6 #include <NTL/vec_ZZ.h>
7 #include <NTL/mat_ZZ.h>
8 #include <barvinok/barvinok.h>
9 #include <barvinok/evalue.h>
10 #include <barvinok/options.h>
11 #include <barvinok/util.h>
14 #include "conversion.h"
15 #include "decomposer.h"
16 #include "lattice_point.h"
17 #include "reduce_domain.h"
21 #include "evalue_util.h"
22 #include "remove_equalities.h"
27 #undef CS /* for Solaris 10 */
40 #define EMPTINESS_CHECK (BV_OPT_LAST+1)
41 #define NO_REDUCTION (BV_OPT_LAST+2)
42 #define POLYSIGN (BV_OPT_LAST+3)
44 struct argp_option argp_options
[] = {
45 { "emptiness-check", EMPTINESS_CHECK
, "[none|count]", 0 },
46 { "no-reduction", NO_REDUCTION
, 0, 0 },
47 { "polysign", POLYSIGN
, "[cdd|cddf]", 0 },
51 static error_t
parse_opt(int key
, char *arg
, struct argp_state
*state
)
53 struct lexmin_options
*options
= (struct lexmin_options
*)(state
->input
);
54 struct barvinok_options
*bv_options
= options
->verify
.barvinok
;
58 state
->child_inputs
[0] = options
->verify
.barvinok
;
59 state
->child_inputs
[1] = &options
->verify
;
60 options
->emptiness_check
= BV_LEXMIN_EMPTINESS_CHECK_SAMPLE
;
62 options
->polysign
= BV_LEXMIN_POLYSIGN_POLYLIB
;
65 if (!strcmp(arg
, "none"))
66 options
->emptiness_check
= BV_LEXMIN_EMPTINESS_CHECK_NONE
;
67 else if (!strcmp(arg
, "count")) {
68 options
->emptiness_check
= BV_LEXMIN_EMPTINESS_CHECK_COUNT
;
69 bv_options
->count_sample_infinite
= 0;
76 if (!strcmp(arg
, "cddf"))
77 options
->polysign
= BV_LEXMIN_POLYSIGN_CDDF
;
78 else if (!strcmp(arg
, "cdd"))
79 options
->polysign
= BV_LEXMIN_POLYSIGN_CDD
;
82 return ARGP_ERR_UNKNOWN
;
87 #define ALLOCN(type,n) (type*)malloc((n) * sizeof(type))
89 static int type_offset(enode
*p
)
91 return p
->type
== fractional
? 1 :
92 p
->type
== flooring
? 1 : 0;
95 void compute_evalue(evalue
*e
, Value
*val
, Value
*res
)
97 double d
= compute_evalue(e
, val
);
102 value_set_double(*res
, d
);
105 struct indicator_term
{
107 int pos
; /* number of rational vertex */
108 int n
; /* number of cone associated to given rational vertex */
112 indicator_term(unsigned dim
, int pos
) {
114 vertex
= new evalue
* [dim
];
119 indicator_term(unsigned dim
, int pos
, int n
) {
120 den
.SetDims(dim
, dim
);
121 vertex
= new evalue
* [dim
];
125 indicator_term(const indicator_term
& src
) {
130 unsigned dim
= den
.NumCols();
131 vertex
= new evalue
* [dim
];
132 for (int i
= 0; i
< dim
; ++i
) {
133 vertex
[i
] = new evalue();
134 value_init(vertex
[i
]->d
);
135 evalue_copy(vertex
[i
], src
.vertex
[i
]);
138 void swap(indicator_term
*other
) {
140 tmp
= sign
; sign
= other
->sign
; other
->sign
= tmp
;
141 tmp
= pos
; pos
= other
->pos
; other
->pos
= tmp
;
142 tmp
= n
; n
= other
->n
; other
->n
= tmp
;
143 mat_ZZ tmp_den
= den
; den
= other
->den
; other
->den
= tmp_den
;
144 unsigned dim
= den
.NumCols();
145 for (int i
= 0; i
< dim
; ++i
) {
146 evalue
*tmp
= vertex
[i
];
147 vertex
[i
] = other
->vertex
[i
];
148 other
->vertex
[i
] = tmp
;
152 unsigned dim
= den
.NumCols();
153 for (int i
= 0; i
< dim
; ++i
) {
154 free_evalue_refs(vertex
[i
]);
159 void print(ostream
& os
, char **p
) const;
160 void substitute(Matrix
*T
);
162 void substitute(evalue
*fract
, evalue
*val
);
163 void substitute(int pos
, evalue
*val
);
164 void reduce_in_domain(Polyhedron
*D
);
165 bool is_opposite(const indicator_term
*neg
) const;
166 vec_ZZ
eval(Value
*val
) const {
168 unsigned dim
= den
.NumCols();
172 for (int i
= 0; i
< dim
; ++i
) {
173 compute_evalue(vertex
[i
], val
, &tmp
);
181 static int evalue_rational_cmp(const evalue
*e1
, const evalue
*e2
)
189 assert(value_notzero_p(e1
->d
));
190 assert(value_notzero_p(e2
->d
));
191 value_multiply(m
, e1
->x
.n
, e2
->d
);
192 value_multiply(m2
, e2
->x
.n
, e1
->d
);
195 else if (value_gt(m
, m2
))
205 static int evalue_cmp(const evalue
*e1
, const evalue
*e2
)
207 if (value_notzero_p(e1
->d
)) {
208 if (value_zero_p(e2
->d
))
210 return evalue_rational_cmp(e1
, e2
);
212 if (value_notzero_p(e2
->d
))
214 if (e1
->x
.p
->type
!= e2
->x
.p
->type
)
215 return e1
->x
.p
->type
- e2
->x
.p
->type
;
216 if (e1
->x
.p
->size
!= e2
->x
.p
->size
)
217 return e1
->x
.p
->size
- e2
->x
.p
->size
;
218 if (e1
->x
.p
->pos
!= e2
->x
.p
->pos
)
219 return e1
->x
.p
->pos
- e2
->x
.p
->pos
;
220 assert(e1
->x
.p
->type
== polynomial
||
221 e1
->x
.p
->type
== fractional
||
222 e1
->x
.p
->type
== flooring
);
223 for (int i
= 0; i
< e1
->x
.p
->size
; ++i
) {
224 int s
= evalue_cmp(&e1
->x
.p
->arr
[i
], &e2
->x
.p
->arr
[i
]);
231 void evalue_length(evalue
*e
, int len
[2])
236 while (value_zero_p(e
->d
)) {
237 assert(e
->x
.p
->type
== polynomial
||
238 e
->x
.p
->type
== fractional
||
239 e
->x
.p
->type
== flooring
);
240 if (e
->x
.p
->type
== polynomial
)
244 int offset
= type_offset(e
->x
.p
);
245 assert(e
->x
.p
->size
== offset
+2);
246 e
= &e
->x
.p
->arr
[offset
];
250 static bool it_smaller(const indicator_term
* it1
, const indicator_term
* it2
)
254 int len1
[2], len2
[2];
255 unsigned dim
= it1
->den
.NumCols();
256 for (int i
= 0; i
< dim
; ++i
) {
257 evalue_length(it1
->vertex
[i
], len1
);
258 evalue_length(it2
->vertex
[i
], len2
);
259 if (len1
[0] != len2
[0])
260 return len1
[0] < len2
[0];
261 if (len1
[1] != len2
[1])
262 return len1
[1] < len2
[1];
264 if (it1
->pos
!= it2
->pos
)
265 return it1
->pos
< it2
->pos
;
266 if (it1
->n
!= it2
->n
)
267 return it1
->n
< it2
->n
;
268 int s
= lex_cmp(it1
->den
, it2
->den
);
271 for (int i
= 0; i
< dim
; ++i
) {
272 s
= evalue_cmp(it1
->vertex
[i
], it2
->vertex
[i
]);
276 assert(it1
->sign
!= 0);
277 assert(it2
->sign
!= 0);
278 if (it1
->sign
!= it2
->sign
)
279 return it1
->sign
> 0;
284 static const int requires_resort
;
285 bool operator()(const indicator_term
* it1
, const indicator_term
* it2
) const {
286 return it_smaller(it1
, it2
);
289 const int smaller_it::requires_resort
= 1;
291 struct smaller_it_p
{
292 static const int requires_resort
;
293 bool operator()(const indicator_term
* it1
, const indicator_term
* it2
) const {
297 const int smaller_it_p::requires_resort
= 0;
299 /* Returns true if this and neg are opposite using the knowledge
300 * that they have the same numerator.
301 * In particular, we check that the signs are different and that
302 * the denominator is the same.
304 bool indicator_term::is_opposite(const indicator_term
*neg
) const
306 if (sign
+ neg
->sign
!= 0)
313 void indicator_term::reduce_in_domain(Polyhedron
*D
)
315 for (int k
= 0; k
< den
.NumCols(); ++k
) {
316 reduce_evalue_in_domain(vertex
[k
], D
);
317 if (evalue_range_reduction_in_domain(vertex
[k
], D
))
318 reduce_evalue(vertex
[k
]);
322 void indicator_term::print(ostream
& os
, char **p
) const
324 unsigned dim
= den
.NumCols();
325 unsigned factors
= den
.NumRows();
333 for (int i
= 0; i
< dim
; ++i
) {
336 evalue_print(os
, vertex
[i
], p
);
339 for (int i
= 0; i
< factors
; ++i
) {
340 os
<< " + t" << i
<< "*[";
341 for (int j
= 0; j
< dim
; ++j
) {
348 os
<< " ((" << pos
<< ", " << n
<< ", " << (void*)this << "))";
351 /* Perform the substitution specified by T on the variables.
352 * T has dimension (newdim+nparam+1) x (olddim + nparam + 1).
353 * The substitution is performed as in gen_fun::substitute
355 void indicator_term::substitute(Matrix
*T
)
357 unsigned dim
= den
.NumCols();
358 unsigned nparam
= T
->NbColumns
- dim
- 1;
359 unsigned newdim
= T
->NbRows
- nparam
- 1;
362 matrix2zz(T
, trans
, newdim
, dim
);
363 trans
= transpose(trans
);
365 newvertex
= new evalue
* [newdim
];
368 v
.SetLength(nparam
+1);
371 value_init(factor
.d
);
372 value_set_si(factor
.d
, 1);
373 value_init(factor
.x
.n
);
374 for (int i
= 0; i
< newdim
; ++i
) {
375 values2zz(T
->p
[i
]+dim
, v
, nparam
+1);
376 newvertex
[i
] = multi_monom(v
);
378 for (int j
= 0; j
< dim
; ++j
) {
379 if (value_zero_p(T
->p
[i
][j
]))
383 evalue_copy(&term
, vertex
[j
]);
384 value_assign(factor
.x
.n
, T
->p
[i
][j
]);
385 emul(&factor
, &term
);
386 eadd(&term
, newvertex
[i
]);
387 free_evalue_refs(&term
);
390 free_evalue_refs(&factor
);
391 for (int i
= 0; i
< dim
; ++i
) {
392 free_evalue_refs(vertex
[i
]);
399 static void evalue_add_constant(evalue
*e
, ZZ v
)
404 /* go down to constant term */
405 while (value_zero_p(e
->d
))
406 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)];
409 value_multiply(tmp
, tmp
, e
->d
);
410 value_addto(e
->x
.n
, e
->x
.n
, tmp
);
415 /* Make all powers in denominator lexico-positive */
416 void indicator_term::normalize()
419 extra_vertex
.SetLength(den
.NumCols());
420 for (int r
= 0; r
< den
.NumRows(); ++r
) {
421 for (int k
= 0; k
< den
.NumCols(); ++k
) {
428 extra_vertex
+= den
[r
];
432 for (int k
= 0; k
< extra_vertex
.length(); ++k
)
433 if (extra_vertex
[k
] != 0)
434 evalue_add_constant(vertex
[k
], extra_vertex
[k
]);
437 static void substitute(evalue
*e
, evalue
*fract
, evalue
*val
)
441 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
442 if (t
->x
.p
->type
== fractional
&& eequal(&t
->x
.p
->arr
[0], fract
))
445 if (value_notzero_p(t
->d
))
448 free_evalue_refs(&t
->x
.p
->arr
[0]);
449 evalue
*term
= &t
->x
.p
->arr
[2];
456 free_evalue_refs(term
);
462 void indicator_term::substitute(evalue
*fract
, evalue
*val
)
464 unsigned dim
= den
.NumCols();
465 for (int i
= 0; i
< dim
; ++i
) {
466 ::substitute(vertex
[i
], fract
, val
);
470 static void substitute(evalue
*e
, int pos
, evalue
*val
)
474 for (t
= e
; value_zero_p(t
->d
); t
= &t
->x
.p
->arr
[type_offset(t
->x
.p
)]) {
475 if (t
->x
.p
->type
== polynomial
&& t
->x
.p
->pos
== pos
)
478 if (value_notzero_p(t
->d
))
481 evalue
*term
= &t
->x
.p
->arr
[1];
488 free_evalue_refs(term
);
494 void indicator_term::substitute(int pos
, evalue
*val
)
496 unsigned dim
= den
.NumCols();
497 for (int i
= 0; i
< dim
; ++i
) {
498 ::substitute(vertex
[i
], pos
, val
);
502 struct indicator_constructor
: public signed_cone_consumer
,
503 public vertex_decomposer
{
505 vector
<indicator_term
*> *terms
;
506 Matrix
*T
; /* Transformation to original space */
507 Param_Polyhedron
*PP
;
511 indicator_constructor(Polyhedron
*P
, unsigned dim
, Param_Polyhedron
*PP
,
513 vertex_decomposer(P
, PP
->nbV
, *this), T(T
), PP(PP
) {
514 vertex
.SetLength(dim
);
515 terms
= new vector
<indicator_term
*>[nbV
];
517 ~indicator_constructor() {
518 for (int i
= 0; i
< nbV
; ++i
)
519 for (int j
= 0; j
< terms
[i
].size(); ++j
)
523 void substitute(Matrix
*T
);
525 void print(ostream
& os
, char **p
);
527 virtual void handle(const signed_cone
& sc
, barvinok_options
*options
);
528 void decompose_at_vertex(Param_Vertices
*V
, int _i
,
529 barvinok_options
*options
) {
532 vertex_decomposer::decompose_at_vertex(V
, _i
, options
);
536 void indicator_constructor::handle(const signed_cone
& sc
, barvinok_options
*options
)
540 unsigned dim
= vertex
.length();
542 assert(sc
.rays
.NumRows() == dim
);
544 indicator_term
*term
= new indicator_term(dim
, pos
, n
++);
545 term
->sign
= sc
.sign
;
546 terms
[vert
].push_back(term
);
548 lattice_point(V
, sc
.rays
, vertex
, term
->vertex
, options
);
551 for (int r
= 0; r
< dim
; ++r
) {
552 for (int j
= 0; j
< dim
; ++j
) {
553 if (term
->den
[r
][j
] == 0)
555 if (term
->den
[r
][j
] > 0)
557 term
->sign
= -term
->sign
;
558 term
->den
[r
] = -term
->den
[r
];
559 vertex
+= term
->den
[r
];
564 for (int i
= 0; i
< dim
; ++i
) {
565 if (!term
->vertex
[i
]) {
566 term
->vertex
[i
] = new evalue();
567 value_init(term
->vertex
[i
]->d
);
568 value_init(term
->vertex
[i
]->x
.n
);
569 zz2value(vertex
[i
], term
->vertex
[i
]->x
.n
);
570 value_set_si(term
->vertex
[i
]->d
, 1);
575 evalue_add_constant(term
->vertex
[i
], vertex
[i
]);
583 lex_order_rows(term
->den
);
586 void indicator_constructor::print(ostream
& os
, char **p
)
588 for (int i
= 0; i
< nbV
; ++i
)
589 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
590 os
<< "i: " << i
<< ", j: " << j
<< endl
;
591 terms
[i
][j
]->print(os
, p
);
596 void indicator_constructor::normalize()
598 for (int i
= 0; i
< nbV
; ++i
)
599 for (int j
= 0; j
< terms
[i
].size(); ++j
) {
601 vertex
.SetLength(terms
[i
][j
]->den
.NumCols());
602 for (int r
= 0; r
< terms
[i
][j
]->den
.NumRows(); ++r
) {
603 for (int k
= 0; k
< terms
[i
][j
]->den
.NumCols(); ++k
) {
604 if (terms
[i
][j
]->den
[r
][k
] == 0)
606 if (terms
[i
][j
]->den
[r
][k
] > 0)
608 terms
[i
][j
]->sign
= -terms
[i
][j
]->sign
;
609 terms
[i
][j
]->den
[r
] = -terms
[i
][j
]->den
[r
];
610 vertex
+= terms
[i
][j
]->den
[r
];
614 lex_order_rows(terms
[i
][j
]->den
);
615 for (int k
= 0; k
< vertex
.length(); ++k
)
617 evalue_add_constant(terms
[i
][j
]->vertex
[k
], vertex
[k
]);
621 struct order_cache_el
{
623 order_cache_el
copy() const {
625 for (int i
= 0; i
< e
.size(); ++i
) {
626 evalue
*c
= new evalue
;
628 evalue_copy(c
, e
[i
]);
634 for (int i
= 0; i
< e
.size(); ++i
) {
635 free_evalue_refs(e
[i
]);
642 evalue_set_si(&mone
, -1, 1);
643 for (int i
= 0; i
< e
.size(); ++i
)
645 free_evalue_refs(&mone
);
647 void print(ostream
& os
, char **p
);
650 void order_cache_el::print(ostream
& os
, char **p
)
653 for (int i
= 0; i
< e
.size(); ++i
) {
656 evalue_print(os
, e
[i
], p
);
662 vector
<order_cache_el
> lt
;
663 vector
<order_cache_el
> le
;
664 vector
<order_cache_el
> unknown
;
666 void clear_transients() {
667 for (int i
= 0; i
< le
.size(); ++i
)
669 for (int i
= 0; i
< unknown
.size(); ++i
)
676 for (int i
= 0; i
< lt
.size(); ++i
)
680 void add(order_cache_el
& cache_el
, order_sign sign
);
681 order_sign
check_lt(vector
<order_cache_el
>* list
,
682 const indicator_term
*a
, const indicator_term
*b
,
683 order_cache_el
& cache_el
);
684 order_sign
check_lt(const indicator_term
*a
, const indicator_term
*b
,
685 order_cache_el
& cache_el
);
686 order_sign
check_direct(const indicator_term
*a
, const indicator_term
*b
,
687 order_cache_el
& cache_el
);
688 order_sign
check(const indicator_term
*a
, const indicator_term
*b
,
689 order_cache_el
& cache_el
);
690 void copy(const order_cache
& cache
);
691 void print(ostream
& os
, char **p
);
694 void order_cache::copy(const order_cache
& cache
)
696 for (int i
= 0; i
< cache
.lt
.size(); ++i
) {
697 order_cache_el n
= cache
.lt
[i
].copy();
702 void order_cache::add(order_cache_el
& cache_el
, order_sign sign
)
704 if (sign
== order_lt
) {
705 lt
.push_back(cache_el
);
706 } else if (sign
== order_gt
) {
708 lt
.push_back(cache_el
);
709 } else if (sign
== order_le
) {
710 le
.push_back(cache_el
);
711 } else if (sign
== order_ge
) {
713 le
.push_back(cache_el
);
714 } else if (sign
== order_unknown
) {
715 unknown
.push_back(cache_el
);
717 assert(sign
== order_eq
);
724 static evalue
*ediff(const evalue
*a
, const evalue
*b
)
728 evalue_set_si(&mone
, -1, 1);
729 evalue
*diff
= new evalue
;
731 evalue_copy(diff
, b
);
735 free_evalue_refs(&mone
);
739 static bool evalue_first_difference(const evalue
*e1
, const evalue
*e2
,
740 const evalue
**d1
, const evalue
**d2
)
745 if (value_ne(e1
->d
, e2
->d
))
748 if (value_notzero_p(e1
->d
)) {
749 if (value_eq(e1
->x
.n
, e2
->x
.n
))
753 if (e1
->x
.p
->type
!= e2
->x
.p
->type
)
755 if (e1
->x
.p
->size
!= e2
->x
.p
->size
)
757 if (e1
->x
.p
->pos
!= e2
->x
.p
->pos
)
760 assert(e1
->x
.p
->type
== polynomial
||
761 e1
->x
.p
->type
== fractional
||
762 e1
->x
.p
->type
== flooring
);
763 int offset
= type_offset(e1
->x
.p
);
764 assert(e1
->x
.p
->size
== offset
+2);
765 for (int i
= 0; i
< e1
->x
.p
->size
; ++i
)
766 if (i
!= type_offset(e1
->x
.p
) &&
767 !eequal(&e1
->x
.p
->arr
[i
], &e2
->x
.p
->arr
[i
]))
770 return evalue_first_difference(&e1
->x
.p
->arr
[offset
],
771 &e2
->x
.p
->arr
[offset
], d1
, d2
);
774 static order_sign
evalue_diff_constant_sign(const evalue
*e1
, const evalue
*e2
)
776 if (!evalue_first_difference(e1
, e2
, &e1
, &e2
))
778 if (value_zero_p(e1
->d
) || value_zero_p(e2
->d
))
779 return order_undefined
;
780 int s
= evalue_rational_cmp(e1
, e2
);
789 order_sign
order_cache::check_lt(vector
<order_cache_el
>* list
,
790 const indicator_term
*a
, const indicator_term
*b
,
791 order_cache_el
& cache_el
)
793 order_sign sign
= order_undefined
;
794 for (int i
= 0; i
< list
->size(); ++i
) {
796 for (j
= cache_el
.e
.size(); j
< (*list
)[i
].e
.size(); ++j
)
797 cache_el
.e
.push_back(ediff(a
->vertex
[j
], b
->vertex
[j
]));
798 for (j
= 0; j
< (*list
)[i
].e
.size(); ++j
) {
799 order_sign diff_sign
;
800 diff_sign
= evalue_diff_constant_sign((*list
)[i
].e
[j
], cache_el
.e
[j
]);
801 if (diff_sign
== order_gt
) {
804 } else if (diff_sign
== order_lt
)
806 else if (diff_sign
== order_undefined
)
809 assert(diff_sign
== order_eq
);
811 if (j
== (*list
)[i
].e
.size())
812 sign
= list
== <
? order_lt
: order_le
;
813 if (sign
!= order_undefined
)
819 order_sign
order_cache::check_direct(const indicator_term
*a
,
820 const indicator_term
*b
,
821 order_cache_el
& cache_el
)
823 order_sign sign
= check_lt(<
, a
, b
, cache_el
);
824 if (sign
!= order_undefined
)
826 sign
= check_lt(&le
, a
, b
, cache_el
);
827 if (sign
!= order_undefined
)
830 for (int i
= 0; i
< unknown
.size(); ++i
) {
832 for (j
= cache_el
.e
.size(); j
< unknown
[i
].e
.size(); ++j
)
833 cache_el
.e
.push_back(ediff(a
->vertex
[j
], b
->vertex
[j
]));
834 for (j
= 0; j
< unknown
[i
].e
.size(); ++j
) {
835 if (!eequal(unknown
[i
].e
[j
], cache_el
.e
[j
]))
838 if (j
== unknown
[i
].e
.size()) {
839 sign
= order_unknown
;
846 order_sign
order_cache::check(const indicator_term
*a
, const indicator_term
*b
,
847 order_cache_el
& cache_el
)
849 order_sign sign
= check_direct(a
, b
, cache_el
);
850 if (sign
!= order_undefined
)
852 int size
= cache_el
.e
.size();
854 sign
= check_direct(a
, b
, cache_el
);
856 assert(cache_el
.e
.size() == size
);
857 if (sign
== order_undefined
)
859 if (sign
== order_lt
)
861 else if (sign
== order_le
)
864 assert(sign
== order_unknown
);
870 struct partial_order
{
873 std::set
<const indicator_term
*, smaller_it
> head
;
874 map
<const indicator_term
*, int, smaller_it
> pred
;
875 map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> lt
;
876 map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> le
;
877 map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> eq
;
879 map
<const indicator_term
*, vector
<const indicator_term
* >, smaller_it
> pending
;
883 partial_order(indicator
*ind
) : ind(ind
) {}
884 void copy(const partial_order
& order
,
885 map
< const indicator_term
*, indicator_term
* > old2new
);
887 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
888 map
<const indicator_term
*, int >::iterator j
;
889 std::set
<const indicator_term
*>::iterator k
;
891 if (head
.key_comp().requires_resort
) {
892 typeof(head
) new_head
;
893 for (k
= head
.begin(); k
!= head
.end(); ++k
)
899 if (pred
.key_comp().requires_resort
) {
900 typeof(pred
) new_pred
;
901 for (j
= pred
.begin(); j
!= pred
.end(); ++j
)
902 new_pred
[(*j
).first
] = (*j
).second
;
907 if (lt
.key_comp().requires_resort
) {
909 for (i
= lt
.begin(); i
!= lt
.end(); ++i
)
910 m
[(*i
).first
] = (*i
).second
;
915 if (le
.key_comp().requires_resort
) {
917 for (i
= le
.begin(); i
!= le
.end(); ++i
)
918 m
[(*i
).first
] = (*i
).second
;
923 if (eq
.key_comp().requires_resort
) {
925 for (i
= eq
.begin(); i
!= eq
.end(); ++i
)
926 m
[(*i
).first
] = (*i
).second
;
931 if (pending
.key_comp().requires_resort
) {
933 for (i
= pending
.begin(); i
!= pending
.end(); ++i
)
934 m
[(*i
).first
] = (*i
).second
;
940 order_sign
compare(const indicator_term
*a
, const indicator_term
*b
);
941 void set_equal(const indicator_term
*a
, const indicator_term
*b
);
942 void unset_le(const indicator_term
*a
, const indicator_term
*b
);
943 void dec_pred(const indicator_term
*it
) {
944 if (--pred
[it
] == 0) {
949 void inc_pred(const indicator_term
*it
) {
950 if (head
.find(it
) != head
.end())
955 bool compared(const indicator_term
* a
, const indicator_term
* b
);
956 void add(const indicator_term
* it
, std::set
<const indicator_term
*> *filter
);
957 void remove(const indicator_term
* it
);
959 void print(ostream
& os
, char **p
);
961 /* replace references to orig to references to replacement */
962 void replace(const indicator_term
* orig
, indicator_term
* replacement
);
963 void sanity_check() const;
966 /* We actually replace the contents of orig by that of replacement,
967 * but we have to be careful since replacing the content changes
968 * the order of orig in the maps.
970 void partial_order::replace(const indicator_term
* orig
, indicator_term
* replacement
)
972 std::set
<const indicator_term
*>::iterator k
;
974 bool is_head
= k
!= head
.end();
979 orig_pred
= pred
[orig
];
982 vector
<const indicator_term
* > orig_lt
;
983 vector
<const indicator_term
* > orig_le
;
984 vector
<const indicator_term
* > orig_eq
;
985 vector
<const indicator_term
* > orig_pending
;
986 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
987 bool in_lt
= ((i
= lt
.find(orig
)) != lt
.end());
989 orig_lt
= (*i
).second
;
992 bool in_le
= ((i
= le
.find(orig
)) != le
.end());
994 orig_le
= (*i
).second
;
997 bool in_eq
= ((i
= eq
.find(orig
)) != eq
.end());
999 orig_eq
= (*i
).second
;
1002 bool in_pending
= ((i
= pending
.find(orig
)) != pending
.end());
1004 orig_pending
= (*i
).second
;
1005 pending
.erase(orig
);
1007 indicator_term
*old
= const_cast<indicator_term
*>(orig
);
1008 old
->swap(replacement
);
1012 pred
[old
] = orig_pred
;
1020 pending
[old
] = orig_pending
;
1023 void partial_order::unset_le(const indicator_term
*a
, const indicator_term
*b
)
1025 vector
<const indicator_term
*>::iterator i
;
1026 i
= find(le
[a
].begin(), le
[a
].end(), b
);
1028 if (le
[a
].size() == 0)
1031 i
= find(pending
[a
].begin(), pending
[a
].end(), b
);
1032 if (i
!= pending
[a
].end())
1033 pending
[a
].erase(i
);
1036 void partial_order::set_equal(const indicator_term
*a
, const indicator_term
*b
)
1038 if (eq
[a
].size() == 0)
1040 if (eq
[b
].size() == 0)
1045 if (pred
.key_comp()(b
, a
)) {
1046 const indicator_term
*c
= a
;
1051 const indicator_term
*base
= a
;
1053 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
1055 for (int j
= 0; j
< eq
[b
].size(); ++j
) {
1056 eq
[base
].push_back(eq
[b
][j
]);
1057 eq
[eq
[b
][j
]][0] = base
;
1062 if (i
!= lt
.end()) {
1063 for (int j
= 0; j
< lt
[b
].size(); ++j
) {
1064 if (find(eq
[base
].begin(), eq
[base
].end(), lt
[b
][j
]) != eq
[base
].end())
1066 else if (find(lt
[base
].begin(), lt
[base
].end(), lt
[b
][j
])
1070 lt
[base
].push_back(lt
[b
][j
]);
1076 if (i
!= le
.end()) {
1077 for (int j
= 0; j
< le
[b
].size(); ++j
) {
1078 if (find(eq
[base
].begin(), eq
[base
].end(), le
[b
][j
]) != eq
[base
].end())
1080 else if (find(le
[base
].begin(), le
[base
].end(), le
[b
][j
])
1084 le
[base
].push_back(le
[b
][j
]);
1089 i
= pending
.find(base
);
1090 if (i
!= pending
.end()) {
1091 vector
<const indicator_term
* > old
= pending
[base
];
1092 pending
[base
].clear();
1093 for (int j
= 0; j
< old
.size(); ++j
) {
1094 if (find(eq
[base
].begin(), eq
[base
].end(), old
[j
]) == eq
[base
].end())
1095 pending
[base
].push_back(old
[j
]);
1099 i
= pending
.find(b
);
1100 if (i
!= pending
.end()) {
1101 for (int j
= 0; j
< pending
[b
].size(); ++j
) {
1102 if (find(eq
[base
].begin(), eq
[base
].end(), pending
[b
][j
]) == eq
[base
].end())
1103 pending
[base
].push_back(pending
[b
][j
]);
1109 void partial_order::copy(const partial_order
& order
,
1110 map
< const indicator_term
*, indicator_term
* > old2new
)
1112 cache
.copy(order
.cache
);
1114 map
<const indicator_term
*, vector
<const indicator_term
* > >::const_iterator i
;
1115 map
<const indicator_term
*, int >::const_iterator j
;
1116 std::set
<const indicator_term
*>::const_iterator k
;
1118 for (k
= order
.head
.begin(); k
!= order
.head
.end(); ++k
)
1119 head
.insert(old2new
[*k
]);
1121 for (j
= order
.pred
.begin(); j
!= order
.pred
.end(); ++j
)
1122 pred
[old2new
[(*j
).first
]] = (*j
).second
;
1124 for (i
= order
.lt
.begin(); i
!= order
.lt
.end(); ++i
) {
1125 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1126 lt
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1128 for (i
= order
.le
.begin(); i
!= order
.le
.end(); ++i
) {
1129 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1130 le
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1132 for (i
= order
.eq
.begin(); i
!= order
.eq
.end(); ++i
) {
1133 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1134 eq
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1136 for (i
= order
.pending
.begin(); i
!= order
.pending
.end(); ++i
) {
1137 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1138 pending
[old2new
[(*i
).first
]].push_back(old2new
[(*i
).second
[j
]]);
1144 vector
<evalue
*> max
;
1146 void print(ostream
& os
, char **p
, barvinok_options
*options
) const;
1147 void substitute(Matrix
*T
, barvinok_options
*options
);
1148 Vector
*eval(Value
*val
, unsigned MaxRays
) const;
1151 for (int i
= 0; i
< max
.size(); ++i
) {
1152 free_evalue_refs(max
[i
]);
1160 * Project on first dim dimensions
1162 Polyhedron
* Polyhedron_Project_Initial(Polyhedron
*P
, int dim
)
1168 if (P
->Dimension
== dim
)
1169 return Polyhedron_Copy(P
);
1171 T
= Matrix_Alloc(dim
+1, P
->Dimension
+1);
1172 for (i
= 0; i
< dim
; ++i
)
1173 value_set_si(T
->p
[i
][i
], 1);
1174 value_set_si(T
->p
[dim
][P
->Dimension
], 1);
1175 I
= Polyhedron_Image(P
, T
, P
->NbConstraints
);
1181 vector
<indicator_term
*> term
;
1182 indicator_constructor
& ic
;
1183 partial_order order
;
1187 lexmin_options
*options
;
1188 vector
<evalue
*> substitutions
;
1190 indicator(indicator_constructor
& ic
, Param_Domain
*PD
, EDomain
*D
,
1191 lexmin_options
*options
) :
1192 ic(ic
), PD(PD
), D(D
), order(this), options(options
), P(NULL
) {}
1193 indicator(const indicator
& ind
, EDomain
*D
) :
1194 ic(ind
.ic
), PD(ind
.PD
), D(NULL
), order(this), options(ind
.options
),
1195 P(Polyhedron_Copy(ind
.P
)) {
1196 map
< const indicator_term
*, indicator_term
* > old2new
;
1197 for (int i
= 0; i
< ind
.term
.size(); ++i
) {
1198 indicator_term
*it
= new indicator_term(*ind
.term
[i
]);
1199 old2new
[ind
.term
[i
]] = it
;
1202 order
.copy(ind
.order
, old2new
);
1206 for (int i
= 0; i
< term
.size(); ++i
)
1214 void set_domain(EDomain
*D
) {
1215 order
.cache
.clear_transients();
1219 int nparam
= ic
.P
->Dimension
- ic
.vertex
.length();
1220 if (options
->reduce
) {
1221 Polyhedron
*Q
= Polyhedron_Project_Initial(D
->D
, nparam
);
1222 Q
= DomainConstraintSimplify(Q
, options
->verify
.barvinok
->MaxRays
);
1223 if (!P
|| !PolyhedronIncludes(Q
, P
))
1224 reduce_in_domain(Q
);
1232 void add(const indicator_term
* it
);
1233 void remove(const indicator_term
* it
);
1234 void remove_initial_rational_vertices();
1235 void expand_rational_vertex(const indicator_term
*initial
);
1237 void print(ostream
& os
, char **p
);
1239 void peel(int i
, int j
);
1240 void combine(const indicator_term
*a
, const indicator_term
*b
);
1241 void add_substitution(evalue
*equation
);
1242 void perform_pending_substitutions();
1243 void reduce_in_domain(Polyhedron
*D
);
1244 bool handle_equal_numerators(const indicator_term
*base
);
1246 max_term
* create_max_term(const indicator_term
*it
);
1248 void substitute(evalue
*equation
);
1251 void partial_order::sanity_check() const
1253 map
<const indicator_term
*, vector
<const indicator_term
* > >::const_iterator i
;
1254 map
<const indicator_term
*, vector
<const indicator_term
* > >::const_iterator prev
;
1255 map
<const indicator_term
*, vector
<const indicator_term
* > >::const_iterator l
;
1256 map
<const indicator_term
*, int >::const_iterator k
, prev_k
;
1258 for (k
= pred
.begin(); k
!= pred
.end(); prev_k
= k
, ++k
)
1259 if (k
!= pred
.begin())
1260 assert(pred
.key_comp()((*prev_k
).first
, (*k
).first
));
1261 for (i
= lt
.begin(); i
!= lt
.end(); prev
= i
, ++i
) {
1264 i_v
= (*i
).first
->eval(ind
->D
->sample
->p
);
1265 if (i
!= lt
.begin())
1266 assert(lt
.key_comp()((*prev
).first
, (*i
).first
));
1267 l
= eq
.find((*i
).first
);
1269 assert((*l
).second
.size() > 1);
1270 assert(head
.find((*i
).first
) != head
.end() ||
1271 pred
.find((*i
).first
) != pred
.end());
1272 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1273 k
= pred
.find((*i
).second
[j
]);
1274 assert(k
!= pred
.end());
1275 assert((*k
).second
!= 0);
1276 if ((*i
).first
->sign
!= 0 &&
1277 (*i
).second
[j
]->sign
!= 0 && ind
->D
->sample
) {
1278 vec_ZZ j_v
= (*i
).second
[j
]->eval(ind
->D
->sample
->p
);
1279 assert(lex_cmp(i_v
, j_v
) < 0);
1283 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1284 assert((*i
).second
.size() > 0);
1285 assert(head
.find((*i
).first
) != head
.end() ||
1286 pred
.find((*i
).first
) != pred
.end());
1287 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1288 k
= pred
.find((*i
).second
[j
]);
1289 assert(k
!= pred
.end());
1290 assert((*k
).second
!= 0);
1293 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1294 assert(head
.find((*i
).first
) != head
.end() ||
1295 pred
.find((*i
).first
) != pred
.end());
1296 assert((*i
).second
.size() >= 1);
1298 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1299 assert(head
.find((*i
).first
) != head
.end() ||
1300 pred
.find((*i
).first
) != pred
.end());
1301 for (int j
= 0; j
< (*i
).second
.size(); ++j
)
1302 assert(head
.find((*i
).second
[j
]) != head
.end() ||
1303 pred
.find((*i
).second
[j
]) != pred
.end());
1307 max_term
* indicator::create_max_term(const indicator_term
*it
)
1309 int dim
= it
->den
.NumCols();
1310 int nparam
= ic
.P
->Dimension
- ic
.vertex
.length();
1311 max_term
*maximum
= new max_term
;
1312 maximum
->domain
= new EDomain(D
);
1313 for (int j
= 0; j
< dim
; ++j
) {
1314 evalue
*E
= new evalue
;
1316 evalue_copy(E
, it
->vertex
[j
]);
1317 if (evalue_frac2floor_in_domain(E
, D
->D
))
1319 maximum
->max
.push_back(E
);
1324 static order_sign
evalue_sign(evalue
*diff
, EDomain
*D
, lexmin_options
*options
)
1326 order_sign sign
= order_eq
;
1329 evalue_set_si(&mone
, -1, 1);
1330 int len
= 1 + D
->D
->Dimension
+ 1;
1331 Vector
*c
= Vector_Alloc(len
);
1332 Matrix
*T
= Matrix_Alloc(2, len
-1);
1334 int fract
= evalue2constraint(D
, diff
, c
->p
, len
);
1335 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
1336 value_assign(T
->p
[1][len
-2], c
->p
[0]);
1338 order_sign upper_sign
= polyhedron_affine_sign(D
->D
, T
, options
);
1339 if (upper_sign
== order_lt
|| !fract
)
1343 evalue2constraint(D
, diff
, c
->p
, len
);
1345 Vector_Copy(c
->p
+1, T
->p
[0], len
-1);
1346 value_assign(T
->p
[1][len
-2], c
->p
[0]);
1348 order_sign neg_lower_sign
= polyhedron_affine_sign(D
->D
, T
, options
);
1350 if (neg_lower_sign
== order_lt
)
1352 else if (neg_lower_sign
== order_eq
|| neg_lower_sign
== order_le
) {
1353 if (upper_sign
== order_eq
|| upper_sign
== order_le
)
1358 if (upper_sign
== order_lt
|| upper_sign
== order_le
||
1359 upper_sign
== order_eq
)
1362 sign
= order_unknown
;
1368 free_evalue_refs(&mone
);
1373 /* An auxiliary class that keeps a reference to an evalue
1374 * and frees it when it goes out of scope.
1376 struct temp_evalue
{
1378 temp_evalue() : E(NULL
) {}
1379 temp_evalue(evalue
*e
) : E(e
) {}
1380 operator evalue
* () const { return E
; }
1381 evalue
*operator=(evalue
*e
) {
1383 free_evalue_refs(E
);
1391 free_evalue_refs(E
);
1397 static void substitute(vector
<indicator_term
*>& term
, evalue
*equation
)
1399 evalue
*fract
= NULL
;
1400 evalue
*val
= new evalue
;
1402 evalue_copy(val
, equation
);
1405 value_init(factor
.d
);
1406 value_init(factor
.x
.n
);
1409 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= fractional
;
1410 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1413 if (value_zero_p(e
->d
) && e
->x
.p
->type
== fractional
)
1414 fract
= &e
->x
.p
->arr
[0];
1416 for (e
= val
; value_zero_p(e
->d
) && e
->x
.p
->type
!= polynomial
;
1417 e
= &e
->x
.p
->arr
[type_offset(e
->x
.p
)])
1419 assert(value_zero_p(e
->d
) && e
->x
.p
->type
== polynomial
);
1422 int offset
= type_offset(e
->x
.p
);
1424 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].d
));
1425 assert(value_notzero_p(e
->x
.p
->arr
[offset
+1].x
.n
));
1426 if (value_neg_p(e
->x
.p
->arr
[offset
+1].x
.n
)) {
1427 value_oppose(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1428 value_assign(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1430 value_assign(factor
.d
, e
->x
.p
->arr
[offset
+1].x
.n
);
1431 value_oppose(factor
.x
.n
, e
->x
.p
->arr
[offset
+1].d
);
1434 free_evalue_refs(&e
->x
.p
->arr
[offset
+1]);
1437 *e
= e
->x
.p
->arr
[offset
];
1442 for (int i
= 0; i
< term
.size(); ++i
)
1443 term
[i
]->substitute(fract
, val
);
1445 free_evalue_refs(&p
->arr
[0]);
1447 for (int i
= 0; i
< term
.size(); ++i
)
1448 term
[i
]->substitute(p
->pos
, val
);
1451 free_evalue_refs(&factor
);
1452 free_evalue_refs(val
);
1458 order_sign
partial_order::compare(const indicator_term
*a
, const indicator_term
*b
)
1460 unsigned dim
= a
->den
.NumCols();
1461 order_sign sign
= order_eq
;
1462 EDomain
*D
= ind
->D
;
1463 unsigned MaxRays
= ind
->options
->verify
.barvinok
->MaxRays
;
1464 bool rational
= a
->sign
== 0 || b
->sign
== 0;
1466 order_sign cached_sign
= order_eq
;
1467 for (int k
= 0; k
< dim
; ++k
) {
1468 cached_sign
= evalue_diff_constant_sign(a
->vertex
[k
], b
->vertex
[k
]);
1469 if (cached_sign
!= order_eq
)
1472 if (cached_sign
!= order_undefined
)
1475 order_cache_el cache_el
;
1476 cached_sign
= order_undefined
;
1478 cached_sign
= cache
.check(a
, b
, cache_el
);
1479 if (cached_sign
!= order_undefined
) {
1484 if (rational
&& POL_ISSET(MaxRays
, POL_INTEGER
)) {
1485 ind
->options
->verify
.barvinok
->MaxRays
&= ~POL_INTEGER
;
1486 if (ind
->options
->verify
.barvinok
->MaxRays
)
1487 ind
->options
->verify
.barvinok
->MaxRays
|= POL_HIGH_BIT
;
1492 vector
<indicator_term
*> term
;
1494 for (int k
= 0; k
< dim
; ++k
) {
1495 /* compute a->vertex[k] - b->vertex[k] */
1497 if (cache_el
.e
.size() <= k
) {
1498 diff
= ediff(a
->vertex
[k
], b
->vertex
[k
]);
1499 cache_el
.e
.push_back(diff
);
1501 diff
= cache_el
.e
[k
];
1504 tdiff
= diff
= ediff(term
[0]->vertex
[k
], term
[1]->vertex
[k
]);
1505 order_sign diff_sign
;
1507 diff_sign
= order_undefined
;
1508 else if (eequal(a
->vertex
[k
], b
->vertex
[k
]))
1509 diff_sign
= order_eq
;
1511 diff_sign
= evalue_sign(diff
, D
, ind
->options
);
1513 if (diff_sign
== order_undefined
) {
1514 assert(sign
== order_le
|| sign
== order_ge
);
1515 if (sign
== order_le
)
1521 if (diff_sign
== order_lt
) {
1522 if (sign
== order_eq
|| sign
== order_le
)
1525 sign
= order_unknown
;
1528 if (diff_sign
== order_gt
) {
1529 if (sign
== order_eq
|| sign
== order_ge
)
1532 sign
= order_unknown
;
1535 if (diff_sign
== order_eq
) {
1536 if (D
== ind
->D
&& term
.size() == 0 && !rational
&&
1537 !EVALUE_IS_ZERO(*diff
))
1538 ind
->add_substitution(diff
);
1541 if ((diff_sign
== order_unknown
) ||
1542 ((diff_sign
== order_lt
|| diff_sign
== order_le
) && sign
== order_ge
) ||
1543 ((diff_sign
== order_gt
|| diff_sign
== order_ge
) && sign
== order_le
)) {
1544 sign
= order_unknown
;
1551 term
.push_back(new indicator_term(*a
));
1552 term
.push_back(new indicator_term(*b
));
1554 substitute(term
, diff
);
1558 cache
.add(cache_el
, sign
);
1562 if (D
&& D
!= ind
->D
)
1570 ind
->options
->verify
.barvinok
->MaxRays
= MaxRays
;
1574 bool partial_order::compared(const indicator_term
* a
, const indicator_term
* b
)
1576 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator j
;
1579 if (j
!= lt
.end() && find(lt
[a
].begin(), lt
[a
].end(), b
) != lt
[a
].end())
1583 if (j
!= le
.end() && find(le
[a
].begin(), le
[a
].end(), b
) != le
[a
].end())
1589 void partial_order::add(const indicator_term
* it
,
1590 std::set
<const indicator_term
*> *filter
)
1592 if (eq
.find(it
) != eq
.end() && eq
[it
].size() == 1)
1595 typeof(head
) head_copy(head
);
1600 std::set
<const indicator_term
*>::iterator i
;
1601 for (i
= head_copy
.begin(); i
!= head_copy
.end(); ++i
) {
1604 if (eq
.find(*i
) != eq
.end() && eq
[*i
].size() == 1)
1607 if (filter
->find(*i
) == filter
->end())
1609 if (compared(*i
, it
))
1612 order_sign sign
= compare(it
, *i
);
1613 if (sign
== order_lt
) {
1614 lt
[it
].push_back(*i
);
1616 } else if (sign
== order_le
) {
1617 le
[it
].push_back(*i
);
1619 } else if (sign
== order_eq
) {
1622 } else if (sign
== order_gt
) {
1623 pending
[*i
].push_back(it
);
1624 lt
[*i
].push_back(it
);
1626 } else if (sign
== order_ge
) {
1627 pending
[*i
].push_back(it
);
1628 le
[*i
].push_back(it
);
1634 void partial_order::remove(const indicator_term
* it
)
1636 std::set
<const indicator_term
*> filter
;
1637 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
1639 assert(head
.find(it
) != head
.end());
1642 if (i
!= eq
.end()) {
1643 assert(eq
[it
].size() >= 1);
1644 const indicator_term
*base
;
1645 if (eq
[it
].size() == 1) {
1649 vector
<const indicator_term
* >::iterator j
;
1650 j
= find(eq
[base
].begin(), eq
[base
].end(), it
);
1651 assert(j
!= eq
[base
].end());
1654 /* "it" may no longer be the smallest, since the order
1655 * structure may have been copied from another one.
1657 sort(eq
[it
].begin()+1, eq
[it
].end(), pred
.key_comp());
1658 assert(eq
[it
][0] == it
);
1659 eq
[it
].erase(eq
[it
].begin());
1664 for (int j
= 1; j
< eq
[base
].size(); ++j
)
1665 eq
[eq
[base
][j
]][0] = base
;
1668 if (i
!= lt
.end()) {
1674 if (i
!= le
.end()) {
1679 i
= pending
.find(it
);
1680 if (i
!= pending
.end()) {
1681 pending
[base
] = pending
[it
];
1686 if (eq
[base
].size() == 1)
1695 if (i
!= lt
.end()) {
1696 for (int j
= 0; j
< lt
[it
].size(); ++j
) {
1697 filter
.insert(lt
[it
][j
]);
1698 dec_pred(lt
[it
][j
]);
1704 if (i
!= le
.end()) {
1705 for (int j
= 0; j
< le
[it
].size(); ++j
) {
1706 filter
.insert(le
[it
][j
]);
1707 dec_pred(le
[it
][j
]);
1714 i
= pending
.find(it
);
1715 if (i
!= pending
.end()) {
1716 vector
<const indicator_term
*> it_pending
= pending
[it
];
1718 for (int j
= 0; j
< it_pending
.size(); ++j
) {
1719 filter
.erase(it_pending
[j
]);
1720 add(it_pending
[j
], &filter
);
1725 void partial_order::print(ostream
& os
, char **p
)
1727 map
<const indicator_term
*, vector
<const indicator_term
* > >::iterator i
;
1728 map
<const indicator_term
*, int >::iterator j
;
1729 std::set
<const indicator_term
*>::iterator k
;
1730 for (k
= head
.begin(); k
!= head
.end(); ++k
) {
1734 for (j
= pred
.begin(); j
!= pred
.end(); ++j
) {
1735 (*j
).first
->print(os
, p
);
1736 os
<< ": " << (*j
).second
<< endl
;
1738 for (i
= lt
.begin(); i
!= lt
.end(); ++i
) {
1739 (*i
).first
->print(os
, p
);
1740 assert(head
.find((*i
).first
) != head
.end() ||
1741 pred
.find((*i
).first
) != pred
.end());
1742 if (pred
.find((*i
).first
) != pred
.end())
1743 os
<< "(" << pred
[(*i
).first
] << ")";
1745 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1748 (*i
).second
[j
]->print(os
, p
);
1749 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1750 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1754 for (i
= le
.begin(); i
!= le
.end(); ++i
) {
1755 (*i
).first
->print(os
, p
);
1756 assert(head
.find((*i
).first
) != head
.end() ||
1757 pred
.find((*i
).first
) != pred
.end());
1758 if (pred
.find((*i
).first
) != pred
.end())
1759 os
<< "(" << pred
[(*i
).first
] << ")";
1761 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1764 (*i
).second
[j
]->print(os
, p
);
1765 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1766 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1770 for (i
= eq
.begin(); i
!= eq
.end(); ++i
) {
1771 if ((*i
).second
.size() <= 1)
1773 (*i
).first
->print(os
, p
);
1774 assert(head
.find((*i
).first
) != head
.end() ||
1775 pred
.find((*i
).first
) != pred
.end());
1776 if (pred
.find((*i
).first
) != pred
.end())
1777 os
<< "(" << pred
[(*i
).first
] << ")";
1778 for (int j
= 1; j
< (*i
).second
.size(); ++j
) {
1781 (*i
).second
[j
]->print(os
, p
);
1782 assert(head
.find((*i
).second
[j
]) != head
.end() ||
1783 pred
.find((*i
).second
[j
]) != pred
.end());
1784 if (pred
.find((*i
).second
[j
]) != pred
.end())
1785 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1789 for (i
= pending
.begin(); i
!= pending
.end(); ++i
) {
1790 os
<< "pending on ";
1791 (*i
).first
->print(os
, p
);
1792 assert(head
.find((*i
).first
) != head
.end() ||
1793 pred
.find((*i
).first
) != pred
.end());
1794 if (pred
.find((*i
).first
) != pred
.end())
1795 os
<< "(" << pred
[(*i
).first
] << ")";
1797 for (int j
= 0; j
< (*i
).second
.size(); ++j
) {
1800 (*i
).second
[j
]->print(os
, p
);
1801 assert(pred
.find((*i
).second
[j
]) != pred
.end());
1802 os
<< "(" << pred
[(*i
).second
[j
]] << ")";
1808 void indicator::add(const indicator_term
* it
)
1810 indicator_term
*nt
= new indicator_term(*it
);
1811 if (options
->reduce
)
1812 nt
->reduce_in_domain(P
? P
: D
->D
);
1814 order
.add(nt
, NULL
);
1815 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1818 void indicator::remove(const indicator_term
* it
)
1820 vector
<indicator_term
*>::iterator i
;
1821 i
= find(term
.begin(), term
.end(), it
);
1822 assert(i
!= term
.end());
1825 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1829 void indicator::expand_rational_vertex(const indicator_term
*initial
)
1831 int pos
= initial
->pos
;
1833 if (ic
.terms
[pos
].size() == 0) {
1835 FORALL_PVertex_in_ParamPolyhedron(V
, PD
, ic
.PP
) // _i is internal counter
1837 ic
.decompose_at_vertex(V
, pos
, options
->verify
.barvinok
);
1840 END_FORALL_PVertex_in_ParamPolyhedron
;
1842 for (int j
= 0; j
< ic
.terms
[pos
].size(); ++j
)
1843 add(ic
.terms
[pos
][j
]);
1846 void indicator::remove_initial_rational_vertices()
1849 const indicator_term
*initial
= NULL
;
1850 std::set
<const indicator_term
*>::iterator i
;
1851 for (i
= order
.head
.begin(); i
!= order
.head
.end(); ++i
) {
1852 if ((*i
)->sign
!= 0)
1854 if (order
.eq
.find(*i
) != order
.eq
.end() && order
.eq
[*i
].size() <= 1)
1861 expand_rational_vertex(initial
);
1865 void indicator::reduce_in_domain(Polyhedron
*D
)
1867 for (int i
= 0; i
< term
.size(); ++i
)
1868 term
[i
]->reduce_in_domain(D
);
1871 void indicator::print(ostream
& os
, char **p
)
1873 assert(term
.size() == order
.head
.size() + order
.pred
.size());
1874 for (int i
= 0; i
< term
.size(); ++i
) {
1875 term
[i
]->print(os
, p
);
1877 os
<< ": " << term
[i
]->eval(D
->sample
->p
);
1884 /* Remove pairs of opposite terms */
1885 void indicator::simplify()
1887 for (int i
= 0; i
< term
.size(); ++i
) {
1888 for (int j
= i
+1; j
< term
.size(); ++j
) {
1889 if (term
[i
]->sign
+ term
[j
]->sign
!= 0)
1891 if (term
[i
]->den
!= term
[j
]->den
)
1894 for (k
= 0; k
< term
[i
]->den
.NumCols(); ++k
)
1895 if (!eequal(term
[i
]->vertex
[k
], term
[j
]->vertex
[k
]))
1897 if (k
< term
[i
]->den
.NumCols())
1901 term
.erase(term
.begin()+j
);
1902 term
.erase(term
.begin()+i
);
1909 void indicator::peel(int i
, int j
)
1917 int dim
= term
[i
]->den
.NumCols();
1922 int n_common
= 0, n_i
= 0, n_j
= 0;
1924 common
.SetDims(min(term
[i
]->den
.NumRows(), term
[j
]->den
.NumRows()), dim
);
1925 rest_i
.SetDims(term
[i
]->den
.NumRows(), dim
);
1926 rest_j
.SetDims(term
[j
]->den
.NumRows(), dim
);
1929 for (k
= 0, l
= 0; k
< term
[i
]->den
.NumRows() && l
< term
[j
]->den
.NumRows(); ) {
1930 int s
= lex_cmp(term
[i
]->den
[k
], term
[j
]->den
[l
]);
1932 common
[n_common
++] = term
[i
]->den
[k
];
1936 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1938 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1940 while (k
< term
[i
]->den
.NumRows())
1941 rest_i
[n_i
++] = term
[i
]->den
[k
++];
1942 while (l
< term
[j
]->den
.NumRows())
1943 rest_j
[n_j
++] = term
[j
]->den
[l
++];
1944 common
.SetDims(n_common
, dim
);
1945 rest_i
.SetDims(n_i
, dim
);
1946 rest_j
.SetDims(n_j
, dim
);
1948 for (k
= 0; k
<= n_i
; ++k
) {
1949 indicator_term
*it
= new indicator_term(*term
[i
]);
1950 it
->den
.SetDims(n_common
+ k
, dim
);
1951 for (l
= 0; l
< n_common
; ++l
)
1952 it
->den
[l
] = common
[l
];
1953 for (l
= 0; l
< k
; ++l
)
1954 it
->den
[n_common
+l
] = rest_i
[l
];
1955 lex_order_rows(it
->den
);
1957 for (l
= 0; l
< dim
; ++l
)
1958 evalue_add_constant(it
->vertex
[l
], rest_i
[k
-1][l
]);
1962 for (k
= 0; k
<= n_j
; ++k
) {
1963 indicator_term
*it
= new indicator_term(*term
[j
]);
1964 it
->den
.SetDims(n_common
+ k
, dim
);
1965 for (l
= 0; l
< n_common
; ++l
)
1966 it
->den
[l
] = common
[l
];
1967 for (l
= 0; l
< k
; ++l
)
1968 it
->den
[n_common
+l
] = rest_j
[l
];
1969 lex_order_rows(it
->den
);
1971 for (l
= 0; l
< dim
; ++l
)
1972 evalue_add_constant(it
->vertex
[l
], rest_j
[k
-1][l
]);
1975 term
.erase(term
.begin()+j
);
1976 term
.erase(term
.begin()+i
);
1979 void indicator::combine(const indicator_term
*a
, const indicator_term
*b
)
1981 int dim
= a
->den
.NumCols();
1984 mat_ZZ rest_i
; /* factors in a, but not in b */
1985 mat_ZZ rest_j
; /* factors in b, but not in a */
1986 int n_common
= 0, n_i
= 0, n_j
= 0;
1988 common
.SetDims(min(a
->den
.NumRows(), b
->den
.NumRows()), dim
);
1989 rest_i
.SetDims(a
->den
.NumRows(), dim
);
1990 rest_j
.SetDims(b
->den
.NumRows(), dim
);
1993 for (k
= 0, l
= 0; k
< a
->den
.NumRows() && l
< b
->den
.NumRows(); ) {
1994 int s
= lex_cmp(a
->den
[k
], b
->den
[l
]);
1996 common
[n_common
++] = a
->den
[k
];
2000 rest_i
[n_i
++] = a
->den
[k
++];
2002 rest_j
[n_j
++] = b
->den
[l
++];
2004 while (k
< a
->den
.NumRows())
2005 rest_i
[n_i
++] = a
->den
[k
++];
2006 while (l
< b
->den
.NumRows())
2007 rest_j
[n_j
++] = b
->den
[l
++];
2008 common
.SetDims(n_common
, dim
);
2009 rest_i
.SetDims(n_i
, dim
);
2010 rest_j
.SetDims(n_j
, dim
);
2012 assert(order
.eq
[a
].size() > 1);
2013 indicator_term
*prev
;
2016 for (int k
= n_i
-1; k
>= 0; --k
) {
2017 indicator_term
*it
= new indicator_term(*b
);
2018 it
->den
.SetDims(n_common
+ n_j
+ n_i
-k
, dim
);
2019 for (int l
= k
; l
< n_i
; ++l
)
2020 it
->den
[n_common
+n_j
+l
-k
] = rest_i
[l
];
2021 lex_order_rows(it
->den
);
2022 for (int m
= 0; m
< dim
; ++m
)
2023 evalue_add_constant(it
->vertex
[m
], rest_i
[k
][m
]);
2024 it
->sign
= -it
->sign
;
2026 order
.pending
[it
].push_back(prev
);
2027 order
.lt
[it
].push_back(prev
);
2028 order
.inc_pred(prev
);
2031 order
.head
.insert(it
);
2035 indicator_term
*it
= new indicator_term(*b
);
2036 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
2037 for (l
= 0; l
< n_i
; ++l
)
2038 it
->den
[n_common
+n_j
+l
] = rest_i
[l
];
2039 lex_order_rows(it
->den
);
2041 order
.pending
[a
].push_back(prev
);
2042 order
.lt
[a
].push_back(prev
);
2043 order
.inc_pred(prev
);
2044 order
.replace(b
, it
);
2049 for (int k
= n_j
-1; k
>= 0; --k
) {
2050 indicator_term
*it
= new indicator_term(*a
);
2051 it
->den
.SetDims(n_common
+ n_i
+ n_j
-k
, dim
);
2052 for (int l
= k
; l
< n_j
; ++l
)
2053 it
->den
[n_common
+n_i
+l
-k
] = rest_j
[l
];
2054 lex_order_rows(it
->den
);
2055 for (int m
= 0; m
< dim
; ++m
)
2056 evalue_add_constant(it
->vertex
[m
], rest_j
[k
][m
]);
2057 it
->sign
= -it
->sign
;
2059 order
.pending
[it
].push_back(prev
);
2060 order
.lt
[it
].push_back(prev
);
2061 order
.inc_pred(prev
);
2064 order
.head
.insert(it
);
2068 indicator_term
*it
= new indicator_term(*a
);
2069 it
->den
.SetDims(n_common
+ n_i
+ n_j
, dim
);
2070 for (l
= 0; l
< n_j
; ++l
)
2071 it
->den
[n_common
+n_i
+l
] = rest_j
[l
];
2072 lex_order_rows(it
->den
);
2074 order
.pending
[a
].push_back(prev
);
2075 order
.lt
[a
].push_back(prev
);
2076 order
.inc_pred(prev
);
2077 order
.replace(a
, it
);
2081 assert(term
.size() == order
.head
.size() + order
.pred
.size());
2084 bool indicator::handle_equal_numerators(const indicator_term
*base
)
2086 for (int i
= 0; i
< order
.eq
[base
].size(); ++i
) {
2087 for (int j
= i
+1; j
< order
.eq
[base
].size(); ++j
) {
2088 if (order
.eq
[base
][i
]->is_opposite(order
.eq
[base
][j
])) {
2089 remove(order
.eq
[base
][j
]);
2090 remove(i
? order
.eq
[base
][i
] : base
);
2095 for (int j
= 1; j
< order
.eq
[base
].size(); ++j
)
2096 if (order
.eq
[base
][j
]->sign
!= base
->sign
) {
2097 combine(base
, order
.eq
[base
][j
]);
2103 void indicator::substitute(evalue
*equation
)
2105 ::substitute(term
, equation
);
2108 void indicator::add_substitution(evalue
*equation
)
2110 for (int i
= 0; i
< substitutions
.size(); ++i
)
2111 if (eequal(substitutions
[i
], equation
))
2113 evalue
*copy
= new evalue();
2114 value_init(copy
->d
);
2115 evalue_copy(copy
, equation
);
2116 substitutions
.push_back(copy
);
2119 void indicator::perform_pending_substitutions()
2121 if (substitutions
.size() == 0)
2124 for (int i
= 0; i
< substitutions
.size(); ++i
) {
2125 substitute(substitutions
[i
]);
2126 free_evalue_refs(substitutions
[i
]);
2127 delete substitutions
[i
];
2129 substitutions
.clear();
2133 static void print_varlist(ostream
& os
, int n
, char **names
)
2137 for (i
= 0; i
< n
; ++i
) {
2145 void max_term::print(ostream
& os
, char **p
, barvinok_options
*options
) const
2148 print_varlist(os
, domain
->dimension(), p
);
2151 for (int i
= 0; i
< max
.size(); ++i
) {
2154 evalue_print(os
, max
[i
], p
);
2158 domain
->print_constraints(os
, p
, options
);
2162 /* T maps the compressed parameters to the original parameters,
2163 * while this max_term is based on the compressed parameters
2164 * and we want get the original parameters back.
2166 void max_term::substitute(Matrix
*T
, barvinok_options
*options
)
2168 assert(domain
->dimension() == T
->NbColumns
-1);
2169 int nexist
= domain
->D
->Dimension
- (T
->NbColumns
-1);
2171 Matrix
*inv
= left_inverse(T
, &Eq
);
2174 value_init(denom
.d
);
2175 value_init(denom
.x
.n
);
2176 value_set_si(denom
.x
.n
, 1);
2177 value_assign(denom
.d
, inv
->p
[inv
->NbRows
-1][inv
->NbColumns
-1]);
2180 v
.SetLength(inv
->NbColumns
);
2181 evalue
* subs
[inv
->NbRows
-1];
2182 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
2183 values2zz(inv
->p
[i
], v
, v
.length());
2184 subs
[i
] = multi_monom(v
);
2185 emul(&denom
, subs
[i
]);
2187 free_evalue_refs(&denom
);
2189 domain
->substitute(subs
, inv
, Eq
, options
->MaxRays
);
2192 for (int i
= 0; i
< max
.size(); ++i
) {
2193 evalue_substitute(max
[i
], subs
);
2194 reduce_evalue(max
[i
]);
2197 for (int i
= 0; i
< inv
->NbRows
-1; ++i
) {
2198 free_evalue_refs(subs
[i
]);
2204 int Last_Non_Zero(Value
*p
, unsigned len
)
2206 for (int i
= len
-1; i
>= 0; --i
)
2207 if (value_notzero_p(p
[i
]))
2212 static void SwapColumns(Value
**V
, int n
, int i
, int j
)
2214 for (int r
= 0; r
< n
; ++r
)
2215 value_swap(V
[r
][i
], V
[r
][j
]);
2218 static void SwapColumns(Polyhedron
*P
, int i
, int j
)
2220 SwapColumns(P
->Constraint
, P
->NbConstraints
, i
, j
);
2221 SwapColumns(P
->Ray
, P
->NbRays
, i
, j
);
2224 Vector
*max_term::eval(Value
*val
, unsigned MaxRays
) const
2226 if (!domain
->contains(val
, domain
->dimension()))
2228 Vector
*res
= Vector_Alloc(max
.size());
2229 for (int i
= 0; i
< max
.size(); ++i
) {
2230 compute_evalue(max
[i
], val
, &res
->p
[i
]);
2237 enum sign
{ le
, ge
, lge
} sign
;
2239 split (evalue
*c
, enum sign s
) : constraint(c
), sign(s
) {}
2242 static void split_on(const split
& sp
, EDomain
*D
,
2243 EDomain
**Dlt
, EDomain
**Deq
, EDomain
**Dgt
,
2244 lexmin_options
*options
)
2250 ge_constraint
*ge
= D
->compute_ge_constraint(sp
.constraint
);
2251 if (sp
.sign
== split::lge
|| sp
.sign
== split::ge
)
2252 ED
[2] = EDomain::new_from_ge_constraint(ge
, 1, options
->verify
.barvinok
);
2255 if (sp
.sign
== split::lge
|| sp
.sign
== split::le
)
2256 ED
[0] = EDomain::new_from_ge_constraint(ge
, -1, options
->verify
.barvinok
);
2260 assert(sp
.sign
== split::lge
|| sp
.sign
== split::ge
|| sp
.sign
== split::le
);
2261 ED
[1] = EDomain::new_from_ge_constraint(ge
, 0, options
->verify
.barvinok
);
2265 for (int i
= 0; i
< 3; ++i
) {
2268 if (D
->sample
&& ED
[i
]->contains(D
->sample
->p
, D
->sample
->Size
-1)) {
2269 ED
[i
]->sample
= Vector_Alloc(D
->sample
->Size
);
2270 Vector_Copy(D
->sample
->p
, ED
[i
]->sample
->p
, D
->sample
->Size
);
2271 } else if (emptyQ2(ED
[i
]->D
) ||
2272 (options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2273 !(ED
[i
]->not_empty(options
)))) {
2283 ostream
& operator<< (ostream
& os
, const vector
<int> & v
)
2286 for (int i
= 0; i
< v
.size(); ++i
) {
2295 static bool isTranslation(Matrix
*M
)
2298 if (M
->NbRows
!= M
->NbColumns
)
2301 for (i
= 0;i
< M
->NbRows
; i
++)
2302 for (j
= 0; j
< M
->NbColumns
-1; j
++)
2304 if(value_notone_p(M
->p
[i
][j
]))
2307 if(value_notzero_p(M
->p
[i
][j
]))
2310 return value_one_p(M
->p
[M
->NbRows
-1][M
->NbColumns
-1]);
2313 static Matrix
*compress_parameters(Polyhedron
**P
, Polyhedron
**C
,
2314 unsigned nparam
, unsigned MaxRays
)
2318 /* compress_parms doesn't like equalities that only involve parameters */
2319 for (int i
= 0; i
< (*P
)->NbEq
; ++i
)
2320 assert(First_Non_Zero((*P
)->Constraint
[i
]+1, (*P
)->Dimension
-nparam
) != -1);
2322 M
= Matrix_Alloc((*P
)->NbEq
, (*P
)->Dimension
+2);
2323 Vector_Copy((*P
)->Constraint
[0], M
->p
[0], (*P
)->NbEq
* ((*P
)->Dimension
+2));
2324 CP
= compress_parms(M
, nparam
);
2327 if (isTranslation(CP
)) {
2332 T
= align_matrix(CP
, (*P
)->Dimension
+1);
2333 *P
= Polyhedron_Preimage(*P
, T
, MaxRays
);
2336 *C
= Polyhedron_Preimage(*C
, CP
, MaxRays
);
2341 void construct_rational_vertices(Param_Polyhedron
*PP
, Matrix
*T
, unsigned dim
,
2342 int nparam
, vector
<indicator_term
*>& vertices
)
2351 v
.SetLength(nparam
+1);
2354 value_init(factor
.d
);
2355 value_init(factor
.x
.n
);
2356 value_set_si(factor
.x
.n
, 1);
2357 value_set_si(factor
.d
, 1);
2359 for (i
= 0, PV
= PP
->V
; PV
; ++i
, PV
= PV
->next
) {
2360 indicator_term
*term
= new indicator_term(dim
, i
);
2361 vertices
.push_back(term
);
2362 Matrix
*M
= Matrix_Alloc(PV
->Vertex
->NbRows
+nparam
+1, nparam
+1);
2363 value_set_si(lcm
, 1);
2364 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
)
2365 value_lcm(lcm
, PV
->Vertex
->p
[j
][nparam
+1], &lcm
);
2366 value_assign(M
->p
[M
->NbRows
-1][M
->NbColumns
-1], lcm
);
2367 for (int j
= 0; j
< PV
->Vertex
->NbRows
; ++j
) {
2368 value_division(tmp
, lcm
, PV
->Vertex
->p
[j
][nparam
+1]);
2369 Vector_Scale(PV
->Vertex
->p
[j
], M
->p
[j
], tmp
, nparam
+1);
2371 for (int j
= 0; j
< nparam
; ++j
)
2372 value_assign(M
->p
[PV
->Vertex
->NbRows
+j
][j
], lcm
);
2374 Matrix
*M2
= Matrix_Alloc(T
->NbRows
, M
->NbColumns
);
2375 Matrix_Product(T
, M
, M2
);
2379 for (int j
= 0; j
< dim
; ++j
) {
2380 values2zz(M
->p
[j
], v
, nparam
+1);
2381 term
->vertex
[j
] = multi_monom(v
);
2382 value_assign(factor
.d
, lcm
);
2383 emul(&factor
, term
->vertex
[j
]);
2387 assert(i
== PP
->nbV
);
2388 free_evalue_refs(&factor
);
2393 static vector
<max_term
*> lexmin(indicator
& ind
, unsigned nparam
,
2396 vector
<max_term
*> maxima
;
2397 std::set
<const indicator_term
*>::iterator i
;
2398 vector
<int> best_score
;
2399 vector
<int> second_score
;
2400 vector
<int> neg_score
;
2403 ind
.perform_pending_substitutions();
2404 const indicator_term
*best
= NULL
, *second
= NULL
, *neg
= NULL
,
2405 *neg_eq
= NULL
, *neg_le
= NULL
;
2406 for (i
= ind
.order
.head
.begin(); i
!= ind
.order
.head
.end(); ++i
) {
2408 const indicator_term
*term
= *i
;
2409 if (term
->sign
== 0) {
2410 ind
.expand_rational_vertex(term
);
2414 if (ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
2416 if (ind
.order
.eq
[term
].size() <= 1)
2418 for (j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
2419 if (ind
.order
.pred
.find(ind
.order
.eq
[term
][j
]) !=
2420 ind
.order
.pred
.end())
2422 if (j
< ind
.order
.eq
[term
].size())
2424 score
.push_back(ind
.order
.eq
[term
].size());
2427 if (ind
.order
.le
.find(term
) != ind
.order
.le
.end())
2428 score
.push_back(ind
.order
.le
[term
].size());
2431 if (ind
.order
.lt
.find(term
) != ind
.order
.lt
.end())
2432 score
.push_back(-ind
.order
.lt
[term
].size());
2436 if (term
->sign
> 0) {
2437 if (!best
|| score
< best_score
) {
2439 second_score
= best_score
;
2442 } else if (!second
|| score
< second_score
) {
2444 second_score
= score
;
2447 if (!neg_eq
&& ind
.order
.eq
.find(term
) != ind
.order
.eq
.end()) {
2448 for (int j
= 1; j
< ind
.order
.eq
[term
].size(); ++j
)
2449 if (ind
.order
.eq
[term
][j
]->sign
!= term
->sign
) {
2454 if (!neg_le
&& ind
.order
.le
.find(term
) != ind
.order
.le
.end())
2456 if (!neg
|| score
< neg_score
) {
2462 if (i
!= ind
.order
.head
.end())
2465 if (!best
&& neg_eq
) {
2466 assert(ind
.order
.eq
[neg_eq
].size() != 0);
2467 bool handled
= ind
.handle_equal_numerators(neg_eq
);
2472 if (!best
&& neg_le
) {
2473 /* The smallest term is negative and <= some positive term */
2479 /* apparently there can be negative initial term on empty domains */
2480 if (ind
.options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2481 ind
.options
->polysign
== BV_LEXMIN_POLYSIGN_POLYLIB
)
2486 if (!second
&& !neg
) {
2487 const indicator_term
*rat
= NULL
;
2489 if (ind
.order
.le
.find(best
) == ind
.order
.le
.end()) {
2490 if (ind
.order
.eq
.find(best
) != ind
.order
.eq
.end()) {
2491 bool handled
= ind
.handle_equal_numerators(best
);
2492 if (ind
.options
->emptiness_check
!=
2493 BV_LEXMIN_EMPTINESS_CHECK_NONE
&&
2494 ind
.options
->polysign
== BV_LEXMIN_POLYSIGN_POLYLIB
)
2496 /* If !handled then the leading coefficient is bigger than one;
2497 * must be an empty domain
2504 maxima
.push_back(ind
.create_max_term(best
));
2507 for (int j
= 0; j
< ind
.order
.le
[best
].size(); ++j
) {
2508 if (ind
.order
.le
[best
][j
]->sign
== 0) {
2509 if (!rat
&& ind
.order
.pred
[ind
.order
.le
[best
][j
]] == 1)
2510 rat
= ind
.order
.le
[best
][j
];
2511 } else if (ind
.order
.le
[best
][j
]->sign
> 0) {
2512 second
= ind
.order
.le
[best
][j
];
2515 neg
= ind
.order
.le
[best
][j
];
2518 if (!second
&& !neg
) {
2520 ind
.order
.unset_le(best
, rat
);
2521 ind
.expand_rational_vertex(rat
);
2528 ind
.order
.unset_le(best
, second
);
2534 unsigned dim
= best
->den
.NumCols();
2537 for (int k
= 0; k
< dim
; ++k
) {
2538 diff
= ediff(best
->vertex
[k
], second
->vertex
[k
]);
2539 sign
= evalue_sign(diff
, ind
.D
, ind
.options
);
2541 /* neg can never be smaller than best, unless it may still cancel.
2542 * This can happen if positive terms have been determined to
2543 * be equal or less than or equal to some negative term.
2545 if (second
== neg
&& !neg_eq
&& !neg_le
) {
2546 if (sign
== order_ge
)
2548 if (sign
== order_unknown
)
2552 if (sign
!= order_eq
)
2554 if (!EVALUE_IS_ZERO(*diff
)) {
2555 ind
.add_substitution(diff
);
2556 ind
.perform_pending_substitutions();
2559 if (sign
== order_eq
) {
2560 ind
.order
.set_equal(best
, second
);
2563 if (sign
== order_lt
) {
2564 ind
.order
.lt
[best
].push_back(second
);
2565 ind
.order
.inc_pred(second
);
2568 if (sign
== order_gt
) {
2569 ind
.order
.lt
[second
].push_back(best
);
2570 ind
.order
.inc_pred(best
);
2574 split
sp(diff
, sign
== order_le
? split::le
:
2575 sign
== order_ge
? split::ge
: split::lge
);
2577 EDomain
*Dlt
, *Deq
, *Dgt
;
2578 split_on(sp
, ind
.D
, &Dlt
, &Deq
, &Dgt
, ind
.options
);
2579 if (ind
.options
->emptiness_check
!= BV_LEXMIN_EMPTINESS_CHECK_NONE
)
2580 assert(Dlt
|| Deq
|| Dgt
);
2581 else if (!(Dlt
|| Deq
|| Dgt
))
2582 /* Must have been empty all along */
2585 if (Deq
&& (Dlt
|| Dgt
)) {
2586 int locsize
= loc
.size();
2588 indicator
indeq(ind
, Deq
);
2590 indeq
.add_substitution(diff
);
2591 indeq
.perform_pending_substitutions();
2592 vector
<max_term
*> maxeq
= lexmin(indeq
, nparam
, loc
);
2593 maxima
.insert(maxima
.end(), maxeq
.begin(), maxeq
.end());
2594 loc
.resize(locsize
);
2597 int locsize
= loc
.size();
2599 indicator
indgt(ind
, Dgt
);
2601 /* we don't know the new location of these terms in indgt */
2603 indgt.order.lt[second].push_back(best);
2604 indgt.order.inc_pred(best);
2606 vector
<max_term
*> maxgt
= lexmin(indgt
, nparam
, loc
);
2607 maxima
.insert(maxima
.end(), maxgt
.begin(), maxgt
.end());
2608 loc
.resize(locsize
);
2613 ind
.set_domain(Deq
);
2614 ind
.add_substitution(diff
);
2615 ind
.perform_pending_substitutions();
2619 ind
.set_domain(Dlt
);
2620 ind
.order
.lt
[best
].push_back(second
);
2621 ind
.order
.inc_pred(second
);
2625 ind
.set_domain(Dgt
);
2626 ind
.order
.lt
[second
].push_back(best
);
2627 ind
.order
.inc_pred(best
);
2634 static vector
<max_term
*> lexmin(Polyhedron
*P
, Polyhedron
*C
,
2635 lexmin_options
*options
)
2637 unsigned nparam
= C
->Dimension
;
2638 Param_Polyhedron
*PP
= NULL
;
2639 Matrix
*T
= NULL
, *CP
= NULL
;
2640 Polyhedron
*Porig
= P
;
2641 Polyhedron
*Corig
= C
;
2642 vector
<max_term
*> all_max
;
2644 unsigned P2PSD_MaxRays
;
2649 POL_ENSURE_VERTICES(P
);
2654 assert(P
->NbBid
== 0);
2657 remove_all_equalities(&P
, &C
, &CP
, &T
, nparam
,
2658 options
->verify
.barvinok
->MaxRays
);
2660 nparam
= CP
->NbColumns
-1;
2668 if (options
->verify
.barvinok
->MaxRays
& POL_NO_DUAL
)
2671 P2PSD_MaxRays
= options
->verify
.barvinok
->MaxRays
;
2673 PP
= Polyhedron2Param_Domain(P
, C
, P2PSD_MaxRays
);
2675 unsigned dim
= P
->Dimension
- nparam
;
2679 indicator_constructor
ic(P
, dim
, PP
, T
);
2681 vector
<indicator_term
*> all_vertices
;
2682 construct_rational_vertices(PP
, T
, T
? T
->NbRows
-nparam
-1 : dim
,
2683 nparam
, all_vertices
);
2685 Polyhedron
*TC
= true_context(P
, C
, options
->verify
.barvinok
->MaxRays
);
2686 FORALL_REDUCED_DOMAIN(PP
, TC
, nd
, options
->verify
.barvinok
, i
, D
, rVD
)
2689 EDomain
*epVD
= new EDomain(rVD
);
2690 indicator
ind(ic
, D
, epVD
, options
);
2692 FORALL_PVertex_in_ParamPolyhedron(V
,D
,PP
) // _i is internal counter
2693 ind
.add(all_vertices
[_i
]);
2694 END_FORALL_PVertex_in_ParamPolyhedron
;
2696 ind
.remove_initial_rational_vertices();
2699 vector
<max_term
*> maxima
= lexmin(ind
, nparam
, loc
);
2701 for (int j
= 0; j
< maxima
.size(); ++j
)
2702 maxima
[j
]->substitute(CP
, options
->verify
.barvinok
);
2703 all_max
.insert(all_max
.end(), maxima
.begin(), maxima
.end());
2706 END_FORALL_REDUCED_DOMAIN
2707 Polyhedron_Free(TC
);
2708 for (int i
= 0; i
< all_vertices
.size(); ++i
)
2709 delete all_vertices
[i
];
2714 Param_Polyhedron_Free(PP
);
2723 static void verify_results(Polyhedron
*A
, Polyhedron
*C
,
2724 vector
<max_term
*>& maxima
,
2725 struct verify_options
*options
);
2727 int main(int argc
, char **argv
)
2732 char **iter_names
, **param_names
;
2733 int print_solution
= 1;
2734 struct lexmin_options options
;
2735 static struct argp_child argp_children
[] = {
2736 { &barvinok_argp
, 0, 0, 0 },
2737 { &verify_argp
, 0, "verification", 1 },
2740 static struct argp argp
= { argp_options
, parse_opt
, 0, 0, argp_children
};
2741 struct barvinok_options
*bv_options
;
2743 bv_options
= barvinok_options_new_with_defaults();
2744 bv_options
->lookup_table
= 0;
2746 options
.verify
.barvinok
= bv_options
;
2747 set_program_name(argv
[0]);
2748 argp_parse(&argp
, argc
, argv
, 0, 0, &options
);
2751 C
= Constraints2Polyhedron(MA
, bv_options
->MaxRays
);
2753 fscanf(stdin
, " %d", &bignum
);
2754 assert(bignum
== -1);
2756 A
= Constraints2Polyhedron(MA
, bv_options
->MaxRays
);
2759 verify_options_set_range(&options
.verify
, A
->Dimension
);
2761 if (options
.verify
.verify
)
2764 iter_names
= util_generate_names(A
->Dimension
- C
->Dimension
, "i");
2765 param_names
= util_generate_names(C
->Dimension
, "p");
2766 if (print_solution
) {
2767 Polyhedron_Print(stdout
, P_VALUE_FMT
, A
);
2768 Polyhedron_Print(stdout
, P_VALUE_FMT
, C
);
2770 vector
<max_term
*> maxima
= lexmin(A
, C
, &options
);
2772 for (int i
= 0; i
< maxima
.size(); ++i
)
2773 maxima
[i
]->print(cout
, param_names
, options
.verify
.barvinok
);
2775 if (options
.verify
.verify
)
2776 verify_results(A
, C
, maxima
, &options
.verify
);
2778 for (int i
= 0; i
< maxima
.size(); ++i
)
2781 util_free_names(A
->Dimension
- C
->Dimension
, iter_names
);
2782 util_free_names(C
->Dimension
, param_names
);
2786 barvinok_options_free(bv_options
);
2791 static bool lexmin(int pos
, Polyhedron
*P
, Value
*context
)
2800 value_init(LB
); value_init(UB
); value_init(k
);
2803 lu_flags
= lower_upper_bounds(pos
,P
,context
,&LB
,&UB
);
2804 assert(!(lu_flags
& LB_INFINITY
));
2806 value_set_si(context
[pos
],0);
2807 if (!lu_flags
&& value_lt(UB
,LB
)) {
2808 value_clear(LB
); value_clear(UB
); value_clear(k
);
2812 value_assign(context
[pos
], LB
);
2813 value_clear(LB
); value_clear(UB
); value_clear(k
);
2816 for (value_assign(k
,LB
); lu_flags
|| value_le(k
,UB
); value_increment(k
,k
)) {
2817 value_assign(context
[pos
],k
);
2818 if ((found
= lexmin(pos
+1, P
->next
, context
)))
2822 value_set_si(context
[pos
],0);
2823 value_clear(LB
); value_clear(UB
); value_clear(k
);
2827 static void print_list(FILE *out
, Value
*z
, char* brackets
, int len
)
2829 fprintf(out
, "%c", brackets
[0]);
2830 value_print(out
, VALUE_FMT
,z
[0]);
2831 for (int k
= 1; k
< len
; ++k
) {
2833 value_print(out
, VALUE_FMT
,z
[k
]);
2835 fprintf(out
, "%c", brackets
[1]);
2838 static int check_poly_lexmin(const struct check_poly_data
*data
,
2839 int nparam
, Value
*z
,
2840 const struct verify_options
*options
);
2842 struct check_poly_lexmin_data
: public check_poly_data
{
2844 vector
<max_term
*>& maxima
;
2846 check_poly_lexmin_data(Polyhedron
*S
, Value
*z
,
2847 vector
<max_term
*>& maxima
) : S(S
), maxima(maxima
) {
2849 this->check
= check_poly_lexmin
;
2853 static int check_poly_lexmin(const struct check_poly_data
*data
,
2854 int nparam
, Value
*z
,
2855 const struct verify_options
*options
)
2857 const check_poly_lexmin_data
*lexmin_data
;
2858 lexmin_data
= static_cast<const check_poly_lexmin_data
*>(data
);
2859 Polyhedron
*S
= lexmin_data
->S
;
2860 vector
<max_term
*>& maxima
= lexmin_data
->maxima
;
2862 bool found
= lexmin(1, S
, lexmin_data
->z
);
2864 if (options
->print_all
) {
2866 print_list(stdout
, z
, "()", nparam
);
2869 print_list(stdout
, lexmin_data
->z
+1, "[]", S
->Dimension
-nparam
);
2874 for (int i
= 0; i
< maxima
.size(); ++i
)
2875 if ((min
= maxima
[i
]->eval(z
, options
->barvinok
->MaxRays
)))
2878 int ok
= !(found
^ !!min
);
2880 for (int i
= 0; i
< S
->Dimension
-nparam
; ++i
)
2881 if (value_ne(lexmin_data
->z
[1+i
], min
->p
[i
])) {
2888 fprintf(stderr
, "Error !\n");
2889 fprintf(stderr
, "lexmin");
2890 print_list(stderr
, z
, "()", nparam
);
2891 fprintf(stderr
, " should be ");
2893 print_list(stderr
, lexmin_data
->z
+1, "[]", S
->Dimension
-nparam
);
2894 fprintf(stderr
, " while digging gives ");
2896 print_list(stderr
, min
->p
, "[]", S
->Dimension
-nparam
);
2897 fprintf(stderr
, ".\n");
2899 } else if (options
->print_all
)
2904 for (k
= 1; k
<= S
->Dimension
-nparam
; ++k
)
2905 value_set_si(lexmin_data
->z
[k
], 0);
2908 void verify_results(Polyhedron
*A
, Polyhedron
*C
, vector
<max_term
*>& maxima
,
2909 struct verify_options
*options
)
2912 unsigned nparam
= C
->Dimension
;
2913 unsigned MaxRays
= options
->barvinok
->MaxRays
;
2918 CS
= check_poly_context_scan(A
, &C
, nparam
, options
);
2920 p
= Vector_Alloc(A
->Dimension
+2);
2921 value_set_si(p
->p
[A
->Dimension
+1], 1);
2923 S
= Polyhedron_Scan(A
, C
, MaxRays
& POL_NO_DUAL
? 0 : MaxRays
);
2925 check_poly_init(C
, options
);
2928 if (!(CS
&& emptyQ2(CS
))) {
2929 check_poly_lexmin_data
data(S
, p
->p
, maxima
);
2930 check_poly(CS
, &data
, nparam
, 0, p
->p
+S
->Dimension
-nparam
+1, options
);
2935 if (!options
->print_all
)