6 #define partition STL_PARTITION
10 #include <NTL/vec_ZZ.h>
11 #include <NTL/mat_ZZ.h>
12 #include <barvinok/barvinok.h>
13 #include <barvinok/evalue.h>
14 #include <barvinok/options.h>
15 #include <barvinok/util.h>
18 #include "conversion.h"
19 #include "decomposer.h"
20 #include "lattice_point.h"
21 #include "reduce_domain.h"
25 #include "evalue_util.h"
26 #include "remove_equalities.h"
30 #include "param_util.h"
32 #undef CS /* for Solaris 10 */
45 #define ALLOC(type) (type*)malloc(sizeof(type))
47 #define EMPTINESS_CHECK (BV_OPT_LAST+1)
48 #define NO_REDUCTION (BV_OPT_LAST+2)
50 struct argp_option argp_options
[] = {
51 { "emptiness-check", EMPTINESS_CHECK
, "[none|count]", 0 },
52 { "no-reduction", NO_REDUCTION
, 0, 0 },
56 static error_t
parse_opt(int key
, char *arg
, struct argp_state
*state
)
58 struct lexmin_options
*options
= (struct lexmin_options
*)(state
->input
);
59 struct barvinok_options
*bv_options
= options
->verify
.barvinok
;
63 state
->child_inputs
[0] = options
->verify
.barvinok
;
64 state
->child_inputs
[1] = &options
->verify
;
65 options
->emptiness_check
= BV_LEXMIN_EMPTINESS_CHECK_SAMPLE
;
69 if (!strcmp(arg
, "none"))
70 options
->emptiness_check
= BV_LEXMIN_EMPTINESS_CHECK_NONE
;
71 else if (!strcmp(arg
, "count")) {
72 options
->emptiness_check
= BV_LEXMIN_EMPTINESS_CHECK_COUNT
;
73 bv_options
->count_sample_infinite
= 0;
80 return ARGP_ERR_UNKNOWN
;
85 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
87 static int type_offset(enode
*p
)
89 return p
->type
== fractional
? 1 :
90 p
->type
== flooring
? 1 : 0;
93 void compute_evalue(evalue
*e
, Value
*val
, Value
*res
)
95 double d
= compute_evalue(e
, val
);
100 value_set_double(*res
, d
);
103 struct indicator_term
{
105 int pos
; /* number of rational vertex */
106 int n
; /* number of cone associated to given rational vertex */
110 indicator_term(unsigned dim
, int pos
) {
112 vertex
= new evalue
* [dim
];
117 indicator_term(unsigned dim
, int pos
, int n
) {
118 den
.SetDims(dim
, dim
);
119 vertex
= new evalue
* [dim
];
123 indicator_term(const indicator_term
& src
) {
128 unsigned dim
= den
.NumCols();
129 vertex
= new evalue
* [dim
];
130 for (int i
= 0; i
< dim
; ++i
) {
131 vertex
[i
] = new evalue();
132 value_init(vertex
[i
]->d
);
133 evalue_copy(vertex
[i
], src
.vertex
[i
]);
136 void swap(indicator_term
*other
) {
138 tmp
= sign
; sign
= other
->sign
; other
->sign
= tmp
;
139 tmp
= pos
; pos
= other
->pos
; other
->pos
= tmp
;
140 tmp
= n
; n
= other
->n
; other
->n
= tmp
;
141 mat_ZZ tmp_den
= den
; den
= other
->den
; other
->den
= tmp_den
;
142 unsigned dim
= den
.NumCols();
143 for (int i
= 0; i
< dim
; ++i
) {
144 evalue
*tmp
= vertex
[i
];
145 vertex
[i
] = other
->vertex
[i
];
146 other
->vertex
[i
] = tmp
;
150 unsigned dim
= den
.NumCols();
151 for (int i
= 0; i
< dim
; ++i
)
152 evalue_free(vertex
[i
]);
155 void print(ostream
& os
, char **p
) const;
156 void substitute(Matrix
*T
);
158 void substitute(evalue
*fract
, evalue
*val
);
159 void substitute(int pos
, evalue
*val
);
160 void reduce_in_domain(Polyhedron
*D
);
161 bool is_opposite(const indicator_term
*neg
) const;
162 vec_ZZ
eval(Value
*val
) const {
164 unsigned dim
= den
.NumCols();
168 for (int i
= 0; i
< dim
; ++i
) {
169 compute_evalue(vertex
[i
], val
, &tmp
);
177 static int evalue_rational_cmp(const evalue
*e1
, const evalue
*e2
)
185 assert(value_notzero_p(e1
->d
));
186 assert(value_notzero_p(e2
->d
));
187 value_multiply(m
, e1
->x
.n
, e2
->d
);
188 value_multiply(m2
, e2
->x
.n
, e1
->d
);
191 else if (value_gt(m
, m2
))
201 static int evalue_cmp(const evalue
*e1
, const evalue
*e2
)
203 if (value_notzero_p(e1
->d
)) {
204 if (value_zero_p(e2
->d
))
206 return evalue_rational_cmp(e1
, e2
);
208 if (value_notzero_p(e2
->d
))
210 if (e1
->x
.p
->type
!= e2
->x
.p
->type
)
211 return e1
->x
.p
->type
- e2
->x
.p
->type
;
212 if (e1
->x
.p
->size
!= e2
->x
.p
->size
)
213 return e1
->x
.p
->size
- e2
->x
.p
->size
;
214 if (e1
->x
.p
->pos
!= e2
->x
.p
->pos
)
215 return e1
->x
.p
->pos
- e2
->x
.p
->pos
;
216 assert(e1
->x
.p
->type
== polynomial
||
217 e1
->x
.p
->type
== fractional
||
218 e1
->x
.p
->type
== flooring
);
219 for (int i
= 0; i
< e1
->x
.p
->size
; ++i
) {
220 int s
= evalue_cmp(&e1
->x
.p
->arr
[i
], &e2
->x
.p
->arr
[i
]);
227 void evalue_length(evalue
*e
, int len
[2])
232 while (value_zero_p(e
->d
)) {
233 assert(e
->x
.p
->type
== polynomial
||
234 e
->x
.p
->type
== fractional
||
235 e
->x
.p
->type
== flooring
);
236 if (e
->x
.p
->type
== polynomial
)
240 int offset
= type_offset(e
->x
.p
);
241 assert(e
->x
.p
->size
== offset
+2);
242 e
= &e
->x
.p
->arr
[offset
];
246 static bool it_smaller(const indicator_term
* it1
, const indicator_term
* it2
)
250 int len1
[2], len2
[2];
251 unsigned dim
= it1
->den
.NumCols();
252 for (int i
= 0; i
< dim
; ++i
) {
253 evalue_length(it1
->vertex
[i
], len1
);
254 evalue_length(it2
->vertex
[i
], len2
);
255 if (len1
[0] != len2
[0])
256 return len1
[0] < len2
[0];
257 if (len1
[1] != len2
[1])
258 return len1
[1] < len2
[1];
260 if (it1
->pos
!= it2
->pos
)
261 return it1
->pos
< it2
->pos
;
262 if (it1
->n
!= it2
->n
)
263 return it1
->n
< it2
->n
;
264 int s
= lex_cmp(it1
->den
, it2
->den
);
267 for (int i
= 0; i
< dim
; ++i
) {
268 s
= evalue_cmp(it1
->vertex
[i
], it2
->vertex
[i
]);
272 assert(it1
->sign
!= 0);
273 assert(it2
->sign
!= 0);
274 if (it1
->sign
!= it2
->sign
)
275 return it1
->sign
> 0;
280 static const int requires_resort
;
281 bool operator()(const indicator_term
* it1
, const indicator_term
* it2
) const {
282 return it_smaller(it1
, it2
);
285 const int smaller_it::requires_resort
= 1;
287 struct smaller_it_p
{
288 static const int requires_resort
;
289 bool operator()(const indicator_term
* it1
, const indicator_term
* it2
) const {
293 const int smaller_it_p::requires_resort
= 0;
295 /* Returns true if this and neg are opposite using the knowledge
296 * that they have the same numerator.
297 * In particular, we check that the signs are different and that
298 * the denominator is the same.
300 bool indicator_term::is_opposite(const indicator_term
*neg
) const
302 if (sign
+ neg
->sign
!= 0)
309 void indicator_term::reduce_in_domain(Polyhedron
*D
)
311 for (int k
= 0; k
< den
.NumCols(); ++k
) {
312 reduce_evalue_in_domain(vertex
[k
], D
);
313 if (evalue_range_reduction_in_domain(vertex
[k
], D
))
314 reduce_evalue(vertex
[k
]);
318 void indicator_term::print(ostream
& os
, char **p
) const
320 unsigned dim
= den
.NumCols();
321 unsigned factors
= den
.NumRows();
329 for (int i
= 0; i
< dim
; ++i
) {
332 evalue_print(os
, vertex
[i
], p
);
335 for (int i
= 0; i
< factors
; ++i
) {
336 os
<< " + t" << i
<< "*[";
337 for (int j
= 0; j
< dim
; ++j
) {
344 os
<< " ((" << pos
<< ", " << n
<< ", " << (void*)this << "))";
347 /* Perform the substitution specified by T on the variables.
348 * T has dimension (newdim+nparam+1) x (olddim + nparam + 1).
349 * The substitution is performed as in gen_fun::substitute
351 void indicator_term::substitute(Matrix
*T
)
353 unsigned dim
= den
.NumCols();
354 unsigned nparam
= T
->NbColumns
- dim
- 1;
355 unsigned newdim
= T
->NbRows
- nparam
- 1;
358 matrix2zz(T
, trans
, newdim
, dim
);
359 trans
= transpose(trans
);
361 newvertex
= new evalue
* [newdim
];
364 v
.SetLength(nparam
+1);
367 value_init(factor
.d
);
368 value_set_si(factor
.d
, 1);
369 value_init(factor
.x
.n
);
370 for (int i
= 0; i
< newdim
; ++i
) {
371 values2zz(T
->p
[i
]+dim
, v
, nparam
+1);
372 newvertex
[i
] = multi_monom(v
);
374 for (int j
= 0; j
< dim
; ++j
) {
375 if (value_zero_p(T
->p
[i
][j
]))
379 evalue_copy(&term
, vertex
[j
]);
380 value_assign(factor
.x
.n
, T
->p
[i
][j
]);
381 emul(&factor
, &term
);
382 eadd(&term
, newvertex
[i
]);
383 free_evalue_refs(&term
);
386 free_evalue_refs(&factor
);
387 for (int i
= 0; i
< dim
; ++i
)
388 evalue_free(vertex
[i
]);
393 static void evalue_add_constant(evalue
*e
, ZZ v
)
398 /* go down to constant term */
399 while (value_zero_p(e
->d
))
400 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)];
403 value_multiply(tmp
, tmp
, e
->d
);
404 value_addto(e
->x
.n
, e
->x
.n
, tmp
);
409 /* Make all powers in denominator lexico-positive */
410 void indicator_term::normalize()
413 extra_vertex
.SetLength(den
.NumCols());
414 for (int r
= 0; r
< den
.NumRows(); ++r
) {
415 for (int k
= 0; k
< den
.NumCols(); ++k
) {
422 extra_vertex
+= den
[r
];
426 for (int k
= 0; k
< extra_vertex
.length(); ++k
)
427 if (extra_vertex
[k
] != 0)
428 evalue_add_constant(vertex
[k
], extra_vertex
[k
]);
431 static void substitute(evalue
*e
, evalue
*fract
, evalue
*val
)
435 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
436 if (t
->x
.p
->type
== fractional
&& eequal(&t
->x
.p
->arr
[0], fract
))
439 if (value_notzero_p(t
->d
))
442 free_evalue_refs(&t
->x
.p
->arr
[0]);
443 evalue
*term
= &t
->x
.p
->arr
[2];
450 free_evalue_refs(term
);
456 void indicator_term::substitute(evalue
*fract
, evalue
*val
)
458 unsigned dim
= den
.NumCols();
459 for (int i
= 0; i
< dim
; ++i
) {
460 ::substitute(vertex
[i
], fract
, val
);
464 static void substitute(evalue
*e
, int pos
, evalue
*val
)
468 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
469 if (t
->x
.p
->type
== polynomial
&& t
->x
.p
->pos
== pos
)
472 if (value_notzero_p(t
->d
))
475 evalue
*term
= &t
->x
.p
->arr
[1];
482 free_evalue_refs(term
);
488 void indicator_term::substitute(int pos
, evalue
*val
)
490 unsigned dim
= den
.NumCols();
491 for (int i
= 0; i
< dim
; ++i
) {
492 ::substitute(vertex
[i
], pos
, val
);
496 struct indicator_constructor
: public signed_cone_consumer
,
497 public vertex_decomposer
{
499 vector
<indicator_term
*> *terms
;
500 Matrix
*T
; /* Transformation to original space */
505 indicator_constructor(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
,
507 vertex_decomposer(PP
, *this), T(T
), nbV(PP
->nbV
) {
508 vertex
.SetLength(dim
);
509 terms
= new vector
<indicator_term
*>[PP
->nbV
];
511 ~indicator_constructor() {
512 for (int i
= 0; i
< nbV
; ++i
)
513 for (int j
= 0; j
< terms
[i
].size(); ++j
)
517 void substitute(Matrix
*T
);
519 void print(ostream
& os
, char **p
);
521 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
522 void decompose_at_vertex(Param_Vertices
*V
, int _i
,
523 barvinok_options
*options
) {
526 vertex_decomposer::decompose_at_vertex(V
, _i
, options
);
530 void indicator_constructor::handle(const signed_cone
& sc
, barvinok_options
*options
)
533 unsigned dim
= vertex
.length();
535 assert(sc
.rays
.NumRows() == dim
);
537 indicator_term
*term
= new indicator_term(dim
, pos
, n
++);
538 term
->sign
= sc
.sign
;
539 terms
[vert
].push_back(term
);
541 lattice_point(V
, sc
.rays
, vertex
, term
->vertex
, options
);
544 for (int r
= 0; r
< dim
; ++r
) {
545 for (int j
= 0; j
< dim
; ++j
) {
546 if (term
->den
[r
][j
] == 0)
548 if (term
->den
[r
][j
] > 0)
550 term
->sign
= -term
->sign
;
551 term
->den
[r
] = -term
->den
[r
];
552 vertex
+= term
->den
[r
];
557 for (int i
= 0; i
< dim
; ++i
) {
558 if (!term
->vertex
[i
]) {
559 term
->vertex
[i
] = ALLOC(evalue
);
560 value_init(term
->vertex
[i
]->d
);
561 value_init(term
->vertex
[i
]->x
.n
);
562 zz2value(vertex
[i
], term
->vertex
[i
]->x
.n
);
563 value_set_si(term
->vertex
[i
]->d
, 1);
568 evalue_add_constant(term
->vertex
[i
], vertex
[i
]);
576 lex_order_rows(term
->den
);
579 void indicator_constructor::print(ostream
& os
, char **p
)
581 for (int i
= 0; i
< PP
->nbV
; ++i
)
582 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
583 os
<< "i: " << i
<< ", j: " << j
<< endl
;
584 terms
[i
][j
]->print(os
, p
);
589 void indicator_constructor::normalize()
591 for (int i
= 0; i
< PP
->nbV
; ++i
)
592 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
594 vertex
.SetLength(terms
[i
][j
]->den
.NumCols());
595 for (int r
= 0; r
< terms
[i
][j
]->den
.NumRows(); ++r
) {
596 for (int k
= 0; k
< terms
[i
][j
]->den
.NumCols(); ++k
) {
597 if (terms
[i
][j
]->den
[r
][k
] == 0)
599 if (terms
[i
][j
]->den
[r
][k
] > 0)
601 terms
[i
][j
]->sign
= -terms
[i
][j
]->sign
;
602 terms
[i
][j
]->den
[r
] = -terms
[i
][j
]->den
[r
];
603 vertex
+= terms
[i
][j
]->den
[r
];
607 lex_order_rows(terms
[i
][j
]->den
);
608 for (int k
= 0; k
< vertex
.length(); ++k
)
610 evalue_add_constant(terms
[i
][j
]->vertex
[k
], vertex
[k
]);
614 struct order_cache_el
{
616 order_cache_el
copy() const {
618 for (int i
= 0; i
< e
.size(); ++i
) {
619 evalue
*c
= new evalue
;
621 evalue_copy(c
, e
[i
]);
627 for (int i
= 0; i
< e
.size(); ++i
) {
628 free_evalue_refs(e
[i
]);
635 evalue_set_si(&mone
, -1, 1);
636 for (int i
= 0; i
< e
.size(); ++i
)
638 free_evalue_refs(&mone
);
640 void print(ostream
& os
, char **p
);
643 void order_cache_el::print(ostream
& os
, char **p
)
646 for (int i
= 0; i
< e
.size(); ++i
) {
649 evalue_print(os
, e
[i
], p
);
655 vector
<order_cache_el
> lt
;
656 vector
<order_cache_el
> le
;
657 vector
<order_cache_el
> unknown
;
659 void clear_transients() {
660 for (int i
= 0; i
< le
.size(); ++i
)
662 for (int i
= 0; i
< unknown
.size(); ++i
)
669 for (int i
= 0; i
< lt
.size(); ++i
)
673 void add(order_cache_el
& cache_el
, order_sign sign
);
674 order_sign
check_lt(vector
<order_cache_el
>* list
,
675 const indicator_term
*a
, const indicator_term
*b
,
676 order_cache_el
& cache_el
);
677 order_sign
check_lt(const indicator_term
*a
, const indicator_term
*b
,
678 order_cache_el
& cache_el
);
679 order_sign
check_direct(const indicator_term
*a
, const indicator_term
*b
,
680 order_cache_el
& cache_el
);
681 order_sign
check(const indicator_term
*a
, const indicator_term
*b
,
682 order_cache_el
& cache_el
);
683 void copy(const order_cache
& cache
);
684 void print(ostream
& os
, char **p
);
687 void order_cache::copy(const order_cache
& cache
)
689 for (int i
= 0; i
< cache
.lt
.size(); ++i
) {
690 order_cache_el n
= cache
.lt
[i
].copy();
695 void order_cache::add(order_cache_el
& cache_el
, order_sign sign
)
697 if (sign
== order_lt
) {
698 lt
.push_back(cache_el
);
699 } else if (sign
== order_gt
) {
701 lt
.push_back(cache_el
);
702 } else if (sign
== order_le
) {
703 le
.push_back(cache_el
);
704 } else if (sign
== order_ge
) {
706 le
.push_back(cache_el
);
707 } else if (sign
== order_unknown
) {
708 unknown
.push_back(cache_el
);
710 assert(sign
== order_eq
);
717 static evalue
*ediff(const evalue
*a
, const evalue
*b
)
721 evalue_set_si(&mone
, -1, 1);
722 evalue
*diff
= new evalue
;
724 evalue_copy(diff
, b
);
728 free_evalue_refs(&mone
);
732 static bool evalue_first_difference(const evalue
*e1
, const evalue
*e2
,
733 const evalue
**d1
, const evalue
**d2
)
738 if (value_ne(e1
->d
, e2
->d
))
741 if (value_notzero_p(e1
->d
)) {
742 if (value_eq(e1
->x
.n
, e2
->x
.n
))
746 if (e1
->x
.p
->type
!= e2
->x
.p
->type
)
748 if (e1
->x
.p
->size
!= e2
->x
.p
->size
)
750 if (e1
->x
.p
->pos
!= e2
->x
.p
->pos
)
753 assert(e1
->x
.p
->type
== polynomial
||
754 e1
->x
.p
->type
== fractional
||
755 e1
->x
.p
->type
== flooring
);
756 int offset
= type_offset(e1
->x
.p
);
757 assert(e1
->x
.p
->size
== offset
+2);
758 for (int i
= 0; i
< e1
->x
.p
->size
; ++i
)
759 if (i
!= type_offset(e1
->x
.p
) &&
760 !eequal(&e1
->x
.p
->arr
[i
], &e2
->x
.p
->arr
[i
]))
763 return evalue_first_difference(&e1
->x
.p
->arr
[offset
],
764 &e2
->x
.p
->arr
[offset
], d1
, d2
);
767 static order_sign
evalue_diff_constant_sign(const evalue
*e1
, const evalue
*e2
)
769 if (!evalue_first_difference(e1
, e2
, &e1
, &e2
))
771 if (value_zero_p(e1
->d
) || value_zero_p(e2
->d
))
772 return order_undefined
;
773 int s
= evalue_rational_cmp(e1
, e2
);
782 order_sign
order_cache::check_lt(vector
<order_cache_el
>* list
,
783 const indicator_term
*a
, const indicator_term
*b
,
784 order_cache_el
& cache_el
)
786 order_sign sign
= order_undefined
;
787 for (int i
= 0; i
< list
->size(); ++i
) {
789 for (j
= cache_el
.e
.size(); j
< (*list
)[i
].e
.size(); ++j
)
790 cache_el
.e
.push_back(ediff(a
->vertex
[j
], b
->vertex
[j
]));
791 for (j
= 0; j
< (*list
)[i
].e
.size(); ++j
) {
792 order_sign diff_sign
;
793 diff_sign
= evalue_diff_constant_sign((*list
)[i
].e
[j
], cache_el
.e
[j
]);
794 if (diff_sign
== order_gt
) {
797 } else if (diff_sign
== order_lt
)
799 else if (diff_sign
== order_undefined
)
802 assert(diff_sign
== order_eq
);
804 if (j
== (*list
)[i
].e
.size())
805 sign
= list
== <
? order_lt
: order_le
;
806 if (sign
!= order_undefined
)
812 order_sign
order_cache::check_direct(const indicator_term
*a
,
813 const indicator_term
*b
,
814 order_cache_el
& cache_el
)
816 order_sign sign
= check_lt(<
, a
, b
, cache_el
);
817 if (sign
!= order_undefined
)
819 sign
= check_lt(&le
, a
, b
, cache_el
);
820 if (sign
!= order_undefined
)
823 for (int i
= 0; i
< unknown
.size(); ++i
) {
825 for (j
= cache_el
.e
.size(); j
< unknown
[i
].e
.size(); ++j
)
826 cache_el
.e
.push_back(ediff(a
->vertex
[j
], b
->vertex
[j
]));
827 for (j
= 0; j
< unknown
[i
].e
.size(); ++j
) {
828 if (!eequal(unknown
[i
].e
[j
], cache_el
.e
[j
]))
831 if (j
== unknown
[i
].e
.size()) {
832 sign
= order_unknown
;
839 order_sign
order_cache::check(const indicator_term
*a
, const indicator_term
*b
,
840 order_cache_el
& cache_el
)
842 order_sign sign
= check_direct(a
, b
, cache_el
);
843 if (sign
!= order_undefined
)
845 int size
= cache_el
.e
.size();
847 sign
= check_direct(a
, b
, cache_el
);
849 assert(cache_el
.e
.size() == size
);
850 if (sign
== order_undefined
)
852 if (sign
== order_lt
)
854 else if (sign
== order_le
)
857 assert(sign
== order_unknown
);
863 struct partial_order
{
866 std::set
<const indicator_term
*, smaller_it
> head
;
867 map
<const indicator_term
*, int, smaller_it
> pred
;
868 map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> lt
;
869 map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> le
;
870 map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> eq
;
872 map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> pending
;
876 partial_order(indicator
*ind
) : ind(ind
) {}
877 void copy(const partial_order
& order
,
878 map
< const indicator_term
*, indicator_term
* > old2new
);
880 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
881 map
<const indicator_term
*, int >::iterator j
;
882 std::set
<const indicator_term
*>::iterator k
;
884 if (head
.key_comp().requires_resort
) {
885 typeof(head
) new_head
;
886 for (k
= head
.begin(); k
!= head
.end(); ++k
)
892 if (pred
.key_comp().requires_resort
) {
893 typeof(pred
) new_pred
;
894 for (j
= pred
.begin(); j
!= pred
.end(); ++j
)
895 new_pred
[(*j
).first
] = (*j
).second
;
900 if (lt
.key_comp().requires_resort
) {
902 for (i
= lt
.begin(); i
!= lt
.end(); ++i
)
903 m
[(*i
).first
] = (*i
).second
;
908 if (le
.key_comp().requires_resort
) {
910 for (i
= le
.begin(); i
!= le
.end(); ++i
)
911 m
[(*i
).first
] = (*i
).second
;
916 if (eq
.key_comp().requires_resort
) {
918 for (i
= eq
.begin(); i
!= eq
.end(); ++i
)
919 m
[(*i
).first
] = (*i
).second
;
924 if (pending
.key_comp().requires_resort
) {
926 for (i
= pending
.begin(); i
!= pending
.end(); ++i
)
927 m
[(*i
).first
] = (*i
).second
;
933 order_sign
compare(const indicator_term
*a
, const indicator_term
*b
);
934 void set_equal(const indicator_term
*a
, const indicator_term
*b
);
935 void unset_le(const indicator_term
*a
, const indicator_term
*b
);
936 void dec_pred(const indicator_term
*it
) {
937 if (--pred
[it
] == 0) {
942 void inc_pred(const indicator_term
*it
) {
943 if (head
.find(it
) != head
.end())
948 bool compared(const indicator_term
* a
, const indicator_term
* b
);
949 void add(const indicator_term
* it
, std::set
<const indicator_term
*> *filter
);
950 void remove(const indicator_term
* it
);
952 void print(ostream
& os
, char **p
);
954 /* replace references to orig to references to replacement */
955 void replace(const indicator_term
* orig
, indicator_term
* replacement
);
956 void sanity_check() const;
959 /* We actually replace the contents of orig by that of replacement,
960 * but we have to be careful since replacing the content changes
961 * the order of orig in the maps.
963 void partial_order::replace(const indicator_term
* orig
, indicator_term
* replacement
)
965 std::set
<const indicator_term
*>::iterator k
;
967 bool is_head
= k
!= head
.end();
972 orig_pred
= pred
[orig
];
975 vector
<const indicator_term
* > orig_lt
;
976 vector
<const indicator_term
* > orig_le
;
977 vector
<const indicator_term
* > orig_eq
;
978 vector
<const indicator_term
* > orig_pending
;
979 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
980 bool in_lt
= ((i
= lt
.find(orig
)) != lt
.end());
982 orig_lt
= (*i
).second
;
985 bool in_le
= ((i
= le
.find(orig
)) != le
.end());
987 orig_le
= (*i
).second
;
990 bool in_eq
= ((i
= eq
.find(orig
)) != eq
.end());
992 orig_eq
= (*i
).second
;
995 bool in_pending
= ((i
= pending
.find(orig
)) != pending
.end());
997 orig_pending
= (*i
).second
;
1000 indicator_term
*old
= const_cast<indicator_term
*>(orig
);
1001 old
->swap(replacement
);
1005 pred
[old
] = orig_pred
;
1013 pending
[old
] = orig_pending
;
1016 void partial_order::unset_le(const indicator_term
*a
, const indicator_term
*b
)
1018 vector
<const indicator_term
*>::iterator i
;
1019 i
= find(le
[a
].begin(), le
[a
].end(), b
);
1021 if (le
[a
].size() == 0)
1024 i
= find(pending
[a
].begin(), pending
[a
].end(), b
);
1025 if (i
!= pending
[a
].end())
1026 pending
[a
].erase(i
);
1029 void partial_order::set_equal(const indicator_term
*a
, const indicator_term
*b
)
1031 if (eq
[a
].size() == 0)
1033 if (eq
[b
].size() == 0)
1038 if (pred
.key_comp()(b
, a
)) {
1039 const indicator_term
*c
= a
;
1044 const indicator_term
*base
= a
;
1046 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
1048 for (int j
= 0; j
< eq
[b
].size(); ++j
) {
1049 eq
[base
].push_back(eq
[b
][j
]);
1050 eq
[eq
[b
][j
]][0] = base
;
1055 if (i
!= lt
.end()) {
1056 for (int j
= 0; j
< lt
[b
].size(); ++j
) {
1057 if (find(eq
[base
].begin(), eq
[base
].end(), lt
[b
][j
]) != eq
[base
].end())
1059 else if (find(lt
[base
].begin(), lt
[base
].end(), lt
[b
][j
])
1063 lt
[base
].push_back(lt
[b
][j
]);
1069 if (i
!= le
.end()) {
1070 for (int j
= 0; j
< le
[b
].size(); ++j
) {
1071 if (find(eq
[base
].begin(), eq
[base
].end(), le
[b
][j
]) != eq
[base
].end())
1073 else if (find(le
[base
].begin(), le
[base
].end(), le
[b
][j
])
1077 le
[base
].push_back(le
[b
][j
]);
1082 i
= pending
.find(base
);
1083 if (i
!= pending
.end()) {
1084 vector
<const indicator_term
* > old
= pending
[base
];
1085 pending
[base
].clear();
1086 for (int j
= 0; j
< old
.size(); ++j
) {
1087 if (find(eq
[base
].begin(), eq
[base
].end(), old
[j
]) == eq
[base
].end())
1088 pending
[base
].push_back(old
[j
]);
1092 i
= pending
.find(b
);
1093 if (i
!= pending
.end()) {
1094 for (int j
= 0; j
< pending
[b
].size(); ++j
) {
1095 if (find(eq
[base
].begin(), eq
[base
].end(), pending
[b
][j
]) == eq
[base
].end())
1096 pending
[base
].push_back(pending
[b
][j
]);
1102 void partial_order::copy(const partial_order
& order
,
1103 map
< const indicator_term
*, indicator_term
* > old2new
)
1105 cache
.copy(order
.cache
);
1107 map
<const indicator_term
*, vector
<const indicator_term
* > >::const_iterator i
;
1108 map
<const indicator_term
*, int >::const_iterator j
;
1109 std::set
<const indicator_term
*>::const_iterator k
;
1111 for (k
= order
.head
.begin(); k
!= order
.head
.end(); ++k
)
1112 head
.insert(old2new
[*k
]);
1114 for (j
= order
.pred
.begin(); j
!= order
.pred
.end(); ++j
)
1115 pred
[old2new
[(*j
).first
]] = (*j
).second
;
1117 for (i
= order
.lt
.begin(); i
!= order
.lt
.end(); ++i
) {
1118 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1119 lt
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1121 for (i
= order
.le
.begin(); i
!= order
.le
.end(); ++i
) {
1122 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1123 le
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1125 for (i
= order
.eq
.begin(); i
!= order
.eq
.end(); ++i
) {
1126 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1127 eq
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1129 for (i
= order
.pending
.begin(); i
!= order
.pending
.end(); ++i
) {
1130 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1131 pending
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1137 vector
<evalue
*> max
;
1139 void print(ostream
& os
, char **p
, barvinok_options
*options
) const;
1140 void substitute(Matrix
*T
, barvinok_options
*options
);
1141 Vector
*eval(Value
*val
, unsigned MaxRays
) const;
1144 for (int i
= 0; i
< max
.size(); ++i
) {
1145 free_evalue_refs(max
[i
]);
1153 * Project on first dim dimensions
1155 Polyhedron
* Polyhedron_Project_Initial(Polyhedron
*P
, int dim
)
1161 if (P
->Dimension
== dim
)
1162 return Polyhedron_Copy(P
);
1164 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
1165 for (i
= 0; i
< dim
; ++i
)
1166 value_set_si(T
->p
[i
][i
], 1);
1167 value_set_si(T
->p
[dim
][P
->Dimension
], 1);
1168 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
1174 vector
<indicator_term
*> term
;
1175 indicator_constructor
& ic
;
1176 partial_order order
;
1180 lexmin_options
*options
;
1181 vector
<evalue
*> substitutions
;
1183 indicator(indicator_constructor
& ic
, Param_Domain
*PD
, EDomain
*D
,
1184 lexmin_options
*options
) :
1185 ic(ic
), PD(PD
), D(D
), order(this), options(options
), P(NULL
) {}
1186 indicator(const indicator
& ind
, EDomain
*D
) :
1187 ic(ind
.ic
), PD(ind
.PD
), D(NULL
), order(this), options(ind
.options
),
1188 P(Polyhedron_Copy(ind
.P
)) {
1189 map
< const indicator_term
*, indicator_term
* > old2new
;
1190 for (int i
= 0; i
< ind
.term
.size(); ++i
) {
1191 indicator_term
*it
= new indicator_term(*ind
.term
[i
]);
1192 old2new
[ind
.term
[i
]] = it
;
1195 order
.copy(ind
.order
, old2new
);
1199 for (int i
= 0; i
< term
.size(); ++i
)
1207 void set_domain(EDomain
*D
) {
1208 order
.cache
.clear_transients();
1212 int nparam
= ic
.PP
->Constraints
->NbColumns
-2 - ic
.vertex
.length();
1213 if (options
->reduce
) {
1214 Polyhedron
*Q
= Polyhedron_Project_Initial(D
->D
, nparam
);
1215 Q
= DomainConstraintSimplify(Q
, options
->verify
.barvinok
->MaxRays
);
1216 if (!P
|| !PolyhedronIncludes(Q
, P
))
1217 reduce_in_domain(Q
);
1225 void add(const indicator_term
* it
);
1226 void remove(const indicator_term
* it
);
1227 void remove_initial_rational_vertices();
1228 void expand_rational_vertex(const indicator_term
*initial
);
1230 void print(ostream
& os
, char **p
);
1232 void peel(int i
, int j
);
1233 void combine(const indicator_term
*a
, const indicator_term
*b
);
1234 void add_substitution(evalue
*equation
);
1235 void perform_pending_substitutions();
1236 void reduce_in_domain(Polyhedron
*D
);
1237 bool handle_equal_numerators(const indicator_term
*base
);
1239 max_term
* create_max_term(const indicator_term
*it
);
1241 void substitute(evalue
*equation
);
1244 void partial_order::sanity_check() const
1246 map
<const indicator_term
*, vector
<const indicator_term
* > >::const_iterator i
;
1247 map
<const indicator_term
*, vector
<const indicator_term
* > >::const_iterator prev
;
1248 map
<const indicator_term
*, vector
<const indicator_term
* > >::const_iterator l
;
1249 map
<const indicator_term
*, int >::const_iterator k
, prev_k
;
1251 for (k
= pred
.begin(); k
!= pred
.end(); prev_k
= k
, ++k
)
1252 if (k
!= pred
.begin())
1253 assert(pred
.key_comp()((*prev_k
).first
, (*k
).first
));
1254 for (i
= lt
.begin(); i
!= lt
.end(); prev
= i
, ++i
) {
1257 i_v
= (*i
).first
->eval(ind
->D
->sample
->p
);
1258 if (i
!= lt
.begin())
1259 assert(lt
.key_comp()((*prev
).first
, (*i
).first
));
1260 l
= eq
.find((*i
).first
);
1262 assert((*l
).second
.size() > 1);
1263 assert(head
.find((*i
).first
) != head
.end() ||
1264 pred
.find((*i
).first
) != pred
.end());
1265 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1266 k
= pred
.find((*i
).second
[j
]);
1267 assert(k
!= pred
.end());
1268 assert((*k
).second
!= 0);
1269 if ((*i
).first
->sign
!= 0 &&
1270 (*i
).second
[j
]->sign
!= 0 && ind
->D
->sample
) {
1271 vec_ZZ j_v
= (*i
).second
[j
]->eval(ind
->D
->sample
->p
);
1272 assert(lex_cmp(i_v
, j_v
) < 0);
1276 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1277 assert((*i
).second
.size() > 0);
1278 assert(head
.find((*i
).first
) != head
.end() ||
1279 pred
.find((*i
).first
) != pred
.end());
1280 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1281 k
= pred
.find((*i
).second
[j
]);
1282 assert(k
!= pred
.end());
1283 assert((*k
).second
!= 0);
1286 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1287 assert(head
.find((*i
).first
) != head
.end() ||
1288 pred
.find((*i
).first
) != pred
.end());
1289 assert((*i
).second
.size() >= 1);
1291 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1292 assert(head
.find((*i
).first
) != head
.end() ||
1293 pred
.find((*i
).first
) != pred
.end());
1294 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1295 assert(head
.find((*i
).second
[j
]) != head
.end() ||
1296 pred
.find((*i
).second
[j
]) != pred
.end());
1300 max_term
* indicator::create_max_term(const indicator_term
*it
)
1302 int dim
= it
->den
.NumCols();
1303 int nparam
= ic
.PP
->Constraints
->NbColumns
-2 - ic
.vertex
.length();
1304 max_term
*maximum
= new max_term
;
1305 maximum
->domain
= new EDomain(D
);
1306 for (int j
= 0; j
< dim
; ++j
) {
1307 evalue
*E
= new evalue
;
1309 evalue_copy(E
, it
->vertex
[j
]);
1310 if (evalue_frac2floor_in_domain(E
, D
->D
))
1312 maximum
->max
.push_back(E
);
1317 static order_sign
evalue_sign(evalue
*diff
, EDomain
*D
, barvinok_options
*options
)
1319 order_sign sign
= order_eq
;
1322 evalue_set_si(&mone
, -1, 1);
1323 int len
= 1 + D
->D
->Dimension
+ 1;
1324 Vector
*c
= Vector_Alloc(len
);
1325 Matrix
*T
= Matrix_Alloc(2, len
-1);
1327 int fract
= evalue2constraint(D
, diff
, c
->p
, len
);
1328 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
1329 value_assign(T
->p
[1][len
-2], c
->p
[0]);
1331 order_sign upper_sign
= polyhedron_affine_sign(D
->D
, T
, options
);
1332 if (upper_sign
== order_lt
|| !fract
)
1336 evalue2constraint(D
, diff
, c
->p
, len
);
1338 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
1339 value_assign(T
->p
[1][len
-2], c
->p
[0]);
1341 order_sign neg_lower_sign
= polyhedron_affine_sign(D
->D
, T
, options
);
1343 if (neg_lower_sign
== order_lt
)
1345 else if (neg_lower_sign
== order_eq
|| neg_lower_sign
== order_le
) {
1346 if (upper_sign
== order_eq
|| upper_sign
== order_le
)
1351 if (upper_sign
== order_lt
|| upper_sign
== order_le
||
1352 upper_sign
== order_eq
)
1355 sign
= order_unknown
;
1361 free_evalue_refs(&mone
);
1366 /* An auxiliary class that keeps a reference to an evalue
1367 * and frees it when it goes out of scope.
1369 struct temp_evalue
{
1371 temp_evalue() : E(NULL
) {}
1372 temp_evalue(evalue
*e
) : E(e
) {}
1373 operator evalue
* () const { return E
; }
1374 evalue
*operator=(evalue
*e
) {
1376 free_evalue_refs(E
);
1384 free_evalue_refs(E
);
1390 static void substitute(vector
<indicator_term
*>& term
, evalue
*equation
)
1392 evalue
*fract
= NULL
;
1393 evalue
*val
= new evalue
;
1395 evalue_copy(val
, equation
);
1398 value_init(factor
.d
);
1399 value_init(factor
.x
.n
);
1402 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= fractional
;
1403 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1406 if (value_zero_p(e
->d
) && e
->x
.p
->type
== fractional
)
1407 fract
= &e
->x
.p
->arr
[0];
1409 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= polynomial
;
1410 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1412 assert(value_zero_p(e
->d
) && e
->x
.p
->type
== polynomial
);
1415 int offset
= type_offset(e
->x
.p
);
1417 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].d
));
1418 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].x
.n
));
1419 if (value_neg_p(e
->x
.p
->arr
[offset
+1].x
.n
)) {
1420 value_oppose(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1421 value_assign(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1423 value_assign(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1424 value_oppose(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1427 free_evalue_refs(&e
->x
.p
->arr
[offset
+1]);
1430 *e
= e
->x
.p
->arr
[offset
];
1435 for (int i
= 0; i
< term
.size(); ++i
)
1436 term
[i
]->substitute(fract
, val
);
1438 free_evalue_refs(&p
->arr
[0]);
1440 for (int i
= 0; i
< term
.size(); ++i
)
1441 term
[i
]->substitute(p
->pos
, val
);
1444 free_evalue_refs(&factor
);
1445 free_evalue_refs(val
);
1451 order_sign
partial_order::compare(const indicator_term
*a
, const indicator_term
*b
)
1453 unsigned dim
= a
->den
.NumCols();
1454 order_sign sign
= order_eq
;
1455 EDomain
*D
= ind
->D
;
1456 unsigned MaxRays
= ind
->options
->verify
.barvinok
->MaxRays
;
1457 bool rational
= a
->sign
== 0 || b
->sign
== 0;
1459 order_sign cached_sign
= order_eq
;
1460 for (int k
= 0; k
< dim
; ++k
) {
1461 cached_sign
= evalue_diff_constant_sign(a
->vertex
[k
], b
->vertex
[k
]);
1462 if (cached_sign
!= order_eq
)
1465 if (cached_sign
!= order_undefined
)
1468 order_cache_el cache_el
;
1469 cached_sign
= order_undefined
;
1471 cached_sign
= cache
.check(a
, b
, cache_el
);
1472 if (cached_sign
!= order_undefined
) {
1477 if (rational
&& POL_ISSET(MaxRays
, POL_INTEGER
)) {
1478 ind
->options
->verify
.barvinok
->MaxRays
&= ~POL_INTEGER
;
1479 if (ind
->options
->verify
.barvinok
->MaxRays
)
1480 ind
->options
->verify
.barvinok
->MaxRays
|= POL_HIGH_BIT
;
1485 vector
<indicator_term
*> term
;
1487 for (int k
= 0; k
< dim
; ++k
) {
1488 /* compute a->vertex[k] - b->vertex[k] */
1490 if (cache_el
.e
.size() <= k
) {
1491 diff
= ediff(a
->vertex
[k
], b
->vertex
[k
]);
1492 cache_el
.e
.push_back(diff
);
1494 diff
= cache_el
.e
[k
];
1497 tdiff
= diff
= ediff(term
[0]->vertex
[k
], term
[1]->vertex
[k
]);
1498 order_sign diff_sign
;
1500 diff_sign
= order_undefined
;
1501 else if (eequal(a
->vertex
[k
], b
->vertex
[k
]))
1502 diff_sign
= order_eq
;
1504 diff_sign
= evalue_sign(diff
, D
, ind
->options
->verify
.barvinok
);
1506 if (diff_sign
== order_undefined
) {
1507 assert(sign
== order_le
|| sign
== order_ge
);
1508 if (sign
== order_le
)
1514 if (diff_sign
== order_lt
) {
1515 if (sign
== order_eq
|| sign
== order_le
)
1518 sign
= order_unknown
;
1521 if (diff_sign
== order_gt
) {
1522 if (sign
== order_eq
|| sign
== order_ge
)
1525 sign
= order_unknown
;
1528 if (diff_sign
== order_eq
) {
1529 if (D
== ind
->D
&& term
.size() == 0 && !rational
&&
1530 !EVALUE_IS_ZERO(*diff
))
1531 ind
->add_substitution(diff
);
1534 if ((diff_sign
== order_unknown
) ||
1535 ((diff_sign
== order_lt
|| diff_sign
== order_le
) && sign
== order_ge
) ||
1536 ((diff_sign
== order_gt
|| diff_sign
== order_ge
) && sign
== order_le
)) {
1537 sign
= order_unknown
;
1544 term
.push_back(new indicator_term(*a
));
1545 term
.push_back(new indicator_term(*b
));
1547 substitute(term
, diff
);
1551 cache
.add(cache_el
, sign
);
1555 if (D
&& D
!= ind
->D
)
1563 ind
->options
->verify
.barvinok
->MaxRays
= MaxRays
;
1567 bool partial_order::compared(const indicator_term
* a
, const indicator_term
* b
)
1569 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator j
;
1572 if (j
!= lt
.end() && find(lt
[a
].begin(), lt
[a
].end(), b
) != lt
[a
].end())
1576 if (j
!= le
.end() && find(le
[a
].begin(), le
[a
].end(), b
) != le
[a
].end())
1582 void partial_order::add(const indicator_term
* it
,
1583 std::set
<const indicator_term
*> *filter
)
1585 if (eq
.find(it
) != eq
.end() && eq
[it
].size() == 1)
1588 typeof(head
) head_copy(head
);
1593 std::set
<const indicator_term
*>::iterator i
;
1594 for (i
= head_copy
.begin(); i
!= head_copy
.end(); ++i
) {
1597 if (eq
.find(*i
) != eq
.end() && eq
[*i
].size() == 1)
1600 if (filter
->find(*i
) == filter
->end())
1602 if (compared(*i
, it
))
1605 order_sign sign
= compare(it
, *i
);
1606 if (sign
== order_lt
) {
1607 lt
[it
].push_back(*i
);
1609 } else if (sign
== order_le
) {
1610 le
[it
].push_back(*i
);
1612 } else if (sign
== order_eq
) {
1615 } else if (sign
== order_gt
) {
1616 pending
[*i
].push_back(it
);
1617 lt
[*i
].push_back(it
);
1619 } else if (sign
== order_ge
) {
1620 pending
[*i
].push_back(it
);
1621 le
[*i
].push_back(it
);
1627 void partial_order::remove(const indicator_term
* it
)
1629 std::set
<const indicator_term
*> filter
;
1630 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
1632 assert(head
.find(it
) != head
.end());
1635 if (i
!= eq
.end()) {
1636 assert(eq
[it
].size() >= 1);
1637 const indicator_term
*base
;
1638 if (eq
[it
].size() == 1) {
1642 vector
<const indicator_term
* >::iterator j
;
1643 j
= find(eq
[base
].begin(), eq
[base
].end(), it
);
1644 assert(j
!= eq
[base
].end());
1647 /* "it" may no longer be the smallest, since the order
1648 * structure may have been copied from another one.
1650 sort(eq
[it
].begin()+1, eq
[it
].end(), pred
.key_comp());
1651 assert(eq
[it
][0] == it
);
1652 eq
[it
].erase(eq
[it
].begin());
1657 for (int j
= 1; j
< eq
[base
].size(); ++j
)
1658 eq
[eq
[base
][j
]][0] = base
;
1661 if (i
!= lt
.end()) {
1667 if (i
!= le
.end()) {
1672 i
= pending
.find(it
);
1673 if (i
!= pending
.end()) {
1674 pending
[base
] = pending
[it
];
1679 if (eq
[base
].size() == 1)
1688 if (i
!= lt
.end()) {
1689 for (int j
= 0; j
< lt
[it
].size(); ++j
) {
1690 filter
.insert(lt
[it
][j
]);
1691 dec_pred(lt
[it
][j
]);
1697 if (i
!= le
.end()) {
1698 for (int j
= 0; j
< le
[it
].size(); ++j
) {
1699 filter
.insert(le
[it
][j
]);
1700 dec_pred(le
[it
][j
]);
1707 i
= pending
.find(it
);
1708 if (i
!= pending
.end()) {
1709 vector
<const indicator_term
*> it_pending
= pending
[it
];
1711 for (int j
= 0; j
< it_pending
.size(); ++j
) {
1712 filter
.erase(it_pending
[j
]);
1713 add(it_pending
[j
], &filter
);
1718 void partial_order::print(ostream
& os
, char **p
)
1720 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
1721 map
<const indicator_term
*, int >::iterator j
;
1722 std::set
<const indicator_term
*>::iterator k
;
1723 for (k
= head
.begin(); k
!= head
.end(); ++k
) {
1727 for (j
= pred
.begin(); j
!= pred
.end(); ++j
) {
1728 (*j
).first
->print(os
, p
);
1729 os
<< ": " << (*j
).second
<< endl
;
1731 for (i
= lt
.begin(); i
!= lt
.end(); ++i
) {
1732 (*i
).first
->print(os
, p
);
1733 assert(head
.find((*i
).first
) != head
.end() ||
1734 pred
.find((*i
).first
) != pred
.end());
1735 if (pred
.find((*i
).first
) != pred
.end())
1736 os
<< "(" << pred
[(*i
).first
] << ")";
1738 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1741 (*i
).second
[j
]->print(os
, p
);
1742 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1743 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1747 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1748 (*i
).first
->print(os
, p
);
1749 assert(head
.find((*i
).first
) != head
.end() ||
1750 pred
.find((*i
).first
) != pred
.end());
1751 if (pred
.find((*i
).first
) != pred
.end())
1752 os
<< "(" << pred
[(*i
).first
] << ")";
1754 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1757 (*i
).second
[j
]->print(os
, p
);
1758 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1759 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1763 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1764 if ((*i
).second
.size() <= 1)
1766 (*i
).first
->print(os
, p
);
1767 assert(head
.find((*i
).first
) != head
.end() ||
1768 pred
.find((*i
).first
) != pred
.end());
1769 if (pred
.find((*i
).first
) != pred
.end())
1770 os
<< "(" << pred
[(*i
).first
] << ")";
1771 for (int j
= 1; j
< (*i
).second
.size(); ++j
) {
1774 (*i
).second
[j
]->print(os
, p
);
1775 assert(head
.find((*i
).second
[j
]) != head
.end() ||
1776 pred
.find((*i
).second
[j
]) != pred
.end());
1777 if (pred
.find((*i
).second
[j
]) != pred
.end())
1778 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1782 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1783 os
<< "pending on ";
1784 (*i
).first
->print(os
, p
);
1785 assert(head
.find((*i
).first
) != head
.end() ||
1786 pred
.find((*i
).first
) != pred
.end());
1787 if (pred
.find((*i
).first
) != pred
.end())
1788 os
<< "(" << pred
[(*i
).first
] << ")";
1790 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1793 (*i
).second
[j
]->print(os
, p
);
1794 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1795 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1801 void indicator::add(const indicator_term
* it
)
1803 indicator_term
*nt
= new indicator_term(*it
);
1804 if (options
->reduce
)
1805 nt
->reduce_in_domain(P
? P
: D
->D
);
1807 order
.add(nt
, NULL
);
1808 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1811 void indicator::remove(const indicator_term
* it
)
1813 vector
<indicator_term
*>::iterator i
;
1814 i
= find(term
.begin(), term
.end(), it
);
1815 assert(i
!= term
.end());
1818 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1822 void indicator::expand_rational_vertex(const indicator_term
*initial
)
1824 int pos
= initial
->pos
;
1826 if (ic
.terms
[pos
].size() == 0) {
1828 FORALL_PVertex_in_ParamPolyhedron(V
, PD
, ic
.PP
) // _i is internal counter
1830 ic
.decompose_at_vertex(V
, pos
, options
->verify
.barvinok
);
1833 END_FORALL_PVertex_in_ParamPolyhedron
;
1835 for (int j
= 0; j
< ic
.terms
[pos
].size(); ++j
)
1836 add(ic
.terms
[pos
][j
]);
1839 void indicator::remove_initial_rational_vertices()
1842 const indicator_term
*initial
= NULL
;
1843 std::set
<const indicator_term
*>::iterator i
;
1844 for (i
= order
.head
.begin(); i
!= order
.head
.end(); ++i
) {
1845 if ((*i
)->sign
!= 0)
1847 if (order
.eq
.find(*i
) != order
.eq
.end() && order
.eq
[*i
].size() <= 1)
1854 expand_rational_vertex(initial
);
1858 void indicator::reduce_in_domain(Polyhedron
*D
)
1860 for (int i
= 0; i
< term
.size(); ++i
)
1861 term
[i
]->reduce_in_domain(D
);
1864 void indicator::print(ostream
& os
, char **p
)
1866 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1867 for (int i
= 0; i
< term
.size(); ++i
) {
1868 term
[i
]->print(os
, p
);
1870 os
<< ": " << term
[i
]->eval(D
->sample
->p
);
1877 /* Remove pairs of opposite terms */
1878 void indicator::simplify()
1880 for (int i
= 0; i
< term
.size(); ++i
) {
1881 for (int j
= i
+1; j
< term
.size(); ++j
) {
1882 if (term
[i
]->sign
+ term
[j
]->sign
!= 0)
1884 if (term
[i
]->den
!= term
[j
]->den
)
1887 for (k
= 0; k
< term
[i
]->den
.NumCols(); ++k
)
1888 if (!eequal(term
[i
]->vertex
[k
], term
[j
]->vertex
[k
]))
1890 if (k
< term
[i
]->den
.NumCols())
1894 term
.erase(term
.begin()+j
);
1895 term
.erase(term
.begin()+i
);
1902 void indicator::peel(int i
, int j
)
1910 int dim
= term
[i
]->den
.NumCols();
1915 int n_common
= 0, n_i
= 0, n_j
= 0;
1917 common
.SetDims(min(term
[i
]->den
.NumRows(), term
[j
]->den
.NumRows()), dim
);
1918 rest_i
.SetDims(term
[i
]->den
.NumRows(), dim
);
1919 rest_j
.SetDims(term
[j
]->den
.NumRows(), dim
);
1922 for (k
= 0, l
= 0; k
< term
[i
]->den
.NumRows() && l
< term
[j
]->den
.NumRows(); ) {
1923 int s
= lex_cmp(term
[i
]->den
[k
], term
[j
]->den
[l
]);
1925 common
[n_common
++] = term
[i
]->den
[k
];
1929 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1931 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1933 while (k
< term
[i
]->den
.NumRows())
1934 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1935 while (l
< term
[j
]->den
.NumRows())
1936 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1937 common
.SetDims(n_common
, dim
);
1938 rest_i
.SetDims(n_i
, dim
);
1939 rest_j
.SetDims(n_j
, dim
);
1941 for (k
= 0; k
<= n_i
; ++k
) {
1942 indicator_term
*it
= new indicator_term(*term
[i
]);
1943 it
->den
.SetDims(n_common
+ k
, dim
);
1944 for (l
= 0; l
< n_common
; ++l
)
1945 it
->den
[l
] = common
[l
];
1946 for (l
= 0; l
< k
; ++l
)
1947 it
->den
[n_common
+l
] = rest_i
[l
];
1948 lex_order_rows(it
->den
);
1950 for (l
= 0; l
< dim
; ++l
)
1951 evalue_add_constant(it
->vertex
[l
], rest_i
[k
-1][l
]);
1955 for (k
= 0; k
<= n_j
; ++k
) {
1956 indicator_term
*it
= new indicator_term(*term
[j
]);
1957 it
->den
.SetDims(n_common
+ k
, dim
);
1958 for (l
= 0; l
< n_common
; ++l
)
1959 it
->den
[l
] = common
[l
];
1960 for (l
= 0; l
< k
; ++l
)
1961 it
->den
[n_common
+l
] = rest_j
[l
];
1962 lex_order_rows(it
->den
);
1964 for (l
= 0; l
< dim
; ++l
)
1965 evalue_add_constant(it
->vertex
[l
], rest_j
[k
-1][l
]);
1968 term
.erase(term
.begin()+j
);
1969 term
.erase(term
.begin()+i
);
1972 void indicator::combine(const indicator_term
*a
, const indicator_term
*b
)
1974 int dim
= a
->den
.NumCols();
1977 mat_ZZ rest_i
; /* factors in a, but not in b */
1978 mat_ZZ rest_j
; /* factors in b, but not in a */
1979 int n_common
= 0, n_i
= 0, n_j
= 0;
1981 common
.SetDims(min(a
->den
.NumRows(), b
->den
.NumRows()), dim
);
1982 rest_i
.SetDims(a
->den
.NumRows(), dim
);
1983 rest_j
.SetDims(b
->den
.NumRows(), dim
);
1986 for (k
= 0, l
= 0; k
< a
->den
.NumRows() && l
< b
->den
.NumRows(); ) {
1987 int s
= lex_cmp(a
->den
[k
], b
->den
[l
]);
1989 common
[n_common
++] = a
->den
[k
];
1993 rest_i
[n_i
++] = a
->den
[k
++];
1995 rest_j
[n_j
++] = b
->den
[l
++];
1997 while (k
< a
->den
.NumRows())
1998 rest_i
[n_i
++] = a
->den
[k
++];
1999 while (l
< b
->den
.NumRows())
2000 rest_j
[n_j
++] = b
->den
[l
++];
2001 common
.SetDims(n_common
, dim
);
2002 rest_i
.SetDims(n_i
, dim
);
2003 rest_j
.SetDims(n_j
, dim
);
2005 assert(order
.eq
[a
].size() > 1);
2006 indicator_term
*prev
;
2009 for (int k
= n_i
-1; k
>= 0; --k
) {
2010 indicator_term
*it
= new indicator_term(*b
);
2011 it
->den
.SetDims(n_common
+ n_j
+ n_i
-k
, dim
);
2012 for (int l
= k
; l
< n_i
; ++l
)
2013 it
->den
[n_common
+n_j
+l
-k
] = rest_i
[l
];
2014 lex_order_rows(it
->den
);
2015 for (int m
= 0; m
< dim
; ++m
)
2016 evalue_add_constant(it
->vertex
[m
], rest_i
[k
][m
]);
2017 it
->sign
= -it
->sign
;
2019 order
.pending
[it
].push_back(prev
);
2020 order
.lt
[it
].push_back(prev
);
2021 order
.inc_pred(prev
);
2024 order
.head
.insert(it
);
2028 indicator_term
*it
= new indicator_term(*b
);
2029 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
2030 for (l
= 0; l
< n_i
; ++l
)
2031 it
->den
[n_common
+n_j
+l
] = rest_i
[l
];
2032 lex_order_rows(it
->den
);
2034 order
.pending
[a
].push_back(prev
);
2035 order
.lt
[a
].push_back(prev
);
2036 order
.inc_pred(prev
);
2037 order
.replace(b
, it
);
2042 for (int k
= n_j
-1; k
>= 0; --k
) {
2043 indicator_term
*it
= new indicator_term(*a
);
2044 it
->den
.SetDims(n_common
+ n_i
+ n_j
-k
, dim
);
2045 for (int l
= k
; l
< n_j
; ++l
)
2046 it
->den
[n_common
+n_i
+l
-k
] = rest_j
[l
];
2047 lex_order_rows(it
->den
);
2048 for (int m
= 0; m
< dim
; ++m
)
2049 evalue_add_constant(it
->vertex
[m
], rest_j
[k
][m
]);
2050 it
->sign
= -it
->sign
;
2052 order
.pending
[it
].push_back(prev
);
2053 order
.lt
[it
].push_back(prev
);
2054 order
.inc_pred(prev
);
2057 order
.head
.insert(it
);
2061 indicator_term
*it
= new indicator_term(*a
);
2062 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
2063 for (l
= 0; l
< n_j
; ++l
)
2064 it
->den
[n_common
+n_i
+l
] = rest_j
[l
];
2065 lex_order_rows(it
->den
);
2067 order
.pending
[a
].push_back(prev
);
2068 order
.lt
[a
].push_back(prev
);
2069 order
.inc_pred(prev
);
2070 order
.replace(a
, it
);
2074 assert(term
.size() == order
.head
.size() + order
.pred
.size());
2077 bool indicator::handle_equal_numerators(const indicator_term
*base
)
2079 for (int i
= 0; i
< order
.eq
[base
].size(); ++i
) {
2080 for (int j
= i
+1; j
< order
.eq
[base
].size(); ++j
) {
2081 if (order
.eq
[base
][i
]->is_opposite(order
.eq
[base
][j
])) {
2082 remove(order
.eq
[base
][j
]);
2083 remove(i
? order
.eq
[base
][i
] : base
);
2088 for (int j
= 1; j
< order
.eq
[base
].size(); ++j
)
2089 if (order
.eq
[base
][j
]->sign
!= base
->sign
) {
2090 combine(base
, order
.eq
[base
][j
]);
2096 void indicator::substitute(evalue
*equation
)
2098 ::substitute(term
, equation
);
2101 void indicator::add_substitution(evalue
*equation
)
2103 for (int i
= 0; i
< substitutions
.size(); ++i
)
2104 if (eequal(substitutions
[i
], equation
))
2106 evalue
*copy
= new evalue();
2107 value_init(copy
->d
);
2108 evalue_copy(copy
, equation
);
2109 substitutions
.push_back(copy
);
2112 void indicator::perform_pending_substitutions()
2114 if (substitutions
.size() == 0)
2117 for (int i
= 0; i
< substitutions
.size(); ++i
) {
2118 substitute(substitutions
[i
]);
2119 free_evalue_refs(substitutions
[i
]);
2120 delete substitutions
[i
];
2122 substitutions
.clear();
2126 static void print_varlist(ostream
& os
, int n
, char **names
)
2130 for (i
= 0; i
< n
; ++i
) {
2138 void max_term::print(ostream
& os
, char **p
, barvinok_options
*options
) const
2141 print_varlist(os
, domain
->dimension(), p
);
2144 for (int i
= 0; i
< max
.size(); ++i
) {
2147 evalue_print(os
, max
[i
], p
);
2151 domain
->print_constraints(os
, p
, options
);
2155 /* T maps the compressed parameters to the original parameters,
2156 * while this max_term is based on the compressed parameters
2157 * and we want get the original parameters back.
2159 void max_term::substitute(Matrix
*T
, barvinok_options
*options
)
2161 assert(domain
->dimension() == T
->NbColumns
-1);
2162 int nexist
= domain
->D
->Dimension
- (T
->NbColumns
-1);
2164 Matrix
*inv
= left_inverse(T
, &Eq
);
2167 value_init(denom
.d
);
2168 value_init(denom
.x
.n
);
2169 value_set_si(denom
.x
.n
, 1);
2170 value_assign(denom
.d
, inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
2173 v
.SetLength(inv
->NbColumns
);
2174 evalue
* subs
[inv
->NbRows
-1];
2175 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
2176 values2zz(inv
->p
[i
], v
, v
.length());
2177 subs
[i
] = multi_monom(v
);
2178 emul(&denom
, subs
[i
]);
2180 free_evalue_refs(&denom
);
2182 domain
->substitute(subs
, inv
, Eq
, options
->MaxRays
);
2185 for (int i
= 0; i
< max
.size(); ++i
) {
2186 evalue_substitute(max
[i
], subs
);
2187 reduce_evalue(max
[i
]);
2190 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
2191 free_evalue_refs(subs
[i
]);
2197 int Last_Non_Zero(Value
*p
, unsigned len
)
2199 for (int i
= len
-1; i
>= 0; --i
)
2200 if (value_notzero_p(p
[i
]))
2205 Vector
*max_term::eval(Value
*val
, unsigned MaxRays
) const
2207 if (!domain
->contains(val
, domain
->dimension()))
2209 Vector
*res
= Vector_Alloc(max
.size());
2210 for (int i
= 0; i
< max
.size(); ++i
) {
2211 compute_evalue(max
[i
], val
, &res
->p
[i
]);
2218 enum sign
{ le
, ge
, lge
} sign
;
2220 split (evalue
*c
, enum sign s
) : constraint(c
), sign(s
) {}
2223 static void split_on(const split
& sp
, EDomain
*D
,
2224 EDomain
**Dlt
, EDomain
**Deq
, EDomain
**Dgt
,
2225 lexmin_options
*options
)
2231 ge_constraint
*ge
= D
->compute_ge_constraint(sp
.constraint
);
2232 if (sp
.sign
== split::lge
|| sp
.sign
== split::ge
)
2233 ED
[2] = EDomain::new_from_ge_constraint(ge
, 1, options
->verify
.barvinok
);
2236 if (sp
.sign
== split::lge
|| sp
.sign
== split::le
)
2237 ED
[0] = EDomain::new_from_ge_constraint(ge
, -1, options
->verify
.barvinok
);
2241 assert(sp
.sign
== split::lge
|| sp
.sign
== split::ge
|| sp
.sign
== split::le
);
2242 ED
[1] = EDomain::new_from_ge_constraint(ge
, 0, options
->verify
.barvinok
);
2246 for (int i
= 0; i
< 3; ++i
) {
2249 if (D
->sample
&& ED
[i
]->contains(D
->sample
->p
, D
->sample
->Size
-1)) {
2250 ED
[i
]->sample
= Vector_Alloc(D
->sample
->Size
);
2251 Vector_Copy(D
->sample
->p
, ED
[i
]->sample
->p
, D
->sample
->Size
);
2252 } else if (emptyQ2(ED
[i
]->D
) ||
2253 (options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2254 !(ED
[i
]->not_empty(options
)))) {
2264 ostream
& operator<< (ostream
& os
, const vector
<int> & v
)
2267 for (int i
= 0; i
< v
.size(); ++i
) {
2276 static bool isTranslation(Matrix
*M
)
2279 if (M
->NbRows
!= M
->NbColumns
)
2282 for (i
= 0;i
< M
->NbRows
; i
++)
2283 for (j
= 0; j
< M
->NbColumns
-1; j
++)
2285 if(value_notone_p(M
->p
[i
][j
]))
2288 if(value_notzero_p(M
->p
[i
][j
]))
2291 return value_one_p(M
->p
[M
->NbRows
-1][M
->NbColumns
-1]);
2294 static Matrix
*compress_parameters(Polyhedron
**P
, Polyhedron
**C
,
2295 unsigned nparam
, unsigned MaxRays
)
2299 /* compress_parms doesn't like equalities that only involve parameters */
2300 for (int i
= 0; i
< (*P
)->NbEq
; ++i
)
2301 assert(First_Non_Zero((*P
)->Constraint
[i
]+1, (*P
)->Dimension
-nparam
) != -1);
2303 M
= Matrix_Alloc((*P
)->NbEq
, (*P
)->Dimension
+2);
2304 Vector_Copy((*P
)->Constraint
[0], M
->p
[0], (*P
)->NbEq
* ((*P
)->Dimension
+2));
2305 CP
= compress_parms(M
, nparam
);
2308 if (isTranslation(CP
)) {
2313 T
= align_matrix(CP
, (*P
)->Dimension
+1);
2314 *P
= Polyhedron_Preimage(*P
, T
, MaxRays
);
2317 *C
= Polyhedron_Preimage(*C
, CP
, MaxRays
);
2322 void construct_rational_vertices(Param_Polyhedron
*PP
, Matrix
*T
, unsigned dim
,
2323 int nparam
, vector
<indicator_term
*>& vertices
)
2332 v
.SetLength(nparam
+1);
2335 value_init(factor
.d
);
2336 value_init(factor
.x
.n
);
2337 value_set_si(factor
.x
.n
, 1);
2338 value_set_si(factor
.d
, 1);
2340 for (i
= 0, PV
= PP
->V
; PV
; ++i
, PV
= PV
->next
) {
2341 indicator_term
*term
= new indicator_term(dim
, i
);
2342 vertices
.push_back(term
);
2343 Matrix
*M
= Matrix_Alloc(PV
->Vertex
->NbRows
+nparam
+1, nparam
+1);
2344 value_set_si(lcm
, 1);
2345 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
)
2346 value_lcm(lcm
, lcm
, PV
->Vertex
->p
[j
][nparam
+1]);
2347 value_assign(M
->p
[M
->NbRows
-1][M
->NbColumns
-1], lcm
);
2348 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
) {
2349 value_division(tmp
, lcm
, PV
->Vertex
->p
[j
][nparam
+1]);
2350 Vector_Scale(PV
->Vertex
->p
[j
], M
->p
[j
], tmp
, nparam
+1);
2352 for (int j
= 0; j
< nparam
; ++j
)
2353 value_assign(M
->p
[PV
->Vertex
->NbRows
+j
][j
], lcm
);
2355 Matrix
*M2
= Matrix_Alloc(T
->NbRows
, M
->NbColumns
);
2356 Matrix_Product(T
, M
, M2
);
2360 for (int j
= 0; j
< dim
; ++j
) {
2361 values2zz(M
->p
[j
], v
, nparam
+1);
2362 term
->vertex
[j
] = multi_monom(v
);
2363 value_assign(factor
.d
, lcm
);
2364 emul(&factor
, term
->vertex
[j
]);
2368 assert(i
== PP
->nbV
);
2369 free_evalue_refs(&factor
);
2374 static vector
<max_term
*> lexmin(indicator
& ind
, unsigned nparam
,
2377 vector
<max_term
*> maxima
;
2378 std::set
<const indicator_term
*>::iterator i
;
2379 vector
<int> best_score
;
2380 vector
<int> second_score
;
2381 vector
<int> neg_score
;
2384 ind
.perform_pending_substitutions();
2385 const indicator_term
*best
= NULL
, *second
= NULL
, *neg
= NULL
,
2386 *neg_eq
= NULL
, *neg_le
= NULL
;
2387 for (i
= ind
.order
.head
.begin(); i
!= ind
.order
.head
.end(); ++i
) {
2389 const indicator_term
*term
= *i
;
2390 if (term
->sign
== 0) {
2391 ind
.expand_rational_vertex(term
);
2395 if (ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
2397 if (ind
.order
.eq
[term
].size() <= 1)
2399 for (j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
2400 if (ind
.order
.pred
.find(ind
.order
.eq
[term
][j
]) !=
2401 ind
.order
.pred
.end())
2403 if (j
< ind
.order
.eq
[term
].size())
2405 score
.push_back(ind
.order
.eq
[term
].size());
2408 if (ind
.order
.le
.find(term
) != ind
.order
.le
.end())
2409 score
.push_back(ind
.order
.le
[term
].size());
2412 if (ind
.order
.lt
.find(term
) != ind
.order
.lt
.end())
2413 score
.push_back(-ind
.order
.lt
[term
].size());
2417 if (term
->sign
> 0) {
2418 if (!best
|| score
< best_score
) {
2420 second_score
= best_score
;
2423 } else if (!second
|| score
< second_score
) {
2425 second_score
= score
;
2428 if (!neg_eq
&& ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
2429 for (int j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
2430 if (ind
.order
.eq
[term
][j
]->sign
!= term
->sign
) {
2435 if (!neg_le
&& ind
.order
.le
.find(term
) != ind
.order
.le
.end())
2437 if (!neg
|| score
< neg_score
) {
2443 if (i
!= ind
.order
.head
.end())
2446 if (!best
&& neg_eq
) {
2447 assert(ind
.order
.eq
[neg_eq
].size() != 0);
2448 bool handled
= ind
.handle_equal_numerators(neg_eq
);
2453 if (!best
&& neg_le
) {
2454 /* The smallest term is negative and <= some positive term */
2460 /* apparently there can be negative initial term on empty domains */
2461 if (ind
.options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2462 ind
.options
->verify
.barvinok
->lp_solver
== BV_LP_POLYLIB
)
2467 if (!second
&& !neg
) {
2468 const indicator_term
*rat
= NULL
;
2470 if (ind
.order
.le
.find(best
) == ind
.order
.le
.end()) {
2471 if (ind
.order
.eq
.find(best
) != ind
.order
.eq
.end()) {
2472 bool handled
= ind
.handle_equal_numerators(best
);
2473 if (ind
.options
->emptiness_check
!=
2474 BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2475 ind
.options
->verify
.barvinok
->lp_solver
== BV_LP_POLYLIB
)
2477 /* If !handled then the leading coefficient is bigger than one;
2478 * must be an empty domain
2485 maxima
.push_back(ind
.create_max_term(best
));
2488 for (int j
= 0; j
< ind
.order
.le
[best
].size(); ++j
) {
2489 if (ind
.order
.le
[best
][j
]->sign
== 0) {
2490 if (!rat
&& ind
.order
.pred
[ind
.order
.le
[best
][j
]] == 1)
2491 rat
= ind
.order
.le
[best
][j
];
2492 } else if (ind
.order
.le
[best
][j
]->sign
> 0) {
2493 second
= ind
.order
.le
[best
][j
];
2496 neg
= ind
.order
.le
[best
][j
];
2499 if (!second
&& !neg
) {
2501 ind
.order
.unset_le(best
, rat
);
2502 ind
.expand_rational_vertex(rat
);
2509 ind
.order
.unset_le(best
, second
);
2515 unsigned dim
= best
->den
.NumCols();
2518 for (int k
= 0; k
< dim
; ++k
) {
2519 diff
= ediff(best
->vertex
[k
], second
->vertex
[k
]);
2520 sign
= evalue_sign(diff
, ind
.D
, ind
.options
->verify
.barvinok
);
2522 /* neg can never be smaller than best, unless it may still cancel.
2523 * This can happen if positive terms have been determined to
2524 * be equal or less than or equal to some negative term.
2526 if (second
== neg
&& !neg_eq
&& !neg_le
) {
2527 if (sign
== order_ge
)
2529 if (sign
== order_unknown
)
2533 if (sign
!= order_eq
)
2535 if (!EVALUE_IS_ZERO(*diff
)) {
2536 ind
.add_substitution(diff
);
2537 ind
.perform_pending_substitutions();
2540 if (sign
== order_eq
) {
2541 ind
.order
.set_equal(best
, second
);
2544 if (sign
== order_lt
) {
2545 ind
.order
.lt
[best
].push_back(second
);
2546 ind
.order
.inc_pred(second
);
2549 if (sign
== order_gt
) {
2550 ind
.order
.lt
[second
].push_back(best
);
2551 ind
.order
.inc_pred(best
);
2555 split
sp(diff
, sign
== order_le
? split::le
:
2556 sign
== order_ge
? split::ge
: split::lge
);
2558 EDomain
*Dlt
, *Deq
, *Dgt
;
2559 split_on(sp
, ind
.D
, &Dlt
, &Deq
, &Dgt
, ind
.options
);
2560 if (ind
.options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
)
2561 assert(Dlt
|| Deq
|| Dgt
);
2562 else if (!(Dlt
|| Deq
|| Dgt
))
2563 /* Must have been empty all along */
2566 if (Deq
&& (Dlt
|| Dgt
)) {
2567 int locsize
= loc
.size();
2569 indicator
indeq(ind
, Deq
);
2571 indeq
.add_substitution(diff
);
2572 indeq
.perform_pending_substitutions();
2573 vector
<max_term
*> maxeq
= lexmin(indeq
, nparam
, loc
);
2574 maxima
.insert(maxima
.end(), maxeq
.begin(), maxeq
.end());
2575 loc
.resize(locsize
);
2578 int locsize
= loc
.size();
2580 indicator
indgt(ind
, Dgt
);
2582 /* we don't know the new location of these terms in indgt */
2584 indgt.order.lt[second].push_back(best);
2585 indgt.order.inc_pred(best);
2587 vector
<max_term
*> maxgt
= lexmin(indgt
, nparam
, loc
);
2588 maxima
.insert(maxima
.end(), maxgt
.begin(), maxgt
.end());
2589 loc
.resize(locsize
);
2594 ind
.set_domain(Deq
);
2595 ind
.add_substitution(diff
);
2596 ind
.perform_pending_substitutions();
2600 ind
.set_domain(Dlt
);
2601 ind
.order
.lt
[best
].push_back(second
);
2602 ind
.order
.inc_pred(second
);
2606 ind
.set_domain(Dgt
);
2607 ind
.order
.lt
[second
].push_back(best
);
2608 ind
.order
.inc_pred(best
);
2615 static void lexmin_base(Polyhedron
*P
, Polyhedron
*C
,
2616 Matrix
*CP
, Matrix
*T
,
2617 vector
<max_term
*>& all_max
,
2618 lexmin_options
*options
)
2620 unsigned nparam
= C
->Dimension
;
2621 Param_Polyhedron
*PP
= NULL
;
2623 PP
= Polyhedron2Param_Polyhedron(P
, C
, options
->verify
.barvinok
);
2625 unsigned dim
= P
->Dimension
- nparam
;
2629 indicator_constructor
ic(P
, dim
, PP
, T
);
2631 vector
<indicator_term
*> all_vertices
;
2632 construct_rational_vertices(PP
, T
, T
? T
->NbRows
-nparam
-1 : dim
,
2633 nparam
, all_vertices
);
2635 Polyhedron
*TC
= true_context(P
, C
, options
->verify
.barvinok
->MaxRays
);
2636 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
->verify
.barvinok
, i
, D
, rVD
)
2639 EDomain
*epVD
= new EDomain(rVD
);
2640 indicator
ind(ic
, D
, epVD
, options
);
2642 FORALL_PVertex_in_ParamPolyhedron(V
,D
,PP
) // _i is internal counter
2643 ind
.add(all_vertices
[_i
]);
2644 END_FORALL_PVertex_in_ParamPolyhedron
;
2646 ind
.remove_initial_rational_vertices();
2649 vector
<max_term
*> maxima
= lexmin(ind
, nparam
, loc
);
2651 for (int j
= 0; j
< maxima
.size(); ++j
)
2652 maxima
[j
]->substitute(CP
, options
->verify
.barvinok
);
2653 all_max
.insert(all_max
.end(), maxima
.begin(), maxima
.end());
2656 END_FORALL_REDUCED_DOMAIN
2657 Polyhedron_Free(TC
);
2658 for (int i
= 0; i
< all_vertices
.size(); ++i
)
2659 delete all_vertices
[i
];
2660 Param_Polyhedron_Free(PP
);
2663 static vector
<max_term
*> lexmin(Polyhedron
*P
, Polyhedron
*C
,
2664 lexmin_options
*options
)
2666 unsigned nparam
= C
->Dimension
;
2667 Matrix
*T
= NULL
, *CP
= NULL
;
2668 Polyhedron
*Porig
= P
;
2669 Polyhedron
*Corig
= C
;
2670 vector
<max_term
*> all_max
;
2675 POL_ENSURE_VERTICES(P
);
2680 assert(P
->NbBid
== 0);
2683 remove_all_equalities(&P
, &C
, &CP
, &T
, nparam
,
2684 options
->verify
.barvinok
->MaxRays
);
2686 lexmin_base(P
, C
, CP
, T
, all_max
, options
);
2700 static void verify_results(Polyhedron
*A
, Polyhedron
*C
,
2701 vector
<max_term
*>& maxima
,
2702 struct verify_options
*options
);
2704 int main(int argc
, char **argv
)
2709 char **iter_names
, **param_names
;
2710 int print_solution
= 1;
2711 struct lexmin_options options
;
2712 static struct argp_child argp_children
[] = {
2713 { &barvinok_argp
, 0, 0, 0 },
2714 { &verify_argp
, 0, "verification", 1 },
2717 static struct argp argp
= { argp_options
, parse_opt
, 0, 0, argp_children
};
2718 struct barvinok_options
*bv_options
;
2720 bv_options
= barvinok_options_new_with_defaults();
2721 bv_options
->lookup_table
= 0;
2723 options
.verify
.barvinok
= bv_options
;
2724 set_program_name(argv
[0]);
2725 argp_parse(&argp
, argc
, argv
, 0, 0, &options
);
2728 C
= Constraints2Polyhedron(MA
, bv_options
->MaxRays
);
2730 fscanf(stdin
, " %d", &bignum
);
2731 assert(bignum
== -1);
2733 A
= Constraints2Polyhedron(MA
, bv_options
->MaxRays
);
2736 verify_options_set_range(&options
.verify
, A
->Dimension
);
2738 if (options
.verify
.verify
)
2741 iter_names
= util_generate_names(A
->Dimension
- C
->Dimension
, "i");
2742 param_names
= util_generate_names(C
->Dimension
, "p");
2743 if (print_solution
) {
2744 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
2745 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
2747 vector
<max_term
*> maxima
= lexmin(A
, C
, &options
);
2749 for (int i
= 0; i
< maxima
.size(); ++i
)
2750 maxima
[i
]->print(cout
, param_names
, options
.verify
.barvinok
);
2752 if (options
.verify
.verify
)
2753 verify_results(A
, C
, maxima
, &options
.verify
);
2755 for (int i
= 0; i
< maxima
.size(); ++i
)
2758 util_free_names(A
->Dimension
- C
->Dimension
, iter_names
);
2759 util_free_names(C
->Dimension
, param_names
);
2763 barvinok_options_free(bv_options
);
2768 static bool lexmin(int pos
, Polyhedron
*P
, Value
*context
)
2777 value_init(LB
); value_init(UB
); value_init(k
);
2780 lu_flags
= lower_upper_bounds(pos
,P
,context
,&LB
,&UB
);
2781 assert(!(lu_flags
& LB_INFINITY
));
2783 value_set_si(context
[pos
],0);
2784 if (!lu_flags
&& value_lt(UB
,LB
)) {
2785 value_clear(LB
); value_clear(UB
); value_clear(k
);
2789 value_assign(context
[pos
], LB
);
2790 value_clear(LB
); value_clear(UB
); value_clear(k
);
2793 for (value_assign(k
,LB
); lu_flags
|| value_le(k
,UB
); value_increment(k
,k
)) {
2794 value_assign(context
[pos
],k
);
2795 if ((found
= lexmin(pos
+1, P
->next
, context
)))
2799 value_set_si(context
[pos
],0);
2800 value_clear(LB
); value_clear(UB
); value_clear(k
);
2804 static void print_list(FILE *out
, Value
*z
, const char* brackets
, int len
)
2806 fprintf(out
, "%c", brackets
[0]);
2807 value_print(out
, VALUE_FMT
,z
[0]);
2808 for (int k
= 1; k
< len
; ++k
) {
2810 value_print(out
, VALUE_FMT
,z
[k
]);
2812 fprintf(out
, "%c", brackets
[1]);
2815 static int check_poly_lexmin(const struct check_poly_data
*data
,
2816 int nparam
, Value
*z
,
2817 const struct verify_options
*options
);
2819 struct check_poly_lexmin_data
: public check_poly_data
{
2821 vector
<max_term
*>& maxima
;
2823 check_poly_lexmin_data(Polyhedron
*S
, Value
*z
,
2824 vector
<max_term
*>& maxima
) : S(S
), maxima(maxima
) {
2826 this->check
= check_poly_lexmin
;
2830 static int check_poly_lexmin(const struct check_poly_data
*data
,
2831 int nparam
, Value
*z
,
2832 const struct verify_options
*options
)
2834 const check_poly_lexmin_data
*lexmin_data
;
2835 lexmin_data
= static_cast<const check_poly_lexmin_data
*>(data
);
2836 Polyhedron
*S
= lexmin_data
->S
;
2837 vector
<max_term
*>& maxima
= lexmin_data
->maxima
;
2839 bool found
= lexmin(1, S
, lexmin_data
->z
);
2841 if (options
->print_all
) {
2843 print_list(stdout
, z
, "()", nparam
);
2846 print_list(stdout
, lexmin_data
->z
+1, "[]", S
->Dimension
-nparam
);
2851 for (int i
= 0; i
< maxima
.size(); ++i
)
2852 if ((min
= maxima
[i
]->eval(z
, options
->barvinok
->MaxRays
)))
2855 int ok
= !(found
^ !!min
);
2857 for (int i
= 0; i
< S
->Dimension
-nparam
; ++i
)
2858 if (value_ne(lexmin_data
->z
[1+i
], min
->p
[i
])) {
2865 fprintf(stderr
, "Error !\n");
2866 fprintf(stderr
, "lexmin");
2867 print_list(stderr
, z
, "()", nparam
);
2868 fprintf(stderr
, " should be ");
2870 print_list(stderr
, lexmin_data
->z
+1, "[]", S
->Dimension
-nparam
);
2871 fprintf(stderr
, " while digging gives ");
2873 print_list(stderr
, min
->p
, "[]", S
->Dimension
-nparam
);
2874 fprintf(stderr
, ".\n");
2876 } else if (options
->print_all
)
2881 for (k
= 1; k
<= S
->Dimension
-nparam
; ++k
)
2882 value_set_si(lexmin_data
->z
[k
], 0);
2885 void verify_results(Polyhedron
*A
, Polyhedron
*C
, vector
<max_term
*>& maxima
,
2886 struct verify_options
*options
)
2889 unsigned nparam
= C
->Dimension
;
2890 unsigned MaxRays
= options
->barvinok
->MaxRays
;
2895 CS
= check_poly_context_scan(A
, &C
, nparam
, options
);
2897 p
= Vector_Alloc(A
->Dimension
+2);
2898 value_set_si(p
->p
[A
->Dimension
+1], 1);
2900 S
= Polyhedron_Scan(A
, C
, MaxRays
& POL_NO_DUAL
? 0 : MaxRays
);
2902 check_poly_init(C
, options
);
2905 if (!(CS
&& emptyQ2(CS
))) {
2906 check_poly_lexmin_data
data(S
, p
->p
, maxima
);
2907 check_poly(CS
, &data
, nparam
, 0, p
->p
+S
->Dimension
-nparam
+1, options
);
2912 if (!options
->print_all
)