4 #include <isl_set_polylib.h>
5 #include <barvinok/evalue.h>
6 #include <barvinok/util.h>
7 #include <barvinok/barvinok.h>
11 #include "verif_ehrhart.h"
12 #include "verify_series.h"
13 #include "remove_equalities.h"
14 #include "evalue_convert.h"
15 #include "conversion.h"
16 #include "skewed_genfun.h"
18 #undef CS /* for Solaris 10 */
23 /* The input of this example program is the same as that of testehrhart
24 * in the PolyLib distribution, i.e., a polytope in combined
25 * data and parameter space, a context polytope in parameter space
26 * and (optionally) the names of the parameters.
27 * Both polytopes are in PolyLib notation.
30 struct argp_option argp_options
[] = {
32 { "series", 's', 0, 0, "compute rational generating function" },
33 { "explicit", 'e', 0, 0, "convert rgf to psp" },
41 struct verify_options verify
;
42 struct convert_options convert
;
45 static error_t
parse_opt(int key
, char *arg
, struct argp_state
*state
)
47 struct arguments
*options
= (struct arguments
*) state
->input
;
51 state
->child_inputs
[0] = options
->verify
.barvinok
;
52 state
->child_inputs
[1] = &options
->verify
;
53 state
->child_inputs
[2] = &options
->convert
;
56 options
->function
= 0;
62 options
->function
= 1;
68 return ARGP_ERR_UNKNOWN
;
73 struct verify_point_enum
{
74 struct verify_point_data vpd
;
76 isl_pw_qpolynomial
*pwqp
;
79 static int verify_point(__isl_take isl_point
*pnt
, void *user
)
81 struct verify_point_enum
*vpe
= (struct verify_point_enum
*) user
;
86 isl_qpolynomial
*cnt
= NULL
;
87 int pa
= vpe
->vpd
.options
->barvinok
->polynomial_approximation
;
90 FILE *out
= vpe
->vpd
.options
->print_all
? stdout
: stderr
;
97 set
= isl_set_copy(vpe
->set
);
98 nparam
= isl_set_dim(set
, isl_dim_param
);
99 for (i
= 0; i
< nparam
; ++i
) {
100 isl_point_get_coordinate(pnt
, isl_dim_param
, i
, &v
);
101 set
= isl_set_fix(set
, isl_dim_param
, i
, v
);
104 if (isl_set_count(set
, &v
) < 0)
107 cnt
= isl_pw_qpolynomial_eval(isl_pw_qpolynomial_copy(vpe
->pwqp
),
108 isl_point_copy(pnt
));
110 cst
= isl_qpolynomial_is_cst(cnt
, &n
, &d
);
114 if (pa
== BV_APPROX_SIGN_LOWER
)
115 isl_int_cdiv_q(n
, n
, d
);
116 else if (pa
== BV_APPROX_SIGN_UPPER
)
117 isl_int_fdiv_q(n
, n
, d
);
119 isl_int_tdiv_q(n
, n
, d
);
121 if (pa
== BV_APPROX_SIGN_APPROX
)
122 /* just accept everything */
124 else if (pa
== BV_APPROX_SIGN_LOWER
)
125 ok
= isl_int_le(n
, v
);
126 else if (pa
== BV_APPROX_SIGN_UPPER
)
127 ok
= isl_int_ge(n
, v
);
129 ok
= isl_int_eq(n
, v
);
131 if (vpe
->vpd
.options
->print_all
|| !ok
) {
133 for (i
= 0; i
< nparam
; ++i
) {
136 isl_point_get_coordinate(pnt
, isl_dim_param
, i
, &d
);
137 isl_int_print(out
, d
, 0);
139 fprintf(out
, ") = ");
140 isl_int_print(out
, n
, 0);
141 fprintf(out
, ", count = ");
142 isl_int_print(out
, v
, 0);
144 fprintf(out
, ". OK\n");
146 fprintf(out
, ". NOT OK\n");
147 } else if ((vpe
->vpd
.n
% vpe
->vpd
.s
) == 0) {
157 isl_qpolynomial_free(cnt
);
166 if (vpe
->vpd
.options
->continue_on_error
)
169 return (vpe
->vpd
.n
>= 1 && ok
) ? 0 : -1;
172 static int verify_isl(Polyhedron
*P
, Polyhedron
*C
,
173 evalue
*EP
, const struct verify_options
*options
)
175 struct verify_point_enum vpe
= { { options
} };
177 isl_ctx
*ctx
= isl_ctx_alloc();
183 dim
= isl_dim_set_alloc(ctx
, C
->Dimension
, P
->Dimension
- C
->Dimension
);
184 for (i
= 0; i
< C
->Dimension
; ++i
)
185 dim
= isl_dim_set_name(dim
, isl_dim_param
, i
, options
->params
[i
]);
186 set
= isl_set_new_from_polylib(P
, isl_dim_copy(dim
));
187 dim
= isl_dim_drop(dim
, isl_dim_set
, 0, P
->Dimension
- C
->Dimension
);
188 set_C
= isl_set_new_from_polylib(C
, dim
);
189 set_C
= isl_set_intersect(isl_set_copy(set
), set_C
);
190 set_C
= isl_set_remove(set_C
, isl_dim_set
, 0, P
->Dimension
- C
->Dimension
);
192 set_C
= verify_context_set_bounds(set_C
, options
);
194 r
= verify_point_data_init(&vpe
.vpd
, set_C
);
197 vpe
.pwqp
= isl_pw_qpolynomial_from_evalue(isl_set_get_dim(set_C
), EP
);
199 isl_set_foreach_point(set_C
, verify_point
, &vpe
);
203 isl_pw_qpolynomial_free(vpe
.pwqp
);
209 verify_point_data_fini(&vpe
.vpd
);
214 static int verify(Polyhedron
*P
, Polyhedron
*C
, evalue
*EP
, skewed_gen_fun
*gf
,
221 if (!options
->series
|| options
->function
)
222 return verify_isl(P
, C
, EP
, &options
->verify
);
224 CS
= check_poly_context_scan(P
, &C
, C
->Dimension
, &options
->verify
);
226 p
= Vector_Alloc(P
->Dimension
+2);
227 value_set_si(p
->p
[P
->Dimension
+1], 1);
229 /* S = scanning list of polyhedra */
230 S
= Polyhedron_Scan(P
, C
, options
->verify
.barvinok
->MaxRays
);
232 check_poly_init(C
, &options
->verify
);
234 /******* CHECK NOW *********/
236 if (!options
->series
|| options
->function
) {
237 if (!check_poly_EP(S
, CS
, EP
, 0, C
->Dimension
, 0, p
->p
,
241 if (!check_poly_gf(S
, CS
, gf
, 0, C
->Dimension
, 0, p
->p
,
249 fprintf(stderr
,"Check failed !\n");
251 if (!options
->verify
.print_all
)
263 /* frees M and Minv */
264 static void apply_transformation(Polyhedron
**P
, Polyhedron
**C
,
265 bool free_P
, bool free_C
,
266 Matrix
*M
, Matrix
*Minv
, Matrix
**inv
,
267 barvinok_options
*options
)
272 M2
= align_matrix(M
, (*P
)->Dimension
+ 1);
274 *P
= Polyhedron_Preimage(*P
, M2
, options
->MaxRays
);
280 *C
= Polyhedron_Preimage(*C
, M
, options
->MaxRays
);
288 *inv
= Matrix_Alloc(Minv
->NbRows
, T
->NbColumns
);
289 Matrix_Product(Minv
, T
, *inv
);
296 /* Since we have "compressed" the parameters (in case there were
297 * any equalities), the result is independent of the coordinates in the
298 * coordinate subspace spanned by the lines. We can therefore assume
299 * these coordinates are zero and compute the inverse image of the map
300 * from a lower dimensional space that adds zeros in the appropriate
303 static void remove_lines(Polyhedron
*C
, Matrix
**M
, Matrix
**Minv
)
305 Matrix
*L
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
306 for (int r
= 0; r
< C
->NbBid
; ++r
)
307 Vector_Copy(C
->Ray
[r
]+1, L
->p
[r
], C
->Dimension
);
308 unimodular_complete(L
, C
->NbBid
);
309 assert(value_one_p(L
->p
[C
->Dimension
][C
->Dimension
]));
310 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
311 Matrix_Transposition(L
);
312 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
314 *M
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
-C
->NbBid
+1);
315 for (int i
= 0; i
< C
->Dimension
+1; ++i
)
316 Vector_Copy(L
->p
[i
]+C
->NbBid
, (*M
)->p
[i
], C
->Dimension
-C
->NbBid
+1);
318 Matrix
*Linv
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
319 int ok
= Matrix_Inverse(L
, Linv
);
323 *Minv
= Matrix_Alloc(C
->Dimension
-C
->NbBid
+1, C
->Dimension
+1);
324 for (int i
= C
->NbBid
; i
< C
->Dimension
+1; ++i
)
325 Vector_AntiScale(Linv
->p
[i
], (*Minv
)->p
[i
-C
->NbBid
],
326 Linv
->p
[C
->Dimension
][C
->Dimension
], C
->Dimension
+1);
330 static skewed_gen_fun
*series(Polyhedron
*P
, Polyhedron
* C
,
331 barvinok_options
*options
)
340 /* Compute true context */
341 C1
= Polyhedron_Project(P
, C
->Dimension
);
342 C2
= DomainIntersection(C
, C1
, options
->MaxRays
);
345 POL_ENSURE_VERTICES(C2
);
346 if (C2
->NbBid
!= 0) {
348 Matrix
*M
, *Minv
, *M2
;
350 if (C2
->NbEq
|| P
->NbEq
) {
351 /* We remove all equalities to be sure all lines are unit vectors */
353 remove_all_equalities(&PT
, &CT
, &CP
, NULL
, C2
->Dimension
,
360 inv
= left_inverse(CP
, &eq
);
366 div
= Matrix_Alloc(inv
->NbRows
-1, inv
->NbColumns
+1);
367 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
368 Vector_Gcd(inv
->p
[i
], inv
->NbColumns
, &tmp
);
369 if (mpz_divisible_p(tmp
,
370 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]))
372 Vector_Copy(inv
->p
[i
], div
->p
[d
], inv
->NbColumns
);
373 value_assign(div
->p
[d
][inv
->NbColumns
],
374 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
386 POL_ENSURE_VERTICES(C2
);
390 remove_lines(C2
, &M
, &Minv
);
391 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Minv
, &inv
,
395 POL_ENSURE_VERTICES(C2
);
396 if (!Polyhedron_has_revlex_positive_rays(C2
, C2
->Dimension
)) {
400 Constraints
= Matrix_Alloc(C2
->NbConstraints
, C2
->Dimension
+1);
401 for (int i
= 0; i
< C2
->NbConstraints
; ++i
)
402 Vector_Copy(C2
->Constraint
[i
]+1, Constraints
->p
[i
], C2
->Dimension
);
403 left_hermite(Constraints
, &H
, &Q
, &U
);
404 Matrix_Free(Constraints
);
406 for (int i
= 0; i
< C2
->Dimension
/2; ++i
)
407 Vector_Exchange(Q
->p
[i
], Q
->p
[C2
->Dimension
-1-i
], C2
->Dimension
);
410 Matrix
*M
= Matrix_Alloc(C2
->Dimension
+1, C2
->Dimension
+1);
412 int ok
= Matrix_Inverse(U
, M
);
416 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Q
, &inv
, options
);
418 gf
= barvinok_series_with_options(PT
, C2
, options
);
422 return new skewed_gen_fun(gf
, inv
, eq
, div
);
425 int main(int argc
, char **argv
)
430 skewed_gen_fun
*gf
= NULL
;
431 const char **param_name
;
432 int print_solution
= 1;
434 struct arguments options
;
435 static struct argp_child argp_children
[] = {
436 { &barvinok_argp
, 0, 0, 0 },
437 { &verify_argp
, 0, "verification", BV_GRP_LAST
+1 },
438 { &convert_argp
, 0, "output conversion", BV_GRP_LAST
+2 },
441 static struct argp argp
= { argp_options
, parse_opt
, 0, 0, argp_children
};
442 struct barvinok_options
*bv_options
= barvinok_options_new_with_defaults();
444 options
.verify
.barvinok
= bv_options
;
445 set_program_name(argv
[0]);
446 argp_parse(&argp
, argc
, argv
, 0, 0, &options
);
450 A
= Constraints2Polyhedron(M
, bv_options
->MaxRays
);
454 C
= Constraints2Polyhedron(M
, bv_options
->MaxRays
);
456 assert(A
->Dimension
>= C
->Dimension
);
457 param_name
= Read_ParamNames(stdin
, C
->Dimension
);
459 if (options
.verify
.verify
) {
460 verify_options_set_range(&options
.verify
, A
->Dimension
);
461 if (!bv_options
->verbose
)
465 if (print_solution
&& bv_options
->verbose
) {
466 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
467 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
470 if (options
.series
) {
471 gf
= series(A
, C
, bv_options
);
472 if (print_solution
) {
473 gf
->print(cout
, C
->Dimension
, param_name
);
476 if (options
.function
) {
479 print_evalue(stdout
, EP
, param_name
);
482 EP
= barvinok_enumerate_with_options(A
, C
, bv_options
);
484 if (evalue_convert(EP
, &options
.convert
, bv_options
->verbose
,
485 C
->Dimension
, param_name
))
488 printf("\nSize: %d\n", evalue_size(EP
));
490 print_evalue(stdout
, EP
, param_name
);
493 if (options
.verify
.verify
) {
494 options
.verify
.params
= param_name
;
495 result
= verify(A
, C
, EP
, gf
, &options
);
503 if (options
.verify
.barvinok
->print_stats
)
504 barvinok_stats_print(options
.verify
.barvinok
->stats
, stdout
);
506 Free_ParamNames(param_name
, C
->Dimension
);
509 barvinok_options_free(bv_options
);