5 #include <isl_set_polylib.h>
6 #include <barvinok/evalue.h>
7 #include <barvinok/util.h>
8 #include <barvinok/barvinok.h>
9 #include "barvinok_enumerate_options.h"
11 #include "verif_ehrhart.h"
12 #include "verify_series.h"
13 #include "remove_equalities.h"
14 #include "evalue_convert.h"
15 #include "conversion.h"
16 #include "skewed_genfun.h"
18 #undef CS /* for Solaris 10 */
23 /* The input of this example program is the same as that of testehrhart
24 * in the PolyLib distribution, i.e., a polytope in combined
25 * data and parameter space, a context polytope in parameter space
26 * and (optionally) the names of the parameters.
27 * Both polytopes are in PolyLib notation.
30 struct verify_point_enum
{
31 struct verify_point_data vpd
;
33 isl_pw_qpolynomial
*pwqp
;
36 static int verify_point(__isl_take isl_point
*pnt
, void *user
)
38 struct verify_point_enum
*vpe
= (struct verify_point_enum
*) user
;
43 int pa
= vpe
->vpd
.options
->barvinok
->approx
->approximation
;
46 FILE *out
= vpe
->vpd
.options
->print_all
? stdout
: stderr
;
50 set
= isl_set_copy(vpe
->set
);
51 nparam
= isl_set_dim(set
, isl_dim_param
);
52 for (i
= 0; i
< nparam
; ++i
) {
53 v
= isl_point_get_coordinate_val(pnt
, isl_dim_param
, i
);
54 set
= isl_set_fix_val(set
, isl_dim_param
, i
, v
);
57 v
= isl_set_count_val(set
);
59 n
= isl_pw_qpolynomial_eval(isl_pw_qpolynomial_copy(vpe
->pwqp
),
62 if (pa
== BV_APPROX_SIGN_LOWER
)
64 else if (pa
== BV_APPROX_SIGN_UPPER
)
69 if (pa
== BV_APPROX_SIGN_APPROX
)
70 /* just accept everything */
72 else if (pa
== BV_APPROX_SIGN_LOWER
)
73 ok
= isl_val_le(n
, v
);
74 else if (pa
== BV_APPROX_SIGN_UPPER
)
75 ok
= isl_val_ge(n
, v
);
77 ok
= isl_val_eq(n
, v
);
79 if (vpe
->vpd
.options
->print_all
|| !ok
) {
80 isl_ctx
*ctx
= isl_point_get_ctx(pnt
);
82 p
= isl_printer_to_file(ctx
, out
);
83 p
= isl_printer_print_str(p
, "EP(");
84 for (i
= 0; i
< nparam
; ++i
) {
86 p
= isl_printer_print_str(p
, ", ");
87 t
= isl_point_get_coordinate_val(pnt
, isl_dim_param
, i
);
88 p
= isl_printer_print_val(p
, t
);
91 p
= isl_printer_print_str(p
, ") = ");
92 p
= isl_printer_print_val(p
, n
);
93 p
= isl_printer_print_str(p
, ", count = ");
94 p
= isl_printer_print_val(p
, v
);
96 p
= isl_printer_print_str(p
, ". OK");
98 p
= isl_printer_print_str(p
, ". NOT OK");
99 p
= isl_printer_end_line(p
);
101 } else if ((vpe
->vpd
.n
% vpe
->vpd
.s
) == 0) {
118 if (vpe
->vpd
.options
->continue_on_error
)
121 return (vpe
->vpd
.n
>= 1 && ok
) ? 0 : -1;
124 static int verify_isl(Polyhedron
*P
, Polyhedron
*C
,
125 evalue
*EP
, const struct verify_options
*options
)
127 struct verify_point_enum vpe
= { { options
} };
129 isl_ctx
*ctx
= isl_ctx_alloc();
135 dim
= isl_space_set_alloc(ctx
, C
->Dimension
, P
->Dimension
- C
->Dimension
);
136 for (i
= 0; i
< C
->Dimension
; ++i
)
137 dim
= isl_space_set_dim_name(dim
, isl_dim_param
, i
, options
->params
[i
]);
138 set
= isl_set_new_from_polylib(P
, isl_space_copy(dim
));
139 dim
= isl_space_params(dim
);
140 set_C
= isl_set_new_from_polylib(C
, dim
);
141 set_C
= isl_set_intersect_params(isl_set_copy(set
), set_C
);
142 set_C
= isl_set_params(set_C
);
144 set_C
= verify_context_set_bounds(set_C
, options
);
146 r
= verify_point_data_init(&vpe
.vpd
, set_C
);
149 vpe
.pwqp
= isl_pw_qpolynomial_from_evalue(isl_set_get_space(set_C
), EP
);
151 isl_set_foreach_point(set_C
, verify_point
, &vpe
);
155 isl_pw_qpolynomial_free(vpe
.pwqp
);
161 verify_point_data_fini(&vpe
.vpd
);
166 static int verify(Polyhedron
*P
, Polyhedron
*C
, evalue
*EP
, skewed_gen_fun
*gf
,
167 struct enumerate_options
*options
)
173 if (!options
->series
|| options
->function
)
174 return verify_isl(P
, C
, EP
, options
->verify
);
176 CS
= check_poly_context_scan(P
, &C
, C
->Dimension
, options
->verify
);
178 p
= Vector_Alloc(P
->Dimension
+2);
179 value_set_si(p
->p
[P
->Dimension
+1], 1);
181 /* S = scanning list of polyhedra */
182 S
= Polyhedron_Scan(P
, C
, options
->verify
->barvinok
->MaxRays
);
184 check_poly_init(C
, options
->verify
);
186 /******* CHECK NOW *********/
188 if (!options
->series
|| options
->function
) {
189 if (!check_poly_EP(S
, CS
, EP
, 0, C
->Dimension
, 0, p
->p
,
193 if (!check_poly_gf(S
, CS
, gf
, 0, C
->Dimension
, 0, p
->p
,
201 fprintf(stderr
,"Check failed !\n");
203 if (!options
->verify
->print_all
)
215 /* frees M and Minv */
216 static void apply_transformation(Polyhedron
**P
, Polyhedron
**C
,
217 bool free_P
, bool free_C
,
218 Matrix
*M
, Matrix
*Minv
, Matrix
**inv
,
219 barvinok_options
*options
)
224 M2
= align_matrix(M
, (*P
)->Dimension
+ 1);
226 *P
= Polyhedron_Preimage(*P
, M2
, options
->MaxRays
);
232 *C
= Polyhedron_Preimage(*C
, M
, options
->MaxRays
);
240 *inv
= Matrix_Alloc(Minv
->NbRows
, T
->NbColumns
);
241 Matrix_Product(Minv
, T
, *inv
);
248 /* Since we have "compressed" the parameters (in case there were
249 * any equalities), the result is independent of the coordinates in the
250 * coordinate subspace spanned by the lines. We can therefore assume
251 * these coordinates are zero and compute the inverse image of the map
252 * from a lower dimensional space that adds zeros in the appropriate
255 static void remove_lines(Polyhedron
*C
, Matrix
**M
, Matrix
**Minv
)
257 Matrix
*L
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
258 for (int r
= 0; r
< C
->NbBid
; ++r
)
259 Vector_Copy(C
->Ray
[r
]+1, L
->p
[r
], C
->Dimension
);
260 unimodular_complete(L
, C
->NbBid
);
261 assert(value_one_p(L
->p
[C
->Dimension
][C
->Dimension
]));
262 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
263 Matrix_Transposition(L
);
264 assert(First_Non_Zero(L
->p
[C
->Dimension
], C
->Dimension
) == -1);
266 *M
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
-C
->NbBid
+1);
267 for (int i
= 0; i
< C
->Dimension
+1; ++i
)
268 Vector_Copy(L
->p
[i
]+C
->NbBid
, (*M
)->p
[i
], C
->Dimension
-C
->NbBid
+1);
270 Matrix
*Linv
= Matrix_Alloc(C
->Dimension
+1, C
->Dimension
+1);
271 int ok
= Matrix_Inverse(L
, Linv
);
275 *Minv
= Matrix_Alloc(C
->Dimension
-C
->NbBid
+1, C
->Dimension
+1);
276 for (int i
= C
->NbBid
; i
< C
->Dimension
+1; ++i
)
277 Vector_AntiScale(Linv
->p
[i
], (*Minv
)->p
[i
-C
->NbBid
],
278 Linv
->p
[C
->Dimension
][C
->Dimension
], C
->Dimension
+1);
282 static skewed_gen_fun
*series(Polyhedron
*P
, Polyhedron
* C
,
283 barvinok_options
*options
)
292 /* Compute true context */
293 C1
= Polyhedron_Project(P
, C
->Dimension
);
294 C2
= DomainIntersection(C
, C1
, options
->MaxRays
);
297 POL_ENSURE_VERTICES(C2
);
298 if (C2
->NbBid
!= 0) {
300 Matrix
*M
, *Minv
, *M2
;
302 if (C2
->NbEq
|| P
->NbEq
) {
303 /* We remove all equalities to be sure all lines are unit vectors */
305 remove_all_equalities(&PT
, &CT
, &CP
, NULL
, C2
->Dimension
,
312 inv
= left_inverse(CP
, &eq
);
318 div
= Matrix_Alloc(inv
->NbRows
-1, inv
->NbColumns
+1);
319 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
320 Vector_Gcd(inv
->p
[i
], inv
->NbColumns
, &tmp
);
321 if (mpz_divisible_p(tmp
,
322 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]))
324 Vector_Copy(inv
->p
[i
], div
->p
[d
], inv
->NbColumns
);
325 value_assign(div
->p
[d
][inv
->NbColumns
],
326 inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
338 POL_ENSURE_VERTICES(C2
);
342 remove_lines(C2
, &M
, &Minv
);
343 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Minv
, &inv
,
347 POL_ENSURE_VERTICES(C2
);
348 if (!Polyhedron_has_revlex_positive_rays(C2
, C2
->Dimension
)) {
352 Constraints
= Matrix_Alloc(C2
->NbConstraints
, C2
->Dimension
+1);
353 for (int i
= 0; i
< C2
->NbConstraints
; ++i
)
354 Vector_Copy(C2
->Constraint
[i
]+1, Constraints
->p
[i
], C2
->Dimension
);
355 left_hermite(Constraints
, &H
, &Q
, &U
);
356 Matrix_Free(Constraints
);
358 for (int i
= 0; i
< C2
->Dimension
/2; ++i
)
359 Vector_Exchange(Q
->p
[i
], Q
->p
[C2
->Dimension
-1-i
], C2
->Dimension
);
362 Matrix
*M
= Matrix_Alloc(C2
->Dimension
+1, C2
->Dimension
+1);
364 int ok
= Matrix_Inverse(U
, M
);
368 apply_transformation(&PT
, &C2
, PT
!= P
, C2
!= C
, M
, Q
, &inv
, options
);
370 gf
= barvinok_series_with_options(PT
, C2
, options
);
374 return new skewed_gen_fun(gf
, inv
, eq
, div
);
377 int main(int argc
, char **argv
)
382 skewed_gen_fun
*gf
= NULL
;
383 const char **param_name
;
384 int print_solution
= 1;
386 struct enumerate_options
*options
= enumerate_options_new_with_defaults();
388 argc
= enumerate_options_parse(options
, argc
, argv
, ISL_ARG_ALL
);
392 A
= Constraints2Polyhedron(M
, options
->verify
->barvinok
->MaxRays
);
396 C
= Constraints2Polyhedron(M
, options
->verify
->barvinok
->MaxRays
);
398 assert(A
->Dimension
>= C
->Dimension
);
399 param_name
= Read_ParamNames(stdin
, C
->Dimension
);
401 if (options
->verify
->verify
) {
402 verify_options_set_range(options
->verify
, A
->Dimension
);
403 if (!options
->verify
->barvinok
->verbose
)
407 if (print_solution
&& options
->verify
->barvinok
->verbose
) {
408 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
409 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
412 if (options
->series
) {
413 gf
= series(A
, C
, options
->verify
->barvinok
);
414 if (print_solution
) {
415 gf
->print(cout
, C
->Dimension
, param_name
);
418 if (options
->function
) {
421 print_evalue(stdout
, EP
, param_name
);
424 EP
= barvinok_enumerate_with_options(A
, C
, options
->verify
->barvinok
);
426 if (evalue_convert(EP
, options
->convert
, options
->verify
->barvinok
->verbose
,
427 C
->Dimension
, param_name
))
430 printf("\nSize: %zd\n", evalue_size(EP
));
432 print_evalue(stdout
, EP
, param_name
);
435 if (options
->verify
->verify
) {
436 options
->verify
->params
= param_name
;
437 result
= verify(A
, C
, EP
, gf
, options
);
445 if (options
->verify
->barvinok
->print_stats
)
446 barvinok_stats_print(options
->verify
->barvinok
->stats
, stdout
);
448 Free_ParamNames(param_name
, C
->Dimension
);
451 enumerate_options_free(options
);