volume.c: allow computation of lower and upper bound volumes
[barvinok.git] / bfcounter.cc
blobf5e4bf60e144cc30118912e8d0bb96c23e17587e
1 #include <vector>
2 #include "bfcounter.h"
3 #include "lattice_point.h"
5 using std::vector;
6 using std::cerr;
7 using std::endl;
9 static int lex_cmp(vec_ZZ& a, vec_ZZ& b)
11 assert(a.length() == b.length());
13 for (int j = 0; j < a.length(); ++j)
14 if (a[j] != b[j])
15 return a[j] < b[j] ? -1 : 1;
16 return 0;
19 void bf_base::add_term(bfc_term_base *t, vec_ZZ& num_orig, vec_ZZ& extra_num)
21 vec_ZZ num;
22 int d = num_orig.length();
23 num.SetLength(d-1);
24 for (int l = 0; l < d-1; ++l)
25 num[l] = num_orig[l+1] + extra_num[l];
27 add_term(t, num);
30 void bf_base::add_term(bfc_term_base *t, vec_ZZ& num)
32 int len = t->terms.NumRows();
33 int i, r;
34 for (i = 0; i < len; ++i) {
35 r = lex_cmp(t->terms[i], num);
36 if (r >= 0)
37 break;
39 if (i == len || r > 0) {
40 t->terms.SetDims(len+1, num.length());
41 insert_term(t, i);
42 t->terms[i] = num;
43 } else {
44 // i < len && r == 0
45 update_term(t, i);
49 bfc_term_base* bf_base::find_bfc_term(bfc_vec& v, int *powers, int len)
51 bfc_vec::iterator i;
52 for (i = v.begin(); i != v.end(); ++i) {
53 int j;
54 for (j = 0; j < len; ++j)
55 if ((*i)->powers[j] != powers[j])
56 break;
57 if (j == len)
58 return (*i);
59 if ((*i)->powers[j] > powers[j])
60 break;
63 bfc_term_base* t = new_bf_term(len);
64 v.insert(i, t);
65 memcpy(t->powers, powers, len * sizeof(int));
67 return t;
70 void bf_base::reduce(mat_ZZ& factors, bfc_vec& v, barvinok_options *options)
72 assert(v.size() > 0);
73 unsigned nf = factors.NumRows();
74 unsigned d = factors.NumCols();
76 if (d == lower)
77 return base(factors, v);
79 bf_reducer bfr(factors, v, this);
81 bfr.reduce(options);
83 if (bfr.vn.size() > 0)
84 reduce(bfr.nfactors, bfr.vn, options);
87 int bf_base::setup_factors(const mat_ZZ& rays, mat_ZZ& factors,
88 bfc_term_base* t, int s)
90 factors.SetDims(dim, dim);
92 int r;
94 for (r = 0; r < dim; ++r)
95 t->powers[r] = 1;
97 for (r = 0; r < dim; ++r) {
98 factors[r] = rays[r];
99 int k;
100 for (k = 0; k < dim; ++k)
101 if (factors[r][k] != 0)
102 break;
103 if (factors[r][k] < 0) {
104 factors[r] = -factors[r];
105 for (int i = 0; i < t->terms.NumRows(); ++i)
106 t->terms[i] += factors[r];
107 s = -s;
111 return s;
114 void bf_base::handle(const mat_ZZ& rays, Value *vertex, const QQ& c,
115 unsigned long det, int *closed, barvinok_options *options)
117 bfc_term* t = new bfc_term(dim);
118 vector< bfc_term_base * > v;
119 v.push_back(t);
121 lattice_point(vertex, rays, t->terms, det, closed);
123 // the elements of factors are always lexpositive
124 mat_ZZ factors;
125 int s = setup_factors(rays, factors, t, 1);
127 t->c.SetLength(t->terms.NumRows());
129 for (int i = 0; i < t->c.length(); ++i) {
130 t->c[i].n = s * c.n;
131 t->c[i].d = c.d;
134 reduce(factors, v, options);
137 bfc_term_base* bfcounter_base::new_bf_term(int len)
139 bfc_term* t = new bfc_term(len);
140 t->c.SetLength(0);
141 return t;
144 void bfcounter_base::set_factor(bfc_term_base *t, int k, int change)
146 bfc_term* bfct = static_cast<bfc_term *>(t);
147 c = bfct->c[k];
148 if (change)
149 c.n = -c.n;
152 void bfcounter_base::set_factor(bfc_term_base *t, int k, mpq_t &f, int change)
154 bfc_term* bfct = static_cast<bfc_term *>(t);
155 value2zz(mpq_numref(f), c.n);
156 value2zz(mpq_denref(f), c.d);
157 c *= bfct->c[k];
158 if (change)
159 c.n = -c.n;
162 void bfcounter_base::set_factor(bfc_term_base *t, int k, const QQ& c_factor,
163 int change)
165 bfc_term* bfct = static_cast<bfc_term *>(t);
166 c = bfct->c[k];
167 c *= c_factor;
168 if (change)
169 c.n = -c.n;
172 void bfcounter_base::insert_term(bfc_term_base *t, int i)
174 bfc_term* bfct = static_cast<bfc_term *>(t);
175 int len = t->terms.NumRows()-1; // already increased by one
177 bfct->c.SetLength(len+1);
178 for (int j = len; j > i; --j) {
179 bfct->c[j] = bfct->c[j-1];
180 t->terms[j] = t->terms[j-1];
182 bfct->c[i] = c;
185 void bfcounter_base::update_term(bfc_term_base *t, int i)
187 bfc_term* bfct = static_cast<bfc_term *>(t);
189 bfct->c[i] += c;
192 void bf_reducer::compute_extra_num(int i)
194 clear(extra_num);
195 changes = 0;
196 no_param = 0; // r from text
197 only_param = 0; // k-r-s from text
198 total_power = 0; // k from text
200 for (int j = 0; j < nf; ++j) {
201 if (v[i]->powers[j] == 0)
202 continue;
204 total_power += v[i]->powers[j];
205 if (factors[j][0] == 0) {
206 only_param += v[i]->powers[j];
207 continue;
210 if (old2new[j] == -1)
211 no_param += v[i]->powers[j];
212 else
213 extra_num += -sign[j] * v[i]->powers[j] * nfactors[old2new[j]];
214 changes += v[i]->powers[j];
218 void bf_reducer::update_powers(const std::vector<int>& powers)
220 for (int l = 0; l < nnf; ++l)
221 npowers[l] = bpowers[l];
223 l_extra_num = extra_num;
224 l_changes = changes;
226 for (int l = 0; l < powers.size(); ++l) {
227 int n = powers[l];
228 if (n == 0)
229 continue;
230 assert(old2new[l] != -1);
232 npowers[old2new[l]] += n;
233 // interpretation of sign has been inverted
234 // since we inverted the power for specialization
235 if (sign[l] == 1) {
236 l_extra_num += n * nfactors[old2new[l]];
237 l_changes += n;
243 void bf_reducer::compute_reduced_factors()
245 unsigned nf = factors.NumRows();
246 unsigned d = factors.NumCols();
247 nnf = 0;
248 nfactors.SetDims(nnf, d-1);
250 for (int i = 0; i < nf; ++i) {
251 int j;
252 int s = 1;
253 for (j = 0; j < nnf; ++j) {
254 int k;
255 for (k = 1; k < d; ++k)
256 if (factors[i][k] != 0 || nfactors[j][k-1] != 0)
257 break;
258 if (k < d && factors[i][k] == -nfactors[j][k-1])
259 s = -1;
260 for (; k < d; ++k)
261 if (factors[i][k] != s * nfactors[j][k-1])
262 break;
263 if (k == d)
264 break;
266 old2new[i] = j;
267 if (j == nnf) {
268 int k;
269 for (k = 1; k < d; ++k)
270 if (factors[i][k] != 0)
271 break;
272 if (k < d) {
273 if (factors[i][k] < 0)
274 s = -1;
275 nfactors.SetDims(++nnf, d-1);
276 for (int k = 1; k < d; ++k)
277 nfactors[j][k-1] = s * factors[i][k];
278 } else
279 old2new[i] = -1;
281 sign[i] = s;
283 npowers = new int[nnf];
284 bpowers = new int[nnf];
287 void bf_reducer::reduce(barvinok_options *options)
289 compute_reduced_factors();
291 for (int i = 0; i < v.size(); ++i) {
292 compute_extra_num(i);
294 if (no_param == 0) {
295 vec_ZZ extra_num;
296 extra_num.SetLength(d-1);
297 int changes = 0;
298 int npowers[nnf];
299 for (int k = 0; k < nnf; ++k)
300 npowers[k] = 0;
301 for (int k = 0; k < nf; ++k) {
302 assert(old2new[k] != -1);
303 npowers[old2new[k]] += v[i]->powers[k];
304 if (sign[k] == -1) {
305 extra_num += v[i]->powers[k] * nfactors[old2new[k]];
306 changes += v[i]->powers[k];
310 bfc_term_base * t = bf->find_bfc_term(vn, npowers, nnf);
311 for (int k = 0; k < v[i]->terms.NumRows(); ++k) {
312 bf->set_factor(v[i], k, changes % 2);
313 bf->add_term(t, v[i]->terms[k], extra_num);
315 } else {
316 // powers of "constant" part
317 for (int k = 0; k < nnf; ++k)
318 bpowers[k] = 0;
319 for (int k = 0; k < nf; ++k) {
320 if (factors[k][0] != 0)
321 continue;
322 assert(old2new[k] != -1);
323 bpowers[old2new[k]] += v[i]->powers[k];
324 if (sign[k] == -1) {
325 extra_num += v[i]->powers[k] * nfactors[old2new[k]];
326 changes += v[i]->powers[k];
330 int j;
331 for (j = 0; j < nf; ++j)
332 if (old2new[j] == -1 && v[i]->powers[j] > 0)
333 break;
335 dpoly D(no_param, factors[j][0], 1);
336 for (int k = 1; k < v[i]->powers[j]; ++k) {
337 dpoly fact(no_param, factors[j][0], 1);
338 D *= fact;
340 for ( ; ++j < nf; )
341 if (old2new[j] == -1)
342 for (int k = 0; k < v[i]->powers[j]; ++k) {
343 dpoly fact(no_param, factors[j][0], 1);
344 D *= fact;
347 if (no_param + only_param == total_power &&
348 bf->constant_vertex(d)) {
349 bfc_term_base * t = NULL;
350 vec_ZZ num;
351 num.SetLength(d-1);
352 ZZ cn;
353 ZZ cd;
354 for (int k = 0; k < v[i]->terms.NumRows(); ++k) {
355 dpoly n(no_param, v[i]->terms[k][0]);
356 mpq_set_si(bf->tcount, 0, 1);
357 n.div(D, bf->tcount, bf->one);
359 if (value_zero_p(mpq_numref(bf->tcount)))
360 continue;
362 if (!t)
363 t = bf->find_bfc_term(vn, bpowers, nnf);
364 bf->set_factor(v[i], k, bf->tcount, changes % 2);
365 bf->add_term(t, v[i]->terms[k], extra_num);
367 } else {
368 for (int j = 0; j < v[i]->terms.NumRows(); ++j) {
369 dpoly n(no_param, v[i]->terms[j][0]);
371 dpoly_r * r = 0;
372 if (no_param + only_param == total_power)
373 r = new dpoly_r(n, nf);
374 else
375 for (int k = 0; k < nf; ++k) {
376 if (v[i]->powers[k] == 0)
377 continue;
378 if (factors[k][0] == 0 || old2new[k] == -1)
379 continue;
381 dpoly pd(no_param-1, factors[k][0], 1);
383 for (int l = 0; l < v[i]->powers[k]; ++l) {
384 int q;
385 for (q = 0; q < k; ++q)
386 if (old2new[q] == old2new[k] &&
387 sign[q] == sign[k])
388 break;
390 if (r == 0)
391 r = new dpoly_r(n, pd, q, nf);
392 else {
393 dpoly_r *nr = new dpoly_r(r, pd, q, nf);
394 delete r;
395 r = nr;
400 dpoly_r *rc = r->div(D);
401 delete r;
402 QQ factor;
403 factor.d = rc->denom;
405 if (bf->constant_vertex(d)) {
406 dpoly_r_term_list& final = rc->c[rc->len-1];
408 dpoly_r_term_list::iterator k;
409 for (k = final.begin(); k != final.end(); ++k) {
410 if ((*k)->coeff == 0)
411 continue;
413 update_powers((*k)->powers);
415 bfc_term_base * t = bf->find_bfc_term(vn, npowers, nnf);
416 factor.n = (*k)->coeff;
417 bf->set_factor(v[i], j, factor, l_changes % 2);
418 bf->add_term(t, v[i]->terms[j], l_extra_num);
420 } else
421 bf->cum(this, v[i], j, rc, options);
423 delete rc;
427 delete v[i];