Merge pull request #11678 from haslinghuis/update-msp-api-level
[betaflight.git] / src / main / drivers / adc_stm32f30x.c
blob59a5254c18b411090ae3b6b7fb4397ee11444388
1 /*
2 * This file is part of Cleanflight and Betaflight.
4 * Cleanflight and Betaflight are free software. You can redistribute
5 * this software and/or modify this software under the terms of the
6 * GNU General Public License as published by the Free Software
7 * Foundation, either version 3 of the License, or (at your option)
8 * any later version.
10 * Cleanflight and Betaflight are distributed in the hope that they
11 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
12 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 * See the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this software.
18 * If not, see <http://www.gnu.org/licenses/>.
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <string.h>
25 #include "platform.h"
27 #ifdef USE_ADC
29 #include "common/utils.h"
31 #include "drivers/adc_impl.h"
32 #include "drivers/dma.h"
33 #include "drivers/dma_reqmap.h"
34 #include "drivers/io.h"
35 #include "drivers/rcc.h"
36 #include "drivers/sensor.h"
37 #include "drivers/time.h"
39 #include "pg/adc.h"
41 #include "adc.h"
43 const adcDevice_t adcHardware[] = {
44 { .ADCx = ADC1, .rccADC = RCC_AHB(ADC12),
45 #if !defined(USE_DMA_SPEC)
46 .dmaResource = (dmaResource_t *)DMA1_Channel1,
47 #endif
49 #ifdef ADC24_DMA_REMAP
50 { .ADCx = ADC2, .rccADC = RCC_AHB(ADC12),
51 #if !defined(USE_DMA_SPEC)
52 .dmaResource = (dmaResource_t *)DMA2_Channel3,
53 #endif
55 #else
56 { .ADCx = ADC2, .rccADC = RCC_AHB(ADC12),
57 #if !defined(USE_DMA_SPEC)
58 .dmaResource = (dmaResource_t *)DMA2_Channel1,
59 #endif
61 #endif
62 { .ADCx = ADC3, .rccADC = RCC_AHB(ADC34),
63 #if !defined(USE_DMA_SPEC)
64 .dmaResource = (dmaResource_t *)DMA2_Channel5,
65 #endif
69 const adcTagMap_t adcTagMap[] = {
70 { DEFIO_TAG_E__PA0, ADC_DEVICES_1, ADC_Channel_1 }, // ADC1
71 { DEFIO_TAG_E__PA1, ADC_DEVICES_1, ADC_Channel_2 }, // ADC1
72 { DEFIO_TAG_E__PA2, ADC_DEVICES_1, ADC_Channel_3 }, // ADC1
73 { DEFIO_TAG_E__PA3, ADC_DEVICES_1, ADC_Channel_4 }, // ADC1
74 { DEFIO_TAG_E__PA4, ADC_DEVICES_2, ADC_Channel_1 }, // ADC2
75 { DEFIO_TAG_E__PA5, ADC_DEVICES_2, ADC_Channel_2 }, // ADC2
76 { DEFIO_TAG_E__PA6, ADC_DEVICES_2, ADC_Channel_3 }, // ADC2
77 { DEFIO_TAG_E__PA7, ADC_DEVICES_4, ADC_Channel_4 }, // ADC2
78 { DEFIO_TAG_E__PB0, ADC_DEVICES_3, ADC_Channel_12 }, // ADC3
79 { DEFIO_TAG_E__PB1, ADC_DEVICES_3, ADC_Channel_1 }, // ADC3
80 { DEFIO_TAG_E__PB2, ADC_DEVICES_2, ADC_Channel_12 }, // ADC2
81 { DEFIO_TAG_E__PB12, ADC_DEVICES_4, ADC_Channel_3 }, // ADC4
82 { DEFIO_TAG_E__PB13, ADC_DEVICES_3, ADC_Channel_5 }, // ADC3
83 { DEFIO_TAG_E__PB14, ADC_DEVICES_4, ADC_Channel_4 }, // ADC4
84 { DEFIO_TAG_E__PB15, ADC_DEVICES_4, ADC_Channel_5 }, // ADC4
85 { DEFIO_TAG_E__PC0, ADC_DEVICES_12, ADC_Channel_6 }, // ADC12
86 { DEFIO_TAG_E__PC1, ADC_DEVICES_12, ADC_Channel_7 }, // ADC12
87 { DEFIO_TAG_E__PC2, ADC_DEVICES_12, ADC_Channel_8 }, // ADC12
88 { DEFIO_TAG_E__PC3, ADC_DEVICES_12, ADC_Channel_9 }, // ADC12
89 { DEFIO_TAG_E__PC4, ADC_DEVICES_2, ADC_Channel_5 }, // ADC2
90 { DEFIO_TAG_E__PC5, ADC_DEVICES_2, ADC_Channel_11 }, // ADC2
91 { DEFIO_TAG_E__PD8, ADC_DEVICES_4, ADC_Channel_12 }, // ADC4
92 { DEFIO_TAG_E__PD9, ADC_DEVICES_4, ADC_Channel_13 }, // ADC4
93 { DEFIO_TAG_E__PD10, ADC_DEVICES_34, ADC_Channel_7 }, // ADC34
94 { DEFIO_TAG_E__PD11, ADC_DEVICES_34, ADC_Channel_8 }, // ADC34
95 { DEFIO_TAG_E__PD12, ADC_DEVICES_34, ADC_Channel_9 }, // ADC34
96 { DEFIO_TAG_E__PD13, ADC_DEVICES_34, ADC_Channel_10 }, // ADC34
97 { DEFIO_TAG_E__PD14, ADC_DEVICES_34, ADC_Channel_11 }, // ADC34
98 { DEFIO_TAG_E__PE7, ADC_DEVICES_3, ADC_Channel_13 }, // ADC3
99 { DEFIO_TAG_E__PE8, ADC_DEVICES_34, ADC_Channel_6 }, // ADC34
100 { DEFIO_TAG_E__PE9, ADC_DEVICES_3, ADC_Channel_2 }, // ADC3
101 { DEFIO_TAG_E__PE10, ADC_DEVICES_3, ADC_Channel_14 }, // ADC3
102 { DEFIO_TAG_E__PE11, ADC_DEVICES_3, ADC_Channel_15 }, // ADC3
103 { DEFIO_TAG_E__PE12, ADC_DEVICES_3, ADC_Channel_16 }, // ADC3
104 { DEFIO_TAG_E__PE13, ADC_DEVICES_3, ADC_Channel_3 }, // ADC3
105 { DEFIO_TAG_E__PE14, ADC_DEVICES_4, ADC_Channel_1 }, // ADC4
106 { DEFIO_TAG_E__PE15, ADC_DEVICES_4, ADC_Channel_2 }, // ADC4
107 { DEFIO_TAG_E__PF2, ADC_DEVICES_12, ADC_Channel_10 }, // ADC12
108 { DEFIO_TAG_E__PF4, ADC_DEVICES_1, ADC_Channel_5 }, // ADC1
111 void adcInit(const adcConfig_t *config)
113 ADC_InitTypeDef ADC_InitStructure;
114 DMA_InitTypeDef DMA_InitStructure;
116 uint8_t adcChannelCount = 0;
118 memset(&adcOperatingConfig, 0, sizeof(adcOperatingConfig));
120 if (config->vbat.enabled) {
121 adcOperatingConfig[ADC_BATTERY].tag = config->vbat.ioTag;
124 if (config->rssi.enabled) {
125 adcOperatingConfig[ADC_RSSI].tag = config->rssi.ioTag; //RSSI_ADC_CHANNEL;
128 if (config->external1.enabled) {
129 adcOperatingConfig[ADC_EXTERNAL1].tag = config->external1.ioTag; //EXTERNAL1_ADC_CHANNEL;
132 if (config->current.enabled) {
133 adcOperatingConfig[ADC_CURRENT].tag = config->current.ioTag; //CURRENT_METER_ADC_CHANNEL;
136 ADCDevice device = ADC_CFG_TO_DEV(config->device);
138 if (device == ADCINVALID) {
139 return;
142 #ifdef ADC24_DMA_REMAP
143 SYSCFG_DMAChannelRemapConfig(SYSCFG_DMARemap_ADC2ADC4, ENABLE);
144 #endif
145 adcDevice_t adc = adcHardware[device];
147 bool adcActive = false;
148 for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
149 if (!adcVerifyPin(adcOperatingConfig[i].tag, device)) {
150 continue;
153 adcActive = true;
154 IOInit(IOGetByTag(adcOperatingConfig[i].tag), OWNER_ADC_BATT + i, 0);
155 IOConfigGPIO(IOGetByTag(adcOperatingConfig[i].tag), IO_CONFIG(GPIO_Mode_AN, 0, GPIO_OType_OD, GPIO_PuPd_NOPULL));
156 adcOperatingConfig[i].adcChannel = adcChannelByTag(adcOperatingConfig[i].tag);
157 adcOperatingConfig[i].dmaIndex = adcChannelCount++;
158 adcOperatingConfig[i].sampleTime = ADC_SampleTime_601Cycles5;
159 adcOperatingConfig[i].enabled = true;
162 if (!adcActive) {
163 return;
166 if ((device == ADCDEV_1) || (device == ADCDEV_2)) {
167 // enable clock for ADC1+2
168 RCC_ADCCLKConfig(RCC_ADC12PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz
169 } else {
170 // enable clock for ADC3+4
171 RCC_ADCCLKConfig(RCC_ADC34PLLCLK_Div256); // 72 MHz divided by 256 = 281.25 kHz
174 RCC_ClockCmd(adc.rccADC, ENABLE);
176 #if defined(USE_DMA_SPEC)
177 const dmaChannelSpec_t *dmaSpec = dmaGetChannelSpecByPeripheral(DMA_PERIPH_ADC, device, config->dmaopt[device]);
179 if (!dmaSpec || !dmaAllocate(dmaGetIdentifier(dmaSpec->ref), OWNER_ADC, RESOURCE_INDEX(device))) {
180 return;
183 dmaEnable(dmaGetIdentifier(dmaSpec->ref));
185 DMA_DeInit((DMA_ARCH_TYPE *)dmaSpec->ref);
186 #else
187 if (!dmaAllocate(dmaGetIdentifier(adc.dmaResource), OWNER_ADC, 0)) {
188 return;
191 dmaEnable(dmaGetIdentifier(adc.dmaResource));
193 xDMA_DeInit(adc.dmaResource);
194 #endif
196 DMA_StructInit(&DMA_InitStructure);
197 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&adc.ADCx->DR;
198 DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)adcValues;
199 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
200 DMA_InitStructure.DMA_BufferSize = adcChannelCount;
201 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
202 DMA_InitStructure.DMA_MemoryInc = adcChannelCount > 1 ? DMA_MemoryInc_Enable : DMA_MemoryInc_Disable;
203 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
204 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
205 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
206 DMA_InitStructure.DMA_Priority = DMA_Priority_High;
207 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
209 #if defined(USE_DMA_SPEC)
210 xDMA_Init(dmaSpec->ref, &DMA_InitStructure);
211 xDMA_Cmd(dmaSpec->ref, ENABLE);
212 #else
213 xDMA_Init(adc.dmaResource, &DMA_InitStructure);
214 xDMA_Cmd(adc.dmaResource, ENABLE);
215 #endif
217 // calibrate
219 ADC_VoltageRegulatorCmd(adc.ADCx, ENABLE);
220 delay(10);
221 ADC_SelectCalibrationMode(adc.ADCx, ADC_CalibrationMode_Single);
222 ADC_StartCalibration(adc.ADCx);
223 while (ADC_GetCalibrationStatus(adc.ADCx) != RESET);
224 ADC_VoltageRegulatorCmd(adc.ADCx, DISABLE);
226 ADC_CommonInitTypeDef ADC_CommonInitStructure;
228 ADC_CommonStructInit(&ADC_CommonInitStructure);
229 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
230 ADC_CommonInitStructure.ADC_Clock = ADC_Clock_SynClkModeDiv4;
231 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
232 ADC_CommonInitStructure.ADC_DMAMode = ADC_DMAMode_Circular;
233 ADC_CommonInitStructure.ADC_TwoSamplingDelay = 0;
234 ADC_CommonInit(adc.ADCx, &ADC_CommonInitStructure);
236 ADC_StructInit(&ADC_InitStructure);
238 ADC_InitStructure.ADC_ContinuousConvMode = ADC_ContinuousConvMode_Enable;
239 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
240 ADC_InitStructure.ADC_ExternalTrigConvEvent = ADC_ExternalTrigConvEvent_0;
241 ADC_InitStructure.ADC_ExternalTrigEventEdge = ADC_ExternalTrigEventEdge_None;
242 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
243 ADC_InitStructure.ADC_OverrunMode = ADC_OverrunMode_Disable;
244 ADC_InitStructure.ADC_AutoInjMode = ADC_AutoInjec_Disable;
245 ADC_InitStructure.ADC_NbrOfRegChannel = adcChannelCount;
247 ADC_Init(adc.ADCx, &ADC_InitStructure);
249 uint8_t rank = 1;
250 for (int i = 0; i < ADC_CHANNEL_COUNT; i++) {
251 if (!adcOperatingConfig[i].enabled) {
252 continue;
254 ADC_RegularChannelConfig(adc.ADCx, adcOperatingConfig[i].adcChannel, rank++, adcOperatingConfig[i].sampleTime);
257 ADC_Cmd(adc.ADCx, ENABLE);
259 while (!ADC_GetFlagStatus(adc.ADCx, ADC_FLAG_RDY));
261 ADC_DMAConfig(adc.ADCx, ADC_DMAMode_Circular);
263 ADC_DMACmd(adc.ADCx, ENABLE);
265 ADC_StartConversion(adc.ADCx);
268 void adcGetChannelValues(void)
270 // Nothing to do
272 #endif