update isl for help message printing
[barvinok/uuh.git] / bernstein.cc
blob6f2cbfa20604cd98482dd9019bc55936d4b2ef90
1 #include <assert.h>
2 #include <vector>
3 #include <bernstein/bernstein.h>
4 #include <bernstein/piecewise_lst.h>
5 #include <isl_set_polylib.h>
6 #include <barvinok/barvinok.h>
7 #include <barvinok/util.h>
8 #include <barvinok/bernstein.h>
9 #include <barvinok/options.h>
10 #include "bound_common.h"
11 #include "reduce_domain.h"
13 using namespace GiNaC;
14 using namespace bernstein;
15 using namespace barvinok;
17 using std::pair;
18 using std::vector;
19 using std::cerr;
20 using std::endl;
22 namespace barvinok {
24 ex evalue2ex(evalue *e, const exvector& vars)
26 if (value_pos_p(e->d))
27 return value2numeric(e->x.n)/value2numeric(e->d);
28 if (EVALUE_IS_NAN(*e))
29 return fail();
30 if (e->x.p->type != polynomial)
31 return fail();
32 ex poly = 0;
33 for (int i = e->x.p->size-1; i >= 0; --i) {
34 poly *= vars[e->x.p->pos-1];
35 ex t = evalue2ex(&e->x.p->arr[i], vars);
36 if (is_exactly_a<fail>(t))
37 return t;
38 poly += t;
40 return poly;
43 static int type_offset(enode *p)
45 return p->type == fractional ? 1 :
46 p->type == flooring ? 1 : 0;
49 typedef pair<bool, const evalue *> typed_evalue;
51 static ex evalue2ex_add_var(evalue *e, exvector& extravar,
52 vector<typed_evalue>& expr, bool is_fract)
54 ex base_var = 0;
56 for (int i = 0; i < expr.size(); ++i) {
57 if (is_fract == expr[i].first && eequal(e, expr[i].second)) {
58 base_var = extravar[i];
59 break;
62 if (base_var != 0)
63 return base_var;
65 char name[20];
66 snprintf(name, sizeof(name), "f%c%zd", is_fract ? 'r' : 'l', expr.size());
67 extravar.push_back(base_var = symbol(name));
68 expr.push_back(typed_evalue(is_fract, e));
70 return base_var;
73 /* For the argument e=(f/d) of a fractional, return (d-1)/d times
74 * a variable in [0,1] (see setup_constraints).
76 static ex evalue2ex_get_fract(evalue *e, exvector& extravar,
77 vector<typed_evalue>& expr)
79 ex f;
80 Value d;
81 ex den;
82 value_init(d);
83 value_set_si(d, 1);
84 evalue_denom(e, &d);
85 den = value2numeric(d);
86 value_clear(d);
87 f = (den-1)/den;
89 ex base_var = evalue2ex_add_var(e, extravar, expr, true);
90 base_var *= f;
91 return base_var;
94 static ex evalue2ex_r(const evalue *e, const exvector& vars,
95 exvector& extravar, vector<typed_evalue>& expr,
96 Vector *coset)
98 if (value_notzero_p(e->d))
99 return value2numeric(e->x.n)/value2numeric(e->d);
100 ex base_var = 0;
101 ex poly = 0;
102 int rem;
104 switch (e->x.p->type) {
105 case polynomial:
106 base_var = vars[e->x.p->pos-1];
107 break;
108 case flooring:
109 base_var = evalue2ex_add_var(&e->x.p->arr[0], extravar, expr, false);
110 break;
111 case fractional:
112 base_var = evalue2ex_get_fract(&e->x.p->arr[0], extravar, expr);
113 break;
114 case periodic:
115 assert(coset);
116 rem = VALUE_TO_INT(coset->p[e->x.p->pos-1]) % e->x.p->size;
117 return evalue2ex_r(&e->x.p->arr[rem], vars, extravar, expr, coset);
118 default:
119 return fail();
122 int offset = type_offset(e->x.p);
123 for (int i = e->x.p->size-1; i >= offset; --i) {
124 poly *= base_var;
125 ex t = evalue2ex_r(&e->x.p->arr[i], vars, extravar, expr, coset);
126 if (is_exactly_a<fail>(t))
127 return t;
128 poly += t;
130 return poly;
133 /* For each t = floor(e/d), set up two constraints
135 * e - d t >= 0
136 * -e + d t + d-1 >= 0
138 * e is assumed to be an affine expression.
140 * For each t = fract(e/d), set up two constraints
142 * -d t + d-1 >= 0
143 * t >= 0
145 static Matrix *setup_constraints(const vector<typed_evalue> expr, int nvar)
147 int extra = expr.size();
148 if (!extra)
149 return NULL;
150 Matrix *M = Matrix_Alloc(2*extra, 1+extra+nvar+1);
151 for (int i = 0; i < extra; ++i) {
152 if (expr[i].first) {
153 value_set_si(M->p[2*i][0], 1);
154 value_set_si(M->p[2*i][1+i], -1);
155 value_set_si(M->p[2*i][1+extra+nvar], 1);
156 value_set_si(M->p[2*i+1][0], 1);
157 value_set_si(M->p[2*i+1][1+i], 1);
158 } else {
159 Value *d = &M->p[2*i][1+i];
160 evalue_extract_affine(expr[i].second, M->p[2*i]+1+extra,
161 M->p[2*i]+1+extra+nvar, d);
162 value_oppose(*d, *d);
163 value_set_si(M->p[2*i][0], -1);
164 Vector_Scale(M->p[2*i], M->p[2*i+1], M->p[2*i][0], 1+extra+nvar+1);
165 value_set_si(M->p[2*i][0], 1);
166 value_subtract(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar], *d);
167 value_decrement(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar]);
170 return M;
173 static bool evalue_is_periodic(const evalue *e, Vector *periods)
175 int i, offset;
176 bool is_periodic = false;
178 if (value_notzero_p(e->d))
179 return false;
181 assert(e->x.p->type != partition);
182 if (e->x.p->type == periodic) {
183 Value size;
184 value_init(size);
185 value_set_si(size, e->x.p->size);
186 value_lcm(periods->p[e->x.p->pos-1], periods->p[e->x.p->pos-1], size);
187 value_clear(size);
188 is_periodic = true;
190 offset = type_offset(e->x.p);
191 for (i = e->x.p->size-1; i >= offset; --i)
192 is_periodic = evalue_is_periodic(&e->x.p->arr[i], periods) || is_periodic;
193 return is_periodic;
196 static ex evalue2lst(const evalue *e, const exvector& vars,
197 exvector& extravar, vector<typed_evalue>& expr,
198 Vector *periods)
200 Vector *coset = Vector_Alloc(periods->Size);
201 lst list;
202 for (;;) {
203 int i;
204 list.append(evalue2ex_r(e, vars, extravar, expr, coset));
205 for (i = coset->Size-1; i >= 0; --i) {
206 value_increment(coset->p[i], coset->p[i]);
207 if (value_lt(coset->p[i], periods->p[i]))
208 break;
209 value_set_si(coset->p[i], 0);
211 if (i < 0)
212 break;
214 Vector_Free(coset);
215 return list;
218 ex evalue2ex(const evalue *e, const exvector& vars, exvector& floorvar,
219 Matrix **C, Vector **p)
221 vector<typed_evalue> expr;
222 Vector *periods = Vector_Alloc(vars.size());
223 assert(p);
224 assert(C);
225 for (int i = 0; i < periods->Size; ++i)
226 value_set_si(periods->p[i], 1);
227 if (evalue_is_periodic(e, periods)) {
228 *p = periods;
229 *C = NULL;
230 lst list;
231 return list;
232 } else {
233 Vector_Free(periods);
234 *p = NULL;
235 ex poly = evalue2ex_r(e, vars, floorvar, expr, NULL);
236 Matrix *M = setup_constraints(expr, vars.size());
237 *C = M;
238 return poly;
242 /* if the evalue is a relation, we use the relation to cut off the
243 * the edges of the domain
245 static Polyhedron *relation_domain(Polyhedron *D, evalue *fr, unsigned MaxRays)
247 assert(value_zero_p(fr->d));
248 assert(fr->x.p->type == fractional);
249 assert(fr->x.p->size == 3);
250 Matrix *T = Matrix_Alloc(2, D->Dimension+1);
251 value_set_si(T->p[1][D->Dimension], 1);
253 /* convert argument of fractional to polylib */
254 /* the argument is assumed to be linear */
255 evalue *p = &fr->x.p->arr[0];
256 evalue_denom(p, &T->p[1][D->Dimension]);
257 for (;value_zero_p(p->d); p = &p->x.p->arr[0]) {
258 assert(p->x.p->type == polynomial);
259 assert(p->x.p->size == 2);
260 assert(value_notzero_p(p->x.p->arr[1].d));
261 int pos = p->x.p->pos - 1;
262 value_assign(T->p[0][pos], p->x.p->arr[1].x.n);
263 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][D->Dimension]);
264 value_division(T->p[0][pos], T->p[0][pos], p->x.p->arr[1].d);
266 int pos = D->Dimension;
267 value_assign(T->p[0][pos], p->x.n);
268 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][D->Dimension]);
269 value_division(T->p[0][pos], T->p[0][pos], p->d);
271 Polyhedron *E = NULL;
272 for (Polyhedron *P = D; P; P = P->next) {
273 Polyhedron *I = Polyhedron_Image(P, T, MaxRays);
274 I = DomainConstraintSimplify(I, MaxRays);
275 Polyhedron *R = Polyhedron_Preimage(I, T, MaxRays);
276 Polyhedron_Free(I);
277 Polyhedron *next = P->next;
278 P->next = NULL;
279 Polyhedron *S = DomainIntersection(P, R, MaxRays);
280 Polyhedron_Free(R);
281 P->next = next;
282 if (emptyQ2(S))
283 Polyhedron_Free(S);
284 else
285 E = DomainConcat(S, E);
287 Matrix_Free(T);
289 return E;
292 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
293 Polyhedron *ctx, const exvector& params)
295 piecewise_lst *pl;
296 barvinok_options *options = barvinok_options_new_with_defaults();
297 pl = evalue_bernstein_coefficients(pl_all, e, ctx, params, options);
298 barvinok_options_free(options);
299 return pl;
302 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
303 Polyhedron *D, const ex& poly,
304 Polyhedron *ctx,
305 const exvector& params, const exvector& floorvar,
306 barvinok_options *options);
308 /* Recursively apply Bernstein expansion on P, optimizing over dims[i]
309 * variables in each level. The context ctx is assumed to have been adapted
310 * to the first level in the recursion.
312 static piecewise_lst *bernstein_coefficients_recursive(piecewise_lst *pl_all,
313 Polyhedron *P, const vector<int>& dims, const ex& poly,
314 Polyhedron *ctx,
315 const exvector& params, const exvector& vars,
316 barvinok_options *options)
318 assert(dims.size() > 0);
319 assert(ctx->Dimension == P->Dimension - dims[0]);
320 piecewise_lst *pl;
321 unsigned done = 0;
322 for (int j = 0; j < dims.size(); ++j) {
323 exvector pl_vars;
324 pl_vars.insert(pl_vars.end(), vars.begin()+done, vars.begin()+done+dims[j]);
325 exvector pl_params;
326 pl_params.insert(pl_params.end(), vars.begin()+done+dims[j], vars.end());
327 pl_params.insert(pl_params.end(), params.begin(), params.end());
329 if (!j)
330 pl = bernstein_coefficients(NULL, P, poly, ctx,
331 pl_params, pl_vars, options);
332 else {
333 piecewise_lst *new_pl = NULL;
334 Polyhedron *U = Universe_Polyhedron(pl_params.size());
336 for (int i = 0; i < pl->list.size(); ++i) {
337 Polyhedron *D = pl->list[i].first;
338 lst polys = pl->list[i].second;
339 new_pl = bernstein_coefficients(new_pl, D, polys, U, pl_params,
340 pl_vars, options);
343 Polyhedron_Free(U);
345 delete pl;
346 pl = new_pl;
349 done += dims[j];
351 if (!pl)
352 return pl_all;
355 if (!pl_all)
356 pl_all = pl;
357 else {
358 pl_all->combine(*pl);
359 delete pl;
362 return pl_all;
365 static piecewise_lst *bernstein_coefficients_full_recurse(piecewise_lst *pl_all,
366 Polyhedron *P, const ex& poly,
367 Polyhedron *ctx,
368 const exvector& params, const exvector& vars,
369 barvinok_options *options)
371 Polyhedron *CR = align_context(ctx, P->Dimension-1, options->MaxRays);
372 vector<int> dims(vars.size());
373 for (int i = 0; i < dims.size(); ++i)
374 dims[i] = 1;
375 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, poly, CR,
376 params, vars, options);
377 Polyhedron_Free(CR);
379 return pl_all;
382 static piecewise_lst *bernstein_coefficients_product(piecewise_lst *pl_all,
383 Polyhedron *F, Matrix *T, const ex& poly,
384 Polyhedron *ctx,
385 const exvector& params, const exvector& vars,
386 barvinok_options *options)
388 if (emptyQ2(ctx))
389 return pl_all;
390 for (Polyhedron *G = F; G; G = G->next)
391 if (emptyQ2(G))
392 return pl_all;
394 unsigned nparam = params.size();
395 unsigned nvar = vars.size();
396 unsigned constraints;
397 unsigned factors;
398 Polyhedron *C = NULL;
400 /* More context constraints */
401 if (F->Dimension == ctx->Dimension) {
402 C = F;
403 F = F->next;
405 assert(F);
406 assert(F->next);
408 Matrix *M;
409 Polyhedron *P;
410 Polyhedron *PC;
411 M = Matrix_Alloc(F->NbConstraints, 1+nvar+nparam+1);
412 for (int i = 0; i < F->NbConstraints; ++i) {
413 Vector_Copy(F->Constraint[i], M->p[i], 1+F->Dimension-nparam);
414 Vector_Copy(F->Constraint[i]+1+F->Dimension-nparam,
415 M->p[i]+1+nvar, nparam+1);
417 P = Constraints2Polyhedron(M, options->MaxRays);
418 Matrix_Free(M);
420 factors = 1;
421 constraints = C ? C->NbConstraints : 0;
422 constraints += ctx->NbConstraints;
423 for (Polyhedron *G = F->next; G; G = G->next) {
424 constraints += G->NbConstraints;
425 ++factors;
428 unsigned total_var = nvar-(F->Dimension-nparam);
429 unsigned skip = 0;
430 unsigned c = 0;
431 M = Matrix_Alloc(constraints, 1+total_var+nparam+1);
432 for (Polyhedron *G = F->next; G; G = G->next) {
433 unsigned this_var = G->Dimension - nparam;
434 for (int i = 0; i < G->NbConstraints; ++i) {
435 value_assign(M->p[c+i][0], G->Constraint[i][0]);
436 Vector_Copy(G->Constraint[i]+1, M->p[c+i]+1+skip, this_var);
437 Vector_Copy(G->Constraint[i]+1+this_var, M->p[c+i]+1+total_var,
438 nparam+1);
440 c += G->NbConstraints;
441 skip += this_var;
443 assert(skip == total_var);
444 if (C) {
445 for (int i = 0; i < C->NbConstraints; ++i) {
446 value_assign(M->p[c+i][0], C->Constraint[i][0]);
447 Vector_Copy(C->Constraint[i]+1, M->p[c+i]+1+total_var,
448 nparam+1);
450 c += C->NbConstraints;
452 for (int i = 0; i < ctx->NbConstraints; ++i) {
453 value_assign(M->p[c+i][0], ctx->Constraint[i][0]);
454 Vector_Copy(ctx->Constraint[i]+1, M->p[c+i]+1+total_var, nparam+1);
456 PC = Constraints2Polyhedron(M, options->MaxRays);
457 Matrix_Free(M);
459 exvector newvars = constructVariableVector(nvar, "t");
460 matrix subs(1, nvar);
461 for (int i = 0; i < nvar; ++i)
462 for (int j = 0; j < nvar; ++j)
463 subs(0,i) += value2numeric(T->p[i][j]) * newvars[j];
465 ex newpoly = replaceVariablesInPolynomial(poly, vars, subs);
467 vector<int> dims(factors);
468 for (int i = 0; F; ++i, F = F->next)
469 dims[i] = F->Dimension-nparam;
471 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, newpoly, PC,
472 params, newvars, options);
474 Polyhedron_Free(P);
475 Polyhedron_Free(PC);
477 return pl_all;
480 static piecewise_lst *bernstein_coefficients_polyhedron(piecewise_lst *pl_all,
481 Polyhedron *P, const ex& poly,
482 Polyhedron *ctx,
483 const exvector& params, const exvector& floorvar,
484 barvinok_options *options)
486 if (Polyhedron_is_unbounded(P, ctx->Dimension, options->MaxRays)) {
487 fprintf(stderr, "warning: unbounded domain skipped\n");
488 Polyhedron_Print(stderr, P_VALUE_FMT, P);
489 return pl_all;
492 if (options->bernstein_recurse & BV_BERNSTEIN_FACTORS) {
493 Matrix *T = NULL;
494 Polyhedron *F = Polyhedron_Factor(P, ctx->Dimension, &T, options->MaxRays);
495 if (F) {
496 pl_all = bernstein_coefficients_product(pl_all, F, T, poly, ctx, params,
497 floorvar, options);
498 Domain_Free(F);
499 Matrix_Free(T);
500 return pl_all;
503 if (floorvar.size() > 1 &&
504 options->bernstein_recurse & BV_BERNSTEIN_INTERVALS)
505 return bernstein_coefficients_full_recurse(pl_all, P, poly, ctx,
506 params, floorvar, options);
508 unsigned PP_MaxRays = options->MaxRays;
509 if (PP_MaxRays & POL_NO_DUAL)
510 PP_MaxRays = 0;
512 Param_Polyhedron *PP = Polyhedron2Param_Domain(P, ctx, PP_MaxRays);
513 if (!PP)
514 return pl_all;
515 piecewise_lst *pl = new piecewise_lst(params, options->bernstein_optimize);
517 int nd = -1;
518 Polyhedron *TC = true_context(P, ctx, options->MaxRays);
519 FORALL_REDUCED_DOMAIN(PP, TC, nd, options, i, PD, rVD)
520 matrix VM = domainVertices(PP, PD, params);
521 lst coeffs = bernsteinExpansion(VM, poly, floorvar, params);
522 pl->add_guarded_lst(rVD, coeffs);
523 END_FORALL_REDUCED_DOMAIN
524 Polyhedron_Free(TC);
526 Param_Polyhedron_Free(PP);
527 if (!pl_all)
528 pl_all = pl;
529 else {
530 pl_all->combine(*pl);
531 delete pl;
534 return pl_all;
537 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
538 Polyhedron *D, const ex& poly,
539 Polyhedron *ctx,
540 const exvector& params, const exvector& floorvar,
541 barvinok_options *options)
543 if (!D->next && emptyQ2(D))
544 return pl_all;
546 for (Polyhedron *P = D; P; P = P->next) {
547 /* This shouldn't happen */
548 if (emptyQ2(P))
549 continue;
550 Polyhedron *next = P->next;
551 P->next = NULL;
552 pl_all = bernstein_coefficients_polyhedron(pl_all, P, poly, ctx,
553 params, floorvar, options);
554 P->next = next;
556 return pl_all;
559 /* Compute the coefficients of the polynomial corresponding to each coset
560 * on its own domain. This allows us to cut the domain on multiples of
561 * the period.
562 * To perform the cutting for a coset "i mod n = c" we map the domain
563 * to the quotient space trough "i = i' n + c", simplify the constraints
564 * (implicitly) and then map back to the original space.
566 static piecewise_lst *bernstein_coefficients_periodic(piecewise_lst *pl_all,
567 Polyhedron *D, const evalue *e,
568 Polyhedron *ctx, const exvector& vars,
569 const exvector& params, Vector *periods,
570 barvinok_options *options)
572 assert(D->Dimension == periods->Size);
573 Matrix *T = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
574 Matrix *T2 = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
575 Vector *coset = Vector_Alloc(periods->Size);
576 exvector extravar;
577 vector<typed_evalue> expr;
578 exvector allvars = vars;
579 allvars.insert(allvars.end(), params.begin(), params.end());
581 value_set_si(T2->p[D->Dimension][D->Dimension], 1);
582 for (int i = 0; i < D->Dimension; ++i) {
583 value_assign(T->p[i][i], periods->p[i]);
584 value_lcm(T2->p[D->Dimension][D->Dimension],
585 T2->p[D->Dimension][D->Dimension], periods->p[i]);
587 value_set_si(T->p[D->Dimension][D->Dimension], 1);
588 for (int i = 0; i < D->Dimension; ++i)
589 value_division(T2->p[i][i], T2->p[D->Dimension][D->Dimension],
590 periods->p[i]);
591 for (;;) {
592 int i;
593 ex poly = evalue2ex_r(e, allvars, extravar, expr, coset);
594 assert(extravar.size() == 0);
595 assert(expr.size() == 0);
596 Polyhedron *E = DomainPreimage(D, T, options->MaxRays);
597 Polyhedron *F = DomainPreimage(E, T2, options->MaxRays);
598 Polyhedron_Free(E);
599 if (!emptyQ(F))
600 pl_all = bernstein_coefficients(pl_all, F, poly, ctx, params,
601 vars, options);
602 Polyhedron_Free(F);
603 for (i = D->Dimension-1; i >= 0; --i) {
604 value_increment(coset->p[i], coset->p[i]);
605 value_increment(T->p[i][D->Dimension], T->p[i][D->Dimension]);
606 value_subtract(T2->p[i][D->Dimension], T2->p[i][D->Dimension],
607 T2->p[i][i]);
608 if (value_lt(coset->p[i], periods->p[i]))
609 break;
610 value_set_si(coset->p[i], 0);
611 value_set_si(T->p[i][D->Dimension], 0);
612 value_set_si(T2->p[i][D->Dimension], 0);
614 if (i < 0)
615 break;
617 Vector_Free(coset);
618 Matrix_Free(T);
619 Matrix_Free(T2);
620 return pl_all;
623 piecewise_lst *bernstein_coefficients_relation(piecewise_lst *pl_all,
624 Polyhedron *D, evalue *EP, Polyhedron *ctx,
625 const exvector& allvars, const exvector& vars,
626 const exvector& params, barvinok_options *options)
628 if (value_zero_p(EP->d) && EP->x.p->type == relation) {
629 Polyhedron *E = relation_domain(D, &EP->x.p->arr[0], options->MaxRays);
630 if (E) {
631 pl_all = bernstein_coefficients_relation(pl_all, E, &EP->x.p->arr[1],
632 ctx, allvars, vars, params,
633 options);
634 Domain_Free(E);
636 /* In principle, we could cut off the edges of this domain too */
637 if (EP->x.p->size > 2)
638 pl_all = bernstein_coefficients_relation(pl_all, D, &EP->x.p->arr[2],
639 ctx, allvars, vars, params,
640 options);
641 return pl_all;
644 Matrix *M;
645 exvector floorvar;
646 Vector *periods;
647 ex poly = evalue2ex(EP, allvars, floorvar, &M, &periods);
648 floorvar.insert(floorvar.end(), vars.begin(), vars.end());
649 Polyhedron *E = D;
650 if (M) {
651 Polyhedron *AE = align_context(D, M->NbColumns-2, options->MaxRays);
652 E = DomainAddConstraints(AE, M, options->MaxRays);
653 Matrix_Free(M);
654 Domain_Free(AE);
656 if (is_exactly_a<fail>(poly)) {
657 delete pl_all;
658 return NULL;
660 if (periods)
661 pl_all = bernstein_coefficients_periodic(pl_all, E, EP, ctx, vars,
662 params, periods, options);
663 else
664 pl_all = bernstein_coefficients(pl_all, E, poly, ctx, params,
665 floorvar, options);
666 if (periods)
667 Vector_Free(periods);
668 if (D != E)
669 Domain_Free(E);
671 return pl_all;
674 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
675 Polyhedron *ctx, const exvector& params,
676 barvinok_options *options)
678 unsigned nparam = ctx->Dimension;
679 if (EVALUE_IS_ZERO(*e))
680 return pl_all;
681 assert(value_zero_p(e->d));
682 assert(e->x.p->type == partition);
683 assert(e->x.p->size >= 2);
684 unsigned nvars = EVALUE_DOMAIN(e->x.p->arr[0])->Dimension - nparam;
686 exvector vars = constructVariableVector(nvars, "v");
687 exvector allvars = vars;
688 allvars.insert(allvars.end(), params.begin(), params.end());
690 for (int i = 0; i < e->x.p->size/2; ++i) {
691 pl_all = bernstein_coefficients_relation(pl_all,
692 EVALUE_DOMAIN(e->x.p->arr[2*i]), &e->x.p->arr[2*i+1],
693 ctx, allvars, vars, params, options);
695 return pl_all;
698 static __isl_give isl_qpolynomial *qp_from_ex(__isl_take isl_dim *dim,
699 const GiNaC::ex ex, const GiNaC::exvector &params, int i)
701 isl_qpolynomial *qp;
702 isl_qpolynomial *base;
703 int deg;
704 int j;
706 if (is_a<fail>(ex))
707 return isl_qpolynomial_nan(dim);
709 if (is_a<numeric>(ex)) {
710 numeric r = ex_to<numeric>(ex);
711 isl_int n;
712 isl_int d;
713 isl_int_init(n);
714 isl_int_init(d);
715 numeric2value(r.numer(), n);
716 numeric2value(r.denom(), d);
717 qp = isl_qpolynomial_rat_cst(dim, n, d);
718 isl_int_clear(n);
719 isl_int_clear(d);
720 return qp;
723 deg = ex.degree(params[i]);
724 if (deg == 0)
725 return qp_from_ex(dim, ex, params, i + 1);
727 base = isl_qpolynomial_var(isl_dim_copy(dim), isl_dim_param, i);
728 qp = qp_from_ex(isl_dim_copy(dim), ex.coeff(params[i], deg),
729 params, i + 1);
731 for (j = deg - 1; j >= 0; --j) {
732 qp = isl_qpolynomial_mul(qp, isl_qpolynomial_copy(base));
733 qp = isl_qpolynomial_add(qp,
734 qp_from_ex(isl_dim_copy(dim), ex.coeff(params[i], j),
735 params, i + 1));
738 isl_qpolynomial_free(base);
739 isl_dim_free(dim);
741 return qp;
744 __isl_give isl_qpolynomial *isl_qpolynomial_from_ginac(__isl_take isl_dim *dim,
745 const GiNaC::ex &ex, const GiNaC::exvector &params)
747 GiNaC::ex exp;
749 if (!dim)
750 return NULL;
752 exp = ex.expand();
753 return qp_from_ex(dim, exp, params, 0);
754 error:
755 isl_dim_free(dim);
756 return NULL;
759 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_from_ginac(
760 __isl_take isl_dim *dim, enum isl_fold type, const GiNaC::lst &lst,
761 const GiNaC::exvector &params)
763 isl_qpolynomial_fold *fold;
764 lst::const_iterator j;
766 fold = isl_qpolynomial_fold_empty(type, isl_dim_copy(dim));
767 for (j = lst.begin(); j != lst.end(); ++j) {
768 isl_qpolynomial *qp;
769 isl_qpolynomial_fold *fold_i;
771 qp = isl_qpolynomial_from_ginac(isl_dim_copy(dim), *j, params);
772 fold_i = isl_qpolynomial_fold_alloc(type, qp);
773 fold = isl_qpolynomial_fold_fold(fold, fold_i);
775 isl_dim_free(dim);
776 return fold;
779 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_ginac(
780 __isl_take isl_dim *dim, bernstein::piecewise_lst *pl,
781 const GiNaC::exvector &params)
783 enum isl_fold type;
784 isl_pw_qpolynomial_fold *pwf;
786 pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim));
788 type = pl->sign > 0 ? isl_fold_max
789 : pl->sign < 0 ? isl_fold_min : isl_fold_list;
791 for (int i = 0; i < pl->list.size(); ++i) {
792 isl_pw_qpolynomial_fold *pwf_i;
793 isl_qpolynomial_fold *fold;
794 isl_set *set;
796 set = isl_set_new_from_polylib(pl->list[i].first,
797 isl_dim_copy(dim));
798 fold = isl_qpolynomial_fold_from_ginac(isl_dim_copy(dim),
799 type, pl->list[i].second, params);
800 pwf_i = isl_pw_qpolynomial_fold_alloc(set, fold);
801 pwf = isl_pw_qpolynomial_fold_add_disjoint(pwf, pwf_i);
804 isl_dim_free(dim);
806 return pwf;
811 struct isl_bound {
812 piecewise_lst *pl;
813 Polyhedron *U;
814 exvector vars;
815 exvector params;
816 exvector allvars;
819 static int guarded_qp_bernstein_coefficients(__isl_take isl_set *set,
820 __isl_take isl_qpolynomial *qp, void *user)
822 struct isl_bound *bound = (struct isl_bound *)user;
823 unsigned nvar;
824 Polyhedron *D;
825 struct barvinok_options *options;
826 evalue *e;
828 options = barvinok_options_new_with_defaults();
830 if (!set || !qp)
831 goto error;
833 nvar = isl_set_dim(set, isl_dim_set);
835 e = isl_qpolynomial_to_evalue(qp);
836 if (!e)
837 goto error;
839 set = isl_set_make_disjoint(set);
840 D = isl_set_to_polylib(set);
842 bound->vars = constructVariableVector(nvar, "v");
843 bound->allvars = bound->vars;
844 bound->allvars.insert(bound->allvars.end(),
845 bound->params.begin(), bound->params.end());
847 bound->pl = bernstein_coefficients_relation(bound->pl, D, e, bound->U,
848 bound->allvars, bound->vars, bound->params, options);
850 Domain_Free(D);
851 evalue_free(e);
852 isl_set_free(set);
853 isl_qpolynomial_free(qp);
854 barvinok_options_free(options);
856 return 0;
857 error:
858 isl_set_free(set);
859 isl_qpolynomial_free(qp);
860 barvinok_options_free(options);
861 return -1;
864 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound_bernstein(
865 __isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type)
867 isl_dim *dim = NULL;
868 unsigned nvar;
869 unsigned nparam;
870 struct isl_bound bound;
871 struct isl_pw_qpolynomial_fold *pwf;
873 if (!pwqp)
874 return NULL;
876 dim = isl_pw_qpolynomial_get_dim(pwqp);
877 nvar = isl_dim_size(dim, isl_dim_set);
879 if (isl_pw_qpolynomial_is_zero(pwqp)) {
880 isl_pw_qpolynomial_free(pwqp);
881 dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
882 return isl_pw_qpolynomial_fold_zero(dim);
884 if (nvar == 0) {
885 isl_dim_free(dim);
886 return isl_pw_qpolynomial_fold_from_pw_qpolynomial(type, pwqp);
889 nparam = isl_dim_size(dim, isl_dim_param);
890 bound.pl = NULL;
891 bound.U = Universe_Polyhedron(nparam);
892 bound.params = constructVariableVector(nparam, "p");
894 if (isl_pw_qpolynomial_foreach_lifted_piece(pwqp,
895 guarded_qp_bernstein_coefficients, &bound))
896 goto error;
898 if (type == isl_fold_max)
899 bound.pl->maximize();
900 else
901 bound.pl->minimize();
903 dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
905 if (type == isl_fold_max)
906 bound.pl->sign = 1;
907 else
908 bound.pl->sign = -1;
909 pwf = isl_pw_qpolynomial_fold_from_ginac(dim, bound.pl, bound.params);
911 Polyhedron_Free(bound.U);
912 delete bound.pl;
914 isl_pw_qpolynomial_free(pwqp);
916 return pwf;
917 error:
918 isl_pw_qpolynomial_free(pwqp);
919 isl_dim_free(dim);
920 return NULL;