evalue_convert.cc: partial support for printing in LaTeX format
[barvinok.git] / volume.c
blob3e20de180869ae3034ad98522bcdc0957195a962
1 #include <barvinok/polylib.h>
2 #include <barvinok/barvinok.h>
3 #include <barvinok/options.h>
4 #include <barvinok/util.h>
5 #include "reduce_domain.h"
6 #include "scale.h"
7 #include "volume.h"
9 #define ALLOC(type) (type*)malloc(sizeof(type))
10 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
12 /* returns an evalue that corresponds to
14 * c/den x_param
16 static evalue *term(int param, Value c, Value den)
18 evalue *EP = ALLOC(evalue);
19 value_init(EP->d);
20 value_set_si(EP->d,0);
21 EP->x.p = new_enode(polynomial, 2, param + 1);
22 evalue_set_si(&EP->x.p->arr[0], 0, 1);
23 value_init(EP->x.p->arr[1].x.n);
24 value_assign(EP->x.p->arr[1].d, den);
25 value_assign(EP->x.p->arr[1].x.n, c);
26 return EP;
29 /* Computes an evalue representation of a coordinate
30 * in a ParamVertices.
32 static evalue *vertex2evalue(Value *vertex, int nparam)
34 int i;
35 evalue *E = ALLOC(evalue);
36 value_init(E->d);
37 evalue_set(E, vertex[nparam], vertex[nparam+1]);
38 for (i = 0; i < nparam; ++i) {
39 evalue *t = term(i, vertex[i], vertex[nparam+1]);
40 eadd(t, E);
41 free_evalue_refs(t);
42 free(t);
44 return E;
47 static void matrix_print(evalue ***matrix, int dim, int *cols,
48 char **param_names)
50 int i, j;
52 for (i = 0; i < dim; ++i)
53 for (j = 0; j < dim; ++j) {
54 int k = cols ? cols[j] : j;
55 fprintf(stderr, "%d %d: ", i, j);
56 print_evalue(stderr, matrix[i][k], param_names);
57 fprintf(stderr, "\n");
61 /* Compute determinant using Laplace's formula.
62 * In particular, the determinant is expanded along the last row.
63 * The cols array is a list of columns that remain in the currect submatrix.
65 static evalue *determinant_cols(evalue ***matrix, int dim, int *cols)
67 evalue *det, *tmp;
68 evalue mone;
70 if (dim == 1) {
71 det = ALLOC(evalue);
72 value_init(det->d);
73 evalue_copy(det, matrix[0][cols[0]]);
74 return det;
77 value_init(mone.d);
78 evalue_set_si(&mone, -1, 1);
79 int j;
80 det = NULL;
81 int *newcols = ALLOCN(int, dim-1);
82 for (j = 1; j < dim; ++j)
83 newcols[j-1] = cols[j];
84 for (j = 0; j < dim; ++j) {
85 if (j != 0)
86 newcols[j-1] = cols[j-1];
87 tmp = determinant_cols(matrix, dim-1, newcols);
88 emul(matrix[dim-1][cols[j]], tmp);
89 if ((dim+j)%2 == 0)
90 emul(&mone, tmp);
91 if (!det)
92 det = tmp;
93 else {
94 eadd(tmp, det);
95 free_evalue_refs(tmp);
96 free(tmp);
99 free(newcols);
100 free_evalue_refs(&mone);
102 return det;
105 static evalue *determinant(evalue ***matrix, int dim)
107 int i;
108 int *cols = ALLOCN(int, dim);
109 evalue *det;
111 for (i = 0; i < dim; ++i)
112 cols[i] = i;
114 det = determinant_cols(matrix, dim, cols);
116 free(cols);
118 return det;
121 /* Compute the facet of P that saturates constraint c.
123 static Polyhedron *facet(Polyhedron *P, int c, unsigned MaxRays)
125 Polyhedron *F;
126 Vector *row = Vector_Alloc(1+P->Dimension+1);
127 Vector_Copy(P->Constraint[c]+1, row->p+1, P->Dimension+1);
128 F = AddConstraints(row->p, 1, P, MaxRays);
129 Vector_Free(row);
130 return F;
133 /* Compute a dummy Param_Domain that contains all vertices of Param_Domain D
134 * (which contains the vertices of P) that lie on the facet obtain by
135 * saturating constraint c of P
137 static Param_Domain *face_vertices(Param_Polyhedron *PP, Param_Domain *D,
138 Polyhedron *P, int c)
140 int nv;
141 Param_Vertices *V;
142 Param_Domain *FD = ALLOC(Param_Domain);
143 FD->Domain = 0;
144 FD->next = 0;
146 nv = (PP->nbV - 1)/(8*sizeof(int)) + 1;
147 FD->F = ALLOCN(unsigned, nv);
148 memset(FD->F, 0, nv * sizeof(unsigned));
150 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _i, _ix, _bx internal counters */
151 int n;
152 unsigned char *supporting = supporting_constraints(P, V, &n);
153 if (supporting[c])
154 FD->F[_ix] |= _bx;
155 free(supporting);
156 END_FORALL_PVertex_in_ParamPolyhedron;
158 return FD;
161 /* Substitute parameters by the corresponding element in subs
163 static evalue *evalue_substitute(evalue *e, evalue **subs)
165 evalue *res = NULL;
166 evalue *c;
167 int i;
169 if (value_notzero_p(e->d)) {
170 res = ALLOC(evalue);
171 value_init(res->d);
172 evalue_copy(res, e);
173 return res;
175 assert(e->x.p->type == polynomial);
177 res = evalue_zero();
178 for (i = e->x.p->size-1; i > 0; --i) {
179 c = evalue_substitute(&e->x.p->arr[i], subs);
180 eadd(c, res);
181 free_evalue_refs(c);
182 free(c);
183 emul(subs[e->x.p->pos-1], res);
185 c = evalue_substitute(&e->x.p->arr[0], subs);
186 eadd(c, res);
187 free_evalue_refs(c);
188 free(c);
190 return res;
193 /* Plug in the parametric vertex V in the constraint constraint.
194 * The result is stored in row, with the denominator in position 0.
196 static void Param_Inner_Product(Value *constraint, Matrix *Vertex,
197 Value *row)
199 unsigned nparam = Vertex->NbColumns - 2;
200 unsigned nvar = Vertex->NbRows;
201 int j;
202 Value tmp, tmp2;
204 value_set_si(row[0], 1);
205 Vector_Set(row+1, 0, nparam+1);
207 value_init(tmp);
208 value_init(tmp2);
210 for (j = 0 ; j < nvar; ++j) {
211 value_set_si(tmp, 1);
212 value_assign(tmp2, constraint[1+j]);
213 if (value_ne(row[0], Vertex->p[j][nparam+1])) {
214 value_assign(tmp, row[0]);
215 value_lcm(row[0], Vertex->p[j][nparam+1], &row[0]);
216 value_division(tmp, row[0], tmp);
217 value_multiply(tmp2, tmp2, row[0]);
218 value_division(tmp2, tmp2, Vertex->p[j][nparam+1]);
220 Vector_Combine(row+1, Vertex->p[j], row+1, tmp, tmp2, nparam+1);
222 value_set_si(tmp, 1);
223 Vector_Combine(row+1, constraint+1+nvar, row+1, tmp, row[0], nparam+1);
225 value_clear(tmp);
226 value_clear(tmp2);
229 struct parameter_point {
230 Vector *coord;
231 evalue **e;
234 struct parameter_point *parameter_point_new(unsigned nparam)
236 struct parameter_point *point = ALLOC(struct parameter_point);
237 point->coord = Vector_Alloc(nparam+1);
238 point->e = NULL;
239 return point;
242 evalue **parameter_point_evalue(struct parameter_point *point)
244 int j;
245 unsigned nparam = point->coord->Size-1;
247 if (point->e)
248 return point->e;
250 point->e = ALLOCN(evalue *, nparam);
251 for (j = 0; j < nparam; ++j) {
252 point->e[j] = ALLOC(evalue);
253 value_init(point->e[j]->d);
254 evalue_set(point->e[j], point->coord->p[j], point->coord->p[nparam]);
257 return point->e;
260 void parameter_point_free(struct parameter_point *point)
262 int i;
263 unsigned nparam = point->coord->Size-1;
265 Vector_Free(point->coord);
267 if (point->e) {
268 for (i = 0; i < nparam; ++i) {
269 free_evalue_refs(point->e[i]);
270 free(point->e[i]);
272 free(point->e);
274 free(point);
277 /* Computes point in pameter space where polyhedron is non-empty.
278 * For each of the parametric vertices, and each of the facets
279 * not (always) containing the vertex, we remove the parameter
280 * values for which the facet does contain the vertex.
282 static struct parameter_point *non_empty_point(Param_Polyhedron *PP,
283 Param_Domain *D, Polyhedron *P, Polyhedron *C, unsigned MaxRays)
285 Param_Vertices *V;
286 unsigned dim = P->Dimension;
287 unsigned nparam = C->Dimension;
288 unsigned nvar = dim - nparam;
289 Polyhedron *RD, *cut, *tmp;
290 Matrix *M;
291 struct parameter_point *point;
292 int i, j;
293 unsigned cut_MaxRays = MaxRays;
294 int nv;
296 nv = (PP->nbV - 1)/(8*sizeof(int)) + 1;
298 POL_UNSET(cut_MaxRays, POL_INTEGER);
300 M = Matrix_Alloc(1, nparam+2);
301 RD = C;
302 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _ix, _bx internal counters */
303 for (i = P->NbEq; i < P->NbConstraints; ++i) {
304 if (First_Non_Zero(P->Constraint[i]+1, nvar) == -1)
305 continue;
306 Param_Inner_Product(P->Constraint[i], V->Vertex, M->p[0]);
307 if (First_Non_Zero(M->p[0]+1, nparam) == -1)
308 /* supporting facet,
309 * or non-supporting facet independent of params
311 continue;
312 value_set_si(M->p[0][0], 0);
313 cut = Constraints2Polyhedron(M, cut_MaxRays);
314 tmp = DomainDifference(RD, cut, MaxRays);
315 if (RD != C)
316 Domain_Free(RD);
317 RD = tmp;
318 Polyhedron_Free(cut);
320 if (emptyQ2(RD))
321 break;
322 END_FORALL_PVertex_in_ParamPolyhedron;
323 Matrix_Free(M);
325 POL_ENSURE_VERTICES(RD);
326 if (emptyQ(RD))
327 point = NULL;
328 else {
329 point = parameter_point_new(nparam);
330 for (i = 0; i < RD->NbRays; ++i)
331 if (value_notzero_p(RD->Ray[i][1+nparam]))
332 break;
333 assert(i < RD->NbRays);
334 Vector_Copy(RD->Ray[i]+1, point->coord->p, nparam+1);
337 if (RD != C)
338 Domain_Free(RD);
340 return point;
343 static Matrix *barycenter(Param_Polyhedron *PP, Param_Domain *D)
345 int nbV;
346 Matrix *center = NULL;
347 Value denom;
348 Value fc, fv;
349 unsigned nparam;
350 int i;
351 Param_Vertices *V;
353 value_init(fc);
354 value_init(fv);
355 nbV = 0;
356 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
357 ++nbV;
358 if (!center) {
359 center = Matrix_Copy(V->Vertex);
360 nparam = center->NbColumns - 2;
361 } else {
362 for (i = 0; i < center->NbRows; ++i) {
363 value_assign(fc, center->p[i][nparam+1]);
364 value_lcm(fc, V->Vertex->p[i][nparam+1],
365 &center->p[i][nparam+1]);
366 value_division(fc, center->p[i][nparam+1], fc);
367 value_division(fv, center->p[i][nparam+1],
368 V->Vertex->p[i][nparam+1]);
369 Vector_Combine(center->p[i], V->Vertex->p[i], center->p[i],
370 fc, fv, nparam+1);
373 END_FORALL_PVertex_in_ParamPolyhedron;
374 value_clear(fc);
375 value_clear(fv);
377 value_init(denom);
378 value_set_si(denom, nbV);
379 for (i = 0; i < center->NbRows; ++i) {
380 value_multiply(center->p[i][nparam+1], center->p[i][nparam+1], denom);
381 Vector_Normalize(center->p[i], nparam+2);
383 value_clear(denom);
385 return center;
388 /* Compute dim! times the volume of polyhedron F in Param_Domain D.
389 * If F is a simplex, then the volume is computed of a recursive pyramid
390 * over F with the points already in matrix.
391 * Otherwise, the barycenter of F is added to matrix and the function
392 * is called recursively on the facets of F.
394 * The first row of matrix contain the _negative_ of the first point.
395 * The remaining rows of matrix contain the distance of the corresponding
396 * point to the first point.
398 static evalue *volume_in_domain(Param_Polyhedron *PP, Param_Domain *D,
399 unsigned dim, evalue ***matrix,
400 struct parameter_point *point, Polyhedron *C,
401 int row, Polyhedron *F,
402 struct barvinok_options *options);
404 static evalue *volume_triangulate(Param_Polyhedron *PP, Param_Domain *D,
405 unsigned dim, evalue ***matrix,
406 struct parameter_point *point, Polyhedron *C,
407 int row, Polyhedron *F,
408 struct barvinok_options *options)
410 int j;
411 evalue *tmp;
412 evalue *vol;
413 evalue mone;
414 Matrix *center;
415 unsigned cut_MaxRays = options->MaxRays;
416 unsigned nparam = C->Dimension;
417 Matrix *M = NULL;
419 POL_UNSET(cut_MaxRays, POL_INTEGER);
421 value_init(mone.d);
422 evalue_set_si(&mone, -1, 1);
424 center = barycenter(PP, D);
425 for (j = 0; j < dim; ++j)
426 matrix[row][j] = vertex2evalue(center->p[j], center->NbColumns - 2);
428 if (row == 0) {
429 for (j = 0; j < dim; ++j)
430 emul(&mone, matrix[row][j]);
431 } else {
432 for (j = 0; j < dim; ++j)
433 eadd(matrix[0][j], matrix[row][j]);
436 if (!point)
437 M = Matrix_Alloc(1, nparam+2);
439 vol = NULL;
440 POL_ENSURE_FACETS(F);
441 for (j = F->NbEq; j < F->NbConstraints; ++j) {
442 Polyhedron *FC;
443 Polyhedron *FF;
444 Param_Domain *FD;
445 if (First_Non_Zero(F->Constraint[j]+1, dim) == -1)
446 continue;
447 if (point)
448 FC = C;
449 else {
450 Polyhedron *cut;
451 int pos;
452 Param_Inner_Product(F->Constraint[j], center, M->p[0]);
453 pos = First_Non_Zero(M->p[0]+1, nparam+1);
454 if (pos == -1)
455 /* barycenter always lies on facet */
456 continue;
457 if (pos == nparam)
458 FC = C;
459 else {
460 value_set_si(M->p[0][0], 0);
461 cut = Constraints2Polyhedron(M, cut_MaxRays);
462 FC = DomainDifference(C, cut, options->MaxRays);
463 Polyhedron_Free(cut);
464 POL_ENSURE_VERTICES(FC);
465 if (emptyQ(FC)) {
466 /* barycenter lies on facet for all parameters in C */
467 Polyhedron_Free(FC);
468 continue;
472 FF = facet(F, j, options->MaxRays);
473 FD = face_vertices(PP, D, F, j);
474 tmp = volume_in_domain(PP, FD, dim, matrix, point, FC,
475 row+1, FF, options);
476 if (FC != C)
477 Domain_Free(FC);
478 if (!vol)
479 vol = tmp;
480 else {
481 eadd(tmp, vol);
482 free_evalue_refs(tmp);
483 free(tmp);
485 Polyhedron_Free(FF);
486 Param_Domain_Free(FD);
489 Matrix_Free(center);
490 if (!point)
491 Matrix_Free(M);
493 for (j = 0; j < dim; ++j) {
494 free_evalue_refs(matrix[row][j]);
495 free(matrix[row][j]);
498 free_evalue_refs(&mone);
499 return vol;
502 static evalue *volume_simplex(Param_Polyhedron *PP, Param_Domain *D,
503 unsigned dim, evalue ***matrix,
504 struct parameter_point *point,
505 int row, unsigned MaxRays)
507 evalue mone;
508 Param_Vertices *V;
509 evalue *vol, *val;
510 int i, j;
512 if (!point)
513 return evalue_zero();
515 value_init(mone.d);
516 evalue_set_si(&mone, -1, 1);
518 i = row;
519 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _ix, _bx internal counters */
520 for (j = 0; j < dim; ++j) {
521 matrix[i][j] = vertex2evalue(V->Vertex->p[j],
522 V->Vertex->NbColumns - 2);
523 if (i == 0)
524 emul(&mone, matrix[i][j]);
525 else
526 eadd(matrix[0][j], matrix[i][j]);
528 ++i;
529 END_FORALL_PVertex_in_ParamPolyhedron;
531 vol = determinant(matrix+1, dim);
533 val = evalue_substitute(vol, parameter_point_evalue(point));
535 assert(value_notzero_p(val->d));
536 assert(value_notzero_p(val->x.n));
537 if (value_neg_p(val->x.n))
538 emul(&mone, vol);
540 free_evalue_refs(val);
541 free(val);
543 for (i = row; i < dim+1; ++i) {
544 for (j = 0; j < dim; ++j) {
545 free_evalue_refs(matrix[i][j]);
546 free(matrix[i][j]);
550 free_evalue_refs(&mone);
552 return vol;
555 static evalue *volume_triangulate_lift(Param_Polyhedron *PP, Param_Domain *D,
556 unsigned dim, evalue ***matrix,
557 struct parameter_point *point,
558 int row, unsigned MaxRays)
560 const static int MAX_TRY=10;
561 Param_Vertices *V;
562 int nbV, nv;
563 int i;
564 int t = 0;
565 Matrix *FixedRays, *M;
566 Polyhedron *L;
567 Param_Domain SD;
568 Value tmp;
569 evalue *s, *vol;
571 SD.Domain = 0;
572 SD.next = 0;
573 nv = (PP->nbV - 1)/(8*sizeof(int)) + 1;
574 SD.F = ALLOCN(unsigned, nv);
576 FixedRays = Matrix_Alloc(PP->nbV+1, 1+dim+2);
577 nbV = 0;
578 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
579 unsigned nparam = V->Vertex->NbColumns - 2;
580 Param_Vertex_Common_Denominator(V);
581 for (i = 0; i < V->Vertex->NbRows; ++i) {
582 value_multiply(FixedRays->p[nbV][1+i], V->Vertex->p[i][nparam],
583 point->coord->p[nparam]);
584 Inner_Product(V->Vertex->p[i], point->coord->p, nparam,
585 &FixedRays->p[nbV][1+dim]);
586 value_addto(FixedRays->p[nbV][1+i], FixedRays->p[nbV][1+i],
587 FixedRays->p[nbV][1+dim]);
589 value_multiply(FixedRays->p[nbV][1+dim+1], V->Vertex->p[0][nparam+1],
590 point->coord->p[nparam]);
591 value_set_si(FixedRays->p[nbV][0], 1);
592 ++nbV;
593 END_FORALL_PVertex_in_ParamPolyhedron;
594 value_set_si(FixedRays->p[nbV][0], 1);
595 value_set_si(FixedRays->p[nbV][1+dim], 1);
596 FixedRays->NbRows = nbV+1;
598 value_init(tmp);
599 if (0) {
600 try_again:
601 /* Usually vol should still be NULL */
602 if (vol) {
603 free_evalue_refs(vol);
604 free(vol);
606 Polyhedron_Free(L);
607 ++t;
609 assert(t <= MAX_TRY);
610 vol = NULL;
612 for (i = 0; i < nbV; ++i)
613 value_set_si(FixedRays->p[i][1+dim], random_int((t+1)*dim*nbV)+1);
615 M = Matrix_Copy(FixedRays);
616 L = Rays2Polyhedron(M, MaxRays);
617 Matrix_Free(M);
619 POL_ENSURE_FACETS(L);
620 for (i = 0; i < L->NbConstraints; ++i) {
621 int r;
622 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
623 if (value_negz_p(L->Constraint[i][1+dim]))
624 continue;
626 memset(SD.F, 0, nv * sizeof(unsigned));
627 nbV = 0;
628 r = 0;
629 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _ix, _bx internal */
630 Inner_Product(FixedRays->p[nbV]+1, L->Constraint[i]+1, dim+2, &tmp);
631 if (value_zero_p(tmp)) {
632 if (r > dim-row)
633 goto try_again;
634 SD.F[_ix] |= _bx;
635 ++r;
637 ++nbV;
638 END_FORALL_PVertex_in_ParamPolyhedron;
639 assert(r == (dim-row)+1);
641 s = volume_simplex(PP, &SD, dim, matrix, point, row, MaxRays);
642 if (!vol)
643 vol = s;
644 else {
645 eadd(s, vol);
646 free_evalue_refs(s);
647 free(s);
650 Polyhedron_Free(L);
651 Matrix_Free(FixedRays);
652 value_clear(tmp);
653 free(SD.F);
655 return vol;
658 static evalue *volume_in_domain(Param_Polyhedron *PP, Param_Domain *D,
659 unsigned dim, evalue ***matrix,
660 struct parameter_point *point, Polyhedron *C,
661 int row, Polyhedron *F,
662 struct barvinok_options *options)
664 int nbV;
665 Param_Vertices *V;
666 evalue *vol;
667 int point_computed = 0;
669 if (!point) {
670 point = non_empty_point(PP, D, F, C, options->MaxRays);
671 if (point)
672 point_computed = 1;
675 nbV = 0;
676 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
677 ++nbV;
678 END_FORALL_PVertex_in_ParamPolyhedron;
680 if (nbV > (dim-row) + 1) {
681 if (point && options->volume_triangulate_lift)
682 vol = volume_triangulate_lift(PP, D, dim, matrix, point,
683 row, options->MaxRays);
684 else
685 vol = volume_triangulate(PP, D, dim, matrix, point, C,
686 row, F, options);
687 } else {
688 assert(nbV == (dim-row) + 1);
689 vol = volume_simplex(PP, D, dim, matrix, point, row, options->MaxRays);
692 if (point_computed)
693 parameter_point_free(point);
695 return vol;
698 evalue* Param_Polyhedron_Volume(Polyhedron *P, Polyhedron* C,
699 struct barvinok_options *options)
701 evalue ***matrix;
702 unsigned nparam = C->Dimension;
703 unsigned nvar = P->Dimension - C->Dimension;
704 Param_Polyhedron *PP;
705 unsigned PP_MaxRays = options->MaxRays;
706 unsigned MaxRays;
707 int i, j;
708 Value fact;
709 evalue *vol;
710 int nd;
711 struct section { Polyhedron *D; evalue *E; } *s;
712 Polyhedron **fVD;
713 Param_Domain *D, *next;
714 Polyhedron *CA, *F;
716 if (options->polynomial_approximation == BV_APPROX_SIGN_NONE)
717 options->polynomial_approximation = BV_APPROX_SIGN_APPROX;
719 if (options->polynomial_approximation != BV_APPROX_SIGN_APPROX) {
720 int pa = options->polynomial_approximation;
721 assert(pa == BV_APPROX_SIGN_UPPER || pa == BV_APPROX_SIGN_LOWER);
723 P = Polyhedron_Flate(P, nparam, pa == BV_APPROX_SIGN_UPPER,
724 options->MaxRays);
726 /* Don't deflate/inflate again (on this polytope) */
727 options->polynomial_approximation = BV_APPROX_SIGN_APPROX;
728 vol = barvinok_enumerate_with_options(P, C, options);
729 options->polynomial_approximation = pa;
731 Polyhedron_Free(P);
732 return vol;
735 if (PP_MaxRays & POL_NO_DUAL)
736 PP_MaxRays = 0;
738 MaxRays = options->MaxRays;
739 POL_UNSET(options->MaxRays, POL_INTEGER);
741 value_init(fact);
742 Factorial(nvar, &fact);
744 PP = Polyhedron2Param_Domain(P, C, PP_MaxRays);
746 for (nd = 0, D = PP->D; D; ++nd, D = D->next);
747 s = ALLOCN(struct section, nd);
748 fVD = ALLOCN(Polyhedron *, nd);
750 matrix = ALLOCN(evalue **, nvar+1);
751 for (i = 0; i < nvar+1; ++i)
752 matrix[i] = ALLOCN(evalue *, nvar);
754 for (nd = 0, D = PP->D; D; D = next) {
755 Polyhedron *rVD = reduce_domain(D->Domain, NULL, NULL, fVD, nd, options);
757 next = D->next;
759 if (!rVD)
760 continue;
762 CA = align_context(D->Domain, P->Dimension, MaxRays);
763 F = DomainIntersection(P, CA, options->MaxRays);
764 Domain_Free(CA);
766 s[nd].D = rVD;
767 s[nd].E = volume_in_domain(PP, D, nvar, matrix, NULL, rVD,
768 0, F, options);
769 Domain_Free(F);
770 evalue_div(s[nd].E, fact);
772 ++nd;
774 options->MaxRays = MaxRays;
776 vol = ALLOC(evalue);
777 value_init(vol->d);
778 value_set_si(vol->d, 0);
780 if (nd == 0)
781 evalue_set_si(vol, 0, 1);
782 else {
783 vol->x.p = new_enode(partition, 2*nd, C->Dimension);
784 for (i = 0; i < nd; ++i) {
785 EVALUE_SET_DOMAIN(vol->x.p->arr[2*i], s[i].D);
786 value_clear(vol->x.p->arr[2*i+1].d);
787 vol->x.p->arr[2*i+1] = *s[i].E;
788 free(s[i].E);
789 Domain_Free(fVD[i]);
792 free(s);
793 free(fVD);
795 for (i = 0; i < nvar+1; ++i)
796 free(matrix[i]);
797 free(matrix);
798 Param_Polyhedron_Free(PP);
799 value_clear(fact);
801 return vol;