evalue_read.c: correct constness of name in parameter_new
[barvinok.git] / volume.c
blob411f20b9f28bc2c26f65238085ac49b8ee61b873
1 #include <barvinok/polylib.h>
2 #include <barvinok/barvinok.h>
3 #include <barvinok/options.h>
4 #include <barvinok/util.h>
5 #include "reduce_domain.h"
6 #include "param_util.h"
7 #include "volume.h"
9 #define ALLOC(type) (type*)malloc(sizeof(type))
10 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
12 /* Computes an evalue representation of a coordinate
13 * in a ParamVertices.
15 static evalue *vertex2evalue(Value *vertex, int nparam)
17 return affine2evalue(vertex, vertex[nparam+1], nparam);
20 static void matrix_print(evalue ***matrix, int dim, int *cols,
21 char **param_names)
23 int i, j;
25 for (i = 0; i < dim; ++i)
26 for (j = 0; j < dim; ++j) {
27 int k = cols ? cols[j] : j;
28 fprintf(stderr, "%d %d: ", i, j);
29 print_evalue(stderr, matrix[i][k], param_names);
30 fprintf(stderr, "\n");
34 /* Compute determinant using Laplace's formula.
35 * In particular, the determinant is expanded along the last row.
36 * The cols array is a list of columns that remain in the currect submatrix.
38 static evalue *determinant_cols(evalue ***matrix, int dim, int *cols)
40 evalue *det, *tmp;
41 evalue mone;
42 int j;
43 int *newcols;
45 if (dim == 1) {
46 det = ALLOC(evalue);
47 value_init(det->d);
48 evalue_copy(det, matrix[0][cols[0]]);
49 return det;
52 value_init(mone.d);
53 evalue_set_si(&mone, -1, 1);
54 det = NULL;
55 newcols = ALLOCN(int, dim-1);
56 for (j = 1; j < dim; ++j)
57 newcols[j-1] = cols[j];
58 for (j = 0; j < dim; ++j) {
59 if (j != 0)
60 newcols[j-1] = cols[j-1];
61 tmp = determinant_cols(matrix, dim-1, newcols);
62 emul(matrix[dim-1][cols[j]], tmp);
63 if ((dim+j)%2 == 0)
64 emul(&mone, tmp);
65 if (!det)
66 det = tmp;
67 else {
68 eadd(tmp, det);
69 free_evalue_refs(tmp);
70 free(tmp);
73 free(newcols);
74 free_evalue_refs(&mone);
76 return det;
79 static evalue *determinant(evalue ***matrix, int dim)
81 int i;
82 int *cols = ALLOCN(int, dim);
83 evalue *det;
85 for (i = 0; i < dim; ++i)
86 cols[i] = i;
88 det = determinant_cols(matrix, dim, cols);
90 free(cols);
92 return det;
95 /* Compute the facet of P that saturates constraint c.
97 static Polyhedron *facet(Polyhedron *P, int c, unsigned MaxRays)
99 Polyhedron *F;
100 Vector *row = Vector_Alloc(1+P->Dimension+1);
101 Vector_Copy(P->Constraint[c]+1, row->p+1, P->Dimension+1);
102 F = AddConstraints(row->p, 1, P, MaxRays);
103 Vector_Free(row);
104 return F;
107 /* Plug in the parametric vertex V in the constraint constraint.
108 * The result is stored in row, with the denominator in position 0.
110 static void Param_Inner_Product(Value *constraint, Matrix *Vertex,
111 Value *row)
113 unsigned nparam = Vertex->NbColumns - 2;
114 unsigned nvar = Vertex->NbRows;
115 int j;
116 Value tmp, tmp2;
118 value_set_si(row[0], 1);
119 Vector_Set(row+1, 0, nparam+1);
121 value_init(tmp);
122 value_init(tmp2);
124 for (j = 0 ; j < nvar; ++j) {
125 value_set_si(tmp, 1);
126 value_assign(tmp2, constraint[1+j]);
127 if (value_ne(row[0], Vertex->p[j][nparam+1])) {
128 value_assign(tmp, row[0]);
129 value_lcm(row[0], Vertex->p[j][nparam+1], &row[0]);
130 value_division(tmp, row[0], tmp);
131 value_multiply(tmp2, tmp2, row[0]);
132 value_division(tmp2, tmp2, Vertex->p[j][nparam+1]);
134 Vector_Combine(row+1, Vertex->p[j], row+1, tmp, tmp2, nparam+1);
136 value_set_si(tmp, 1);
137 Vector_Combine(row+1, constraint+1+nvar, row+1, tmp, row[0], nparam+1);
139 value_clear(tmp);
140 value_clear(tmp2);
143 /* Compute a dummy Param_Domain that contains all vertices of Param_Domain D
144 * (which contains the vertices of P) that lie on the facet obtain by
145 * saturating constraint c of P
147 static Param_Domain *face_vertices(Param_Polyhedron *PP, Param_Domain *D,
148 Polyhedron *P, int c)
150 int nv;
151 Param_Vertices *V;
152 unsigned nparam = PP->V->Vertex->NbColumns-2;
153 Vector *row = Vector_Alloc(1+nparam+1);
154 Param_Domain *FD = ALLOC(Param_Domain);
155 FD->Domain = 0;
156 FD->next = 0;
158 nv = (PP->nbV - 1)/(8*sizeof(int)) + 1;
159 FD->F = ALLOCN(unsigned, nv);
160 memset(FD->F, 0, nv * sizeof(unsigned));
162 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _i, _ix, _bx internal counters */
163 int n;
164 Param_Inner_Product(P->Constraint[c], V->Vertex, row->p);
165 if (First_Non_Zero(row->p+1, nparam+1) == -1)
166 FD->F[_ix] |= _bx;
167 END_FORALL_PVertex_in_ParamPolyhedron;
169 Vector_Free(row);
171 return FD;
174 /* Substitute parameters by the corresponding element in subs
176 static evalue *evalue_substitute_new(evalue *e, evalue **subs)
178 evalue *res = NULL;
179 evalue *c;
180 int i;
182 if (value_notzero_p(e->d)) {
183 res = ALLOC(evalue);
184 value_init(res->d);
185 evalue_copy(res, e);
186 return res;
188 assert(e->x.p->type == polynomial);
190 res = evalue_zero();
191 for (i = e->x.p->size-1; i > 0; --i) {
192 c = evalue_substitute_new(&e->x.p->arr[i], subs);
193 eadd(c, res);
194 free_evalue_refs(c);
195 free(c);
196 emul(subs[e->x.p->pos-1], res);
198 c = evalue_substitute_new(&e->x.p->arr[0], subs);
199 eadd(c, res);
200 free_evalue_refs(c);
201 free(c);
203 return res;
206 struct parameter_point {
207 Vector *coord;
208 evalue **e;
211 struct parameter_point *parameter_point_new(unsigned nparam)
213 struct parameter_point *point = ALLOC(struct parameter_point);
214 point->coord = Vector_Alloc(nparam+1);
215 point->e = NULL;
216 return point;
219 evalue **parameter_point_evalue(struct parameter_point *point)
221 int j;
222 unsigned nparam = point->coord->Size-1;
224 if (point->e)
225 return point->e;
227 point->e = ALLOCN(evalue *, nparam);
228 for (j = 0; j < nparam; ++j) {
229 point->e[j] = ALLOC(evalue);
230 value_init(point->e[j]->d);
231 evalue_set(point->e[j], point->coord->p[j], point->coord->p[nparam]);
234 return point->e;
237 void parameter_point_free(struct parameter_point *point)
239 int i;
240 unsigned nparam = point->coord->Size-1;
242 Vector_Free(point->coord);
244 if (point->e) {
245 for (i = 0; i < nparam; ++i) {
246 free_evalue_refs(point->e[i]);
247 free(point->e[i]);
249 free(point->e);
251 free(point);
254 /* Computes point in pameter space where polyhedron is non-empty.
256 static struct parameter_point *non_empty_point(Param_Domain *D)
258 unsigned nparam = D->Domain->Dimension;
259 struct parameter_point *point;
260 Vector *v;
262 v = inner_point(D->Domain);
263 point = parameter_point_new(nparam);
264 Vector_Copy(v->p+1, point->coord->p, nparam+1);
265 Vector_Free(v);
267 return point;
270 static Matrix *barycenter(Param_Polyhedron *PP, Param_Domain *D)
272 int nbV;
273 Matrix *center = NULL;
274 Value denom;
275 Value fc, fv;
276 unsigned nparam;
277 int i;
278 Param_Vertices *V;
280 value_init(fc);
281 value_init(fv);
282 nbV = 0;
283 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
284 ++nbV;
285 if (!center) {
286 center = Matrix_Copy(V->Vertex);
287 nparam = center->NbColumns - 2;
288 } else {
289 for (i = 0; i < center->NbRows; ++i) {
290 value_assign(fc, center->p[i][nparam+1]);
291 value_lcm(fc, V->Vertex->p[i][nparam+1],
292 &center->p[i][nparam+1]);
293 value_division(fc, center->p[i][nparam+1], fc);
294 value_division(fv, center->p[i][nparam+1],
295 V->Vertex->p[i][nparam+1]);
296 Vector_Combine(center->p[i], V->Vertex->p[i], center->p[i],
297 fc, fv, nparam+1);
300 END_FORALL_PVertex_in_ParamPolyhedron;
301 value_clear(fc);
302 value_clear(fv);
304 value_init(denom);
305 value_set_si(denom, nbV);
306 for (i = 0; i < center->NbRows; ++i) {
307 value_multiply(center->p[i][nparam+1], center->p[i][nparam+1], denom);
308 Vector_Normalize(center->p[i], nparam+2);
310 value_clear(denom);
312 return center;
315 static Matrix *triangulation_vertex(Param_Polyhedron *PP, Param_Domain *D,
316 Polyhedron *F)
318 Param_Vertices *V;
320 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
321 return V->Vertex;
322 END_FORALL_PVertex_in_ParamPolyhedron;
324 assert(0);
325 return NULL;
328 /* Compute dim! times the volume of polyhedron F in Param_Domain D.
329 * If F is a simplex, then the volume is computed of a recursive pyramid
330 * over F with the points already in matrix.
331 * Otherwise, the barycenter of F is added to matrix and the function
332 * is called recursively on the facets of F.
334 * The first row of matrix contain the _negative_ of the first point.
335 * The remaining rows of matrix contain the distance of the corresponding
336 * point to the first point.
338 static evalue *volume_in_domain(Param_Polyhedron *PP, Param_Domain *D,
339 unsigned dim, evalue ***matrix,
340 struct parameter_point *point,
341 int row, Polyhedron *F,
342 struct barvinok_options *options);
344 static evalue *volume_triangulate(Param_Polyhedron *PP, Param_Domain *D,
345 unsigned dim, evalue ***matrix,
346 struct parameter_point *point,
347 int row, Polyhedron *F,
348 struct barvinok_options *options)
350 int j;
351 evalue *tmp;
352 evalue *vol;
353 evalue mone;
354 Matrix *center;
355 unsigned cut_MaxRays = options->MaxRays;
356 unsigned nparam = PP->V->Vertex->NbColumns-2;
357 Vector *v = NULL;
359 POL_UNSET(cut_MaxRays, POL_INTEGER);
361 value_init(mone.d);
362 evalue_set_si(&mone, -1, 1);
364 if (options->volume_triangulate == BV_VOL_BARYCENTER)
365 center = barycenter(PP, D);
366 else
367 center = triangulation_vertex(PP, D, F);
368 for (j = 0; j < dim; ++j)
369 matrix[row][j] = vertex2evalue(center->p[j], center->NbColumns - 2);
370 if (options->volume_triangulate == BV_VOL_BARYCENTER)
371 Matrix_Free(center);
372 else
373 v = Vector_Alloc(1+nparam+1);
375 if (row == 0) {
376 for (j = 0; j < dim; ++j)
377 emul(&mone, matrix[row][j]);
378 } else {
379 for (j = 0; j < dim; ++j)
380 eadd(matrix[0][j], matrix[row][j]);
383 vol = NULL;
384 POL_ENSURE_FACETS(F);
385 for (j = F->NbEq; j < F->NbConstraints; ++j) {
386 Polyhedron *FF;
387 Param_Domain *FD;
388 if (First_Non_Zero(F->Constraint[j]+1, dim) == -1)
389 continue;
390 if (options->volume_triangulate != BV_VOL_BARYCENTER) {
391 Param_Inner_Product(F->Constraint[j], center, v->p);
392 if (First_Non_Zero(v->p+1, nparam+1) == -1)
393 continue;
395 FF = facet(F, j, options->MaxRays);
396 FD = face_vertices(PP, D, F, j);
397 tmp = volume_in_domain(PP, FD, dim, matrix, point,
398 row+1, FF, options);
399 if (!vol)
400 vol = tmp;
401 else {
402 eadd(tmp, vol);
403 free_evalue_refs(tmp);
404 free(tmp);
406 Polyhedron_Free(FF);
407 Param_Domain_Free(FD);
410 if (options->volume_triangulate != BV_VOL_BARYCENTER)
411 Vector_Free(v);
413 for (j = 0; j < dim; ++j) {
414 free_evalue_refs(matrix[row][j]);
415 free(matrix[row][j]);
418 free_evalue_refs(&mone);
419 return vol;
422 static evalue *volume_simplex(Param_Polyhedron *PP, Param_Domain *D,
423 unsigned dim, evalue ***matrix,
424 struct parameter_point *point,
425 int row, struct barvinok_options *options)
427 evalue mone;
428 Param_Vertices *V;
429 evalue *vol, *val;
430 int i, j;
432 options->stats->volume_simplices++;
434 value_init(mone.d);
435 evalue_set_si(&mone, -1, 1);
437 i = row;
438 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _ix, _bx internal counters */
439 for (j = 0; j < dim; ++j) {
440 matrix[i][j] = vertex2evalue(V->Vertex->p[j],
441 V->Vertex->NbColumns - 2);
442 if (i == 0)
443 emul(&mone, matrix[i][j]);
444 else
445 eadd(matrix[0][j], matrix[i][j]);
447 ++i;
448 END_FORALL_PVertex_in_ParamPolyhedron;
450 vol = determinant(matrix+1, dim);
452 val = evalue_substitute_new(vol, parameter_point_evalue(point));
454 assert(value_notzero_p(val->d));
455 assert(value_notzero_p(val->x.n));
456 if (value_neg_p(val->x.n))
457 emul(&mone, vol);
459 free_evalue_refs(val);
460 free(val);
462 for (i = row; i < dim+1; ++i) {
463 for (j = 0; j < dim; ++j) {
464 free_evalue_refs(matrix[i][j]);
465 free(matrix[i][j]);
469 free_evalue_refs(&mone);
471 return vol;
474 static evalue *volume_triangulate_lift(Param_Polyhedron *PP, Param_Domain *D,
475 unsigned dim, evalue ***matrix,
476 struct parameter_point *point,
477 int row, struct barvinok_options *options)
479 const static int MAX_TRY=10;
480 Param_Vertices *V;
481 int nbV, nv;
482 int i;
483 int t = 0;
484 Matrix *FixedRays, *M;
485 Polyhedron *L;
486 Param_Domain SD;
487 Value tmp;
488 evalue *s, *vol;
490 SD.Domain = 0;
491 SD.next = 0;
492 nv = (PP->nbV - 1)/(8*sizeof(int)) + 1;
493 SD.F = ALLOCN(unsigned, nv);
495 FixedRays = Matrix_Alloc(PP->nbV+1, 1+dim+2);
496 nbV = 0;
497 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
498 unsigned nparam = V->Vertex->NbColumns - 2;
499 Param_Vertex_Common_Denominator(V);
500 for (i = 0; i < V->Vertex->NbRows; ++i) {
501 value_multiply(FixedRays->p[nbV][1+i], V->Vertex->p[i][nparam],
502 point->coord->p[nparam]);
503 Inner_Product(V->Vertex->p[i], point->coord->p, nparam,
504 &FixedRays->p[nbV][1+dim]);
505 value_addto(FixedRays->p[nbV][1+i], FixedRays->p[nbV][1+i],
506 FixedRays->p[nbV][1+dim]);
508 value_multiply(FixedRays->p[nbV][1+dim+1], V->Vertex->p[0][nparam+1],
509 point->coord->p[nparam]);
510 value_set_si(FixedRays->p[nbV][0], 1);
511 ++nbV;
512 END_FORALL_PVertex_in_ParamPolyhedron;
513 value_set_si(FixedRays->p[nbV][0], 1);
514 value_set_si(FixedRays->p[nbV][1+dim], 1);
515 FixedRays->NbRows = nbV+1;
517 value_init(tmp);
518 if (0) {
519 try_again:
520 /* Usually vol should still be NULL */
521 if (vol) {
522 free_evalue_refs(vol);
523 free(vol);
525 Polyhedron_Free(L);
526 ++t;
528 assert(t <= MAX_TRY);
529 vol = NULL;
531 for (i = 0; i < nbV; ++i)
532 value_set_si(FixedRays->p[i][1+dim], random_int((t+1)*dim*nbV)+1);
534 M = Matrix_Copy(FixedRays);
535 L = Rays2Polyhedron(M, options->MaxRays);
536 Matrix_Free(M);
538 POL_ENSURE_FACETS(L);
539 for (i = 0; i < L->NbConstraints; ++i) {
540 int r;
541 /* Ignore perpendicular facets, i.e., facets with 0 z-coordinate */
542 if (value_negz_p(L->Constraint[i][1+dim]))
543 continue;
545 memset(SD.F, 0, nv * sizeof(unsigned));
546 nbV = 0;
547 r = 0;
548 FORALL_PVertex_in_ParamPolyhedron(V, D, PP) /* _ix, _bx internal */
549 Inner_Product(FixedRays->p[nbV]+1, L->Constraint[i]+1, dim+2, &tmp);
550 if (value_zero_p(tmp)) {
551 if (r > dim-row)
552 goto try_again;
553 SD.F[_ix] |= _bx;
554 ++r;
556 ++nbV;
557 END_FORALL_PVertex_in_ParamPolyhedron;
558 assert(r == (dim-row)+1);
560 s = volume_simplex(PP, &SD, dim, matrix, point, row, options);
561 if (!vol)
562 vol = s;
563 else {
564 eadd(s, vol);
565 free_evalue_refs(s);
566 free(s);
569 Polyhedron_Free(L);
570 Matrix_Free(FixedRays);
571 value_clear(tmp);
572 free(SD.F);
574 return vol;
577 static evalue *volume_in_domain(Param_Polyhedron *PP, Param_Domain *D,
578 unsigned dim, evalue ***matrix,
579 struct parameter_point *point,
580 int row, Polyhedron *F,
581 struct barvinok_options *options)
583 int nbV;
584 Param_Vertices *V;
585 evalue *vol;
587 assert(point);
589 nbV = 0;
590 FORALL_PVertex_in_ParamPolyhedron(V, D, PP)
591 ++nbV;
592 END_FORALL_PVertex_in_ParamPolyhedron;
594 if (nbV > (dim-row) + 1) {
595 if (options->volume_triangulate == BV_VOL_LIFT)
596 vol = volume_triangulate_lift(PP, D, dim, matrix, point,
597 row, options);
598 else
599 vol = volume_triangulate(PP, D, dim, matrix, point,
600 row, F, options);
601 } else {
602 assert(nbV == (dim-row) + 1);
603 vol = volume_simplex(PP, D, dim, matrix, point, row, options);
606 return vol;
609 evalue* Param_Polyhedron_Volume(Polyhedron *P, Polyhedron* C,
610 struct barvinok_options *options)
612 evalue ***matrix;
613 unsigned nparam = C->Dimension;
614 unsigned nvar = P->Dimension - C->Dimension;
615 Param_Polyhedron *PP;
616 unsigned PP_MaxRays = options->MaxRays;
617 unsigned MaxRays;
618 int i, j;
619 Value fact;
620 evalue *vol;
621 int nd;
622 struct section { Polyhedron *D; evalue *E; } *s;
623 Param_Domain *D;
624 Polyhedron *TC;
626 if (options->polynomial_approximation == BV_APPROX_SIGN_NONE)
627 options->polynomial_approximation = BV_APPROX_SIGN_APPROX;
629 if (options->polynomial_approximation != BV_APPROX_SIGN_APPROX) {
630 int pa = options->polynomial_approximation;
631 assert(pa == BV_APPROX_SIGN_UPPER || pa == BV_APPROX_SIGN_LOWER);
633 P = Polyhedron_Flate(P, nparam, pa == BV_APPROX_SIGN_UPPER,
634 options->MaxRays);
636 /* Don't deflate/inflate again (on this polytope) */
637 options->polynomial_approximation = BV_APPROX_SIGN_APPROX;
638 vol = barvinok_enumerate_with_options(P, C, options);
639 options->polynomial_approximation = pa;
641 Polyhedron_Free(P);
642 return vol;
645 TC = true_context(P, C, options->MaxRays);
647 if (PP_MaxRays & POL_NO_DUAL)
648 PP_MaxRays = 0;
650 MaxRays = options->MaxRays;
651 POL_UNSET(options->MaxRays, POL_INTEGER);
653 value_init(fact);
654 Factorial(nvar, &fact);
656 PP = Polyhedron2Param_Domain(P, C, PP_MaxRays);
658 for (nd = 0, D = PP->D; D; ++nd, D = D->next);
659 s = ALLOCN(struct section, nd);
661 matrix = ALLOCN(evalue **, nvar+1);
662 for (i = 0; i < nvar+1; ++i)
663 matrix[i] = ALLOCN(evalue *, nvar);
665 FORALL_REDUCED_DOMAIN(PP, TC, nd, options, i, D, rVD)
666 Polyhedron *CA, *F;
667 struct parameter_point *point;
669 CA = align_context(D->Domain, P->Dimension, MaxRays);
670 F = DomainIntersection(P, CA, options->MaxRays);
671 Domain_Free(CA);
673 point = non_empty_point(D);
674 s[i].D = rVD;
675 s[i].E = volume_in_domain(PP, D, nvar, matrix, point, 0, F, options);
676 Domain_Free(F);
677 parameter_point_free(point);
678 evalue_div(s[i].E, fact);
679 END_FORALL_REDUCED_DOMAIN
680 options->MaxRays = MaxRays;
681 Polyhedron_Free(TC);
683 vol = ALLOC(evalue);
684 value_init(vol->d);
685 value_set_si(vol->d, 0);
687 if (nd == 0)
688 evalue_set_si(vol, 0, 1);
689 else {
690 vol->x.p = new_enode(partition, 2*nd, C->Dimension);
691 for (i = 0; i < nd; ++i) {
692 EVALUE_SET_DOMAIN(vol->x.p->arr[2*i], s[i].D);
693 value_clear(vol->x.p->arr[2*i+1].d);
694 vol->x.p->arr[2*i+1] = *s[i].E;
695 free(s[i].E);
698 free(s);
700 for (i = 0; i < nvar+1; ++i)
701 free(matrix[i]);
702 free(matrix);
703 Param_Polyhedron_Free(PP);
704 value_clear(fact);
706 return vol;