update isl for isl_pw_qpolynomial_bound_range
[barvinok/uuh.git] / verif_ehrhart.c
blob8b3e84ce04483c72b6a2711d92d18fd63a8ed315
1 /*************************************************/
2 /* verif_ehrhart.c */
3 /* program to compare effective number of points */
4 /* in a polytope with the corresponding */
5 /* evaluation of the Ehrhart polynomial. */
6 /* Parameters vary in range -RANGE to RANGE */
7 /* (define below) by default. */
8 /* Can be overridden by specifying */
9 /* -r<RANGE>, or -m<min> and -M<max> */
10 /* */
11 /* written by Vincent Loechner (c) 2000. */
12 /* loechner@icps.u-strasbg.fr */
13 /*************************************************/
15 #include <stdio.h>
16 #include <string.h>
17 #include <stdlib.h>
18 #include <math.h>
20 #include <barvinok/evalue.h>
21 #include <barvinok/barvinok.h>
22 #include "verif_ehrhart.h"
24 #undef CS /* for Solaris 10 */
26 struct check_poly_EP_data {
27 struct check_poly_data cp;
28 Polyhedron *S;
29 const evalue *EP;
30 int exist;
33 static int cp_EP(const struct check_poly_data *data, int nparam, Value *z,
34 const struct verify_options *options)
36 int k;
37 int ok;
38 Value c, tmp, one;
39 int pa = options->barvinok->polynomial_approximation;
40 struct check_poly_EP_data* EP_data = (struct check_poly_EP_data*) data;
41 const evalue *EP = EP_data->EP;
42 int exist = EP_data->exist;
43 Polyhedron *S = EP_data->S;
45 value_init(c);
46 value_init(tmp);
47 value_init(one);
48 value_set_si(one, 1);
50 /* Computes the ehrhart polynomial */
51 if (!options->exact) {
52 double d = compute_evalue(EP, z);
53 if (pa == BV_APPROX_SIGN_LOWER)
54 d = ceil(d-0.1);
55 else if (pa == BV_APPROX_SIGN_UPPER)
56 d = floor(d+0.1);
57 value_set_double(c, d+.25);
58 } else {
59 evalue *res = evalue_eval(EP, z);
60 if (pa == BV_APPROX_SIGN_LOWER)
61 mpz_cdiv_q(c, res->x.n, res->d);
62 else if (pa == BV_APPROX_SIGN_UPPER)
63 mpz_fdiv_q(c, res->x.n, res->d);
64 else
65 mpz_tdiv_q(c, res->x.n, res->d);
66 evalue_free(res);
69 /* Manually count the number of points */
70 count_points_e(1, S, exist, nparam, data->z, &tmp);
72 if (pa == BV_APPROX_SIGN_APPROX)
73 /* just accept everything */
74 ok = 1;
75 else if (pa == BV_APPROX_SIGN_LOWER)
76 ok = value_le(c, tmp);
77 else if (pa == BV_APPROX_SIGN_UPPER)
78 ok = value_ge(c, tmp);
79 else
80 ok = value_eq(c, tmp);
82 check_poly_print(ok, nparam, z, tmp, one, c, one,
83 "EP", "count", "EP eval", options);
85 if (!ok) {
86 print_evalue(stderr, EP, options->params);
87 if (value_zero_p(EP->d) && EP->x.p->type == partition)
88 for (k = 0; k < EP->x.p->size/2; ++k) {
89 Polyhedron *D = EVALUE_DOMAIN(EP->x.p->arr[2*k]);
90 if (in_domain(D, z)) {
91 Print_Domain(stderr, D, options->params);
92 print_evalue(stderr, &EP->x.p->arr[2*k+1], options->params);
97 value_clear(c);
98 value_clear(tmp);
99 value_clear(one);
101 return ok;
104 int check_poly_EP(Polyhedron *S, Polyhedron *CS, evalue *EP, int exist,
105 int nparam, int pos, Value *z, const struct verify_options *options)
107 struct check_poly_EP_data data;
108 data.cp.z = z;
109 data.cp.check = cp_EP;
110 data.S = S;
111 data.EP = EP;
112 data.exist = exist;
113 return check_poly(CS, &data.cp, nparam, pos, z+S->Dimension-nparam+1, options);