verify.c: extract some helper functions for isl based verification
[barvinok/uuh.git] / bernstein.cc
blobdf26b314ed7aed1926c10f08dd2d3041ced6b77b
1 #include <assert.h>
2 #include <vector>
3 #include <bernstein/bernstein.h>
4 #include <bernstein/piecewise_lst.h>
5 #include <isl_set_polylib.h>
6 #include <barvinok/barvinok.h>
7 #include <barvinok/util.h>
8 #include <barvinok/bernstein.h>
9 #include <barvinok/options.h>
10 #include "reduce_domain.h"
12 using namespace GiNaC;
13 using namespace bernstein;
14 using namespace barvinok;
16 using std::pair;
17 using std::vector;
18 using std::cerr;
19 using std::endl;
21 namespace barvinok {
23 ex evalue2ex(evalue *e, const exvector& vars)
25 if (value_pos_p(e->d))
26 return value2numeric(e->x.n)/value2numeric(e->d);
27 if (EVALUE_IS_NAN(*e))
28 return fail();
29 if (e->x.p->type != polynomial)
30 return fail();
31 ex poly = 0;
32 for (int i = e->x.p->size-1; i >= 0; --i) {
33 poly *= vars[e->x.p->pos-1];
34 ex t = evalue2ex(&e->x.p->arr[i], vars);
35 if (is_exactly_a<fail>(t))
36 return t;
37 poly += t;
39 return poly;
42 static int type_offset(enode *p)
44 return p->type == fractional ? 1 :
45 p->type == flooring ? 1 : 0;
48 typedef pair<bool, const evalue *> typed_evalue;
50 static ex evalue2ex_add_var(evalue *e, exvector& extravar,
51 vector<typed_evalue>& expr, bool is_fract)
53 ex base_var = 0;
55 for (int i = 0; i < expr.size(); ++i) {
56 if (is_fract == expr[i].first && eequal(e, expr[i].second)) {
57 base_var = extravar[i];
58 break;
61 if (base_var != 0)
62 return base_var;
64 char name[20];
65 snprintf(name, sizeof(name), "f%c%zd", is_fract ? 'r' : 'l', expr.size());
66 extravar.push_back(base_var = symbol(name));
67 expr.push_back(typed_evalue(is_fract, e));
69 return base_var;
72 /* For the argument e=(f/d) of a fractional, return (d-1)/d times
73 * a variable in [0,1] (see setup_constraints).
75 static ex evalue2ex_get_fract(evalue *e, exvector& extravar,
76 vector<typed_evalue>& expr)
78 ex f;
79 Value d;
80 ex den;
81 value_init(d);
82 value_set_si(d, 1);
83 evalue_denom(e, &d);
84 den = value2numeric(d);
85 value_clear(d);
86 f = (den-1)/den;
88 ex base_var = evalue2ex_add_var(e, extravar, expr, true);
89 base_var *= f;
90 return base_var;
93 static ex evalue2ex_r(const evalue *e, const exvector& vars,
94 exvector& extravar, vector<typed_evalue>& expr,
95 Vector *coset)
97 if (value_notzero_p(e->d))
98 return value2numeric(e->x.n)/value2numeric(e->d);
99 ex base_var = 0;
100 ex poly = 0;
101 int rem;
103 switch (e->x.p->type) {
104 case polynomial:
105 base_var = vars[e->x.p->pos-1];
106 break;
107 case flooring:
108 base_var = evalue2ex_add_var(&e->x.p->arr[0], extravar, expr, false);
109 break;
110 case fractional:
111 base_var = evalue2ex_get_fract(&e->x.p->arr[0], extravar, expr);
112 break;
113 case periodic:
114 assert(coset);
115 rem = VALUE_TO_INT(coset->p[e->x.p->pos-1]) % e->x.p->size;
116 return evalue2ex_r(&e->x.p->arr[rem], vars, extravar, expr, coset);
117 default:
118 return fail();
121 int offset = type_offset(e->x.p);
122 for (int i = e->x.p->size-1; i >= offset; --i) {
123 poly *= base_var;
124 ex t = evalue2ex_r(&e->x.p->arr[i], vars, extravar, expr, coset);
125 if (is_exactly_a<fail>(t))
126 return t;
127 poly += t;
129 return poly;
132 /* For each t = floor(e/d), set up two constraints
134 * e - d t >= 0
135 * -e + d t + d-1 >= 0
137 * e is assumed to be an affine expression.
139 * For each t = fract(e/d), set up two constraints
141 * -d t + d-1 >= 0
142 * t >= 0
144 static Matrix *setup_constraints(const vector<typed_evalue> expr, int nvar)
146 int extra = expr.size();
147 if (!extra)
148 return NULL;
149 Matrix *M = Matrix_Alloc(2*extra, 1+extra+nvar+1);
150 for (int i = 0; i < extra; ++i) {
151 if (expr[i].first) {
152 value_set_si(M->p[2*i][0], 1);
153 value_set_si(M->p[2*i][1+i], -1);
154 value_set_si(M->p[2*i][1+extra+nvar], 1);
155 value_set_si(M->p[2*i+1][0], 1);
156 value_set_si(M->p[2*i+1][1+i], 1);
157 } else {
158 Value *d = &M->p[2*i][1+i];
159 evalue_extract_affine(expr[i].second, M->p[2*i]+1+extra,
160 M->p[2*i]+1+extra+nvar, d);
161 value_oppose(*d, *d);
162 value_set_si(M->p[2*i][0], -1);
163 Vector_Scale(M->p[2*i], M->p[2*i+1], M->p[2*i][0], 1+extra+nvar+1);
164 value_set_si(M->p[2*i][0], 1);
165 value_subtract(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar], *d);
166 value_decrement(M->p[2*i+1][1+extra+nvar], M->p[2*i+1][1+extra+nvar]);
169 return M;
172 static bool evalue_is_periodic(const evalue *e, Vector *periods)
174 int i, offset;
175 bool is_periodic = false;
177 if (value_notzero_p(e->d))
178 return false;
180 assert(e->x.p->type != partition);
181 if (e->x.p->type == periodic) {
182 Value size;
183 value_init(size);
184 value_set_si(size, e->x.p->size);
185 value_lcm(periods->p[e->x.p->pos-1], periods->p[e->x.p->pos-1], size);
186 value_clear(size);
187 is_periodic = true;
189 offset = type_offset(e->x.p);
190 for (i = e->x.p->size-1; i >= offset; --i)
191 is_periodic = evalue_is_periodic(&e->x.p->arr[i], periods) || is_periodic;
192 return is_periodic;
195 static ex evalue2lst(const evalue *e, const exvector& vars,
196 exvector& extravar, vector<typed_evalue>& expr,
197 Vector *periods)
199 Vector *coset = Vector_Alloc(periods->Size);
200 lst list;
201 for (;;) {
202 int i;
203 list.append(evalue2ex_r(e, vars, extravar, expr, coset));
204 for (i = coset->Size-1; i >= 0; --i) {
205 value_increment(coset->p[i], coset->p[i]);
206 if (value_lt(coset->p[i], periods->p[i]))
207 break;
208 value_set_si(coset->p[i], 0);
210 if (i < 0)
211 break;
213 Vector_Free(coset);
214 return list;
217 ex evalue2ex(const evalue *e, const exvector& vars, exvector& floorvar,
218 Matrix **C, Vector **p)
220 vector<typed_evalue> expr;
221 Vector *periods = Vector_Alloc(vars.size());
222 assert(p);
223 assert(C);
224 for (int i = 0; i < periods->Size; ++i)
225 value_set_si(periods->p[i], 1);
226 if (evalue_is_periodic(e, periods)) {
227 *p = periods;
228 *C = NULL;
229 lst list;
230 return list;
231 } else {
232 Vector_Free(periods);
233 *p = NULL;
234 ex poly = evalue2ex_r(e, vars, floorvar, expr, NULL);
235 Matrix *M = setup_constraints(expr, vars.size());
236 *C = M;
237 return poly;
241 /* if the evalue is a relation, we use the relation to cut off the
242 * the edges of the domain
244 static Polyhedron *relation_domain(Polyhedron *D, evalue *fr, unsigned MaxRays)
246 assert(value_zero_p(fr->d));
247 assert(fr->x.p->type == fractional);
248 assert(fr->x.p->size == 3);
249 Matrix *T = Matrix_Alloc(2, D->Dimension+1);
250 value_set_si(T->p[1][D->Dimension], 1);
252 /* convert argument of fractional to polylib */
253 /* the argument is assumed to be linear */
254 evalue *p = &fr->x.p->arr[0];
255 evalue_denom(p, &T->p[1][D->Dimension]);
256 for (;value_zero_p(p->d); p = &p->x.p->arr[0]) {
257 assert(p->x.p->type == polynomial);
258 assert(p->x.p->size == 2);
259 assert(value_notzero_p(p->x.p->arr[1].d));
260 int pos = p->x.p->pos - 1;
261 value_assign(T->p[0][pos], p->x.p->arr[1].x.n);
262 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][D->Dimension]);
263 value_division(T->p[0][pos], T->p[0][pos], p->x.p->arr[1].d);
265 int pos = D->Dimension;
266 value_assign(T->p[0][pos], p->x.n);
267 value_multiply(T->p[0][pos], T->p[0][pos], T->p[1][D->Dimension]);
268 value_division(T->p[0][pos], T->p[0][pos], p->d);
270 Polyhedron *E = NULL;
271 for (Polyhedron *P = D; P; P = P->next) {
272 Polyhedron *I = Polyhedron_Image(P, T, MaxRays);
273 I = DomainConstraintSimplify(I, MaxRays);
274 Polyhedron *R = Polyhedron_Preimage(I, T, MaxRays);
275 Polyhedron_Free(I);
276 Polyhedron *next = P->next;
277 P->next = NULL;
278 Polyhedron *S = DomainIntersection(P, R, MaxRays);
279 Polyhedron_Free(R);
280 P->next = next;
281 if (emptyQ2(S))
282 Polyhedron_Free(S);
283 else
284 E = DomainConcat(S, E);
286 Matrix_Free(T);
288 return E;
291 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
292 Polyhedron *ctx, const exvector& params)
294 piecewise_lst *pl;
295 barvinok_options *options = barvinok_options_new_with_defaults();
296 pl = evalue_bernstein_coefficients(pl_all, e, ctx, params, options);
297 barvinok_options_free(options);
298 return pl;
301 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
302 Polyhedron *D, const ex& poly,
303 Polyhedron *ctx,
304 const exvector& params, const exvector& floorvar,
305 barvinok_options *options);
307 /* Recursively apply Bernstein expansion on P, optimizing over dims[i]
308 * variables in each level. The context ctx is assumed to have been adapted
309 * to the first level in the recursion.
311 static piecewise_lst *bernstein_coefficients_recursive(piecewise_lst *pl_all,
312 Polyhedron *P, const vector<int>& dims, const ex& poly,
313 Polyhedron *ctx,
314 const exvector& params, const exvector& vars,
315 barvinok_options *options)
317 assert(dims.size() > 0);
318 assert(ctx->Dimension == P->Dimension - dims[0]);
319 piecewise_lst *pl;
320 unsigned done = 0;
321 for (int j = 0; j < dims.size(); ++j) {
322 exvector pl_vars;
323 pl_vars.insert(pl_vars.end(), vars.begin()+done, vars.begin()+done+dims[j]);
324 exvector pl_params;
325 pl_params.insert(pl_params.end(), vars.begin()+done+dims[j], vars.end());
326 pl_params.insert(pl_params.end(), params.begin(), params.end());
328 if (!j)
329 pl = bernstein_coefficients(NULL, P, poly, ctx,
330 pl_params, pl_vars, options);
331 else {
332 piecewise_lst *new_pl = NULL;
333 Polyhedron *U = Universe_Polyhedron(pl_params.size());
335 for (int i = 0; i < pl->list.size(); ++i) {
336 Polyhedron *D = pl->list[i].first;
337 lst polys = pl->list[i].second;
338 new_pl = bernstein_coefficients(new_pl, D, polys, U, pl_params,
339 pl_vars, options);
342 Polyhedron_Free(U);
344 delete pl;
345 pl = new_pl;
348 done += dims[j];
350 if (!pl)
351 return pl_all;
354 if (!pl_all)
355 pl_all = pl;
356 else {
357 pl_all->combine(*pl);
358 delete pl;
361 return pl_all;
364 static piecewise_lst *bernstein_coefficients_full_recurse(piecewise_lst *pl_all,
365 Polyhedron *P, const ex& poly,
366 Polyhedron *ctx,
367 const exvector& params, const exvector& vars,
368 barvinok_options *options)
370 Polyhedron *CR = align_context(ctx, P->Dimension-1, options->MaxRays);
371 vector<int> dims(vars.size());
372 for (int i = 0; i < dims.size(); ++i)
373 dims[i] = 1;
374 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, poly, CR,
375 params, vars, options);
376 Polyhedron_Free(CR);
378 return pl_all;
381 static piecewise_lst *bernstein_coefficients_product(piecewise_lst *pl_all,
382 Polyhedron *F, Matrix *T, const ex& poly,
383 Polyhedron *ctx,
384 const exvector& params, const exvector& vars,
385 barvinok_options *options)
387 if (emptyQ2(ctx))
388 return pl_all;
389 for (Polyhedron *G = F; G; G = G->next)
390 if (emptyQ2(G))
391 return pl_all;
393 unsigned nparam = params.size();
394 unsigned nvar = vars.size();
395 unsigned constraints;
396 unsigned factors;
397 Polyhedron *C = NULL;
399 /* More context constraints */
400 if (F->Dimension == ctx->Dimension) {
401 C = F;
402 F = F->next;
404 assert(F);
405 assert(F->next);
407 Matrix *M;
408 Polyhedron *P;
409 Polyhedron *PC;
410 M = Matrix_Alloc(F->NbConstraints, 1+nvar+nparam+1);
411 for (int i = 0; i < F->NbConstraints; ++i) {
412 Vector_Copy(F->Constraint[i], M->p[i], 1+F->Dimension-nparam);
413 Vector_Copy(F->Constraint[i]+1+F->Dimension-nparam,
414 M->p[i]+1+nvar, nparam+1);
416 P = Constraints2Polyhedron(M, options->MaxRays);
417 Matrix_Free(M);
419 factors = 1;
420 constraints = C ? C->NbConstraints : 0;
421 constraints += ctx->NbConstraints;
422 for (Polyhedron *G = F->next; G; G = G->next) {
423 constraints += G->NbConstraints;
424 ++factors;
427 unsigned total_var = nvar-(F->Dimension-nparam);
428 unsigned skip = 0;
429 unsigned c = 0;
430 M = Matrix_Alloc(constraints, 1+total_var+nparam+1);
431 for (Polyhedron *G = F->next; G; G = G->next) {
432 unsigned this_var = G->Dimension - nparam;
433 for (int i = 0; i < G->NbConstraints; ++i) {
434 value_assign(M->p[c+i][0], G->Constraint[i][0]);
435 Vector_Copy(G->Constraint[i]+1, M->p[c+i]+1+skip, this_var);
436 Vector_Copy(G->Constraint[i]+1+this_var, M->p[c+i]+1+total_var,
437 nparam+1);
439 c += G->NbConstraints;
440 skip += this_var;
442 assert(skip == total_var);
443 if (C) {
444 for (int i = 0; i < C->NbConstraints; ++i) {
445 value_assign(M->p[c+i][0], C->Constraint[i][0]);
446 Vector_Copy(C->Constraint[i]+1, M->p[c+i]+1+total_var,
447 nparam+1);
449 c += C->NbConstraints;
451 for (int i = 0; i < ctx->NbConstraints; ++i) {
452 value_assign(M->p[c+i][0], ctx->Constraint[i][0]);
453 Vector_Copy(ctx->Constraint[i]+1, M->p[c+i]+1+total_var, nparam+1);
455 PC = Constraints2Polyhedron(M, options->MaxRays);
456 Matrix_Free(M);
458 exvector newvars = constructVariableVector(nvar, "t");
459 matrix subs(1, nvar);
460 for (int i = 0; i < nvar; ++i)
461 for (int j = 0; j < nvar; ++j)
462 subs(0,i) += value2numeric(T->p[i][j]) * newvars[j];
464 ex newpoly = replaceVariablesInPolynomial(poly, vars, subs);
466 vector<int> dims(factors);
467 for (int i = 0; F; ++i, F = F->next)
468 dims[i] = F->Dimension-nparam;
470 pl_all = bernstein_coefficients_recursive(pl_all, P, dims, newpoly, PC,
471 params, newvars, options);
473 Polyhedron_Free(P);
474 Polyhedron_Free(PC);
476 return pl_all;
479 static piecewise_lst *bernstein_coefficients_polyhedron(piecewise_lst *pl_all,
480 Polyhedron *P, const ex& poly,
481 Polyhedron *ctx,
482 const exvector& params, const exvector& floorvar,
483 barvinok_options *options)
485 if (Polyhedron_is_unbounded(P, ctx->Dimension, options->MaxRays)) {
486 fprintf(stderr, "warning: unbounded domain skipped\n");
487 Polyhedron_Print(stderr, P_VALUE_FMT, P);
488 return pl_all;
491 if (options->bernstein_recurse & BV_BERNSTEIN_FACTORS) {
492 Matrix *T = NULL;
493 Polyhedron *F = Polyhedron_Factor(P, ctx->Dimension, &T, options->MaxRays);
494 if (F) {
495 pl_all = bernstein_coefficients_product(pl_all, F, T, poly, ctx, params,
496 floorvar, options);
497 Domain_Free(F);
498 Matrix_Free(T);
499 return pl_all;
502 if (floorvar.size() > 1 &&
503 options->bernstein_recurse & BV_BERNSTEIN_INTERVALS)
504 return bernstein_coefficients_full_recurse(pl_all, P, poly, ctx,
505 params, floorvar, options);
507 unsigned PP_MaxRays = options->MaxRays;
508 if (PP_MaxRays & POL_NO_DUAL)
509 PP_MaxRays = 0;
511 Param_Polyhedron *PP = Polyhedron2Param_Domain(P, ctx, PP_MaxRays);
512 if (!PP)
513 return pl_all;
514 piecewise_lst *pl = new piecewise_lst(params, options->bernstein_optimize);
516 int nd = -1;
517 Polyhedron *TC = true_context(P, ctx, options->MaxRays);
518 FORALL_REDUCED_DOMAIN(PP, TC, nd, options, i, PD, rVD)
519 matrix VM = domainVertices(PP, PD, params);
520 lst coeffs = bernsteinExpansion(VM, poly, floorvar, params);
521 pl->add_guarded_lst(rVD, coeffs);
522 END_FORALL_REDUCED_DOMAIN
523 Polyhedron_Free(TC);
525 Param_Polyhedron_Free(PP);
526 if (!pl_all)
527 pl_all = pl;
528 else {
529 pl_all->combine(*pl);
530 delete pl;
533 return pl_all;
536 static piecewise_lst *bernstein_coefficients(piecewise_lst *pl_all,
537 Polyhedron *D, const ex& poly,
538 Polyhedron *ctx,
539 const exvector& params, const exvector& floorvar,
540 barvinok_options *options)
542 if (!D->next && emptyQ2(D))
543 return pl_all;
545 for (Polyhedron *P = D; P; P = P->next) {
546 /* This shouldn't happen */
547 if (emptyQ2(P))
548 continue;
549 Polyhedron *next = P->next;
550 P->next = NULL;
551 pl_all = bernstein_coefficients_polyhedron(pl_all, P, poly, ctx,
552 params, floorvar, options);
553 P->next = next;
555 return pl_all;
558 /* Compute the coefficients of the polynomial corresponding to each coset
559 * on its own domain. This allows us to cut the domain on multiples of
560 * the period.
561 * To perform the cutting for a coset "i mod n = c" we map the domain
562 * to the quotient space trough "i = i' n + c", simplify the constraints
563 * (implicitly) and then map back to the original space.
565 static piecewise_lst *bernstein_coefficients_periodic(piecewise_lst *pl_all,
566 Polyhedron *D, const evalue *e,
567 Polyhedron *ctx, const exvector& vars,
568 const exvector& params, Vector *periods,
569 barvinok_options *options)
571 assert(D->Dimension == periods->Size);
572 Matrix *T = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
573 Matrix *T2 = Matrix_Alloc(D->Dimension+1, D->Dimension+1);
574 Vector *coset = Vector_Alloc(periods->Size);
575 exvector extravar;
576 vector<typed_evalue> expr;
577 exvector allvars = vars;
578 allvars.insert(allvars.end(), params.begin(), params.end());
580 value_set_si(T2->p[D->Dimension][D->Dimension], 1);
581 for (int i = 0; i < D->Dimension; ++i) {
582 value_assign(T->p[i][i], periods->p[i]);
583 value_lcm(T2->p[D->Dimension][D->Dimension],
584 T2->p[D->Dimension][D->Dimension], periods->p[i]);
586 value_set_si(T->p[D->Dimension][D->Dimension], 1);
587 for (int i = 0; i < D->Dimension; ++i)
588 value_division(T2->p[i][i], T2->p[D->Dimension][D->Dimension],
589 periods->p[i]);
590 for (;;) {
591 int i;
592 ex poly = evalue2ex_r(e, allvars, extravar, expr, coset);
593 assert(extravar.size() == 0);
594 assert(expr.size() == 0);
595 Polyhedron *E = DomainPreimage(D, T, options->MaxRays);
596 Polyhedron *F = DomainPreimage(E, T2, options->MaxRays);
597 Polyhedron_Free(E);
598 if (!emptyQ(F))
599 pl_all = bernstein_coefficients(pl_all, F, poly, ctx, params,
600 vars, options);
601 Polyhedron_Free(F);
602 for (i = D->Dimension-1; i >= 0; --i) {
603 value_increment(coset->p[i], coset->p[i]);
604 value_increment(T->p[i][D->Dimension], T->p[i][D->Dimension]);
605 value_subtract(T2->p[i][D->Dimension], T2->p[i][D->Dimension],
606 T2->p[i][i]);
607 if (value_lt(coset->p[i], periods->p[i]))
608 break;
609 value_set_si(coset->p[i], 0);
610 value_set_si(T->p[i][D->Dimension], 0);
611 value_set_si(T2->p[i][D->Dimension], 0);
613 if (i < 0)
614 break;
616 Vector_Free(coset);
617 Matrix_Free(T);
618 Matrix_Free(T2);
619 return pl_all;
622 piecewise_lst *bernstein_coefficients_relation(piecewise_lst *pl_all,
623 Polyhedron *D, evalue *EP, Polyhedron *ctx,
624 const exvector& allvars, const exvector& vars,
625 const exvector& params, barvinok_options *options)
627 if (value_zero_p(EP->d) && EP->x.p->type == relation) {
628 Polyhedron *E = relation_domain(D, &EP->x.p->arr[0], options->MaxRays);
629 if (E) {
630 pl_all = bernstein_coefficients_relation(pl_all, E, &EP->x.p->arr[1],
631 ctx, allvars, vars, params,
632 options);
633 Domain_Free(E);
635 /* In principle, we could cut off the edges of this domain too */
636 if (EP->x.p->size > 2)
637 pl_all = bernstein_coefficients_relation(pl_all, D, &EP->x.p->arr[2],
638 ctx, allvars, vars, params,
639 options);
640 return pl_all;
643 Matrix *M;
644 exvector floorvar;
645 Vector *periods;
646 ex poly = evalue2ex(EP, allvars, floorvar, &M, &periods);
647 floorvar.insert(floorvar.end(), vars.begin(), vars.end());
648 Polyhedron *E = D;
649 if (M) {
650 Polyhedron *AE = align_context(D, M->NbColumns-2, options->MaxRays);
651 E = DomainAddConstraints(AE, M, options->MaxRays);
652 Matrix_Free(M);
653 Domain_Free(AE);
655 if (is_exactly_a<fail>(poly)) {
656 delete pl_all;
657 return NULL;
659 if (periods)
660 pl_all = bernstein_coefficients_periodic(pl_all, E, EP, ctx, vars,
661 params, periods, options);
662 else
663 pl_all = bernstein_coefficients(pl_all, E, poly, ctx, params,
664 floorvar, options);
665 if (periods)
666 Vector_Free(periods);
667 if (D != E)
668 Domain_Free(E);
670 return pl_all;
673 piecewise_lst *evalue_bernstein_coefficients(piecewise_lst *pl_all, evalue *e,
674 Polyhedron *ctx, const exvector& params,
675 barvinok_options *options)
677 unsigned nparam = ctx->Dimension;
678 if (EVALUE_IS_ZERO(*e))
679 return pl_all;
680 assert(value_zero_p(e->d));
681 assert(e->x.p->type == partition);
682 assert(e->x.p->size >= 2);
683 unsigned nvars = EVALUE_DOMAIN(e->x.p->arr[0])->Dimension - nparam;
685 exvector vars = constructVariableVector(nvars, "v");
686 exvector allvars = vars;
687 allvars.insert(allvars.end(), params.begin(), params.end());
689 for (int i = 0; i < e->x.p->size/2; ++i) {
690 pl_all = bernstein_coefficients_relation(pl_all,
691 EVALUE_DOMAIN(e->x.p->arr[2*i]), &e->x.p->arr[2*i+1],
692 ctx, allvars, vars, params, options);
694 return pl_all;
697 static __isl_give isl_qpolynomial *qp_from_ex(__isl_take isl_dim *dim,
698 const GiNaC::ex ex, const GiNaC::exvector &params, int i)
700 isl_qpolynomial *qp;
701 isl_qpolynomial *base;
702 int deg;
703 int j;
705 if (is_a<fail>(ex))
706 return isl_qpolynomial_nan(dim);
708 if (is_a<numeric>(ex)) {
709 numeric r = ex_to<numeric>(ex);
710 isl_int n;
711 isl_int d;
712 isl_int_init(n);
713 isl_int_init(d);
714 numeric2value(r.numer(), n);
715 numeric2value(r.denom(), d);
716 qp = isl_qpolynomial_rat_cst(dim, n, d);
717 isl_int_clear(n);
718 isl_int_clear(d);
719 return qp;
722 deg = ex.degree(params[i]);
723 if (deg == 0)
724 return qp_from_ex(dim, ex, params, i + 1);
726 base = isl_qpolynomial_var(isl_dim_copy(dim), isl_dim_param, i);
727 qp = qp_from_ex(isl_dim_copy(dim), ex.coeff(params[i], deg),
728 params, i + 1);
730 for (j = deg - 1; j >= 0; --j) {
731 qp = isl_qpolynomial_mul(qp, isl_qpolynomial_copy(base));
732 qp = isl_qpolynomial_add(qp,
733 qp_from_ex(isl_dim_copy(dim), ex.coeff(params[i], j),
734 params, i + 1));
737 isl_qpolynomial_free(base);
738 isl_dim_free(dim);
740 return qp;
743 __isl_give isl_qpolynomial *isl_qpolynomial_from_ginac(__isl_take isl_dim *dim,
744 const GiNaC::ex &ex, const GiNaC::exvector &params)
746 GiNaC::ex exp;
748 if (!dim)
749 return NULL;
751 exp = ex.expand();
752 return qp_from_ex(dim, exp, params, 0);
753 error:
754 isl_dim_free(dim);
755 return NULL;
758 __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_from_ginac(
759 __isl_take isl_dim *dim, enum isl_fold type, const GiNaC::lst &lst,
760 const GiNaC::exvector &params)
762 isl_qpolynomial_fold *fold;
763 lst::const_iterator j;
765 fold = isl_qpolynomial_fold_empty(type, isl_dim_copy(dim));
766 for (j = lst.begin(); j != lst.end(); ++j) {
767 isl_qpolynomial *qp;
768 isl_qpolynomial_fold *fold_i;
770 qp = isl_qpolynomial_from_ginac(isl_dim_copy(dim), *j, params);
771 fold_i = isl_qpolynomial_fold_alloc(type, qp);
772 fold = isl_qpolynomial_fold_fold(fold, fold_i);
774 isl_dim_free(dim);
775 return fold;
778 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_ginac(
779 __isl_take isl_dim *dim, bernstein::piecewise_lst *pl,
780 const GiNaC::exvector &params)
782 enum isl_fold type;
783 isl_pw_qpolynomial_fold *pwf;
785 pwf = isl_pw_qpolynomial_fold_zero(isl_dim_copy(dim));
787 type = pl->sign > 0 ? isl_fold_max
788 : pl->sign < 0 ? isl_fold_min : isl_fold_list;
790 for (int i = 0; i < pl->list.size(); ++i) {
791 isl_pw_qpolynomial_fold *pwf_i;
792 isl_qpolynomial_fold *fold;
793 isl_set *set;
795 set = isl_set_new_from_polylib(pl->list[i].first,
796 isl_dim_copy(dim));
797 fold = isl_qpolynomial_fold_from_ginac(isl_dim_copy(dim),
798 type, pl->list[i].second, params);
799 pwf_i = isl_pw_qpolynomial_fold_alloc(set, fold);
800 pwf = isl_pw_qpolynomial_fold_add_disjoint(pwf, pwf_i);
803 isl_dim_free(dim);
805 return pwf;
810 struct isl_bound {
811 piecewise_lst *pl;
812 Polyhedron *U;
813 exvector vars;
814 exvector params;
815 exvector allvars;
818 static int guarded_qp_bernstein_coefficients(__isl_take isl_set *set,
819 __isl_take isl_qpolynomial *qp, void *user)
821 struct isl_bound *bound = (struct isl_bound *)user;
822 unsigned nvar;
823 Polyhedron *D;
824 struct barvinok_options *options;
825 evalue *e;
827 options = barvinok_options_new_with_defaults();
829 if (!set || !qp)
830 goto error;
832 nvar = isl_set_dim(set, isl_dim_set);
834 e = isl_qpolynomial_to_evalue(qp);
835 if (!e)
836 goto error;
838 set = isl_set_make_disjoint(set);
839 D = isl_set_to_polylib(set);
841 bound->vars = constructVariableVector(nvar, "v");
842 bound->allvars = bound->vars;
843 bound->allvars.insert(bound->allvars.end(),
844 bound->params.begin(), bound->params.end());
846 bound->pl = bernstein_coefficients_relation(bound->pl, D, e, bound->U,
847 bound->allvars, bound->vars, bound->params, options);
849 Domain_Free(D);
850 evalue_free(e);
851 isl_set_free(set);
852 isl_qpolynomial_free(qp);
853 barvinok_options_free(options);
855 return 0;
856 error:
857 isl_set_free(set);
858 isl_qpolynomial_free(qp);
859 barvinok_options_free(options);
860 return -1;
863 __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_upper_bound(
864 __isl_take isl_pw_qpolynomial *pwqp)
866 isl_dim *dim = NULL;
867 unsigned nvar;
868 unsigned nparam;
869 struct isl_bound bound;
870 struct isl_pw_qpolynomial_fold *pwf;
872 if (!pwqp)
873 return NULL;
875 dim = isl_pw_qpolynomial_get_dim(pwqp);
876 nvar = isl_dim_size(dim, isl_dim_set);
877 if (nvar == 0) {
878 isl_dim_free(dim);
879 return isl_pw_qpolynomial_fold_from_pw_qpolynomial(isl_fold_max,
880 pwqp);
883 nparam = isl_dim_size(dim, isl_dim_param);
884 bound.pl = NULL;
885 bound.U = Universe_Polyhedron(nparam);
886 bound.params = constructVariableVector(nparam, "p");
888 if (isl_pw_qpolynomial_foreach_lifted_piece(pwqp,
889 guarded_qp_bernstein_coefficients, &bound))
890 goto error;
892 bound.pl->maximize();
894 dim = isl_dim_drop(dim, isl_dim_set, 0, nvar);
896 bound.pl->sign = 1;
897 pwf = isl_pw_qpolynomial_fold_from_ginac(dim, bound.pl, bound.params);
899 Polyhedron_Free(bound.U);
900 delete bound.pl;
902 isl_pw_qpolynomial_free(pwqp);
904 return pwf;
905 error:
906 isl_pw_qpolynomial_free(pwqp);
907 isl_dim_free(dim);
908 return NULL;