRO_TRAINER
928 if ((axis != FD_YAW) && pidRuntime.acroTrainerActive && !pidRuntime.inCrashRecoveryMode && !launchControlActive) {
929 currentPidSetpoint = applyAcroTrainer(axis, angleTrim, currentPidSetpoint);
931 #endif // USE_ACRO_TRAINER
933 #ifdef USE_LAUNCH_CONTROL
934 if (launchControlActive) {
935 #if defined(USE_ACC)
936 currentPidSetpoint = applyLaunchControl(axis, angleTrim);
937 #else
938 currentPidSetpoint = applyLaunchControl(axis, NULL);
939 #endif
941 #endif
943 // Handle yaw spin recovery - zero the setpoint on yaw to aid in recovery
944 // It's not necessary to zero the set points for R/P because the PIDs will be zeroed below
945 #ifdef USE_YAW_SPIN_RECOVERY
946 if ((axis == FD_YAW) && yawSpinActive) {
947 currentPidSetpoint = 0.0f;
949 #endif // USE_YAW_SPIN_RECOVERY
951 // -----calculate error rate
952 const float gyroRate = gyro.gyroADCf[axis]; // Process variable from gyro output in deg/sec
953 float errorRate = currentPidSetpoint - gyroRate; // r - y
954 #if defined(USE_ACC)
955 handleCrashRecovery(
956 pidProfile->crash_recovery, angleTrim, axis, currentTimeUs, gyroRate,
957 &currentPidSetpoint, &errorRate);
958 #endif
960 const float previousIterm = pidData[axis].I;
961 float itermErrorRate = errorRate;
962 #ifdef USE_ABSOLUTE_CONTROL
963 const float uncorrectedSetpoint = currentPidSetpoint;
964 #endif
966 #if defined(USE_ITERM_RELAX)
967 if (!launchControlActive && !pidRuntime.inCrashRecoveryMode) {
968 applyItermRelax(axis, previousIterm, gyroRate, &itermErrorRate, &currentPidSetpoint);
969 errorRate = currentPidSetpoint - gyroRate;
971 #endif
972 #ifdef USE_ABSOLUTE_CONTROL
973 const float setpointCorrection = currentPidSetpoint - uncorrectedSetpoint;
974 #endif
976 // --------low-level gyro-based PID based on 2DOF PID controller. ----------
977 // 2-DOF PID controller with optional filter on derivative term.
978 // b = 1 and only c (feedforward weight) can be tuned (amount derivative on measurement or error).
980 // -----calculate P component
981 pidData[axis].P = pidRuntime.pidCoefficient[axis].Kp * errorRate * tpaFactorKp;
982 if (axis == FD_YAW) {
983 pidData[axis].P = pidRuntime.ptermYawLowpassApplyFn((filter_t *) &pidRuntime.ptermYawLowpass, pidData[axis].P);
986 // -----calculate I component
987 float Ki = pidRuntime.pidCoefficient[axis].Ki;
988 #ifdef USE_LAUNCH_CONTROL
989 // if launch control is active override the iterm gains and apply iterm windup protection to all axes
990 if (launchControlActive) {
991 Ki = pidRuntime.launchControlKi;
992 } else
993 #endif
995 if (axis == FD_YAW) {
996 pidRuntime.itermAccelerator = 0.0f; // no antigravity on yaw iTerm
999 const float iTermChange = (Ki + pidRuntime.itermAccelerator) * dynCi * pidRuntime.dT * itermErrorRate;
1000 pidData[axis].I = constrainf(previousIterm + iTermChange, -pidRuntime.itermLimit, pidRuntime.itermLimit);
1002 // -----calculate D component
1004 float pidSetpointDelta = 0;
1006 #ifdef USE_FEEDFORWARD
1007 if (FLIGHT_MODE(ANGLE_MODE) && pidRuntime.axisInAngleMode[axis]) {
1008 // this axis is fully under self-levelling control
1009 // it will already have stick based feedforward applied in the input to their angle setpoint
1010 // a simple setpoint Delta can be used to for PID feedforward element for motor lag on these axes
1011 // however RC steps come in, via angle setpoint
1012 // and setpoint RC smoothing must have a cutoff half normal to remove those steps completely
1013 // the RC stepping does not come in via the feedforward, which is very well smoothed already
1014 // if uncommented, and the forcing to zero is removed, the two following lines will restore PID feedforward to angle mode axes
1015 // but for now let's see how we go without it (which was the case before 4.5 anyway)
1016 // pidSetpointDelta = currentPidSetpoint - pidRuntime.previousPidSetpoint[axis];
1017 // pidSetpointDelta *= pidRuntime.pidFrequency * pidRuntime.angleFeedforwardGain;
1018 pidSetpointDelta = 0.0f;
1019 } else {
1020 // the axis is operating as a normal acro axis, so use normal feedforard from rc.c
1021 pidSetpointDelta = getFeedforward(axis);
1023 #endif
1024 pidRuntime.previousPidSetpoint[axis] = currentPidSetpoint; // this is the value sent to blackbox, and used for Dmin setpoint
1026 // disable D if launch control is active
1027 if ((pidRuntime.pidCoefficient[axis].Kd > 0) && !launchControlActive) {
1028 // Divide rate change by dT to get differential (ie dr/dt).
1029 // dT is fixed and calculated from the target PID loop time
1030 // This is done to avoid DTerm spikes that occur with dynamically
1031 // calculated deltaT whenever another task causes the PID
1032 // loop execution to be delayed.
1033 const float delta =
1034 - (gyroRateDterm[axis] - previousGyroRateDterm[axis]) * pidRuntime.pidFrequency;
1035 float preTpaD = pidRuntime.pidCoefficient[axis].Kd * delta;
1037 #if defined(USE_ACC)
1038 if (cmpTimeUs(currentTimeUs, levelModeStartTimeUs) > CRASH_RECOVERY_DETECTION_DELAY_US) {
1039 detectAndSetCrashRecovery(pidProfile->crash_recovery, axis, currentTimeUs, delta, errorRate);
1041 #endif
1043 #if defined(USE_D_MIN)
1044 float dMinFactor = 1.0f;
1045 if (pidRuntime.dMinPercent[axis] > 0) {
1046 float dMinGyroFactor = pt2FilterApply(&pidRuntime.dMinRange[axis], delta);
1047 dMinGyroFactor = fabsf(dMinGyroFactor) * pidRuntime.dMinGyroGain;
1048 const float dMinSetpointFactor = (fabsf(pidSetpointDelta)) * pidRuntime.dMinSetpointGain;
1049 dMinFactor = MAX(dMinGyroFactor, dMinSetpointFactor);
1050 dMinFactor = pidRuntime.dMinPercent[axis] + (1.0f - pidRuntime.dMinPercent[axis]) * dMinFactor;
1051 dMinFactor = pt2FilterApply(&pidRuntime.dMinLowpass[axis], dMinFactor);
1052 dMinFactor = MIN(dMinFactor, 1.0f);
1053 if (axis == FD_ROLL) {
1054 DEBUG_SET(DEBUG_D_MIN, 0, lrintf(dMinGyroFactor * 100));
1055 DEBUG_SET(DEBUG_D_MIN, 1, lrintf(dMinSetpointFactor * 100));
1056 DEBUG_SET(DEBUG_D_MIN, 2, lrintf(pidRuntime.pidCoefficient[axis].Kd * dMinFactor * 10 / DTERM_SCALE));
1057 } else if (axis == FD_PITCH) {
1058 DEBUG_SET(DEBUG_D_MIN, 3, lrintf(pidRuntime.pidCoefficient[axis].Kd * dMinFactor * 10 / DTERM_SCALE));
1062 // Apply the dMinFactor
1063 preTpaD *= dMinFactor;
1064 #endif
1065 pidData[axis].D = preTpaD * pidRuntime.tpaFactor;
1067 // Log the value of D pre application of TPA
1068 preTpaD *= D_LPF_FILT_SCALE;
1070 if (axis != FD_YAW) {
1071 DEBUG_SET(DEBUG_D_LPF, axis - FD_ROLL + 2, lrintf(preTpaD));
1073 } else {
1074 pidData[axis].D = 0;
1075 if (axis != FD_YAW) {
1076 DEBUG_SET(DEBUG_D_LPF, axis - FD_ROLL + 2, 0);
1080 previousGyroRateDterm[axis] = gyroRateDterm[axis];
1082 // -----calculate feedforward component
1083 #ifdef USE_ABSOLUTE_CONTROL
1084 // include abs control correction in feedforward
1085 pidSetpointDelta += setpointCorrection - pidRuntime.oldSetpointCorrection[axis];
1086 pidRuntime.oldSetpointCorrection[axis] = setpointCorrection;
1087 #endif
1089 // no feedforward in launch control
1090 float feedforwardGain = launchControlActive ? 0.0f : pidRuntime.pidCoefficient[axis].Kf;
1091 if (feedforwardGain > 0) {
1092 float feedForward = feedforwardGain * pidSetpointDelta;
1093 pidData[axis].F = feedForward;
1094 } else {
1095 pidData[axis].F = 0;
1098 #ifdef USE_YAW_SPIN_RECOVERY
1099 if (yawSpinActive) {
1100 pidData[axis].I = 0; // in yaw spin always disable I
1101 if (axis <= FD_PITCH) {
1102 // zero PIDs on pitch and roll leaving yaw P to correct spin
1103 pidData[axis].P = 0;
1104 pidData[axis].D = 0;
1105 pidData[axis].F = 0;
1108 #endif // USE_YAW_SPIN_RECOVERY
1110 #ifdef USE_LAUNCH_CONTROL
1111 // Disable P/I appropriately based on the launch control mode
1112 if (launchControlActive) {
1113 // if not using FULL mode then disable I accumulation on yaw as
1114 // yaw has a tendency to windup. Otherwise limit yaw iterm accumulation.
1115 const int launchControlYawItermLimit = (pidRuntime.launchControlMode == LAUNCH_CONTROL_MODE_FULL) ? LAUNCH_CONTROL_YAW_ITERM_LIMIT : 0;
1116 pidData[FD_YAW].I = constrainf(pidData[FD_YAW].I, -launchControlYawItermLimit, launchControlYawItermLimit);
1118 // for pitch-only mode we disable everything except pitch P/I
1119 if (pidRuntime.launchControlMode == LAUNCH_CONTROL_MODE_PITCHONLY) {
1120 pidData[FD_ROLL].P = 0;
1121 pidData[FD_ROLL].I = 0;
1122 pidData[FD_YAW].P = 0;
1123 // don't let I go negative (pitch backwards) as front motors are limited in the mixer
1124 pidData[FD_PITCH].I = MAX(0.0f, pidData[FD_PITCH].I);
1127 #endif
1129 // Add P boost from antiGravity when sticks are close to zero
1130 if (axis != FD_YAW) {
1131 float agSetpointAttenuator = fabsf(currentPidSetpoint) / 50.0f;
1132 agSetpointAttenuator = MAX(agSetpointAttenuator, 1.0f);
1133 // attenuate effect if turning more than 50 deg/s, half at 100 deg/s
1134 const float antiGravityPBoost = 1.0f + (pidRuntime.antiGravityThrottleD / agSetpointAttenuator) * pidRuntime.antiGravityPGain;
1135 pidData[axis].P *= antiGravityPBoost;
1136 if (axis == FD_PITCH) {
1137 DEBUG_SET(DEBUG_ANTI_GRAVITY, 3, lrintf(antiGravityPBoost * 1000));
1141 // calculating the PID sum
1142 const float pidSum = pidData[axis].P + pidData[axis].I + pidData[axis].D + pidData[axis].F;
1143 #ifdef USE_INTEGRATED_YAW_CONTROL
1144 if (axis == FD_YAW && pidRuntime.useIntegratedYaw) {
1145 pidData[axis].Sum += pidSum * pidRuntime.dT * 100.0f;
1146 pidData[axis].Sum -= pidData[axis].Sum * pidRuntime.integratedYawRelax / 100000.0f * pidRuntime.dT / 0.000125f;
1147 } else
1148 #endif
1150 pidData[axis].Sum = pidSum;
1154 // Disable PID control if at zero throttle or if gyro overflow detected
1155 // This may look very innefficient, but it is done on purpose to always show real CPU usage as in flight
1156 if (!pidRuntime.pidStabilisationEnabled || gyroOverflowDetected()) {
1157 for (int axis = FD_ROLL; axis <= FD_YAW; ++axis) {
1158 pidData[axis].P = 0;
1159 pidData[axis].I = 0;
1160 pidData[axis].D = 0;
1161 pidData[axis].F = 0;
1163 pidData[axis].Sum = 0;
1165 } else if (pidRuntime.zeroThrottleItermReset) {
1166 pidResetIterm();
1170 bool crashRecoveryModeActive(void)
1172 return pidRuntime.inCrashRecoveryMode;
1175 #ifdef USE_ACRO_TRAINER
1176 void pidSetAcroTrainerState(bool newState)
1178 if (pidRuntime.acroTrainerActive != newState) {
1179 if (newState) {
1180 pidAcroTrainerInit();
1182 pidRuntime.acroTrainerActive = newState;
1185 #endif // USE_ACRO_TRAINER
1187 void pidSetAntiGravityState(bool newState)
1189 if (newState != pidRuntime.antiGravityEnabled) {
1190 // reset the accelerator on state changes
1191 pidRuntime.itermAccelerator = 0.0f;
1193 pidRuntime.antiGravityEnabled = newState;
1196 bool pidAntiGravityEnabled(void)
1198 return pidRuntime.antiGravityEnabled;
1201 #ifdef USE_DYN_LPF
1202 void dynLpfDTermUpdate(float throttle)
1204 if (pidRuntime.dynLpfFilter != DYN_LPF_NONE) {
1205 float cutoffFreq;
1206 if (pidRuntime.dynLpfCurveExpo > 0) {
1207 cutoffFreq = dynLpfCutoffFreq(throttle, pidRuntime.dynLpfMin, pidRuntime.dynLpfMax, pidRuntime.dynLpfCurveExpo);
1208 } else {
1209 cutoffFreq = fmaxf(dynThrottle(throttle) * pidRuntime.dynLpfMax, pidRuntime.dynLpfMin);
1212 switch (pidRuntime.dynLpfFilter) {
1213 case DYN_LPF_PT1:
1214 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1215 pt1FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt1Filter, pt1FilterGain(cutoffFreq, pidRuntime.dT));
1217 break;
1218 case DYN_LPF_BIQUAD:
1219 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1220 biquadFilterUpdateLPF(&pidRuntime.dtermLowpass[axis].biquadFilter, cutoffFreq, targetPidLooptime);
1222 break;
1223 case DYN_LPF_PT2:
1224 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1225 pt2FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt2Filter, pt2FilterGain(cutoffFreq, pidRuntime.dT));
1227 break;
1228 case DYN_LPF_PT3:
1229 for (int axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
1230 pt3FilterUpdateCutoff(&pidRuntime.dtermLowpass[axis].pt3Filter, pt3FilterGain(cutoffFreq, pidRuntime.dT));
1232 break;
1236 #endif
1238 float dynLpfCutoffFreq(float throttle, uint16_t dynLpfMin, uint16_t dynLpfMax, uint8_t expo)
1240 const float expof = expo / 10.0f;
1241 const float curve = throttle * (1 - throttle) * expof + throttle;
1242 return (dynLpfMax - dynLpfMin) * curve + dynLpfMin;
1245 void pidSetItermReset(bool enabled)
1247 pidRuntime.zeroThrottleItermReset = enabled;
1250 float pidGetPreviousSetpoint(int axis)
1252 return pidRuntime.previousPidSetpoint[axis];
1255 float pidGetDT(void)
1257 return pidRuntime.dT;
1260 float pidGetPidFrequency(void)
1262 return pidRuntime.pidFrequency;