evalue_read.c: correct constness of name in parameter_new
[barvinok.git] / reducer.cc
blob9df9b4b79f2e10e5bd173f218648215139d2e76c
1 #include <vector>
2 #include <barvinok/util.h>
3 #include "reducer.h"
4 #include "lattice_point.h"
6 using std::vector;
7 using std::cerr;
8 using std::endl;
10 struct OrthogonalException Orthogonal;
12 void np_base::handle(const signed_cone& sc, barvinok_options *options)
14 assert(sc.rays.NumRows() == dim);
15 factor.n *= sc.sign;
16 handle(sc.rays, current_vertex, factor, sc.det, sc.closed, options);
17 factor.n *= sc.sign;
20 void np_base::start(Polyhedron *P, barvinok_options *options)
22 QQ factor(1, 1);
23 for (;;) {
24 try {
25 init(P);
26 for (int i = 0; i < P->NbRays; ++i) {
27 if (!value_pos_p(P->Ray[i][dim+1]))
28 continue;
30 Polyhedron *C = supporting_cone(P, i);
31 do_vertex_cone(factor, C, P->Ray[i]+1, options);
33 break;
34 } catch (OrthogonalException &e) {
35 reset();
40 /* input:
41 * f: the powers in the denominator for the remaining vars
42 * each row refers to a factor
43 * den_s: for each factor, the power of (s+1)
44 * sign
45 * num_s: powers in the numerator corresponding to the summed vars
46 * num_p: powers in the numerator corresponding to the remaining vars
47 * number of rays in cone: "dim" = "k"
48 * length of each ray: "dim" = "d"
49 * for now, it is assumed: k == d
50 * output:
51 * den_p: for each factor
52 * 0: independent of remaining vars
53 * 1: power corresponds to corresponding row in f
55 * all inputs are subject to change
57 void normalize(ZZ& sign, vec_ZZ& num_s, mat_ZZ& num_p, vec_ZZ& den_s, vec_ZZ& den_p,
58 mat_ZZ& f)
60 unsigned dim = f.NumRows();
61 unsigned nparam = num_p.NumCols();
62 unsigned nvar = dim - nparam;
64 int change = 0;
66 for (int j = 0; j < den_s.length(); ++j) {
67 if (den_s[j] == 0) {
68 den_p[j] = 1;
69 continue;
71 int k;
72 for (k = 0; k < nparam; ++k)
73 if (f[j][k] != 0)
74 break;
75 if (k < nparam) {
76 den_p[j] = 1;
77 if (den_s[j] > 0) {
78 f[j] = -f[j];
79 for (int i = 0; i < num_p.NumRows(); ++i)
80 num_p[i] += f[j];
82 } else
83 den_p[j] = 0;
84 if (den_s[j] > 0)
85 change ^= 1;
86 else {
87 den_s[j] = abs(den_s[j]);
88 for (int i = 0; i < num_p.NumRows(); ++i)
89 num_s[i] += den_s[j];
93 if (change)
94 sign = -sign;
97 void reducer::base(const vec_QQ& c, const mat_ZZ& num, const mat_ZZ& den_f)
99 for (int i = 0; i < num.NumRows(); ++i)
100 base(c[i], num[i], den_f);
103 struct dpoly_r_scanner {
104 const dpoly_r *rc;
105 const dpoly * const *num;
106 int n;
107 int dim;
108 dpoly_r_term_list::iterator *iter;
109 vector<int> powers;
110 vec_ZZ coeff;
112 dpoly_r_scanner(const dpoly * const *num, int n, const dpoly_r *rc, int dim)
113 : num(num), rc(rc), n(n), dim(dim), powers(dim, 0) {
114 coeff.SetLength(n);
115 iter = new dpoly_r_term_list::iterator[rc->len];
116 for (int i = 0; i < rc->len; ++i) {
117 int k;
118 for (k = 0; k < n; ++k)
119 if (value_notzero_p(num[k]->coeff->p[rc->len-1-i]))
120 break;
121 if (k < n)
122 iter[i] = rc->c[i].begin();
123 else
124 iter[i] = rc->c[i].end();
127 bool next() {
128 int pos[rc->len];
129 int len = 0;
131 for (int i = 0; i < rc->len; ++i) {
132 if (iter[i] == rc->c[i].end())
133 continue;
134 if (!len)
135 pos[len++] = i;
136 else {
137 if ((*iter[i])->powers < (*iter[pos[0]])->powers) {
138 pos[0] = i;
139 len = 1;
140 } else if ((*iter[i])->powers == (*iter[pos[0]])->powers)
141 pos[len++] = i;
145 if (!len)
146 return false;
148 powers = (*iter[pos[0]])->powers;
149 for (int k = 0; k < n; ++k) {
150 value2zz(num[k]->coeff->p[rc->len-1-pos[0]], tmp);
151 mul(coeff[k], (*iter[pos[0]])->coeff, tmp);
153 ++iter[pos[0]];
154 for (int i = 1; i < len; ++i) {
155 for (int k = 0; k < n; ++k) {
156 value2zz(num[k]->coeff->p[rc->len-1-pos[i]], tmp);
157 mul(tmp, (*iter[pos[i]])->coeff, tmp);
158 add(coeff[k], coeff[k], tmp);
160 ++iter[pos[i]];
163 return true;
165 ~dpoly_r_scanner() {
166 delete [] iter;
168 private:
169 ZZ tmp;
172 void reducer::reduce(const vec_QQ& c, const mat_ZZ& num, const mat_ZZ& den_f)
174 assert(c.length() == num.NumRows());
175 unsigned len = den_f.NumRows(); // number of factors in den
176 vec_QQ c2 = c;
178 if (num.NumCols() == lower) {
179 base(c, num, den_f);
180 return;
182 assert(num.NumCols() > 1);
183 assert(num.NumRows() > 0);
185 vec_ZZ den_s;
186 mat_ZZ den_r;
187 vec_ZZ num_s;
188 mat_ZZ num_p;
190 split(num, num_s, num_p, den_f, den_s, den_r);
192 vec_ZZ den_p;
193 den_p.SetLength(len);
195 ZZ sign(INIT_VAL, 1);
196 normalize(sign, num_s, num_p, den_s, den_p, den_r);
197 c2 *= sign;
199 int only_param = 0; // k-r-s from text
200 int no_param = 0; // r from text
201 for (int k = 0; k < len; ++k) {
202 if (den_p[k] == 0)
203 ++no_param;
204 else if (den_s[k] == 0)
205 ++only_param;
207 if (no_param == 0) {
208 reduce(c2, num_p, den_r);
209 } else {
210 int k, l;
211 mat_ZZ pden;
212 pden.SetDims(only_param, den_r.NumCols());
214 for (k = 0, l = 0; k < len; ++k)
215 if (den_s[k] == 0)
216 pden[l++] = den_r[k];
218 for (k = 0; k < len; ++k)
219 if (den_p[k] == 0)
220 break;
222 dpoly *n[num_s.length()];
223 for (int i = 0; i < num_s.length(); ++i) {
224 zz2value(num_s[i], tz);
225 n[i] = new dpoly(no_param, tz);
226 /* Search for other numerator (j) with same num_p.
227 * If found, replace a[j]/b[j] * n[j] and a[i]/b[i] * n[i]
228 * by 1/(b[j]*b[i]/g) * (a[j]*b[i]/g * n[j] + a[i]*b[j]/g * n[i])
229 * where g = gcd(b[i], b[j].
231 for (int j = 0; j < i; ++j) {
232 if (num_p[i] != num_p[j])
233 continue;
234 ZZ g = GCD(c2[i].d, c2[j].d);
235 zz2value(c2[j].n * c2[i].d/g, tz);
236 *n[j] *= tz;
237 zz2value(c2[i].n * c2[j].d/g, tz);
238 *n[i] *= tz;
239 *n[j] += *n[i];
240 c2[j].n = 1;
241 c2[j].d *= c2[i].d/g;
242 delete n[i];
243 if (i < num_s.length()-1) {
244 num_s[i] = num_s[num_s.length()-1];
245 num_p[i] = num_p[num_s.length()-1];
246 c2[i] = c2[num_s.length()-1];
248 num_s.SetLength(num_s.length()-1);
249 c2.SetLength(c2.length()-1);
250 num_p.SetDims(num_p.NumRows()-1, num_p.NumCols());
251 --i;
252 break;
255 zz2value(den_s[k], tz);
256 dpoly D(no_param, tz, 1);
257 for ( ; ++k < len; )
258 if (den_p[k] == 0) {
259 zz2value(den_s[k], tz);
260 dpoly fact(no_param, tz, 1);
261 D *= fact;
264 if (no_param + only_param == len) {
265 vec_QQ q;
266 q.SetLength(num_s.length());
267 for (int i = 0; i < num_s.length(); ++i) {
268 mpq_set_si(tcount, 0, 1);
269 n[i]->div(D, tcount, one);
271 value2zz(mpq_numref(tcount), q[i].n);
272 value2zz(mpq_denref(tcount), q[i].d);
273 q[i] *= c2[i];
275 for (int i = q.length()-1; i >= 0; --i) {
276 if (q[i].n == 0) {
277 q[i] = q[q.length()-1];
278 num_p[i] = num_p[q.length()-1];
279 q.SetLength(q.length()-1);
280 num_p.SetDims(num_p.NumRows()-1, num_p.NumCols());
284 if (q.length() != 0)
285 reduce(q, num_p, pden);
286 } else {
287 value_set_si(tz, 0);
288 dpoly one(no_param, tz);
289 dpoly_r *r = NULL;
291 for (k = 0; k < len; ++k) {
292 if (den_s[k] == 0 || den_p[k] == 0)
293 continue;
295 zz2value(den_s[k], tz);
296 dpoly pd(no_param-1, tz, 1);
298 int l;
299 for (l = 0; l < k; ++l)
300 if (den_r[l] == den_r[k])
301 break;
303 if (!r)
304 r = new dpoly_r(one, pd, l, len);
305 else {
306 dpoly_r *nr = new dpoly_r(r, pd, l, len);
307 delete r;
308 r = nr;
312 vec_QQ factor;
313 factor.SetLength(c2.length());
314 int common = pden.NumRows();
315 dpoly_r *rc = r->div(D);
316 for (int i = 0; i < num_s.length(); ++i) {
317 factor[i].d = c2[i].d;
318 factor[i].d *= rc->denom;
321 dpoly_r_scanner scanner(n, num_s.length(), rc, len);
322 int rows;
323 while (scanner.next()) {
324 int i;
325 for (i = 0; i < num_s.length(); ++i)
326 if (scanner.coeff[i] != 0)
327 break;
328 if (i == num_s.length())
329 continue;
330 rows = common;
331 pden.SetDims(rows, pden.NumCols());
332 for (int k = 0; k < rc->dim; ++k) {
333 int n = scanner.powers[k];
334 if (n == 0)
335 continue;
336 pden.SetDims(rows+n, pden.NumCols());
337 for (int l = 0; l < n; ++l)
338 pden[rows+l] = den_r[k];
339 rows += n;
341 for (int i = 0; i < num_s.length(); ++i) {
342 factor[i].n = c2[i].n;
343 factor[i].n *= scanner.coeff[i];
345 reduce(factor, num_p, pden);
348 delete rc;
349 delete r;
351 for (int i = 0; i < num_s.length(); ++i)
352 delete n[i];
356 void reducer::handle(const mat_ZZ& den, Value *V, const QQ& c, unsigned long det,
357 int *closed, barvinok_options *options)
359 vec_QQ vc;
361 Matrix *points = Matrix_Alloc(det, dim);
362 Matrix* Rays = zz2matrix(den);
363 lattice_points_fixed(V, V, Rays, Rays, points, det, closed);
364 Matrix_Free(Rays);
365 matrix2zz(points, vertex, points->NbRows, points->NbColumns);
366 Matrix_Free(points);
368 vc.SetLength(vertex.NumRows());
369 for (int i = 0; i < vc.length(); ++i)
370 vc[i] = c;
372 reduce(vc, vertex, den);
375 void split_one(const mat_ZZ& num, vec_ZZ& num_s, mat_ZZ& num_p,
376 const mat_ZZ& den_f, vec_ZZ& den_s, mat_ZZ& den_r)
378 unsigned len = den_f.NumRows(); // number of factors in den
379 unsigned d = num.NumCols() - 1;
381 den_s.SetLength(len);
382 den_r.SetDims(len, d);
384 for (int r = 0; r < len; ++r) {
385 den_s[r] = den_f[r][0];
386 for (int k = 1; k <= d; ++k)
387 den_r[r][k-1] = den_f[r][k];
390 num_s.SetLength(num.NumRows());
391 num_p.SetDims(num.NumRows(), d);
392 for (int i = 0; i < num.NumRows(); ++i) {
393 num_s[i] = num[i][0];
394 for (int k = 1 ; k <= d; ++k)
395 num_p[i][k-1] = num[i][k];
399 void normalize(ZZ& sign, ZZ& num, vec_ZZ& den)
401 unsigned dim = den.length();
403 int change = 0;
405 for (int j = 0; j < den.length(); ++j) {
406 if (den[j] > 0)
407 change ^= 1;
408 else {
409 den[j] = abs(den[j]);
410 num += den[j];
413 if (change)
414 sign = -sign;
417 void icounter::base(const QQ& c, const vec_ZZ& num, const mat_ZZ& den_f)
419 int r;
420 unsigned len = den_f.NumRows(); // number of factors in den
421 vec_ZZ den_s;
422 den_s.SetLength(len);
423 assert(num.length() == 1);
424 ZZ num_s = num[0];
425 for (r = 0; r < len; ++r)
426 den_s[r] = den_f[r][0];
427 ZZ sign = ZZ(INIT_VAL, 1);
428 normalize(sign, num_s, den_s);
430 zz2value(num_s, tz);
431 dpoly n(len, tz);
432 zz2value(den_s[0], tz);
433 dpoly D(len, tz, 1);
434 for (int k = 1; k < len; ++k) {
435 zz2value(den_s[k], tz);
436 dpoly fact(len, tz, 1);
437 D *= fact;
439 mpq_set_si(tcount, 0, 1);
440 n.div(D, tcount, one);
441 zz2value(c.n, tn);
442 if (sign == -1)
443 value_oppose(tn, tn);
444 zz2value(c.d, td);
445 mpz_mul(mpq_numref(tcount), mpq_numref(tcount), tn);
446 mpz_mul(mpq_denref(tcount), mpq_denref(tcount), td);
447 mpq_canonicalize(tcount);
448 mpq_add(count, count, tcount);
451 void infinite_icounter::base(const QQ& c, const vec_ZZ& num, const mat_ZZ& den_f)
453 int r;
454 unsigned len = den_f.NumRows(); // number of factors in den
455 vec_ZZ den_s;
456 den_s.SetLength(len);
457 assert(num.length() == 1);
458 ZZ num_s = num[0];
460 for (r = 0; r < len; ++r)
461 den_s[r] = den_f[r][0];
462 ZZ sign = ZZ(INIT_VAL, 1);
463 normalize(sign, num_s, den_s);
465 zz2value(num_s, tz);
466 dpoly n(len, tz);
467 zz2value(den_s[0], tz);
468 dpoly D(len, tz, 1);
469 for (int k = 1; k < len; ++k) {
470 zz2value(den_s[k], tz);
471 dpoly fact(len, tz, 1);
472 D *= fact;
475 Value tmp;
476 mpq_t factor;
477 mpq_init(factor);
478 value_init(tmp);
479 zz2value(c.n, tmp);
480 if (sign == -1)
481 value_oppose(tmp, tmp);
482 value_assign(mpq_numref(factor), tmp);
483 zz2value(c.d, tmp);
484 value_assign(mpq_denref(factor), tmp);
486 n.div(D, count, factor);
488 value_clear(tmp);
489 mpq_clear(factor);