4 #include <barvinok/evalue.h>
5 #include <barvinok/util.h>
6 #include <barvinok/barvinok.h>
10 #include "verif_ehrhart.h"
11 #include "verify_series.h"
12 #include "remove_equalities.h"
13 #include "evalue_convert.h"
14 #include "conversion.h"
15 #include "skewed_genfun.h"
17 #undef CS /* for Solaris 10 */
22 /* The input of this example program is the same as that of testehrhart
23 * in the PolyLib distribution, i.e., a polytope in combined
24 * data and parameter space, a context polytope in parameter space
25 * and (optionally) the names of the parameters.
26 * Both polytopes are in PolyLib notation.
29 struct argp_option argp_options
[] = {
31 { "series", 's', 0, 0, "compute rational generating function" },
32 { "explicit", 'e', 0, 0, "convert rgf to psp" },
40 struct verify_options verify
;
41 struct convert_options convert
;
44 static error_t
parse_opt(int key
, char *arg
, struct argp_state
*state
)
46 struct arguments
*options
= (struct arguments
*) state
->input
;
50 state
->child_inputs
[0] = options
->verify
.barvinok
;
51 state
->child_inputs
[1] = &options
->verify
;
52 state
->child_inputs
[2] = &options
->convert
;
55 options
->function
= 0;
61 options
->function
= 1;
67 return ARGP_ERR_UNKNOWN
;
72 static int verify(Polyhedron
*P
, Polyhedron
*C
, evalue
*EP
, skewed_gen_fun
*gf
,
79 CS
= check_poly_context_scan(P
, &C
, C
->Dimension
, &options
->verify
);
81 p
= Vector_Alloc(P
->Dimension
+2);
82 value_set_si(p
->p
[P
->Dimension
+1], 1);
84 /* S = scanning list of polyhedra */
85 S
= Polyhedron_Scan(P
, C
, options
->verify
.barvinok
->MaxRays
);
87 check_poly_init(C
, &options
->verify
);
89 /******* CHECK NOW *********/
91 if (!options
->series
|| options
->function
) {
92 if (!check_poly_EP(S
, CS
, EP
, 0, C
->Dimension
, 0, p
->p
,
96 if (!check_poly_gf(S
, CS
, gf
, 0, C
->Dimension
, 0, p
->p
,
104 fprintf(stderr
,"Check failed !\n");
106 if (!options
->verify
.print_all
)
118 /* frees M and Minv */
119 static void apply_transformation(Polyhedron
**P
, Polyhedron
**C
,
120 bool free_P
, bool free_C
,
121 Matrix
*M
, Matrix
*Minv
, Matrix
**inv
,
122 barvinok_options
*options
)
127 M2
= align_matrix(M
, (*P
)->Dimension
+ 1);
129 *P
= Polyhedron_Preimage(*P
, M2
, options
->MaxRays
);
135 *C
= Polyhedron_Preimage(*C
, M
, options
->MaxRays
);
143 *inv
= Matrix_Alloc(Minv
->NbRows
, T
->NbColumns
);
144 Matrix_Product(Minv
, T
, *inv
);
151 /* Since we have "compressed" the parameters (in case there were
152 * any equalities), the result is independent of the coordinates in the
153 * coordinate subspace spanned by the lines. We can therefore assume
154 * these coordinates are zero and compute the inverse image of the map
155 * from a lower dimensional space that adds zeros in the appropriate
158 static void remove_lines(Polyhedron
*C
, Matrix
**M
, Matrix
**Minv
)
160 Matrix
*L
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
161 for (int r
= 0; r
< C
->NbBid
; ++r
)
162 Vector_Copy(C
->Ray
[r
]+1, L
->p
[r
], C
->Dimension
);
163 unimodular_complete(L
, C
->NbBid
);
164 assert(value_one_p(L
->p
[C
->Dimension
][C
->Dimension
]));
165 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
166 Matrix_Transposition(L
);
167 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
169 *M
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
-C
->NbBid
+1);
170 for (int i
= 0; i
< C
->Dimension
+1; ++i
)
171 Vector_Copy(L
->p
[i
]+C
->NbBid
, (*M
)->p
[i
], C
->Dimension
-C
->NbBid
+1);
173 Matrix
*Linv
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
174 int ok
= Matrix_Inverse(L
, Linv
);
178 *Minv
= Matrix_Alloc(C
->Dimension
-C
->NbBid
+1, C
->Dimension
+1);
179 for (int i
= C
->NbBid
; i
< C
->Dimension
+1; ++i
)
180 Vector_AntiScale(Linv
->p
[i
], (*Minv
)->p
[i
-C
->NbBid
],
181 Linv
->p
[C
->Dimension
][C
->Dimension
], C
->Dimension
+1);
185 static skewed_gen_fun
*series(Polyhedron
*P
, Polyhedron
* C
,
186 barvinok_options
*options
)
195 /* Compute true context */
196 C1
= Polyhedron_Project(P
, C
->Dimension
);
197 C2
= DomainIntersection(C
, C1
, options
->MaxRays
);
200 POL_ENSURE_VERTICES(C2
);
201 if (C2
->NbBid
!= 0) {
203 Matrix
*M
, *Minv
, *M2
;
205 if (C2
->NbEq
|| P
->NbEq
) {
206 /* We remove all equalities to be sure all lines are unit vectors */
208 remove_all_equalities(&PT
, &CT
, &CP
, NULL
, C2
->Dimension
,
215 inv
= left_inverse(CP
, &eq
);
221 div
= Matrix_Alloc(inv
->NbRows
-1, inv
->NbColumns
+1);
222 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
223 Vector_Gcd(inv
->p
[i
], inv
->NbColumns
, &tmp
);
224 if (mpz_divisible_p(tmp
,
225 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]))
227 Vector_Copy(inv
->p
[i
], div
->p
[d
], inv
->NbColumns
);
228 value_assign(div
->p
[d
][inv
->NbColumns
],
229 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
241 POL_ENSURE_VERTICES(C2
);
245 remove_lines(C2
, &M
, &Minv
);
246 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Minv
, &inv
,
250 POL_ENSURE_VERTICES(C2
);
251 if (!Polyhedron_has_revlex_positive_rays(C2
, C2
->Dimension
)) {
255 Constraints
= Matrix_Alloc(C2
->NbConstraints
, C2
->Dimension
+1);
256 for (int i
= 0; i
< C2
->NbConstraints
; ++i
)
257 Vector_Copy(C2
->Constraint
[i
]+1, Constraints
->p
[i
], C2
->Dimension
);
258 left_hermite(Constraints
, &H
, &Q
, &U
);
259 Matrix_Free(Constraints
);
261 for (int i
= 0; i
< C2
->Dimension
/2; ++i
)
262 Vector_Exchange(Q
->p
[i
], Q
->p
[C2
->Dimension
-1-i
], C2
->Dimension
);
265 Matrix
*M
= Matrix_Alloc(C2
->Dimension
+1, C2
->Dimension
+1);
267 int ok
= Matrix_Inverse(U
, M
);
271 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Q
, &inv
, options
);
273 gf
= barvinok_series_with_options(PT
, C2
, options
);
277 return new skewed_gen_fun(gf
, inv
, eq
, div
);
280 int main(int argc
, char **argv
)
285 skewed_gen_fun
*gf
= NULL
;
286 const char **param_name
;
287 int print_solution
= 1;
289 struct arguments options
;
290 static struct argp_child argp_children
[] = {
291 { &barvinok_argp
, 0, 0, 0 },
292 { &verify_argp
, 0, "verification", BV_GRP_LAST
+1 },
293 { &convert_argp
, 0, "output conversion", BV_GRP_LAST
+2 },
296 static struct argp argp
= { argp_options
, parse_opt
, 0, 0, argp_children
};
297 struct barvinok_options
*bv_options
= barvinok_options_new_with_defaults();
299 options
.verify
.barvinok
= bv_options
;
300 set_program_name(argv
[0]);
301 argp_parse(&argp
, argc
, argv
, 0, 0, &options
);
305 A
= Constraints2Polyhedron(M
, bv_options
->MaxRays
);
309 C
= Constraints2Polyhedron(M
, bv_options
->MaxRays
);
311 param_name
= Read_ParamNames(stdin
, C
->Dimension
);
313 if (options
.verify
.verify
) {
314 verify_options_set_range(&options
.verify
, A
->Dimension
);
315 if (!bv_options
->verbose
)
319 if (print_solution
&& bv_options
->verbose
) {
320 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
321 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
324 if (options
.series
) {
325 gf
= series(A
, C
, bv_options
);
326 if (print_solution
) {
327 gf
->print(cout
, C
->Dimension
, param_name
);
330 if (options
.function
) {
333 print_evalue(stdout
, EP
, param_name
);
336 EP
= barvinok_enumerate_with_options(A
, C
, bv_options
);
338 if (evalue_convert(EP
, &options
.convert
, bv_options
->verbose
,
339 C
->Dimension
, param_name
))
342 printf("\nSize: %d\n", evalue_size(EP
));
344 print_evalue(stdout
, EP
, param_name
);
347 if (options
.verify
.verify
) {
348 options
.verify
.params
= param_name
;
349 result
= verify(A
, C
, EP
, gf
, &options
);
357 if (options
.verify
.barvinok
->print_stats
)
358 barvinok_stats_print(options
.verify
.barvinok
->stats
, stdout
);
360 Free_ParamNames(param_name
, C
->Dimension
);
363 barvinok_options_free(bv_options
);