evalue_bernstein_coefficients: handle problems with empty parametric polytope
[barvinok/uuh.git] / polysign_glpk.c
blob6e91700419ed8d0fcf6bb34bf54250123ee7de6e
1 #include <assert.h>
2 #include <math.h>
3 #include <glpk.h>
4 #include <barvinok/options.h>
5 #include <barvinok/util.h>
6 #include "polysign.h"
8 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
10 #define EMPTY_DOMAIN -2
12 static LPX *solve_lp(int dir, Matrix *C, Value *f, Value denom)
14 LPX *lp;
15 int *ind;
16 double *val;
17 int j, k, l;
18 unsigned dim = C->NbColumns-2;
20 ind = ALLOCN(int, 1+dim);
21 val = ALLOCN(double, 1+dim);
22 lp = lpx_create_prob();
23 lpx_set_obj_dir(lp, dir);
24 lpx_add_rows(lp, C->NbRows);
25 lpx_add_cols(lp, dim);
27 for (j = 0; j < C->NbRows; ++j) {
28 int type = value_zero_p(C->p[j][0]) ? LPX_FX : LPX_LO;
29 for (k = 0, l = 0; k < dim; ++k) {
30 if (value_zero_p(C->p[j][1+k]))
31 continue;
32 ind[1+l] = 1+k;
33 val[1+l] = VALUE_TO_DOUBLE(C->p[j][1+k]);
34 ++l;
36 lpx_set_mat_row(lp, 1+j, l, ind, val);
37 lpx_set_row_bnds(lp, 1+j, type,
38 -VALUE_TO_DOUBLE(C->p[j][1+dim]), 0);
40 for (k = 0, l = 0; k < dim; ++k) {
41 lpx_set_col_bnds(lp, 1+k, LPX_FR, 0, 0);
43 free(ind);
44 free(val);
45 lpx_set_int_parm(lp, LPX_K_MSGLEV, 0);
47 /* objective function */
48 for (j = 0; j < dim; ++j)
49 lpx_set_obj_coef(lp, 1+j, VALUE_TO_DOUBLE(f[j]) /
50 VALUE_TO_DOUBLE(denom));
51 lpx_set_obj_coef(lp, 0, VALUE_TO_DOUBLE(f[dim]) /
52 VALUE_TO_DOUBLE(denom));
54 lpx_adv_basis(lp);
55 lpx_simplex(lp);
57 return lp;
60 static enum lp_result constraints_affine_minmax(int dir, Matrix *C,
61 Value *f, Value denom, Value *opt)
63 enum lp_result res = lp_ok;
64 LPX *lp = solve_lp(dir, C, f, denom);
66 switch (lpx_get_status(lp)) {
67 case LPX_OPT:
68 if (dir == LPX_MIN)
69 value_set_si(*opt, (int)ceil(lpx_get_obj_val(lp)-1e-10));
70 else
71 value_set_si(*opt, (int)floor(lpx_get_obj_val(lp)+1e-10));
72 break;
73 case LPX_UNBND:
74 res = lp_unbounded;
75 break;
76 case LPX_NOFEAS:
77 res = lp_empty;
78 break;
79 default:
80 assert(0);
82 lpx_delete_prob(lp);
83 return res;
86 static int constraints_affine_minmax_sign(int dir, Matrix *C, Matrix *T,
87 int rational)
89 LPX *lp;
90 int sign;
91 double opt;
92 unsigned dim = C->NbColumns-2;
93 assert(dim == T->NbColumns-1);
94 assert(T->NbRows == 2);
96 lp = solve_lp(dir, C, T->p[0], T->p[1][dim]);
97 switch (lpx_get_status(lp)) {
98 case LPX_OPT:
99 opt = lpx_get_obj_val(lp);
100 if (rational) {
101 sign = opt < 0 ? -1 : opt > 0 ? 1 : 0;
102 } else {
103 if (opt < -0.5/VALUE_TO_DOUBLE(T->p[1][dim]))
104 sign = -1;
105 else if (opt > 0.5/VALUE_TO_DOUBLE(T->p[1][dim]))
106 sign = 1;
107 else
108 sign = 0;
110 break;
111 case LPX_UNBND:
112 if (dir == LPX_MIN)
113 sign = -1;
114 else
115 sign = 1;
116 break;
117 case LPX_NOFEAS:
118 sign = EMPTY_DOMAIN;
119 break;
120 default:
121 assert(0);
123 lpx_delete_prob(lp);
124 return sign;
127 enum order_sign glpk_polyhedron_affine_sign(Polyhedron *D, Matrix *T,
128 struct barvinok_options *options)
130 int rational = !POL_ISSET(options->MaxRays, POL_INTEGER);
131 Matrix M;
133 if (emptyQ2(D))
134 return order_undefined;
136 Polyhedron_Matrix_View(D, &M, D->NbConstraints);
137 int min = constraints_affine_minmax_sign(LPX_MIN, &M, T, rational);
138 if (min == EMPTY_DOMAIN)
139 return order_undefined;
140 if (min > 0)
141 return order_gt;
142 int max = constraints_affine_minmax_sign(LPX_MAX, &M, T, rational);
143 assert(max != EMPTY_DOMAIN);
144 if (max < 0)
145 return order_lt;
146 if (min == max)
147 return order_eq;
148 if (max == 0)
149 return order_le;
150 if (min == 0)
151 return order_ge;
152 return order_unknown;
155 enum lp_result glpk_constraints_opt(Matrix *C, Value *obj, Value denom,
156 enum lp_dir dir, Value *opt)
158 int glpk_dir = dir == lp_min ? LPX_MIN : LPX_MAX;
159 return constraints_affine_minmax(glpk_dir, C, obj, denom, opt);
162 enum lp_result glpk_polyhedron_range(Polyhedron *D, Value *obj, Value denom,
163 Value *min, Value *max,
164 struct barvinok_options *options)
166 enum lp_result res;
167 Matrix M;
169 if (emptyQ2(D))
170 return lp_empty;
172 Polyhedron_Matrix_View(D, &M, D->NbConstraints);
173 res = constraints_affine_minmax(LPX_MIN, &M, obj, denom, min);
174 if (res != lp_ok)
175 return res;
176 res = constraints_affine_minmax(LPX_MAX, &M, obj, denom, max);
177 return res;