3 #include <barvinok/util.h>
4 #include <barvinok/options.h>
5 #include <polylib/ranking.h>
8 #define ALLOC(type) (type*)malloc(sizeof(type))
9 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
12 #define NALLOC(p,n) p = (typeof(p))malloc((n) * sizeof(*p))
14 #define NALLOC(p,n) p = (void *)malloc((n) * sizeof(*p))
17 void manual_count(Polyhedron
*P
, Value
* result
)
19 Polyhedron
*U
= Universe_Polyhedron(0);
20 Enumeration
*en
= Polyhedron_Enumerate(P
,U
,1024,NULL
);
21 Value
*v
= compute_poly(en
,NULL
);
22 value_assign(*result
, *v
);
29 #include <barvinok/evalue.h>
30 #include <barvinok/util.h>
31 #include <barvinok/barvinok.h>
33 /* Return random value between 0 and max-1 inclusive
35 int random_int(int max
) {
36 return (int) (((double)(max
))*rand()/(RAND_MAX
+1.0));
39 Polyhedron
*Polyhedron_Read(unsigned MaxRays
)
42 unsigned NbRows
, NbColumns
;
47 while (fgets(s
, sizeof(s
), stdin
)) {
50 if (strncasecmp(s
, "vertices", sizeof("vertices")-1) == 0)
52 if (sscanf(s
, "%u %u", &NbRows
, &NbColumns
) == 2)
57 M
= Matrix_Alloc(NbRows
,NbColumns
);
60 P
= Rays2Polyhedron(M
, MaxRays
);
62 P
= Constraints2Polyhedron(M
, MaxRays
);
67 /* Inplace polarization
69 void Polyhedron_Polarize(Polyhedron
*P
)
71 unsigned NbRows
= P
->NbConstraints
+ P
->NbRays
;
75 q
= (Value
**)malloc(NbRows
* sizeof(Value
*));
77 for (i
= 0; i
< P
->NbRays
; ++i
)
79 for (; i
< NbRows
; ++i
)
80 q
[i
] = P
->Constraint
[i
-P
->NbRays
];
81 P
->NbConstraints
= NbRows
- P
->NbConstraints
;
82 P
->NbRays
= NbRows
- P
->NbRays
;
85 P
->Ray
= q
+ P
->NbConstraints
;
89 * Rather general polar
90 * We can optimize it significantly if we assume that
93 * Also, we calculate the polar as defined in Schrijver
94 * The opposite should probably work as well and would
95 * eliminate the need for multiplying by -1
97 Polyhedron
* Polyhedron_Polar(Polyhedron
*P
, unsigned NbMaxRays
)
101 unsigned dim
= P
->Dimension
+ 2;
102 Matrix
*M
= Matrix_Alloc(P
->NbRays
, dim
);
106 value_set_si(mone
, -1);
107 for (i
= 0; i
< P
->NbRays
; ++i
) {
108 Vector_Scale(P
->Ray
[i
], M
->p
[i
], mone
, dim
);
109 value_multiply(M
->p
[i
][0], M
->p
[i
][0], mone
);
110 value_multiply(M
->p
[i
][dim
-1], M
->p
[i
][dim
-1], mone
);
112 P
= Constraints2Polyhedron(M
, NbMaxRays
);
120 * Returns the supporting cone of P at the vertex with index v
122 Polyhedron
* supporting_cone(Polyhedron
*P
, int v
)
127 unsigned char *supporting
= (unsigned char *)malloc(P
->NbConstraints
);
128 unsigned dim
= P
->Dimension
+ 2;
130 assert(v
>=0 && v
< P
->NbRays
);
131 assert(value_pos_p(P
->Ray
[v
][dim
-1]));
135 for (i
= 0, n
= 0; i
< P
->NbConstraints
; ++i
) {
136 Inner_Product(P
->Constraint
[i
] + 1, P
->Ray
[v
] + 1, dim
- 1, &tmp
);
137 if ((supporting
[i
] = value_zero_p(tmp
)))
140 assert(n
>= dim
- 2);
142 M
= Matrix_Alloc(n
, dim
);
144 for (i
= 0, j
= 0; i
< P
->NbConstraints
; ++i
)
146 value_set_si(M
->p
[j
][dim
-1], 0);
147 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], dim
-1);
150 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
156 #define INT_BITS (sizeof(unsigned) * 8)
158 unsigned *supporting_constraints(Matrix
*Constraints
, Param_Vertices
*v
, int *n
)
160 Value lcm
, tmp
, tmp2
;
161 unsigned dim
= Constraints
->NbColumns
;
162 unsigned nparam
= v
->Vertex
->NbColumns
- 2;
163 unsigned nvar
= dim
- nparam
- 2;
164 int len
= (Constraints
->NbRows
+INT_BITS
-1)/INT_BITS
;
165 unsigned *supporting
= (unsigned *)calloc(len
, sizeof(unsigned));
172 row
= Vector_Alloc(nparam
+1);
177 value_set_si(lcm
, 1);
178 for (i
= 0, *n
= 0, ix
= 0, bx
= MSB
; i
< Constraints
->NbRows
; ++i
) {
179 Vector_Set(row
->p
, 0, nparam
+1);
180 for (j
= 0 ; j
< nvar
; ++j
) {
181 value_set_si(tmp
, 1);
182 value_assign(tmp2
, Constraints
->p
[i
][j
+1]);
183 if (value_ne(lcm
, v
->Vertex
->p
[j
][nparam
+1])) {
184 value_assign(tmp
, lcm
);
185 value_lcm(lcm
, lcm
, v
->Vertex
->p
[j
][nparam
+1]);
186 value_division(tmp
, lcm
, tmp
);
187 value_multiply(tmp2
, tmp2
, lcm
);
188 value_division(tmp2
, tmp2
, v
->Vertex
->p
[j
][nparam
+1]);
190 Vector_Combine(row
->p
, v
->Vertex
->p
[j
], row
->p
,
191 tmp
, tmp2
, nparam
+1);
193 value_set_si(tmp
, 1);
194 Vector_Combine(row
->p
, Constraints
->p
[i
]+1+nvar
, row
->p
, tmp
, lcm
, nparam
+1);
195 for (j
= 0; j
< nparam
+1; ++j
)
196 if (value_notzero_p(row
->p
[j
]))
198 if (j
== nparam
+ 1) {
199 supporting
[ix
] |= bx
;
213 Polyhedron
* supporting_cone_p(Polyhedron
*P
, Param_Vertices
*v
)
216 unsigned dim
= P
->Dimension
+ 2;
217 unsigned nparam
= v
->Vertex
->NbColumns
- 2;
218 unsigned nvar
= dim
- nparam
- 2;
222 unsigned *supporting
;
225 Polyhedron_Matrix_View(P
, &View
, P
->NbConstraints
);
226 supporting
= supporting_constraints(&View
, v
, &n
);
227 M
= Matrix_Alloc(n
, nvar
+2);
229 for (i
= 0, j
= 0, ix
= 0, bx
= MSB
; i
< P
->NbConstraints
; ++i
) {
230 if (supporting
[ix
] & bx
) {
231 value_set_si(M
->p
[j
][nvar
+1], 0);
232 Vector_Copy(P
->Constraint
[i
], M
->p
[j
++], nvar
+1);
237 P
= Constraints2Polyhedron(M
, P
->NbRays
+1);
243 Polyhedron
* triangulate_cone(Polyhedron
*P
, unsigned NbMaxCons
)
245 struct barvinok_options
*options
= barvinok_options_new_with_defaults();
246 options
->MaxRays
= NbMaxCons
;
247 P
= triangulate_cone_with_options(P
, options
);
248 barvinok_options_free(options
);
252 Polyhedron
* triangulate_cone_with_options(Polyhedron
*P
,
253 struct barvinok_options
*options
)
255 const static int MAX_TRY
=10;
258 unsigned dim
= P
->Dimension
;
259 Matrix
*M
= Matrix_Alloc(P
->NbRays
+1, dim
+3);
261 Polyhedron
*L
, *R
, *T
;
262 assert(P
->NbEq
== 0);
268 Vector_Set(M
->p
[0]+1, 0, dim
+1);
269 value_set_si(M
->p
[0][0], 1);
270 value_set_si(M
->p
[0][dim
+2], 1);
271 Vector_Set(M
->p
[P
->NbRays
]+1, 0, dim
+2);
272 value_set_si(M
->p
[P
->NbRays
][0], 1);
273 value_set_si(M
->p
[P
->NbRays
][dim
+1], 1);
275 for (i
= 0, r
= 1; i
< P
->NbRays
; ++i
) {
276 if (value_notzero_p(P
->Ray
[i
][dim
+1]))
278 Vector_Copy(P
->Ray
[i
], M
->p
[r
], dim
+1);
279 value_set_si(M
->p
[r
][dim
+2], 0);
283 M2
= Matrix_Alloc(dim
+1, dim
+2);
286 if (options
->try_Delaunay_triangulation
) {
287 /* Delaunay triangulation */
288 for (r
= 1; r
< P
->NbRays
; ++r
) {
289 Inner_Product(M
->p
[r
]+1, M
->p
[r
]+1, dim
, &tmp
);
290 value_assign(M
->p
[r
][dim
+1], tmp
);
293 L
= Rays2Polyhedron(M3
, options
->MaxRays
);
298 /* Usually R should still be 0 */
301 for (r
= 1; r
< P
->NbRays
; ++r
) {
302 value_set_si(M
->p
[r
][dim
+1], random_int((t
+1)*dim
*P
->NbRays
)+1);
305 L
= Rays2Polyhedron(M3
, options
->MaxRays
);
309 assert(t
<= MAX_TRY
);
314 POL_ENSURE_FACETS(L
);
315 for (i
= 0; i
< L
->NbConstraints
; ++i
) {
316 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
317 if (value_negz_p(L
->Constraint
[i
][dim
+1]))
319 if (value_notzero_p(L
->Constraint
[i
][dim
+2]))
321 for (j
= 1, r
= 1; j
< M
->NbRows
; ++j
) {
322 Inner_Product(M
->p
[j
]+1, L
->Constraint
[i
]+1, dim
+1, &tmp
);
323 if (value_notzero_p(tmp
))
327 Vector_Copy(M
->p
[j
]+1, M2
->p
[r
]+1, dim
);
328 value_set_si(M2
->p
[r
][0], 1);
329 value_set_si(M2
->p
[r
][dim
+1], 0);
333 Vector_Set(M2
->p
[0]+1, 0, dim
);
334 value_set_si(M2
->p
[0][0], 1);
335 value_set_si(M2
->p
[0][dim
+1], 1);
336 T
= Rays2Polyhedron(M2
, P
->NbConstraints
+1);
350 void check_triangulization(Polyhedron
*P
, Polyhedron
*T
)
352 Polyhedron
*C
, *D
, *E
, *F
, *G
, *U
;
353 for (C
= T
; C
; C
= C
->next
) {
357 U
= DomainConvex(DomainUnion(U
, C
, 100), 100);
358 for (D
= C
->next
; D
; D
= D
->next
) {
363 E
= DomainIntersection(C
, D
, 600);
364 assert(E
->NbRays
== 0 || E
->NbEq
>= 1);
370 assert(PolyhedronIncludes(U
, P
));
371 assert(PolyhedronIncludes(P
, U
));
374 /* Computes x, y and g such that g = gcd(a,b) and a*x+b*y = g */
375 void Extended_Euclid(Value a
, Value b
, Value
*x
, Value
*y
, Value
*g
)
377 Value c
, d
, e
, f
, tmp
;
384 value_absolute(c
, a
);
385 value_absolute(d
, b
);
388 while(value_pos_p(d
)) {
389 value_division(tmp
, c
, d
);
390 value_multiply(tmp
, tmp
, f
);
391 value_subtract(e
, e
, tmp
);
392 value_division(tmp
, c
, d
);
393 value_multiply(tmp
, tmp
, d
);
394 value_subtract(c
, c
, tmp
);
401 else if (value_pos_p(a
))
403 else value_oppose(*x
, e
);
407 value_multiply(tmp
, a
, *x
);
408 value_subtract(tmp
, c
, tmp
);
409 value_division(*y
, tmp
, b
);
418 static int unimodular_complete_1(Matrix
*m
)
420 Value g
, b
, c
, old
, tmp
;
429 value_assign(g
, m
->p
[0][0]);
430 for (i
= 1; value_zero_p(g
) && i
< m
->NbColumns
; ++i
) {
431 for (j
= 0; j
< m
->NbColumns
; ++j
) {
433 value_set_si(m
->p
[i
][j
], 1);
435 value_set_si(m
->p
[i
][j
], 0);
437 value_assign(g
, m
->p
[0][i
]);
439 for (; i
< m
->NbColumns
; ++i
) {
440 value_assign(old
, g
);
441 Extended_Euclid(old
, m
->p
[0][i
], &c
, &b
, &g
);
443 for (j
= 0; j
< m
->NbColumns
; ++j
) {
445 value_multiply(tmp
, m
->p
[0][j
], b
);
446 value_division(m
->p
[i
][j
], tmp
, old
);
448 value_assign(m
->p
[i
][j
], c
);
450 value_set_si(m
->p
[i
][j
], 0);
462 int unimodular_complete(Matrix
*M
, int row
)
469 return unimodular_complete_1(M
);
471 left_hermite(M
, &H
, &Q
, &U
);
473 for (r
= 0; ok
&& r
< row
; ++r
)
474 if (value_notone_p(H
->p
[r
][r
]))
477 for (r
= row
; r
< M
->NbRows
; ++r
)
478 Vector_Copy(Q
->p
[r
], M
->p
[r
], M
->NbColumns
);
484 * left_hermite may leave positive entries below the main diagonal in H.
485 * This function postprocesses the output of left_hermite to make
486 * the non-zero entries below the main diagonal negative.
488 void neg_left_hermite(Matrix
*A
, Matrix
**H_p
, Matrix
**Q_p
, Matrix
**U_p
)
493 left_hermite(A
, &H
, &Q
, &U
);
498 for (row
= 0, col
= 0; col
< H
->NbColumns
; ++col
, ++row
) {
499 while (value_zero_p(H
->p
[row
][col
]))
501 for (i
= 0; i
< col
; ++i
) {
502 if (value_negz_p(H
->p
[row
][i
]))
505 /* subtract column col from column i in H and U */
506 for (j
= 0; j
< H
->NbRows
; ++j
)
507 value_subtract(H
->p
[j
][i
], H
->p
[j
][i
], H
->p
[j
][col
]);
508 for (j
= 0; j
< U
->NbRows
; ++j
)
509 value_subtract(U
->p
[j
][i
], U
->p
[j
][i
], U
->p
[j
][col
]);
511 /* add row i to row col in Q */
512 for (j
= 0; j
< Q
->NbColumns
; ++j
)
513 value_addto(Q
->p
[col
][j
], Q
->p
[col
][j
], Q
->p
[i
][j
]);
519 * Returns a full-dimensional polyhedron with the same number
520 * of integer points as P
522 Polyhedron
*remove_equalities(Polyhedron
*P
, unsigned MaxRays
)
524 Polyhedron
*Q
= Polyhedron_Copy(P
);
525 unsigned dim
= P
->Dimension
;
532 Q
= DomainConstraintSimplify(Q
, MaxRays
);
536 m1
= Matrix_Alloc(dim
, dim
);
537 for (i
= 0; i
< Q
->NbEq
; ++i
)
538 Vector_Copy(Q
->Constraint
[i
]+1, m1
->p
[i
], dim
);
540 /* m1 may not be unimodular, but we won't be throwing anything away */
541 unimodular_complete(m1
, Q
->NbEq
);
543 m2
= Matrix_Alloc(dim
+1-Q
->NbEq
, dim
+1);
544 for (i
= Q
->NbEq
; i
< dim
; ++i
)
545 Vector_Copy(m1
->p
[i
], m2
->p
[i
-Q
->NbEq
], dim
);
546 value_set_si(m2
->p
[dim
-Q
->NbEq
][dim
], 1);
549 P
= Polyhedron_Image(Q
, m2
, MaxRays
);
557 * Returns a full-dimensional polyhedron with the same number
558 * of integer points as P
559 * nvar specifies the number of variables
560 * The remaining dimensions are assumed to be parameters
562 * factor is NbEq x (nparam+2) matrix, containing stride constraints
563 * on the parameters; column nparam is the constant;
564 * column nparam+1 is the stride
566 * if factor is NULL, only remove equalities that don't affect
567 * the number of points
569 Polyhedron
*remove_equalities_p(Polyhedron
*P
, unsigned nvar
, Matrix
**factor
,
574 unsigned dim
= P
->Dimension
;
581 m1
= Matrix_Alloc(nvar
, nvar
);
582 P
= DomainConstraintSimplify(P
, MaxRays
);
584 f
= Matrix_Alloc(P
->NbEq
, dim
-nvar
+2);
588 for (i
= 0, j
= 0; i
< P
->NbEq
; ++i
) {
589 if (First_Non_Zero(P
->Constraint
[i
]+1, nvar
) == -1)
592 Vector_Gcd(P
->Constraint
[i
]+1, nvar
, &g
);
593 if (!factor
&& value_notone_p(g
))
597 Vector_Copy(P
->Constraint
[i
]+1+nvar
, f
->p
[j
], dim
-nvar
+1);
598 value_assign(f
->p
[j
][dim
-nvar
+1], g
);
601 Vector_Copy(P
->Constraint
[i
]+1, m1
->p
[j
], nvar
);
607 unimodular_complete(m1
, j
);
609 m2
= Matrix_Alloc(dim
+1-j
, dim
+1);
610 for (i
= 0; i
< nvar
-j
; ++i
)
611 Vector_Copy(m1
->p
[i
+j
], m2
->p
[i
], nvar
);
613 for (i
= nvar
-j
; i
<= dim
-j
; ++i
)
614 value_set_si(m2
->p
[i
][i
+j
], 1);
616 Q
= Polyhedron_Image(P
, m2
, MaxRays
);
623 void Line_Length(Polyhedron
*P
, Value
*len
)
629 assert(P
->Dimension
== 1);
635 for (i
= 0; i
< P
->NbConstraints
; ++i
) {
636 value_oppose(tmp
, P
->Constraint
[i
][2]);
637 if (value_pos_p(P
->Constraint
[i
][1])) {
638 mpz_cdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
639 if (!p
|| value_gt(tmp
, pos
))
640 value_assign(pos
, tmp
);
642 } else if (value_neg_p(P
->Constraint
[i
][1])) {
643 mpz_fdiv_q(tmp
, tmp
, P
->Constraint
[i
][1]);
644 if (!n
|| value_lt(tmp
, neg
))
645 value_assign(neg
, tmp
);
649 value_subtract(tmp
, neg
, pos
);
650 value_increment(*len
, tmp
);
652 value_set_si(*len
, -1);
661 * Factors the polyhedron P into polyhedra Q_i such that
662 * the number of integer points in P is equal to the product
663 * of the number of integer points in the individual Q_i
665 * If no factors can be found, NULL is returned.
666 * Otherwise, a linked list of the factors is returned.
668 * If there are factors and if T is not NULL, then a matrix will be
669 * returned through T expressing the old variables in terms of the
670 * new variables as they appear in the sequence of factors.
672 * The algorithm works by first computing the Hermite normal form
673 * and then grouping columns linked by one or more constraints together,
674 * where a constraints "links" two or more columns if the constraint
675 * has nonzero coefficients in the columns.
677 Polyhedron
* Polyhedron_Factor(Polyhedron
*P
, unsigned nparam
, Matrix
**T
,
681 Matrix
*M
, *H
, *Q
, *U
;
682 int *pos
; /* for each column: row position of pivot */
683 int *group
; /* group to which a column belongs */
684 int *cnt
; /* number of columns in the group */
685 int *rowgroup
; /* group to which a constraint belongs */
686 int nvar
= P
->Dimension
- nparam
;
687 Polyhedron
*F
= NULL
;
695 NALLOC(rowgroup
, P
->NbConstraints
);
697 M
= Matrix_Alloc(P
->NbConstraints
, nvar
);
698 for (i
= 0; i
< P
->NbConstraints
; ++i
)
699 Vector_Copy(P
->Constraint
[i
]+1, M
->p
[i
], nvar
);
700 left_hermite(M
, &H
, &Q
, &U
);
704 for (i
= 0; i
< P
->NbConstraints
; ++i
)
706 for (i
= 0, j
= 0; i
< H
->NbColumns
; ++i
) {
707 for ( ; j
< H
->NbRows
; ++j
)
708 if (value_notzero_p(H
->p
[j
][i
]))
710 assert (j
< H
->NbRows
);
713 for (i
= 0; i
< nvar
; ++i
) {
717 for (i
= 0; i
< H
->NbColumns
&& cnt
[0] < nvar
; ++i
) {
718 if (rowgroup
[pos
[i
]] == -1)
719 rowgroup
[pos
[i
]] = i
;
720 for (j
= pos
[i
]+1; j
< H
->NbRows
; ++j
) {
721 if (value_zero_p(H
->p
[j
][i
]))
723 if (rowgroup
[j
] != -1)
725 rowgroup
[j
] = group
[i
];
726 for (k
= i
+1; k
< H
->NbColumns
&& j
>= pos
[k
]; ++k
) {
731 if (group
[k
] != group
[i
] && value_notzero_p(H
->p
[j
][k
])) {
732 assert(cnt
[group
[k
]] != 0);
733 assert(cnt
[group
[i
]] != 0);
734 if (group
[i
] < group
[k
]) {
735 cnt
[group
[i
]] += cnt
[group
[k
]];
739 cnt
[group
[k
]] += cnt
[group
[i
]];
748 if (cnt
[0] != nvar
) {
749 /* Extract out pure context constraints separately */
750 Polyhedron
**next
= &F
;
753 *T
= Matrix_Alloc(nvar
, nvar
);
754 for (i
= nparam
? -1 : 0; i
< nvar
; ++i
) {
758 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
759 if (rowgroup
[j
] == -1) {
760 if (First_Non_Zero(P
->Constraint
[j
]+1+nvar
,
773 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
)
774 if (rowgroup
[j
] >= 0 && group
[rowgroup
[j
]] == i
) {
781 for (j
= 0; j
< nvar
; ++j
) {
783 for (l
= 0, m
= 0; m
< d
; ++l
) {
786 value_assign((*T
)->p
[j
][tot_d
+m
++], U
->p
[j
][l
]);
790 M
= Matrix_Alloc(k
, d
+nparam
+2);
791 for (j
= 0, k
= 0; j
< P
->NbConstraints
; ++j
) {
793 if (rowgroup
[j
] != i
)
795 value_assign(M
->p
[k
][0], P
->Constraint
[j
][0]);
796 for (l
= 0, m
= 0; m
< d
; ++l
) {
799 value_assign(M
->p
[k
][1+m
++], H
->p
[j
][l
]);
801 Vector_Copy(P
->Constraint
[j
]+1+nvar
, M
->p
[k
]+1+m
, nparam
+1);
804 *next
= Constraints2Polyhedron(M
, NbMaxRays
);
805 next
= &(*next
)->next
;
820 * Project on final dim dimensions
822 Polyhedron
* Polyhedron_Project(Polyhedron
*P
, int dim
)
825 int remove
= P
->Dimension
- dim
;
829 if (P
->Dimension
== dim
)
830 return Polyhedron_Copy(P
);
832 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
833 for (i
= 0; i
< dim
+1; ++i
)
834 value_set_si(T
->p
[i
][i
+remove
], 1);
835 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
840 /* Constructs a new constraint that ensures that
841 * the first constraint is (strictly) smaller than
844 static void smaller_constraint(Value
*a
, Value
*b
, Value
*c
, int pos
, int shift
,
845 int len
, int strict
, Value
*tmp
)
847 value_oppose(*tmp
, b
[pos
+1]);
848 value_set_si(c
[0], 1);
849 Vector_Combine(a
+1+shift
, b
+1+shift
, c
+1, *tmp
, a
[pos
+1], len
-shift
-1);
851 value_decrement(c
[len
-shift
-1], c
[len
-shift
-1]);
852 ConstraintSimplify(c
, c
, len
-shift
, tmp
);
856 /* For each pair of lower and upper bounds on the first variable,
857 * calls fn with the set of constraints on the remaining variables
858 * where these bounds are active, i.e., (stricly) larger/smaller than
859 * the other lower/upper bounds, the lower and upper bound and the
862 * If the first variable is equal to an affine combination of the
863 * other variables then fn is called with both lower and upper
864 * pointing to the corresponding equality.
866 * If there is no lower (or upper) bound, then NULL is passed
867 * as the corresponding bound.
869 void for_each_lower_upper_bound(Polyhedron
*P
,
870 for_each_lower_upper_bound_init init
,
871 for_each_lower_upper_bound_fn fn
,
874 unsigned dim
= P
->Dimension
;
881 if (value_zero_p(P
->Constraint
[0][0]) &&
882 value_notzero_p(P
->Constraint
[0][1])) {
883 M
= Matrix_Alloc(P
->NbConstraints
-1, dim
-1+2);
884 for (i
= 1; i
< P
->NbConstraints
; ++i
) {
885 value_assign(M
->p
[i
-1][0], P
->Constraint
[i
][0]);
886 Vector_Copy(P
->Constraint
[i
]+2, M
->p
[i
-1]+1, dim
);
890 fn(M
, P
->Constraint
[0], P
->Constraint
[0], cb_data
);
896 pos
= ALLOCN(int, P
->NbConstraints
);
898 for (i
= 0, z
= 0; i
< P
->NbConstraints
; ++i
)
899 if (value_zero_p(P
->Constraint
[i
][1]))
900 pos
[P
->NbConstraints
-1 - z
++] = i
;
901 /* put those with positive coefficients first; number: p */
902 for (i
= 0, p
= 0, n
= P
->NbConstraints
-z
-1; i
< P
->NbConstraints
; ++i
)
903 if (value_pos_p(P
->Constraint
[i
][1]))
905 else if (value_neg_p(P
->Constraint
[i
][1]))
907 n
= P
->NbConstraints
-z
-p
;
912 M
= Matrix_Alloc((p
? p
-1 : 0) + (n
? n
-1 : 0) + z
+ 1, dim
-1+2);
913 for (i
= 0; i
< z
; ++i
) {
914 value_assign(M
->p
[i
][0], P
->Constraint
[pos
[P
->NbConstraints
-1 - i
]][0]);
915 Vector_Copy(P
->Constraint
[pos
[P
->NbConstraints
-1 - i
]]+2,
918 for (k
= p
? 0 : -1; k
< p
; ++k
) {
919 for (k2
= 0; k2
< p
; ++k2
) {
922 q
= 1 + z
+ k2
- (k2
> k
);
924 P
->Constraint
[pos
[k
]],
925 P
->Constraint
[pos
[k2
]],
926 M
->p
[q
], 0, 1, dim
+2, k2
> k
, &g
);
928 for (l
= n
? p
: p
-1; l
< p
+n
; ++l
) {
931 for (l2
= p
; l2
< p
+n
; ++l2
) {
934 q
= 1 + z
+ l2
-1 - (l2
> l
);
936 P
->Constraint
[pos
[l2
]],
937 P
->Constraint
[pos
[l
]],
938 M
->p
[q
], 0, 1, dim
+2, l2
> l
, &g
);
941 smaller_constraint(P
->Constraint
[pos
[k
]],
942 P
->Constraint
[pos
[l
]],
943 M
->p
[z
], 0, 1, dim
+2, 0, &g
);
944 lower
= p
? P
->Constraint
[pos
[k
]] : NULL
;
945 upper
= n
? P
->Constraint
[pos
[l
]] : NULL
;
946 fn(M
, lower
, upper
, cb_data
);
955 struct section
{ Polyhedron
* D
; evalue E
; };
965 static void PLL_init(unsigned n
, void *cb_data
)
967 struct PLL_data
*data
= (struct PLL_data
*)cb_data
;
969 data
->s
= ALLOCN(struct section
, n
);
972 static void PLL_cb(Matrix
*M
, Value
*lower
, Value
*upper
, void *cb_data
)
974 struct PLL_data
*data
= (struct PLL_data
*)cb_data
;
975 unsigned dim
= M
->NbColumns
-1;
984 T
= Constraints2Polyhedron(M2
, data
->MaxRays
);
986 data
->s
[data
->nd
].D
= DomainIntersection(T
, data
->C
, data
->MaxRays
);
989 POL_ENSURE_VERTICES(data
->s
[data
->nd
].D
);
990 if (emptyQ(data
->s
[data
->nd
].D
)) {
991 Polyhedron_Free(data
->s
[data
->nd
].D
);
994 L
= bv_ceil3(lower
+1+1, dim
-1+1, lower
[0+1], data
->s
[data
->nd
].D
);
995 U
= bv_ceil3(upper
+1+1, dim
-1+1, upper
[0+1], data
->s
[data
->nd
].D
);
997 eadd(&data
->mone
, U
);
998 emul(&data
->mone
, U
);
999 data
->s
[data
->nd
].E
= *U
;
1005 static evalue
*ParamLine_Length_mod(Polyhedron
*P
, Polyhedron
*C
, unsigned MaxRays
)
1007 unsigned dim
= P
->Dimension
;
1008 unsigned nvar
= dim
- C
->Dimension
;
1009 struct PLL_data data
;
1015 value_init(data
.mone
.d
);
1016 evalue_set_si(&data
.mone
, -1, 1);
1019 data
.MaxRays
= MaxRays
;
1021 for_each_lower_upper_bound(P
, PLL_init
, PLL_cb
, &data
);
1025 value_set_si(F
->d
, 0);
1026 F
->x
.p
= new_enode(partition
, 2*data
.nd
, dim
-nvar
);
1027 for (k
= 0; k
< data
.nd
; ++k
) {
1028 EVALUE_SET_DOMAIN(F
->x
.p
->arr
[2*k
], data
.s
[k
].D
);
1029 value_clear(F
->x
.p
->arr
[2*k
+1].d
);
1030 F
->x
.p
->arr
[2*k
+1] = data
.s
[k
].E
;
1034 free_evalue_refs(&data
.mone
);
1039 evalue
* ParamLine_Length(Polyhedron
*P
, Polyhedron
*C
,
1040 struct barvinok_options
*options
)
1043 tmp
= ParamLine_Length_mod(P
, C
, options
->MaxRays
);
1044 if (options
->lookup_table
) {
1045 evalue_mod2table(tmp
, C
->Dimension
);
1051 Bool
isIdentity(Matrix
*M
)
1054 if (M
->NbRows
!= M
->NbColumns
)
1057 for (i
= 0;i
< M
->NbRows
; i
++)
1058 for (j
= 0; j
< M
->NbColumns
; j
++)
1060 if(value_notone_p(M
->p
[i
][j
]))
1063 if(value_notzero_p(M
->p
[i
][j
]))
1069 void Param_Polyhedron_Print(FILE* DST
, Param_Polyhedron
*PP
, char **param_names
)
1074 for(P
=PP
->D
;P
;P
=P
->next
) {
1076 /* prints current val. dom. */
1077 fprintf(DST
, "---------------------------------------\n");
1078 fprintf(DST
, "Domain :\n");
1079 Print_Domain(DST
, P
->Domain
, param_names
);
1081 /* scan the vertices */
1082 fprintf(DST
, "Vertices :\n");
1083 FORALL_PVertex_in_ParamPolyhedron(V
,P
,PP
) {
1085 /* prints each vertex */
1086 Print_Vertex(DST
, V
->Vertex
, param_names
);
1089 END_FORALL_PVertex_in_ParamPolyhedron
;
1093 void Enumeration_Print(FILE *Dst
, Enumeration
*en
, const char * const *params
)
1095 for (; en
; en
= en
->next
) {
1096 Print_Domain(Dst
, en
->ValidityDomain
, params
);
1097 print_evalue(Dst
, &en
->EP
, params
);
1101 void Enumeration_Free(Enumeration
*en
)
1107 free_evalue_refs( &(en
->EP
) );
1108 Domain_Free( en
->ValidityDomain
);
1115 void Enumeration_mod2table(Enumeration
*en
, unsigned nparam
)
1117 for (; en
; en
= en
->next
) {
1118 evalue_mod2table(&en
->EP
, nparam
);
1119 reduce_evalue(&en
->EP
);
1123 size_t Enumeration_size(Enumeration
*en
)
1127 for (; en
; en
= en
->next
) {
1128 s
+= domain_size(en
->ValidityDomain
);
1129 s
+= evalue_size(&en
->EP
);
1134 void Free_ParamNames(char **params
, int m
)
1141 /* Check whether every set in D2 is included in some set of D1 */
1142 int DomainIncludes(Polyhedron
*D1
, Polyhedron
*D2
)
1144 for ( ; D2
; D2
= D2
->next
) {
1146 for (P1
= D1
; P1
; P1
= P1
->next
)
1147 if (PolyhedronIncludes(P1
, D2
))
1155 int line_minmax(Polyhedron
*I
, Value
*min
, Value
*max
)
1160 value_oppose(I
->Constraint
[0][2], I
->Constraint
[0][2]);
1161 /* There should never be a remainder here */
1162 if (value_pos_p(I
->Constraint
[0][1]))
1163 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
1165 mpz_fdiv_q(*min
, I
->Constraint
[0][2], I
->Constraint
[0][1]);
1166 value_assign(*max
, *min
);
1167 } else for (i
= 0; i
< I
->NbConstraints
; ++i
) {
1168 if (value_zero_p(I
->Constraint
[i
][1])) {
1173 value_oppose(I
->Constraint
[i
][2], I
->Constraint
[i
][2]);
1174 if (value_pos_p(I
->Constraint
[i
][1]))
1175 mpz_cdiv_q(*min
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1177 mpz_fdiv_q(*max
, I
->Constraint
[i
][2], I
->Constraint
[i
][1]);
1185 PROCEDURES TO COMPUTE ENUMERATION. recursive procedure, recurse for
1188 @param pos index position of current loop index (1..hdim-1)
1189 @param P loop domain
1190 @param context context values for fixed indices
1191 @param exist number of existential variables
1192 @return the number of integer points in this
1196 void count_points_e (int pos
, Polyhedron
*P
, int exist
, int nparam
,
1197 Value
*context
, Value
*res
)
1202 value_set_si(*res
, 0);
1207 count_points(pos
, P
, context
, res
);
1211 value_init(LB
); value_init(UB
); value_init(k
);
1215 if (lower_upper_bounds(pos
,P
,context
,&LB
,&UB
) !=0) {
1216 /* Problem if UB or LB is INFINITY */
1217 value_clear(LB
); value_clear(UB
); value_clear(k
);
1218 if (pos
> P
->Dimension
- nparam
- exist
)
1219 value_set_si(*res
, 1);
1221 value_set_si(*res
, -1);
1228 for (value_assign(k
,LB
); value_le(k
,UB
); value_increment(k
,k
)) {
1229 fprintf(stderr
, "(");
1230 for (i
=1; i
<pos
; i
++) {
1231 value_print(stderr
,P_VALUE_FMT
,context
[i
]);
1232 fprintf(stderr
,",");
1234 value_print(stderr
,P_VALUE_FMT
,k
);
1235 fprintf(stderr
,")\n");
1240 value_set_si(context
[pos
],0);
1241 if (value_lt(UB
,LB
)) {
1242 value_clear(LB
); value_clear(UB
); value_clear(k
);
1243 value_set_si(*res
, 0);
1248 value_set_si(*res
, 1);
1250 value_subtract(k
,UB
,LB
);
1251 value_add_int(k
,k
,1);
1252 value_assign(*res
, k
);
1254 value_clear(LB
); value_clear(UB
); value_clear(k
);
1258 /*-----------------------------------------------------------------*/
1259 /* Optimization idea */
1260 /* If inner loops are not a function of k (the current index) */
1261 /* i.e. if P->Constraint[i][pos]==0 for all P following this and */
1263 /* Then CNT = (UB-LB+1)*count_points(pos+1, P->next, context) */
1264 /* (skip the for loop) */
1265 /*-----------------------------------------------------------------*/
1268 value_set_si(*res
, 0);
1269 for (value_assign(k
,LB
);value_le(k
,UB
);value_increment(k
,k
)) {
1270 /* Insert k in context */
1271 value_assign(context
[pos
],k
);
1272 count_points_e(pos
+1, P
->next
, exist
, nparam
, context
, &c
);
1273 if(value_notmone_p(c
))
1274 value_addto(*res
, *res
, c
);
1276 value_set_si(*res
, -1);
1279 if (pos
> P
->Dimension
- nparam
- exist
&&
1286 fprintf(stderr
,"%d\n",CNT
);
1290 value_set_si(context
[pos
],0);
1291 value_clear(LB
); value_clear(UB
); value_clear(k
);
1293 } /* count_points_e */
1295 int DomainContains(Polyhedron
*P
, Value
*list_args
, int len
,
1296 unsigned MaxRays
, int set
)
1301 if (P
->Dimension
== len
)
1302 return in_domain(P
, list_args
);
1304 assert(set
); // assume list_args is large enough
1305 assert((P
->Dimension
- len
) % 2 == 0);
1307 for (i
= 0; i
< P
->Dimension
- len
; i
+= 2) {
1309 for (j
= 0 ; j
< P
->NbEq
; ++j
)
1310 if (value_notzero_p(P
->Constraint
[j
][1+len
+i
]))
1312 assert(j
< P
->NbEq
);
1313 value_absolute(m
, P
->Constraint
[j
][1+len
+i
]);
1314 k
= First_Non_Zero(P
->Constraint
[j
]+1, len
);
1316 assert(First_Non_Zero(P
->Constraint
[j
]+1+k
+1, len
- k
- 1) == -1);
1317 mpz_fdiv_q(list_args
[len
+i
], list_args
[k
], m
);
1318 mpz_fdiv_r(list_args
[len
+i
+1], list_args
[k
], m
);
1322 return in_domain(P
, list_args
);
1325 Polyhedron
*DomainConcat(Polyhedron
*head
, Polyhedron
*tail
)
1330 for (S
= head
; S
->next
; S
= S
->next
)
1336 evalue
*barvinok_lexsmaller_ev(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1337 Polyhedron
*C
, unsigned MaxRays
)
1340 Polyhedron
*RC
, *RD
, *Q
;
1341 unsigned nparam
= dim
+ C
->Dimension
;
1345 RC
= LexSmaller(P
, D
, dim
, C
, MaxRays
);
1349 exist
= RD
->Dimension
- nparam
- dim
;
1350 CA
= align_context(RC
, RD
->Dimension
, MaxRays
);
1351 Q
= DomainIntersection(RD
, CA
, MaxRays
);
1352 Polyhedron_Free(CA
);
1354 Polyhedron_Free(RC
);
1357 for (Q
= RD
; Q
; Q
= Q
->next
) {
1359 Polyhedron
*next
= Q
->next
;
1362 t
= barvinok_enumerate_e(Q
, exist
, nparam
, MaxRays
);
1379 Enumeration
*barvinok_lexsmaller(Polyhedron
*P
, Polyhedron
*D
, unsigned dim
,
1380 Polyhedron
*C
, unsigned MaxRays
)
1382 evalue
*EP
= barvinok_lexsmaller_ev(P
, D
, dim
, C
, MaxRays
);
1384 return partition2enumeration(EP
);
1387 /* "align" matrix to have nrows by inserting
1388 * the necessary number of rows and an equal number of columns in front
1390 Matrix
*align_matrix(Matrix
*M
, int nrows
)
1393 int newrows
= nrows
- M
->NbRows
;
1394 Matrix
*M2
= Matrix_Alloc(nrows
, newrows
+ M
->NbColumns
);
1395 for (i
= 0; i
< newrows
; ++i
)
1396 value_set_si(M2
->p
[i
][i
], 1);
1397 for (i
= 0; i
< M
->NbRows
; ++i
)
1398 Vector_Copy(M
->p
[i
], M2
->p
[newrows
+i
]+newrows
, M
->NbColumns
);
1402 static void print_varlist(FILE *out
, int n
, char **names
)
1406 for (i
= 0; i
< n
; ++i
) {
1409 fprintf(out
, "%s", names
[i
]);
1414 static void print_term(FILE *out
, Value v
, int pos
, int dim
, int nparam
,
1415 char **iter_names
, char **param_names
, int *first
)
1417 if (value_zero_p(v
)) {
1418 if (first
&& *first
&& pos
>= dim
+ nparam
)
1424 if (!*first
&& value_pos_p(v
))
1428 if (pos
< dim
+ nparam
) {
1429 if (value_mone_p(v
))
1431 else if (!value_one_p(v
))
1432 value_print(out
, VALUE_FMT
, v
);
1434 fprintf(out
, "%s", iter_names
[pos
]);
1436 fprintf(out
, "%s", param_names
[pos
-dim
]);
1438 value_print(out
, VALUE_FMT
, v
);
1441 char **util_generate_names(int n
, const char *prefix
)
1444 int len
= (prefix
? strlen(prefix
) : 0) + 10;
1445 char **names
= ALLOCN(char*, n
);
1447 fprintf(stderr
, "ERROR: memory overflow.\n");
1450 for (i
= 0; i
< n
; ++i
) {
1451 names
[i
] = ALLOCN(char, len
);
1453 fprintf(stderr
, "ERROR: memory overflow.\n");
1457 snprintf(names
[i
], len
, "%d", i
);
1459 snprintf(names
[i
], len
, "%s%d", prefix
, i
);
1465 void util_free_names(int n
, char **names
)
1468 for (i
= 0; i
< n
; ++i
)
1473 void Polyhedron_pprint(FILE *out
, Polyhedron
*P
, int dim
, int nparam
,
1474 char **iter_names
, char **param_names
)
1479 assert(dim
+ nparam
== P
->Dimension
);
1485 print_varlist(out
, nparam
, param_names
);
1486 fprintf(out
, " -> ");
1488 print_varlist(out
, dim
, iter_names
);
1489 fprintf(out
, " : ");
1492 fprintf(out
, "FALSE");
1493 else for (i
= 0; i
< P
->NbConstraints
; ++i
) {
1495 int v
= First_Non_Zero(P
->Constraint
[i
]+1, P
->Dimension
);
1496 if (v
== -1 && value_pos_p(P
->Constraint
[i
][0]))
1499 fprintf(out
, " && ");
1500 if (v
== -1 && value_notzero_p(P
->Constraint
[i
][1+P
->Dimension
]))
1501 fprintf(out
, "FALSE");
1502 else if (value_pos_p(P
->Constraint
[i
][v
+1])) {
1503 print_term(out
, P
->Constraint
[i
][v
+1], v
, dim
, nparam
,
1504 iter_names
, param_names
, NULL
);
1505 if (value_zero_p(P
->Constraint
[i
][0]))
1506 fprintf(out
, " = ");
1508 fprintf(out
, " >= ");
1509 for (j
= v
+1; j
<= dim
+nparam
; ++j
) {
1510 value_oppose(tmp
, P
->Constraint
[i
][1+j
]);
1511 print_term(out
, tmp
, j
, dim
, nparam
,
1512 iter_names
, param_names
, &first
);
1515 value_oppose(tmp
, P
->Constraint
[i
][1+v
]);
1516 print_term(out
, tmp
, v
, dim
, nparam
,
1517 iter_names
, param_names
, NULL
);
1518 fprintf(out
, " <= ");
1519 for (j
= v
+1; j
<= dim
+nparam
; ++j
)
1520 print_term(out
, P
->Constraint
[i
][1+j
], j
, dim
, nparam
,
1521 iter_names
, param_names
, &first
);
1525 fprintf(out
, " }\n");
1530 /* Construct a cone over P with P placed at x_d = 1, with
1531 * x_d the coordinate of an extra dimension
1533 * It's probably a mistake to depend so much on the internal
1534 * representation. We should probably simply compute the
1535 * vertices/facets first.
1537 Polyhedron
*Cone_over_Polyhedron(Polyhedron
*P
)
1539 unsigned NbConstraints
= 0;
1540 unsigned NbRays
= 0;
1544 if (POL_HAS(P
, POL_INEQUALITIES
))
1545 NbConstraints
= P
->NbConstraints
+ 1;
1546 if (POL_HAS(P
, POL_POINTS
))
1547 NbRays
= P
->NbRays
+ 1;
1549 C
= Polyhedron_Alloc(P
->Dimension
+1, NbConstraints
, NbRays
);
1550 if (POL_HAS(P
, POL_INEQUALITIES
)) {
1552 for (i
= 0; i
< P
->NbConstraints
; ++i
)
1553 Vector_Copy(P
->Constraint
[i
], C
->Constraint
[i
], P
->Dimension
+2);
1555 value_set_si(C
->Constraint
[P
->NbConstraints
][0], 1);
1556 value_set_si(C
->Constraint
[P
->NbConstraints
][1+P
->Dimension
], 1);
1558 if (POL_HAS(P
, POL_POINTS
)) {
1559 C
->NbBid
= P
->NbBid
;
1560 for (i
= 0; i
< P
->NbRays
; ++i
)
1561 Vector_Copy(P
->Ray
[i
], C
->Ray
[i
], P
->Dimension
+2);
1563 value_set_si(C
->Ray
[P
->NbRays
][0], 1);
1564 value_set_si(C
->Ray
[P
->NbRays
][1+C
->Dimension
], 1);
1566 POL_SET(C
, POL_VALID
);
1567 if (POL_HAS(P
, POL_INEQUALITIES
))
1568 POL_SET(C
, POL_INEQUALITIES
);
1569 if (POL_HAS(P
, POL_POINTS
))
1570 POL_SET(C
, POL_POINTS
);
1571 if (POL_HAS(P
, POL_VERTICES
))
1572 POL_SET(C
, POL_VERTICES
);
1576 /* Returns a (dim+nparam+1)x((dim-n)+nparam+1) matrix
1577 * mapping the transformed subspace back to the original space.
1578 * n is the number of equalities involving the variables
1579 * (i.e., not purely the parameters).
1580 * The remaining n coordinates in the transformed space would
1581 * have constant (parametric) values and are therefore not
1582 * included in the variables of the new space.
1584 Matrix
*compress_variables(Matrix
*Equalities
, unsigned nparam
)
1586 unsigned dim
= (Equalities
->NbColumns
-2) - nparam
;
1587 Matrix
*M
, *H
, *Q
, *U
, *C
, *ratH
, *invH
, *Ul
, *T1
, *T2
, *T
;
1592 for (n
= 0; n
< Equalities
->NbRows
; ++n
)
1593 if (First_Non_Zero(Equalities
->p
[n
]+1, dim
) == -1)
1596 return Identity(dim
+nparam
+1);
1598 value_set_si(mone
, -1);
1599 M
= Matrix_Alloc(n
, dim
);
1600 C
= Matrix_Alloc(n
+1, nparam
+1);
1601 for (i
= 0; i
< n
; ++i
) {
1602 Vector_Copy(Equalities
->p
[i
]+1, M
->p
[i
], dim
);
1603 Vector_Scale(Equalities
->p
[i
]+1+dim
, C
->p
[i
], mone
, nparam
+1);
1605 value_set_si(C
->p
[n
][nparam
], 1);
1606 left_hermite(M
, &H
, &Q
, &U
);
1611 ratH
= Matrix_Alloc(n
+1, n
+1);
1612 invH
= Matrix_Alloc(n
+1, n
+1);
1613 for (i
= 0; i
< n
; ++i
)
1614 Vector_Copy(H
->p
[i
], ratH
->p
[i
], n
);
1615 value_set_si(ratH
->p
[n
][n
], 1);
1616 ok
= Matrix_Inverse(ratH
, invH
);
1620 T1
= Matrix_Alloc(n
+1, nparam
+1);
1621 Matrix_Product(invH
, C
, T1
);
1624 if (value_notone_p(T1
->p
[n
][nparam
])) {
1625 for (i
= 0; i
< n
; ++i
) {
1626 if (!mpz_divisible_p(T1
->p
[i
][nparam
], T1
->p
[n
][nparam
])) {
1631 /* compress_params should have taken care of this */
1632 for (j
= 0; j
< nparam
; ++j
)
1633 assert(mpz_divisible_p(T1
->p
[i
][j
], T1
->p
[n
][nparam
]));
1634 Vector_AntiScale(T1
->p
[i
], T1
->p
[i
], T1
->p
[n
][nparam
], nparam
+1);
1636 value_set_si(T1
->p
[n
][nparam
], 1);
1638 Ul
= Matrix_Alloc(dim
+1, n
+1);
1639 for (i
= 0; i
< dim
; ++i
)
1640 Vector_Copy(U
->p
[i
], Ul
->p
[i
], n
);
1641 value_set_si(Ul
->p
[dim
][n
], 1);
1642 T2
= Matrix_Alloc(dim
+1, nparam
+1);
1643 Matrix_Product(Ul
, T1
, T2
);
1647 T
= Matrix_Alloc(dim
+nparam
+1, (dim
-n
)+nparam
+1);
1648 for (i
= 0; i
< dim
; ++i
) {
1649 Vector_Copy(U
->p
[i
]+n
, T
->p
[i
], dim
-n
);
1650 Vector_Copy(T2
->p
[i
], T
->p
[i
]+dim
-n
, nparam
+1);
1652 for (i
= 0; i
< nparam
+1; ++i
)
1653 value_set_si(T
->p
[dim
+i
][(dim
-n
)+i
], 1);
1654 assert(value_one_p(T2
->p
[dim
][nparam
]));
1661 /* Computes the left inverse of an affine embedding M and, if Eq is not NULL,
1662 * the equalities that define the affine subspace onto which M maps
1665 Matrix
*left_inverse(Matrix
*M
, Matrix
**Eq
)
1668 Matrix
*L
, *H
, *Q
, *U
, *ratH
, *invH
, *Ut
, *inv
;
1671 if (M
->NbColumns
== 1) {
1672 inv
= Matrix_Alloc(1, M
->NbRows
);
1673 value_set_si(inv
->p
[0][M
->NbRows
-1], 1);
1675 *Eq
= Matrix_Alloc(M
->NbRows
-1, 1+(M
->NbRows
-1)+1);
1676 for (i
= 0; i
< M
->NbRows
-1; ++i
) {
1677 value_oppose((*Eq
)->p
[i
][1+i
], M
->p
[M
->NbRows
-1][0]);
1678 value_assign((*Eq
)->p
[i
][1+(M
->NbRows
-1)], M
->p
[i
][0]);
1685 L
= Matrix_Alloc(M
->NbRows
-1, M
->NbColumns
-1);
1686 for (i
= 0; i
< L
->NbRows
; ++i
)
1687 Vector_Copy(M
->p
[i
], L
->p
[i
], L
->NbColumns
);
1688 right_hermite(L
, &H
, &U
, &Q
);
1691 t
= Vector_Alloc(U
->NbColumns
);
1692 for (i
= 0; i
< U
->NbColumns
; ++i
)
1693 value_oppose(t
->p
[i
], M
->p
[i
][M
->NbColumns
-1]);
1695 *Eq
= Matrix_Alloc(H
->NbRows
- H
->NbColumns
, 2 + U
->NbColumns
);
1696 for (i
= 0; i
< H
->NbRows
- H
->NbColumns
; ++i
) {
1697 Vector_Copy(U
->p
[H
->NbColumns
+i
], (*Eq
)->p
[i
]+1, U
->NbColumns
);
1698 Inner_Product(U
->p
[H
->NbColumns
+i
], t
->p
, U
->NbColumns
,
1699 (*Eq
)->p
[i
]+1+U
->NbColumns
);
1702 ratH
= Matrix_Alloc(H
->NbColumns
+1, H
->NbColumns
+1);
1703 invH
= Matrix_Alloc(H
->NbColumns
+1, H
->NbColumns
+1);
1704 for (i
= 0; i
< H
->NbColumns
; ++i
)
1705 Vector_Copy(H
->p
[i
], ratH
->p
[i
], H
->NbColumns
);
1706 value_set_si(ratH
->p
[ratH
->NbRows
-1][ratH
->NbColumns
-1], 1);
1708 ok
= Matrix_Inverse(ratH
, invH
);
1711 Ut
= Matrix_Alloc(invH
->NbRows
, U
->NbColumns
+1);
1712 for (i
= 0; i
< Ut
->NbRows
-1; ++i
) {
1713 Vector_Copy(U
->p
[i
], Ut
->p
[i
], U
->NbColumns
);
1714 Inner_Product(U
->p
[i
], t
->p
, U
->NbColumns
, &Ut
->p
[i
][Ut
->NbColumns
-1]);
1718 value_set_si(Ut
->p
[Ut
->NbRows
-1][Ut
->NbColumns
-1], 1);
1719 inv
= Matrix_Alloc(invH
->NbRows
, Ut
->NbColumns
);
1720 Matrix_Product(invH
, Ut
, inv
);
1726 /* Check whether all rays are revlex positive in the parameters
1728 int Polyhedron_has_revlex_positive_rays(Polyhedron
*P
, unsigned nparam
)
1731 for (r
= 0; r
< P
->NbRays
; ++r
) {
1733 if (value_notzero_p(P
->Ray
[r
][P
->Dimension
+1]))
1735 for (i
= P
->Dimension
-1; i
>= P
->Dimension
-nparam
; --i
) {
1736 if (value_neg_p(P
->Ray
[r
][i
+1]))
1738 if (value_pos_p(P
->Ray
[r
][i
+1]))
1741 /* A ray independent of the parameters */
1742 if (i
< P
->Dimension
-nparam
)
1748 static Polyhedron
*Recession_Cone(Polyhedron
*P
, unsigned nparam
, unsigned MaxRays
)
1751 unsigned nvar
= P
->Dimension
- nparam
;
1752 Matrix
*M
= Matrix_Alloc(P
->NbConstraints
, 1 + nvar
+ 1);
1754 for (i
= 0; i
< P
->NbConstraints
; ++i
)
1755 Vector_Copy(P
->Constraint
[i
], M
->p
[i
], 1+nvar
);
1756 R
= Constraints2Polyhedron(M
, MaxRays
);
1761 int Polyhedron_is_unbounded(Polyhedron
*P
, unsigned nparam
, unsigned MaxRays
)
1765 Polyhedron
*R
= Recession_Cone(P
, nparam
, MaxRays
);
1766 POL_ENSURE_VERTICES(R
);
1768 for (i
= 0; i
< R
->NbRays
; ++i
)
1769 if (value_zero_p(R
->Ray
[i
][1+R
->Dimension
]))
1771 is_unbounded
= R
->NbBid
> 0 || i
< R
->NbRays
;
1773 return is_unbounded
;
1776 static void SwapColumns(Value
**V
, int n
, int i
, int j
)
1780 for (r
= 0; r
< n
; ++r
)
1781 value_swap(V
[r
][i
], V
[r
][j
]);
1784 void Polyhedron_ExchangeColumns(Polyhedron
*P
, int Column1
, int Column2
)
1786 SwapColumns(P
->Constraint
, P
->NbConstraints
, Column1
, Column2
);
1787 SwapColumns(P
->Ray
, P
->NbRays
, Column1
, Column2
);
1790 Polyhedron_Matrix_View(P
, &M
, P
->NbConstraints
);
1791 Gauss(&M
, P
->NbEq
, P
->Dimension
+1);
1795 /* perform transposition inline; assumes M is a square matrix */
1796 void Matrix_Transposition(Matrix
*M
)
1800 assert(M
->NbRows
== M
->NbColumns
);
1801 for (i
= 0; i
< M
->NbRows
; ++i
)
1802 for (j
= i
+1; j
< M
->NbColumns
; ++j
)
1803 value_swap(M
->p
[i
][j
], M
->p
[j
][i
]);
1806 /* Matrix "view" of first rows rows */
1807 void Polyhedron_Matrix_View(Polyhedron
*P
, Matrix
*M
, unsigned rows
)
1810 M
->NbColumns
= P
->Dimension
+2;
1811 M
->p_Init
= P
->p_Init
;
1812 M
->p
= P
->Constraint
;