8 #include <NTL/mat_ZZ.h>
10 #include <barvinok/util.h>
11 #include <barvinok/evalue.h>
13 #include <barvinok/barvinok.h>
14 #include <barvinok/genfun.h>
15 #include <barvinok/options.h>
16 #include <barvinok/sample.h>
17 #include "bfcounter.h"
18 #include "conversion.h"
20 #include "decomposer.h"
22 #include "lattice_point.h"
23 #include "reduce_domain.h"
24 #include "remove_equalities.h"
27 #include "bernoulli.h"
28 #include "param_util.h"
39 using std::ostringstream
;
41 #define ALLOC(t,p) p = (t*)malloc(sizeof(*p))
43 static evalue
*barvinok_summate_unweighted(Polyhedron
*P
, Polyhedron
*C
,
44 evalue
*(*summate
)(evalue
*, unsigned, struct barvinok_options
*options
),
45 struct barvinok_options
*options
);
58 coeff
= Matrix_Alloc(d
+1, d
+1+1);
59 value_set_si(coeff
->p
[0][0], 1);
60 value_set_si(coeff
->p
[0][d
+1], 1);
61 for (int i
= 1; i
<= d
; ++i
) {
62 value_multiply(coeff
->p
[i
][0], coeff
->p
[i
-1][0], d0
);
63 Vector_Combine(coeff
->p
[i
-1], coeff
->p
[i
-1]+1, coeff
->p
[i
]+1,
65 value_set_si(coeff
->p
[i
][d
+1], i
);
66 value_multiply(coeff
->p
[i
][d
+1], coeff
->p
[i
][d
+1], coeff
->p
[i
-1][d
+1]);
67 value_decrement(d0
, d0
);
72 void div(dpoly
& d
, Vector
*count
, int sign
) {
73 int len
= coeff
->NbRows
;
74 Matrix
* c
= Matrix_Alloc(coeff
->NbRows
, coeff
->NbColumns
);
77 for (int i
= 0; i
< len
; ++i
) {
78 Vector_Copy(coeff
->p
[i
], c
->p
[i
], len
+1);
79 for (int j
= 1; j
<= i
; ++j
) {
80 value_multiply(tmp
, d
.coeff
->p
[j
], c
->p
[i
][len
]);
81 value_oppose(tmp
, tmp
);
82 Vector_Combine(c
->p
[i
], c
->p
[i
-j
], c
->p
[i
],
83 c
->p
[i
-j
][len
], tmp
, len
);
84 value_multiply(c
->p
[i
][len
], c
->p
[i
][len
], c
->p
[i
-j
][len
]);
86 value_multiply(c
->p
[i
][len
], c
->p
[i
][len
], d
.coeff
->p
[0]);
89 value_set_si(tmp
, -1);
90 Vector_Scale(c
->p
[len
-1], count
->p
, tmp
, len
);
91 value_assign(count
->p
[len
], c
->p
[len
-1][len
]);
93 Vector_Copy(c
->p
[len
-1], count
->p
, len
+1);
94 Vector_Normalize(count
->p
, len
+1);
100 const int MAX_TRY
=10;
102 * Searches for a vector that is not orthogonal to any
103 * of the rays in rays.
105 static void nonorthog(mat_ZZ
& rays
, vec_ZZ
& lambda
)
107 int dim
= rays
.NumCols();
109 lambda
.SetLength(dim
);
113 for (int i
= 2; !found
&& i
<= 50*dim
; i
+=4) {
114 for (int j
= 0; j
< MAX_TRY
; ++j
) {
115 for (int k
= 0; k
< dim
; ++k
) {
116 int r
= random_int(i
)+2;
117 int v
= (2*(r
%2)-1) * (r
>> 1);
121 for (; k
< rays
.NumRows(); ++k
)
122 if (lambda
* rays
[k
] == 0)
124 if (k
== rays
.NumRows()) {
133 static void add_rays(mat_ZZ
& rays
, Polyhedron
*i
, int *r
, int nvar
= -1,
136 unsigned dim
= i
->Dimension
;
139 for (int k
= 0; k
< i
->NbRays
; ++k
) {
140 if (!value_zero_p(i
->Ray
[k
][dim
+1]))
142 if (!all
&& nvar
!= dim
&& First_Non_Zero(i
->Ray
[k
]+1, nvar
) == -1)
144 values2zz(i
->Ray
[k
]+1, rays
[(*r
)++], nvar
);
148 struct bfe_term
: public bfc_term_base
{
149 vector
<evalue
*> factors
;
151 bfe_term(int len
) : bfc_term_base(len
) {
155 for (int i
= 0; i
< factors
.size(); ++i
) {
158 free_evalue_refs(factors
[i
]);
164 static void print_int_vector(int *v
, int len
, const char *name
)
166 cerr
<< name
<< endl
;
167 for (int j
= 0; j
< len
; ++j
) {
173 static void print_bfc_terms(mat_ZZ
& factors
, bfc_vec
& v
)
176 cerr
<< "factors" << endl
;
177 cerr
<< factors
<< endl
;
178 for (int i
= 0; i
< v
.size(); ++i
) {
179 cerr
<< "term: " << i
<< endl
;
180 print_int_vector(v
[i
]->powers
, factors
.NumRows(), "powers");
181 cerr
<< "terms" << endl
;
182 cerr
<< v
[i
]->terms
<< endl
;
183 bfc_term
* bfct
= static_cast<bfc_term
*>(v
[i
]);
184 cerr
<< bfct
->c
<< endl
;
188 static void print_bfe_terms(mat_ZZ
& factors
, bfc_vec
& v
)
191 cerr
<< "factors" << endl
;
192 cerr
<< factors
<< endl
;
193 for (int i
= 0; i
< v
.size(); ++i
) {
194 cerr
<< "term: " << i
<< endl
;
195 print_int_vector(v
[i
]->powers
, factors
.NumRows(), "powers");
196 cerr
<< "terms" << endl
;
197 cerr
<< v
[i
]->terms
<< endl
;
198 bfe_term
* bfet
= static_cast<bfe_term
*>(v
[i
]);
199 for (int j
= 0; j
< v
[i
]->terms
.NumRows(); ++j
) {
200 const char * test
[] = {"a", "b"};
201 print_evalue(stderr
, bfet
->factors
[j
], test
);
202 fprintf(stderr
, "\n");
207 struct bfcounter
: public bfcounter_base
{
211 bfcounter(unsigned dim
) : bfcounter_base(dim
) {
220 virtual void base(mat_ZZ
& factors
, bfc_vec
& v
);
221 virtual void get_count(Value
*result
) {
222 assert(value_one_p(&count
[0]._mp_den
));
223 value_assign(*result
, &count
[0]._mp_num
);
227 void bfcounter::base(mat_ZZ
& factors
, bfc_vec
& v
)
229 unsigned nf
= factors
.NumRows();
231 for (int i
= 0; i
< v
.size(); ++i
) {
232 bfc_term
* bfct
= static_cast<bfc_term
*>(v
[i
]);
234 // factor is always positive, so we always
236 for (int k
= 0; k
< nf
; ++k
)
237 total_power
+= v
[i
]->powers
[k
];
240 for (j
= 0; j
< nf
; ++j
)
241 if (v
[i
]->powers
[j
] > 0)
244 zz2value(factors
[j
][0], tz
);
245 dpoly
D(total_power
, tz
, 1);
246 for (int k
= 1; k
< v
[i
]->powers
[j
]; ++k
) {
247 zz2value(factors
[j
][0], tz
);
248 dpoly
fact(total_power
, tz
, 1);
252 for (int k
= 0; k
< v
[i
]->powers
[j
]; ++k
) {
253 zz2value(factors
[j
][0], tz
);
254 dpoly
fact(total_power
, tz
, 1);
258 for (int k
= 0; k
< v
[i
]->terms
.NumRows(); ++k
) {
259 zz2value(v
[i
]->terms
[k
][0], tz
);
260 dpoly
n(total_power
, tz
);
261 mpq_set_si(tcount
, 0, 1);
264 bfct
->c
[k
].n
= -bfct
->c
[k
].n
;
265 zz2value(bfct
->c
[k
].n
, tn
);
266 zz2value(bfct
->c
[k
].d
, td
);
268 mpz_mul(mpq_numref(tcount
), mpq_numref(tcount
), tn
);
269 mpz_mul(mpq_denref(tcount
), mpq_denref(tcount
), td
);
270 mpq_canonicalize(tcount
);
271 mpq_add(count
, count
, tcount
);
278 /* Check whether the polyhedron is unbounded and if so,
279 * check whether it has any (and therefore an infinite number of)
281 * If one of the vertices is integer, then we are done.
282 * Otherwise, transform the polyhedron such that one of the rays
283 * is the first unit vector and cut it off at a height that ensures
284 * that if the whole polyhedron has any points, then the remaining part
285 * has integer points. In particular we add the largest coefficient
286 * of a ray to the highest vertex (rounded up).
288 static bool Polyhedron_is_infinite(Polyhedron
*P
, Value
* result
,
289 barvinok_options
*options
)
301 for (; r
< P
->NbRays
; ++r
)
302 if (value_zero_p(P
->Ray
[r
][P
->Dimension
+1]))
304 if (P
->NbBid
== 0 && r
== P
->NbRays
)
307 if (options
->count_sample_infinite
) {
310 sample
= Polyhedron_Sample(P
, options
);
312 value_set_si(*result
, 0);
314 value_set_si(*result
, -1);
320 for (int i
= 0; i
< P
->NbRays
; ++i
)
321 if (value_one_p(P
->Ray
[i
][1+P
->Dimension
])) {
322 value_set_si(*result
, -1);
327 M
= Matrix_Alloc(P
->Dimension
+1, P
->Dimension
+1);
328 Vector_Gcd(P
->Ray
[r
]+1, P
->Dimension
, &g
);
329 Vector_AntiScale(P
->Ray
[r
]+1, M
->p
[0], g
, P
->Dimension
+1);
330 int ok
= unimodular_complete(M
, 1);
332 value_set_si(M
->p
[P
->Dimension
][P
->Dimension
], 1);
335 P
= Polyhedron_Preimage(P
, M2
, 0);
343 value_set_si(size
, 0);
345 for (int i
= 0; i
< P
->NbBid
; ++i
) {
346 value_absolute(tmp
, P
->Ray
[i
][1]);
347 if (value_gt(tmp
, size
))
348 value_assign(size
, tmp
);
350 for (int i
= P
->NbBid
; i
< P
->NbRays
; ++i
) {
351 if (value_zero_p(P
->Ray
[i
][P
->Dimension
+1])) {
352 if (value_gt(P
->Ray
[i
][1], size
))
353 value_assign(size
, P
->Ray
[i
][1]);
356 mpz_cdiv_q(tmp
, P
->Ray
[i
][1], P
->Ray
[i
][P
->Dimension
+1]);
357 if (first
|| value_gt(tmp
, offset
)) {
358 value_assign(offset
, tmp
);
362 value_addto(offset
, offset
, size
);
366 v
= Vector_Alloc(P
->Dimension
+2);
367 value_set_si(v
->p
[0], 1);
368 value_set_si(v
->p
[1], -1);
369 value_assign(v
->p
[1+P
->Dimension
], offset
);
370 R
= AddConstraints(v
->p
, 1, P
, options
->MaxRays
);
378 barvinok_count_with_options(P
, &c
, options
);
381 value_set_si(*result
, 0);
383 value_set_si(*result
, -1);
389 static void evalue2value(evalue
*e
, Value
*v
)
391 if (EVALUE_IS_ZERO(*e
)) {
396 if (value_notzero_p(e
->d
)) {
397 assert(value_one_p(e
->d
));
398 value_assign(*v
, e
->x
.n
);
402 assert(e
->x
.p
->type
== partition
);
403 assert(e
->x
.p
->size
== 2);
404 assert(EVALUE_DOMAIN(e
->x
.p
->arr
[0])->Dimension
== 0);
405 evalue2value(&e
->x
.p
->arr
[1], v
);
408 static void barvinok_count_f(Polyhedron
*P
, Value
* result
,
409 barvinok_options
*options
);
411 void barvinok_count_with_options(Polyhedron
*P
, Value
* result
,
412 struct barvinok_options
*options
)
417 bool infinite
= false;
421 "barvinok_count: input is a union; only first polyhedron is counted\n");
424 value_set_si(*result
, 0);
430 P
= remove_equalities(P
, options
->MaxRays
);
431 P
= DomainConstraintSimplify(P
, options
->MaxRays
);
435 } while (!emptyQ(P
) && P
->NbEq
!= 0);
438 value_set_si(*result
, 0);
443 if (Polyhedron_is_infinite(P
, result
, options
)) {
448 if (P
->Dimension
== 0) {
449 /* Test whether the constraints are satisfied */
450 POL_ENSURE_VERTICES(P
);
451 value_set_si(*result
, !emptyQ(P
));
456 if (options
->summation
== BV_SUM_BERNOULLI
) {
457 Polyhedron
*C
= Universe_Polyhedron(0);
458 evalue
*sum
= barvinok_summate_unweighted(P
, C
, Bernoulli_sum_evalue
,
461 evalue2value(sum
, result
);
465 Q
= Polyhedron_Factor(P
, 0, NULL
, options
->MaxRays
);
473 barvinok_count_f(P
, result
, options
);
474 if (value_neg_p(*result
))
476 if (Q
&& P
->next
&& value_notzero_p(*result
)) {
480 for (Q
= P
->next
; Q
; Q
= Q
->next
) {
481 barvinok_count_f(Q
, &factor
, options
);
482 if (value_neg_p(factor
)) {
485 } else if (Q
->next
&& value_zero_p(factor
)) {
486 value_set_si(*result
, 0);
489 value_multiply(*result
, *result
, factor
);
498 value_set_si(*result
, -1);
501 void barvinok_count(Polyhedron
*P
, Value
* result
, unsigned NbMaxCons
)
503 barvinok_options
*options
= barvinok_options_new_with_defaults();
504 options
->MaxRays
= NbMaxCons
;
505 barvinok_count_with_options(P
, result
, options
);
506 barvinok_options_free(options
);
509 static void barvinok_count_f(Polyhedron
*P
, Value
* result
,
510 barvinok_options
*options
)
513 value_set_si(*result
, 0);
517 if (P
->Dimension
== 1)
518 return Line_Length(P
, result
);
520 int c
= P
->NbConstraints
;
521 POL_ENSURE_FACETS(P
);
522 if (c
!= P
->NbConstraints
|| P
->NbEq
!= 0) {
523 Polyhedron
*next
= P
->next
;
525 barvinok_count_with_options(P
, result
, options
);
530 POL_ENSURE_VERTICES(P
);
532 if (Polyhedron_is_infinite(P
, result
, options
))
536 if (options
->incremental_specialization
== BV_SPECIALIZATION_BF
)
537 cnt
= new bfcounter(P
->Dimension
);
538 else if (options
->incremental_specialization
== BV_SPECIALIZATION_DF
)
539 cnt
= new icounter(P
->Dimension
);
540 else if (options
->incremental_specialization
== BV_SPECIALIZATION_TODD
)
541 cnt
= new tcounter(P
->Dimension
, options
->max_index
);
543 cnt
= new counter(P
->Dimension
, options
->max_index
);
544 cnt
->start(P
, options
);
546 cnt
->get_count(result
);
550 static void uni_polynom(int param
, Vector
*c
, evalue
*EP
)
552 unsigned dim
= c
->Size
-2;
554 value_set_si(EP
->d
,0);
555 EP
->x
.p
= new_enode(polynomial
, dim
+1, param
+1);
556 for (int j
= 0; j
<= dim
; ++j
)
557 evalue_set(&EP
->x
.p
->arr
[j
], c
->p
[j
], c
->p
[dim
+1]);
560 typedef evalue
* evalue_p
;
562 struct enumerator_base
{
566 vertex_decomposer
*vpd
;
568 enumerator_base(unsigned dim
, vertex_decomposer
*vpd
)
573 vE
= new evalue_p
[vpd
->PP
->nbV
];
574 for (int j
= 0; j
< vpd
->PP
->nbV
; ++j
)
578 evalue_set_si(&mone
, -1, 1);
581 void decompose_at(Param_Vertices
*V
, int _i
, barvinok_options
*options
) {
585 value_init(vE
[_i
]->d
);
586 evalue_set_si(vE
[_i
], 0, 1);
588 vpd
->decompose_at_vertex(V
, _i
, options
);
591 virtual ~enumerator_base() {
592 for (int j
= 0; j
< vpd
->PP
->nbV
; ++j
)
594 free_evalue_refs(vE
[j
]);
599 free_evalue_refs(&mone
);
602 static enumerator_base
*create(Polyhedron
*P
, unsigned dim
,
603 Param_Polyhedron
*PP
,
604 barvinok_options
*options
);
607 struct enumerator
: public signed_cone_consumer
, public vertex_decomposer
,
608 public enumerator_base
{
616 enumerator(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
) :
617 vertex_decomposer(PP
, *this), enumerator_base(dim
, this) {
618 randomvector(P
, lambda
, dim
);
620 c
= Vector_Alloc(dim
+2);
632 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
635 void enumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
639 assert(sc
.rays
.NumRows() == dim
);
640 for (int k
= 0; k
< dim
; ++k
) {
641 if (lambda
* sc
.rays
[k
] == 0)
645 lattice_point(V
, sc
.rays
, lambda
, &num
, sc
.det
, options
);
646 den
= sc
.rays
* lambda
;
651 zz2value(den
[0], tz
);
653 for (int k
= 1; k
< dim
; ++k
) {
654 zz2value(den
[k
], tz
);
655 dpoly
fact(dim
, tz
, 1);
661 for (unsigned long i
= 0; i
< sc
.det
; ++i
) {
662 evalue
*EV
= evalue_polynomial(c
, num
.E
[i
]);
665 free_evalue_refs(num
.E
[i
]);
670 mpq_set_si(count
, 0, 1);
671 if (num
.constant
.length() == 1) {
672 zz2value(num
.constant
[0], tz
);
674 d
.div(n
, count
, sign
);
681 for (unsigned long i
= 0; i
< sc
.det
; ++i
) {
682 value_assign(acc
, c
->p
[dim
]);
683 zz2value(num
.constant
[i
], x
);
684 for (int j
= dim
-1; j
>= 0; --j
) {
685 value_multiply(acc
, acc
, x
);
686 value_addto(acc
, acc
, c
->p
[j
]);
688 value_addto(mpq_numref(count
), mpq_numref(count
), acc
);
690 mpz_set(mpq_denref(count
), c
->p
[dim
+1]);
696 evalue_set(&EV
, &count
[0]._mp_num
, &count
[0]._mp_den
);
698 free_evalue_refs(&EV
);
702 struct ienumerator_base
: enumerator_base
{
705 ienumerator_base(unsigned dim
, vertex_decomposer
*vpd
) :
706 enumerator_base(dim
,vpd
) {
707 E_vertex
= new evalue_p
[dim
];
710 virtual ~ienumerator_base() {
714 evalue
*E_num(int i
, int d
) {
715 return E_vertex
[i
+ (dim
-d
)];
724 cumulator(evalue
*factor
, evalue
*v
, dpoly_r
*r
) :
725 factor(factor
), v(v
), r(r
) {}
727 void cumulate(barvinok_options
*options
);
729 virtual void add_term(const vector
<int>& powers
, evalue
*f2
) = 0;
730 virtual ~cumulator() {}
733 void cumulator::cumulate(barvinok_options
*options
)
735 evalue cum
; // factor * 1 * E_num[0]/1 * (E_num[0]-1)/2 *...
737 evalue t
; // E_num[0] - (m-1)
741 if (options
->lookup_table
) {
743 evalue_set_si(&mone
, -1, 1);
747 evalue_copy(&cum
, factor
);
750 value_set_si(f
.d
, 1);
751 value_set_si(f
.x
.n
, 1);
755 if (!options
->lookup_table
) {
756 for (cst
= &t
; value_zero_p(cst
->d
); ) {
757 if (cst
->x
.p
->type
== fractional
)
758 cst
= &cst
->x
.p
->arr
[1];
760 cst
= &cst
->x
.p
->arr
[0];
764 for (int m
= 0; m
< r
->len
; ++m
) {
767 value_set_si(f
.d
, m
);
769 if (!options
->lookup_table
)
770 value_subtract(cst
->x
.n
, cst
->x
.n
, cst
->d
);
776 dpoly_r_term_list
& current
= r
->c
[r
->len
-1-m
];
777 dpoly_r_term_list::iterator j
;
778 for (j
= current
.begin(); j
!= current
.end(); ++j
) {
779 if ((*j
)->coeff
== 0)
781 evalue
*f2
= new evalue
;
784 zz2value((*j
)->coeff
, f2
->x
.n
);
785 zz2value(r
->denom
, f2
->d
);
788 add_term((*j
)->powers
, f2
);
791 free_evalue_refs(&f
);
792 free_evalue_refs(&t
);
793 free_evalue_refs(&cum
);
794 if (options
->lookup_table
)
795 free_evalue_refs(&mone
);
803 struct ie_cum
: public cumulator
{
804 vector
<E_poly_term
*> terms
;
806 ie_cum(evalue
*factor
, evalue
*v
, dpoly_r
*r
) : cumulator(factor
, v
, r
) {}
808 virtual void add_term(const vector
<int>& powers
, evalue
*f2
);
811 void ie_cum::add_term(const vector
<int>& powers
, evalue
*f2
)
814 for (k
= 0; k
< terms
.size(); ++k
) {
815 if (terms
[k
]->powers
== powers
) {
816 eadd(f2
, terms
[k
]->E
);
817 free_evalue_refs(f2
);
822 if (k
>= terms
.size()) {
823 E_poly_term
*ET
= new E_poly_term
;
830 struct ienumerator
: public signed_cone_consumer
, public vertex_decomposer
,
831 public ienumerator_base
{
838 ienumerator(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
) :
839 vertex_decomposer(PP
, *this), ienumerator_base(dim
, this) {
840 vertex
.SetDims(1, dim
);
842 den
.SetDims(dim
, dim
);
852 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
853 void reduce(evalue
*factor
, const mat_ZZ
& num
, const mat_ZZ
& den_f
,
854 barvinok_options
*options
);
857 void ienumerator::reduce(evalue
*factor
, const mat_ZZ
& num
, const mat_ZZ
& den_f
,
858 barvinok_options
*options
)
860 unsigned len
= den_f
.NumRows(); // number of factors in den
861 unsigned dim
= num
.NumCols();
862 assert(num
.NumRows() == 1);
865 eadd(factor
, vE
[vert
]);
874 split_one(num
, num_s
, num_p
, den_f
, den_s
, den_r
);
877 den_p
.SetLength(len
);
881 normalize(one
, num_s
, num_p
, den_s
, den_p
, den_r
);
887 for (int k
= 0; k
< len
; ++k
) {
890 else if (den_s
[k
] == 0)
894 reduce(factor
, num_p
, den_r
, options
);
898 pden
.SetDims(only_param
, dim
-1);
900 for (k
= 0, l
= 0; k
< len
; ++k
)
902 pden
[l
++] = den_r
[k
];
904 for (k
= 0; k
< len
; ++k
)
908 zz2value(num_s
[0], tz
);
909 dpoly
n(no_param
, tz
);
910 zz2value(den_s
[k
], tz
);
911 dpoly
D(no_param
, tz
, 1);
914 zz2value(den_s
[k
], tz
);
915 dpoly
fact(no_param
, tz
, 1);
920 // if no_param + only_param == len then all powers
921 // below will be all zero
922 if (no_param
+ only_param
== len
) {
923 if (E_num(0, dim
) != 0)
924 r
= new dpoly_r(n
, len
);
926 mpq_set_si(tcount
, 0, 1);
930 if (value_notzero_p(mpq_numref(tcount
))) {
934 value_assign(f
.x
.n
, mpq_numref(tcount
));
935 value_assign(f
.d
, mpq_denref(tcount
));
937 reduce(factor
, num_p
, pden
, options
);
938 free_evalue_refs(&f
);
943 for (k
= 0; k
< len
; ++k
) {
944 if (den_s
[k
] == 0 || den_p
[k
] == 0)
947 zz2value(den_s
[k
], tz
);
948 dpoly
pd(no_param
-1, tz
, 1);
951 for (l
= 0; l
< k
; ++l
)
952 if (den_r
[l
] == den_r
[k
])
956 r
= new dpoly_r(n
, pd
, l
, len
);
958 dpoly_r
*nr
= new dpoly_r(r
, pd
, l
, len
);
964 dpoly_r
*rc
= r
->div(D
);
967 if (E_num(0, dim
) == 0) {
968 int common
= pden
.NumRows();
969 dpoly_r_term_list
& final
= r
->c
[r
->len
-1];
975 zz2value(r
->denom
, f
.d
);
976 dpoly_r_term_list::iterator j
;
977 for (j
= final
.begin(); j
!= final
.end(); ++j
) {
978 if ((*j
)->coeff
== 0)
981 for (int k
= 0; k
< r
->dim
; ++k
) {
982 int n
= (*j
)->powers
[k
];
985 pden
.SetDims(rows
+n
, pden
.NumCols());
986 for (int l
= 0; l
< n
; ++l
)
987 pden
[rows
+l
] = den_r
[k
];
991 evalue_copy(&t
, factor
);
992 zz2value((*j
)->coeff
, f
.x
.n
);
994 reduce(&t
, num_p
, pden
, options
);
995 free_evalue_refs(&t
);
997 free_evalue_refs(&f
);
999 ie_cum
cum(factor
, E_num(0, dim
), r
);
1000 cum
.cumulate(options
);
1002 int common
= pden
.NumRows();
1004 for (int j
= 0; j
< cum
.terms
.size(); ++j
) {
1006 pden
.SetDims(rows
, pden
.NumCols());
1007 for (int k
= 0; k
< r
->dim
; ++k
) {
1008 int n
= cum
.terms
[j
]->powers
[k
];
1011 pden
.SetDims(rows
+n
, pden
.NumCols());
1012 for (int l
= 0; l
< n
; ++l
)
1013 pden
[rows
+l
] = den_r
[k
];
1016 reduce(cum
.terms
[j
]->E
, num_p
, pden
, options
);
1017 free_evalue_refs(cum
.terms
[j
]->E
);
1018 delete cum
.terms
[j
]->E
;
1019 delete cum
.terms
[j
];
1026 static int type_offset(enode
*p
)
1028 return p
->type
== fractional
? 1 :
1029 p
->type
== flooring
? 1 : 0;
1032 static int edegree(evalue
*e
)
1037 if (value_notzero_p(e
->d
))
1041 int i
= type_offset(p
);
1042 if (p
->size
-i
-1 > d
)
1043 d
= p
->size
- i
- 1;
1044 for (; i
< p
->size
; i
++) {
1045 int d2
= edegree(&p
->arr
[i
]);
1052 void ienumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
1054 assert(sc
.det
== 1);
1055 assert(sc
.rays
.NumRows() == dim
);
1057 lattice_point(V
, sc
.rays
, vertex
[0], E_vertex
, options
);
1063 evalue_set_si(&one
, sc
.sign
, 1);
1064 reduce(&one
, vertex
, den
, options
);
1065 free_evalue_refs(&one
);
1067 for (int i
= 0; i
< dim
; ++i
)
1069 free_evalue_refs(E_vertex
[i
]);
1074 struct bfenumerator
: public vertex_decomposer
, public bf_base
,
1075 public ienumerator_base
{
1078 bfenumerator(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
) :
1079 vertex_decomposer(PP
, *this),
1080 bf_base(dim
), ienumerator_base(dim
, this) {
1088 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
1089 virtual void base(mat_ZZ
& factors
, bfc_vec
& v
);
1091 bfc_term_base
* new_bf_term(int len
) {
1092 bfe_term
* t
= new bfe_term(len
);
1096 virtual void set_factor(bfc_term_base
*t
, int k
, int change
) {
1097 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1098 factor
= bfet
->factors
[k
];
1099 assert(factor
!= NULL
);
1100 bfet
->factors
[k
] = NULL
;
1102 emul(&mone
, factor
);
1105 virtual void set_factor(bfc_term_base
*t
, int k
, mpq_t
&q
, int change
) {
1106 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1107 factor
= bfet
->factors
[k
];
1108 assert(factor
!= NULL
);
1109 bfet
->factors
[k
] = NULL
;
1115 value_oppose(f
.x
.n
, mpq_numref(q
));
1117 value_assign(f
.x
.n
, mpq_numref(q
));
1118 value_assign(f
.d
, mpq_denref(q
));
1120 free_evalue_refs(&f
);
1123 virtual void set_factor(bfc_term_base
*t
, int k
, const QQ
& c
, int change
) {
1124 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1126 factor
= new evalue
;
1131 zz2value(c
.n
, f
.x
.n
);
1133 value_oppose(f
.x
.n
, f
.x
.n
);
1136 value_init(factor
->d
);
1137 evalue_copy(factor
, bfet
->factors
[k
]);
1139 free_evalue_refs(&f
);
1142 void set_factor(evalue
*f
, int change
) {
1148 virtual void insert_term(bfc_term_base
*t
, int i
) {
1149 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1150 int len
= t
->terms
.NumRows()-1; // already increased by one
1152 bfet
->factors
.resize(len
+1);
1153 for (int j
= len
; j
> i
; --j
) {
1154 bfet
->factors
[j
] = bfet
->factors
[j
-1];
1155 t
->terms
[j
] = t
->terms
[j
-1];
1157 bfet
->factors
[i
] = factor
;
1161 virtual void update_term(bfc_term_base
*t
, int i
) {
1162 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1164 eadd(factor
, bfet
->factors
[i
]);
1165 free_evalue_refs(factor
);
1169 virtual bool constant_vertex(int dim
) { return E_num(0, dim
) == 0; }
1171 virtual void cum(bf_reducer
*bfr
, bfc_term_base
*t
, int k
, dpoly_r
*r
,
1172 barvinok_options
*options
);
1175 enumerator_base
*enumerator_base::create(Polyhedron
*P
, unsigned dim
,
1176 Param_Polyhedron
*PP
,
1177 barvinok_options
*options
)
1179 enumerator_base
*eb
;
1181 if (options
->incremental_specialization
== BV_SPECIALIZATION_BF
)
1182 eb
= new bfenumerator(P
, dim
, PP
);
1183 else if (options
->incremental_specialization
== BV_SPECIALIZATION_DF
)
1184 eb
= new ienumerator(P
, dim
, PP
);
1186 eb
= new enumerator(P
, dim
, PP
);
1191 struct bfe_cum
: public cumulator
{
1193 bfc_term_base
*told
;
1197 bfe_cum(evalue
*factor
, evalue
*v
, dpoly_r
*r
, bf_reducer
*bfr
,
1198 bfc_term_base
*t
, int k
, bfenumerator
*e
) :
1199 cumulator(factor
, v
, r
), told(t
), k(k
),
1203 virtual void add_term(const vector
<int>& powers
, evalue
*f2
);
1206 void bfe_cum::add_term(const vector
<int>& powers
, evalue
*f2
)
1208 bfr
->update_powers(powers
);
1210 bfc_term_base
* t
= bfe
->find_bfc_term(bfr
->vn
, bfr
->npowers
, bfr
->nnf
);
1211 bfe
->set_factor(f2
, bfr
->l_changes
% 2);
1212 bfe
->add_term(t
, told
->terms
[k
], bfr
->l_extra_num
);
1215 void bfenumerator::cum(bf_reducer
*bfr
, bfc_term_base
*t
, int k
,
1216 dpoly_r
*r
, barvinok_options
*options
)
1218 bfe_term
* bfet
= static_cast<bfe_term
*>(t
);
1219 bfe_cum
cum(bfet
->factors
[k
], E_num(0, bfr
->d
), r
, bfr
, t
, k
, this);
1220 cum
.cumulate(options
);
1223 void bfenumerator::base(mat_ZZ
& factors
, bfc_vec
& v
)
1225 for (int i
= 0; i
< v
.size(); ++i
) {
1226 assert(v
[i
]->terms
.NumRows() == 1);
1227 evalue
*factor
= static_cast<bfe_term
*>(v
[i
])->factors
[0];
1228 eadd(factor
, vE
[vert
]);
1233 void bfenumerator::handle(const signed_cone
& sc
, barvinok_options
*options
)
1235 assert(sc
.det
== 1);
1236 assert(sc
.rays
.NumRows() == enumerator_base::dim
);
1238 bfe_term
* t
= new bfe_term(enumerator_base::dim
);
1239 vector
< bfc_term_base
* > v
;
1242 t
->factors
.resize(1);
1244 t
->terms
.SetDims(1, enumerator_base::dim
);
1245 lattice_point(V
, sc
.rays
, t
->terms
[0], E_vertex
, options
);
1247 // the elements of factors are always lexpositive
1249 int s
= setup_factors(sc
.rays
, factors
, t
, sc
.sign
);
1251 t
->factors
[0] = new evalue
;
1252 value_init(t
->factors
[0]->d
);
1253 evalue_set_si(t
->factors
[0], s
, 1);
1254 reduce(factors
, v
, options
);
1256 for (int i
= 0; i
< enumerator_base::dim
; ++i
)
1258 free_evalue_refs(E_vertex
[i
]);
1263 static evalue
* barvinok_enumerate_ev_f(Polyhedron
*P
, Polyhedron
* C
,
1264 barvinok_options
*options
);
1267 static evalue
* barvinok_enumerate_cst(Polyhedron
*P
, Polyhedron
* C
,
1268 struct barvinok_options
*options
)
1274 return evalue_zero();
1277 ALLOC(evalue
, eres
);
1278 value_init(eres
->d
);
1279 value_set_si(eres
->d
, 0);
1280 eres
->x
.p
= new_enode(partition
, 2, C
->Dimension
);
1281 EVALUE_SET_DOMAIN(eres
->x
.p
->arr
[0],
1282 DomainConstraintSimplify(C
, options
->MaxRays
));
1283 value_set_si(eres
->x
.p
->arr
[1].d
, 1);
1284 value_init(eres
->x
.p
->arr
[1].x
.n
);
1286 value_set_si(eres
->x
.p
->arr
[1].x
.n
, 0);
1288 barvinok_count_with_options(P
, &eres
->x
.p
->arr
[1].x
.n
, options
);
1293 static evalue
* enumerate(Polyhedron
*P
, Polyhedron
* C
,
1294 struct barvinok_options
*options
)
1297 Polyhedron
*Porig
= P
;
1298 Polyhedron
*Corig
= C
;
1299 Polyhedron
*CEq
= NULL
, *rVD
;
1301 unsigned nparam
= C
->Dimension
;
1306 value_init(factor
.d
);
1307 evalue_set_si(&factor
, 1, 1);
1310 POL_ENSURE_FACETS(P
);
1311 POL_ENSURE_VERTICES(P
);
1312 POL_ENSURE_FACETS(C
);
1313 POL_ENSURE_VERTICES(C
);
1315 if (C
->Dimension
== 0 || emptyQ(P
) || emptyQ(C
)) {
1318 CEq
= Polyhedron_Copy(CEq
);
1319 eres
= barvinok_enumerate_cst(P
, CEq
? CEq
: Polyhedron_Copy(C
), options
);
1322 evalue_backsubstitute(eres
, CP
, options
->MaxRays
);
1326 emul(&factor
, eres
);
1327 if (options
->approximation_method
== BV_APPROX_DROP
) {
1328 if (options
->polynomial_approximation
== BV_APPROX_SIGN_UPPER
)
1329 evalue_frac2polynomial(eres
, 1, options
->MaxRays
);
1330 if (options
->polynomial_approximation
== BV_APPROX_SIGN_LOWER
)
1331 evalue_frac2polynomial(eres
, -1, options
->MaxRays
);
1332 if (options
->polynomial_approximation
== BV_APPROX_SIGN_APPROX
)
1333 evalue_frac2polynomial(eres
, 0, options
->MaxRays
);
1335 reduce_evalue(eres
);
1336 free_evalue_refs(&factor
);
1344 if (Polyhedron_is_unbounded(P
, nparam
, options
->MaxRays
))
1347 if (P
->Dimension
== nparam
) {
1349 P
= Universe_Polyhedron(0);
1352 if (P
->NbEq
!= 0 || C
->NbEq
!= 0) {
1355 remove_all_equalities(&P
, &C
, &CP
, NULL
, nparam
, options
->MaxRays
);
1356 if (C
!= D
&& D
!= Corig
)
1358 if (P
!= Q
&& Q
!= Porig
)
1360 eres
= enumerate(P
, C
, options
);
1364 Polyhedron
*T
= Polyhedron_Factor(P
, nparam
, NULL
, options
->MaxRays
);
1365 if (T
|| (P
->Dimension
== nparam
+1)) {
1368 for (Q
= T
? T
: P
; Q
; Q
= Q
->next
) {
1369 Polyhedron
*next
= Q
->next
;
1373 if (Q
->Dimension
!= C
->Dimension
)
1374 QC
= Polyhedron_Project(Q
, nparam
);
1377 C
= DomainIntersection(C
, QC
, options
->MaxRays
);
1379 Polyhedron_Free(C2
);
1381 Polyhedron_Free(QC
);
1390 if (T
->Dimension
== C
->Dimension
) {
1399 eres
= barvinok_enumerate_ev_f(P
, C
, options
);
1406 for (Q
= P
->next
; Q
; Q
= Q
->next
) {
1407 Polyhedron
*next
= Q
->next
;
1410 f
= barvinok_enumerate_ev_f(Q
, C
, options
);
1421 evalue
* barvinok_enumerate_with_options(Polyhedron
*P
, Polyhedron
* C
,
1422 struct barvinok_options
*options
)
1424 Polyhedron
*next
, *Cnext
, *C1
;
1425 Polyhedron
*Corig
= C
;
1430 "barvinok_enumerate: input is a union; only first polyhedron is enumerated\n");
1434 "barvinok_enumerate: context is a union; only first polyhedron is considered\n");
1438 C1
= Polyhedron_Project(P
, C
->Dimension
);
1439 C
= DomainIntersection(C
, C1
, options
->MaxRays
);
1440 Polyhedron_Free(C1
);
1444 if (options
->approximation_method
== BV_APPROX_BERNOULLI
||
1445 options
->summation
== BV_SUM_BERNOULLI
)
1446 eres
= barvinok_summate_unweighted(P
, C
, Bernoulli_sum_evalue
, options
);
1448 eres
= enumerate(P
, C
, options
);
1452 Corig
->next
= Cnext
;
1457 evalue
* barvinok_enumerate_ev(Polyhedron
*P
, Polyhedron
* C
, unsigned MaxRays
)
1460 barvinok_options
*options
= barvinok_options_new_with_defaults();
1461 options
->MaxRays
= MaxRays
;
1462 E
= barvinok_enumerate_with_options(P
, C
, options
);
1463 barvinok_options_free(options
);
1467 evalue
*Param_Polyhedron_Enumerate(Param_Polyhedron
*PP
, Polyhedron
*P
,
1469 struct barvinok_options
*options
)
1473 unsigned nparam
= C
->Dimension
;
1474 unsigned dim
= P
->Dimension
- nparam
;
1477 for (nd
= 0, D
=PP
->D
; D
; ++nd
, D
=D
->next
);
1478 evalue_section
*s
= new evalue_section
[nd
];
1480 enumerator_base
*et
= NULL
;
1485 et
= enumerator_base::create(P
, dim
, PP
, options
);
1487 Polyhedron
*TC
= true_context(P
, C
, options
->MaxRays
);
1488 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
, i
, D
, rVD
)
1491 s
[i
].E
= evalue_zero();
1494 FORALL_PVertex_in_ParamPolyhedron(V
,D
,PP
) // _i is internal counter
1497 et
->decompose_at(V
, _i
, options
);
1498 } catch (OrthogonalException
&e
) {
1499 FORALL_REDUCED_DOMAIN_RESET
;
1500 for (; i
>= 0; --i
) {
1501 evalue_free(s
[i
].E
);
1502 Domain_Free(s
[i
].D
);
1506 eadd(et
->vE
[_i
] , s
[i
].E
);
1507 END_FORALL_PVertex_in_ParamPolyhedron
;
1508 evalue_range_reduction_in_domain(s
[i
].E
, rVD
);
1509 END_FORALL_REDUCED_DOMAIN
1510 Polyhedron_Free(TC
);
1513 eres
= evalue_from_section_array(s
, nd
);
1519 static evalue
* barvinok_enumerate_ev_f(Polyhedron
*P
, Polyhedron
* C
,
1520 barvinok_options
*options
)
1522 unsigned nparam
= C
->Dimension
;
1523 bool do_scale
= options
->approximation_method
== BV_APPROX_SCALE
;
1525 if (options
->summation
== BV_SUM_EULER
)
1526 return barvinok_summate_unweighted(P
, C
, euler_summate
, options
);
1528 if (options
->approximation_method
== BV_APPROX_VOLUME
)
1529 return Param_Polyhedron_Volume(P
, C
, options
);
1531 if (P
->Dimension
- nparam
== 1 && !do_scale
)
1532 return ParamLine_Length(P
, C
, options
);
1534 Param_Polyhedron
*PP
= NULL
;
1538 eres
= scale_bound(P
, C
, options
);
1543 PP
= Polyhedron2Param_Polyhedron(P
, C
, options
);
1546 eres
= scale(PP
, P
, C
, options
);
1548 eres
= Param_Polyhedron_Enumerate(PP
, P
, C
, options
);
1551 Param_Polyhedron_Free(PP
);
1556 Enumeration
* barvinok_enumerate(Polyhedron
*P
, Polyhedron
* C
, unsigned MaxRays
)
1558 evalue
*EP
= barvinok_enumerate_ev(P
, C
, MaxRays
);
1560 return partition2enumeration(EP
);
1563 evalue
* barvinok_enumerate_union(Polyhedron
*D
, Polyhedron
* C
, unsigned MaxRays
)
1566 gen_fun
*gf
= barvinok_enumerate_union_series(D
, C
, MaxRays
);
1572 evalue
*barvinok_summate(evalue
*e
, int nvar
, struct barvinok_options
*options
)
1574 if (options
->summation
== BV_SUM_EULER
)
1575 return euler_summate(e
, nvar
, options
);
1576 else if (options
->summation
== BV_SUM_BERNOULLI
)
1577 return Bernoulli_sum_evalue(e
, nvar
, options
);
1579 return evalue_sum(e
, nvar
, options
->MaxRays
);
1582 /* Turn unweighted counting problem into "weighted" counting problem
1583 * with weight equal to 1 and call "summate" on this weighted problem.
1585 static evalue
*barvinok_summate_unweighted(Polyhedron
*P
, Polyhedron
*C
,
1586 evalue
*(*summate
)(evalue
*, unsigned, struct barvinok_options
*options
),
1587 struct barvinok_options
*options
)
1593 if (emptyQ(P
) || emptyQ(C
))
1594 return evalue_zero();
1596 CA
= align_context(C
, P
->Dimension
, options
->MaxRays
);
1597 D
= DomainIntersection(P
, CA
, options
->MaxRays
);
1602 return evalue_zero();
1606 e
.x
.p
= new_enode(partition
, 2, P
->Dimension
);
1607 EVALUE_SET_DOMAIN(e
.x
.p
->arr
[0], D
);
1608 evalue_set_si(&e
.x
.p
->arr
[1], 1, 1);
1609 sum
= summate(&e
, P
->Dimension
- C
->Dimension
, options
);
1610 free_evalue_refs(&e
);